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Abstract

In this paper, we study the initial boundary value problem of semilinear wave equations:

utt � Du ¼ jujp�1
u; xAO; t40;

uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ u1ðxÞ; xAO;

uðx; tÞ ¼ 0; xA@O; tX0;

where OCRN is a bounded domain, 1opoN for N ¼ 1; 2; 1oppNþ2
N�2

for NX3: First, by

using a new method, we introduce a family of potential wells which include the known

potential well as a special case. Then by using it, we obtain some new existence theorems of

global solutions, and prove that for any eAð0; dÞ (d is the depth of the known potential well)

all solutions with initial energy Eð0Þ satisfying 0oEð0Þpe can only lie either inside of some

smaller ball or outside of some bigger ball of space H1
0 ðOÞ:

r 2002 Published by Elsevier Science (USA).
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1. Introduction

The potential well was introduced by Sattinger [8] in order to prove the global
existence of solutions for nonlinear hyperbolic equations which have not necessary
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positive definite energy. After that many authors [3,6,7,9,10] studied the global
existence and nonexistence of solutions of the initial boundary value problem for
various nonlinear evolution equations by using the potential well method, but the
potential wells used in these work were defined by the same method as Sattinger [8],
and the results obtained in these work were similar each other.

In this paper, we study the initial boundary value problem of semilinear wave
equations:

utt � Du ¼ jujp�1
u; xAO; t40; ð1:1Þ

uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ u1ðxÞ; xAO; ð1:2Þ

uðx; tÞ ¼ 0; xA@O; tX0; ð1:3Þ

where OCRN is a smooth bounded domain, p satisfies

ðH0Þ 1opoN for N ¼ 1; 2; 1opp
N þ 2

N � 2
for NX3:

On the global existence, nonexistence and blow-up of solutions for problem (1.1)–
(1.3), there have been many results [1,2,4,5,7,9]. First by using the new method, we
introduce a family of potential wells which include the known potential well as a
special case. And give some results on the properties of this family of potential wells.
Then by using it we obtain some new existence and nonexistence theorems of global
solutions for problem (1.1)–(1.3) by which the known results are improved very
much. Finally, we prove that for any given eAð0; dÞ (d is the depth of the known
potential well), all solutions of problem (1.1)–(1.3) with initial energy Eð0Þ satisfying
0oEð0Þpe can only lie either inside of some smaller ball or outside of some bigger

ball of space H1
0 ðOÞ:

The method used in this paper can be applied for some class of other nonlinear
evolution equations. So the phenomena of vacuum isolating of solutions are
discovered for some class of nonlinear evolution equations.

In this paper, we denote jj � jjLpðOÞ by jj � jjp; jj � jj ¼ jj � jj2 and ðu; vÞ ¼
R
O uv dx:

2. Introducing of potential wells

For problem (1.1)–(1.3) we also define

EðtÞ ¼ 1

2
jjutjj2 þ

1

2
jjrujj2 � 1

p þ 1
jjujjpþ1

pþ1;

JðuÞ ¼ 1

2
jjrujj2 � 1

p þ 1
jjujjpþ1

pþ1;
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IðuÞ ¼ jjrujj2 � jjujjpþ1
pþ1;

and the potential well

W ¼ fuAH1
0 ðOÞ j IðuÞ40; JðuÞodg,f0g;

where

d ¼ inf
uAH1

0
ðOÞ

ua0

sup
lX0

JðluÞ
� �

or equivalently [7]

d ¼ inf JðuÞ

subject to uAH1
0 ðOÞ; jjrujja0; IðuÞ ¼ 0:

On the value of d we have [7]

d ¼ 1

aCa
�
; a ¼ 2

p þ 1

p � 1
; ð2:1Þ

where C� is the imbedding constant from H1
0 ðOÞ into Lpþ1ðOÞ:

jjujjpþ1pC�jjrujj

or

C� ¼ sup
jjujjpþ1

jjrujj :

In the following, d always is defined by (2.1).
Furthermore, for problem (1.1)–(1.3) and dAð0; 1Þ we define

JdðuÞ ¼
d
2
jjrujj2 � 1

p þ 1
jjujjpþ1

pþ1;

dðdÞ ¼ 1� d
2

p þ 1

2C
pþ1
�

d
� � 2

p�1
:

In the following Lemmas 2.1–2.10 we always assume that p satisfies ðH0Þ; 0odo1

and uAH1
0 ðOÞ:

Lemma 2.1. If JðuÞpdðdÞ; then JdðuÞ40 if and only if

0ojjrujjo p þ 1

2C
pþ1
�

d
� � 1

p�1
: ð2:2Þ
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Proof. If (2.2) holds, then we have

jjujjpþ1
pþ1pCpþ1

� jjrujjpþ1 ¼ Cpþ1
� jjrujjp�1jjrujj2op þ 1

2
djjrujj2;

hence JdðuÞ40: On the other hand, from JdðuÞ40 we have jjrujj40; and by

JðuÞ ¼ 1� d
2

jjrujj2 þ JdðuÞpdðdÞ ð2:3Þ

we can obtain (2.2). &

Lemma 2.2. If JðuÞpdðdÞ; then JdðuÞo0 if and only if

jjrujj4 p þ 1

2C
pþ1
�

d
� � 1

p�1
: ð2:4Þ

Proof. If JdðuÞo0; then from

p þ 1

2
djjrujj2ojjujjpþ1

pþ1pCpþ1
� jjrujjp�1jjrujj2

we can get (2.4). On the other hand, from (2.4) and (2.3) we obtain JdðuÞo0: &

Lemma 2.3. If JðuÞ ¼ dðdÞ; then JdðuÞ ¼ 0 if and only if

jjrujj ¼ p þ 1

2C
pþ1
�

d
� � 1

p�1
:

Lemma 2.4. As function of d; dðdÞ possesses the following properties on the interval

0pdp1:
(i) dð0Þ ¼ dð1Þ ¼ 0;

(ii) dðdÞ takes the maximum, dðd0Þ ¼ 1
aCa

�
¼ d at d0 ¼ 2

pþ1
; where a and d are as

defined by (2.1);
(iii) dðdÞ is increasing on ½0; d0
 and decreasing on ½d0; 1
;
(iv) For any given eAð0; dÞ; the equation dðdÞ ¼ e has exactly two roots d1Að0; d0Þ

and d2Aðd0; 1Þ:

Proof. Clearly it is enough to prove (ii) and (iii), and they can be obtained by

d 0ðdÞ ¼ Ad
2

p�1
2

p � 1

1� d
d

� 1

� �
¼ 2

p � 1
Ad

2
p�1

1

d
� p þ 1

2

� �
;
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where

A ¼ 1

2

p þ 1

2C
pþ1
x

� � 2
p�1

: &

Theorem 2.5.

dðdÞ ¼ inf JðuÞ ð2:5Þ

subject to uAH1
0 ðOÞ; jjrujja0; JdðuÞ ¼ 0:

Proof. If JdðuÞ ¼ 0 and jjrujja0; then from

JðuÞ ¼ 1� d
2

jjrujj2 þ JdðuÞ ¼
1� d
2

jjrujj2

and

p þ 1

2
djjrujj2 ¼ jjujjpþ1

pþ1pCpþ1
� jjrujjp�1jjrujj2;

it follows that JðuÞXdðdÞ: From this and the definition of C� we get (2.5). &

Corollary 2.6.

d ¼ dðd0Þ ¼ inf JðuÞ

subject to uAH1
0 ðOÞ; jjrujja0; IðuÞ ¼ 0:

Proof. This corollary can be obtained by Theorem 2.5 and the fact that Jd0ðuÞ ¼ 0 is

equivalent to IðuÞ ¼ 0: &

Remark 2.1. The value of the depth d of the potential well W given by Lemma 2.4
and Corollary 2.6 is exactly the same as that obtained by Payne and Sattinger [7], but
it is obtained by a different method in this paper.

According to Theorem 2.5 and Corollary 2.6, now we can define a family of
potential wells as follows:

Wd ¼ fuAH1
0 ðOÞ j JdðuÞ40; JðuÞodðdÞg,f0g; 0odo1;

%Wd ¼ Wd,@Wd ¼ fuAH1
0 ðOÞ j JdðuÞX0; JðuÞpdðdÞg,f0g:

Clearly, we have

Wd0 ¼ W :
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Remark 2.2. From

JðuÞ ¼ 1� d
2

jjrujj2 þ JdðuÞ

we see that JdðuÞ40 implies JðuÞ40:

In addition, we define

Vd ¼fuAH1
0 ðOÞ j JdðuÞo0; JðuÞodðdÞg; 0odo1;

%Vd ¼Vd,@Vd ¼ fuAH1
0 ðOÞ j JdðuÞp0; JðuÞpdðdÞg;

V ¼fuAH1
0 ðOÞ j IðuÞo0; JðuÞodg;

Bd ¼ uAH1
0 ðOÞ jjrujjo p þ 1

2C
pþ1
�

d
� � 1

p�1

������
8<
:

9=
;;

%Bd ¼Bd,@Bd ¼ uAH1
0 ðOÞ jjrujjp p þ 1

2C
pþ1
�

d
� � 1

p�1

������
8<
:

9=
;;

Bc
d ¼ uAH1

0 ðOÞ jjrujj4 p þ 1

2c
pþ1
�

d
� � 1

p�1

������
8<
:

9=
;:

Clearly, we have Vd0 ¼ V :

Note that JðuÞp1
2
jjrujj2; hence for any given dAð0; 1Þ; when

0ojjrujjoð1� dÞ
1
2

p þ 1

2C
pþ1
�

d
� � 1

p�1
;

we have JðuÞodðdÞ and JdðuÞ40: This implies

B%dCWd; %d satisfies
p þ 1

2C
pþ1
�

%d
� � 1

p�1
¼ ð1� dÞ

1
2

p þ 1

2C
pþ1
�

d
� � 1

p�1
:

From this, Lemmas 2.1 and 2.2 we have

Theorem 2.7. Let Wd; Vd; Bd; Bc
d and %d be as defined above. Then

B%dCWdCBd;VdCBc
d:

Liu Yacheng / J. Differential Equations 192 (2003) 155–169160



Corollary 2.8.

B%d0CWCBd0 ; VCBc
d0 ;

where

Bd0 ¼ fuAH1
0 ðOÞ j jjrujjoC

�pþ1
p�1

� g;

p þ 1

2C
pþ1
�

%d0

� � 1
p�1

¼ p � 1

p þ 1

� �1
2
C

�pþ1
p�1

� :

Lemma 2.9. ðiÞ If 0od0od00pd0; then Wd0CWd00 :

ðiiÞ If d0pd0od00o1; then Vd00CVd0 :

Proof. This lemma can be obtained from the definition of Wd and Vd and Lemma
2.4. &

Lemma 2.10. Assume that 0oJðuÞod for some given uAH1
0 ðOÞ; d1od2 are the two

roots of equation dðdÞ ¼ JðuÞ: Then the sign of JdðuÞ is not changed for dAðd1; d2Þ:

Proof. First JðuÞ40 implies jjrujja0: If the sign of JdðuÞ is changed, then there

must exist a d�Aðd1; d2Þ such that Jd� ðuÞ ¼ 0: So by Theorem 2.5 and Lemma 2.4 we
have

JðuÞXdðd�Þ4dðd1Þ ¼ dðd2Þ;

which contradicts JðuÞ ¼ dðd1Þ ¼ dðd2Þ: &

3. Existence and nonexistence of global solutions

In [9], Tsutsumi studied the initial boundary value problem of semilinear wave
equations in the following form:

d2u

dt2
þ Au þ f ðuÞ ¼ 0;

uð0Þ ¼ u0; utð0Þ ¼ u1

in a Hilbert space HCV : Taking A ¼ �D; f ðuÞ ¼ �jujp�1
u; H ¼ L2ðOÞ; V ¼ H1

0 ðOÞ
in [9, Theorem 6], we can only obtain the following:
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Theorem 3.1. Let p satisfy

ðH1Þ 2opoN for N ¼ 1; 2; 2opp
N

N � 2
for NX3:

Assume that u0ðxÞAW-H2ðOÞ; u1ðxÞAH1
0 ðOÞ and Eð0Þod: Then problem (1.1)–(1.3)

has a unique global solution uðtÞACð½0;T 
; H2ðOÞ-H1
0 ðOÞÞ-C1ð½0;T 
;

H1
0 ðOÞÞ-C2ð½0;T 
lL2ðOÞÞ; and uðtÞAW for tA½0;T 
; for any T40:

Remark 3.1. Note that u0AW implies that Eð0ÞXJðu0Þ4Jd0ðu0Þ40 if jjru0jja0 or

that Eð0ÞXJðu0Þ ¼ 0 if jjru0jj ¼ 0:
From ðH1Þ we see that Theorem 3.1 is only applicable for Np3: On the other

hand from Theorem 3.1 we cannot conclude whether there exists a global weak

solution of problem (1.1)–(1.3) provided u0ðxÞAW ; u1ðxÞAL2ðOÞ:
Next we give a new existence theorem of global weak solutions for problem (1.1)–

(1.3).

Theorem 3.2. Let p satisfy ðH0Þ; u0ðxÞAH1
0 ðOÞ; u1ðxÞAL2ðOÞ: Suppose that

0oEð0Þod; d1od2 are the two roots of equation dðdÞ ¼ Eð0Þ and Jd2ðu0Þ40 or

jjru0jj ¼ 0: Then problem (1.1)–(1.3) admits a global weak solution

uðtÞALNð0;N;H1
0 ðOÞÞ with utðtÞALNð0;N;L2ðOÞÞ and uðtÞAWd for dAðd1; d2Þ

and 0ptoN:

Proof. Let fwjðxÞg be a system of base functions of H1
0 ðOÞ: Construct approximate

solutions of problem (1.1)–(1.3)

umðx; tÞ ¼
Xm

j¼1

gjmðtÞwjðxÞ; m ¼ 1; 2;y ;

satisfying

ðumtt;wsÞ þ ðrum rwsÞ ¼ ðjumjp�1
um;wsÞ; s ¼ 1; 2;y;m; ð3:1Þ

umð0Þ ¼
Xm

j¼1

ajmwjðxÞ-u0ðxÞ in H1
0 ðOÞ; ð3:2Þ

umtð0Þ ¼
Xm

j¼1

bjmwjðxÞ-u1ðxÞ in L2ðOÞ: ð3:3Þ

Multiplying (3.1) by g0
smðtÞ; summing for s and integrating with respect to t; we

obtain

EmðtÞ ¼
1

2
jjumtjj2 þ

1

2
jjrumjj2 �

1

p þ 1
jjumjjpþ1

pþ1

¼ 1

2
jjumtð0Þjj2 þ

1

2
jjrumð0Þjj2 �

1

p þ 1
jjumð0Þjjpþ1

pþ1 ¼ Emð0Þ: ð3:4Þ
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Note that Jd2ðu0Þ40 implies jjru0jja0: So by an argument similar to that of
Lemma 2.10, we can prove Jdðu0Þ40 for dAðd1; d2Þ: From this and Jðu0ÞpEð0Þ ¼
dðd1Þ we obtain u0ðxÞAWd for dAðd1; d2Þ: If jjru0jj ¼ 0; then u0ðxÞAWd for dAð0; 1Þ:
For any fixed dAðd1; d2Þ; we have Jdðumð0ÞÞ40 and Emð0ÞodðdÞ (if Jd2ðu0Þ40) or

umð0ÞAB%d (if jjru0jj ¼ 0; %d is defined in Theorem 2.7) thereby umð0ÞAWd for

sufficiently large m:
Next, we prove that umðtÞAWd for sufficiently large m and t40: If it is false, then

we must have a t040 such that umðt0ÞA@Wd; i.e. Jdðumðt0ÞÞ ¼ 0 and jjrumðt0Þjja0 or
Jðumðt0ÞÞ ¼ dðdÞ: From (3.4) we have

JðumðtÞÞpEmð0ÞodðdÞ; t40;

hence Jðumðt0ÞÞ ¼ dðdÞ is impossible. If Jdðumðt0ÞÞ ¼ 0 and jjrumðt0Þjja0; then by
Theorem 2.5 we have Jðumðt0ÞÞXdðdÞ; which is also impossible. Thus from (3.4) and

JðumÞ ¼
1� d
2

jjrumjj2 þ JdðumÞ;

we obtain

jjrumðtÞjjo
p þ 1

2C
pþ1
�

d
� � 1

p�1
;

jjumtðtÞjjpþ1pC�jjrumðtÞjjpC�
p þ 1

2C
pþ1
�

d
� � 1

p�1

and

jjumtðtÞjj2o2dðdÞ

for t40 and sufficiently large m: From these and the compactness method, we can

prove that problem (1.1)–(1.3) admits a global weak solution uðtÞALNð0;N;H1
0 ðOÞÞ

with utðtÞALNð0;N;L2ðOÞÞ and uðtÞAWd for 0ptoN: From the arbitrariness of d;
we obtain uðtÞAWd for dAðd1; d2Þ and 0ptoN: Theorem 3.2 is proved. &

Corollary 3.3. If in Theorem 3.2 the assumption Jd2ðu0Þ40 or jjru0jj ¼ 0 is replaced

by Iðu0Þ40 or jjru0jj ¼ 0; i.e. u0ðxÞAW ; then the conclusion of Theorem 3.2 also

holds.

Proof. This corollary can be obtained from the fact that Iðu0Þ40 implies Jd0ðu0Þ40

and Jd2ðu0ÞXJd0ðu0Þ: &

From Corollary 4.4 of this paper, we can obtain the following:

Corollary 3.4. Under the conditions of Theorem 3.2 we have uðtÞA %Wd1 for 0ptoN:
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From Lemma 2.1, Corollary 3.4 and proof of Theorem 3.2, we can obtain the
following:

Theorem 3.5. Suppose that p; uiðxÞ ði ¼ 0; 1Þ and Eð0Þ satisfy the conditions of

Theorem 3.2, d1od2 are the two roots of equation dðdÞ ¼ Eð0Þ; and u0ðxÞABd2 : Then

problem (1.1)–(1.3) admits a global weak solution uðtÞALNð0;N;H1
0 ðOÞÞ with

utðtÞALNð0;N;L2ðOÞÞ and uðtÞA %Bd1 with jjutðtÞjjp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd1Þ

p
for 0ptoN:

Theorem 3.6. Suppose that p and uiðxÞ ði ¼ 0; 1Þ satisfy the conditions of Theorem 3.2,
and Eð0Þ ¼ 0; jjru0jj ¼ 0: Then problem (1.1)–(1.3) admits a unique global solution

uðtÞ � 0:

Proof. Since jjru0jj ¼ 0 implies Jðu0Þ ¼ 0; and by Eð0Þ ¼ 0 we have u1 ¼ 0: From
this we see that uðtÞ � 0 is a global solution of problem (1.1)–(1.3). On the other
hand, the uniqueness of solution can be obtained from the following Theorem 4.7 of
this paper. &

Theorem 3.7. Let p satisfy ðH0Þ; u0ðxÞAH1
0 ðOÞ; u1ðxÞAL2ðOÞ: Assume that Eð0Þo0

or Eð0Þ ¼ 0; ðu0; u1Þ40 or 0oEð0Þod; Iðu0Þo0; ðu0; u1Þ40: Then the existence time

T of solutions for problem (1.1)–(1.3) are finite. Furthermore, if we make a further

assumption 1opp N
N�2

for NX3 or ðu0; u1Þ40 for the case Eð0Þo0; then for all cases

solutions uðtÞ of problem (1.1)–(1.3) must blow-up in a finite time, i.e.

lim
t-T

jjruðtÞjj ¼ N

and

lim
t-1

jjuðtÞjjq ¼ N for some qX2:

Proof. (1) Eð0Þo0; or Eð0Þ ¼ 0; ðu0; u1Þ40:
From the last part of the proof of Theorem 4.2 in [1] we know that the existence

time T of solutions of problem (1.1)–(1.3) are finite

(i) If Eð0Þo0 and 1opp N
N�2

for NX3; then in [1, Theorem 4.2], we have

lim
t-T

ðjjutjj2 þ jjrujj2Þ ¼ N: ð3:5Þ

From (3.5) and energy equality

EðtÞ ¼ 1

2
jjutjj2 þ

1

2
jjrujj2 � 1

p þ 1
jjujjpþ1

pþ1 ¼ Eð0Þ
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we have

lim
t-T

jjujjpþ1 ¼ N: ð3:6Þ

From (3.6) and

jjujjpþ1pC�jjrujj

we obtain

lim
t-T

jjrujj ¼ N:

(ii) If Eð0Þo0; p satisfies ðH0Þ and ðu0; u1Þ40; then by

1

2
jju1jj2 þ

1� d0
2

jjru0jj2 þ Jd0ðu0Þ ¼ Eð0Þ ð3:7Þ

it follows that Jd0ðu0Þo0 and Iðu0Þo0: The remainder of proof is the same as that of

the following:
(iii) If Eð0Þ ¼ 0; ðu0; u1Þ40; then from

0oðu0; u1Þpjju0jj jju1jjpl0jjru0jj jju1jj

we have jjru0jj40; jju1jj40: From this and (3.7) we get Jd0ðu0Þo0 and Iðu0Þo0:
The remainder of proof is the same as that of (2).

(2) 0oEð0Þod; Iðu0Þo0 and ðu0; u1Þ40: We also define MðtÞ ¼ jjujj2: Then by

the proof of Theorem 4.3 in [7] we can obtain M̈ðtÞX0: And by ’Mð0Þ ¼ 2ðu0; u1Þ40

we get ’MðtÞ40 and MðtÞ is increasing for t40: Again by the proof of Theorem 4.3
in [7] we can obtain finally

lim
t-T

jjujjq ¼ N; qX2: ð3:8Þ

Again by jjujjpl0jjrujj and (3.8) we get

lim
t-T

jjrujj ¼ N: &

Corollary 3.8. If in the case 0oEð0Þod of Theorem 3.7, assumption Iðu0Þo0 is

replaced by Jd1ðu0Þo0; d1 is the smaller root of equation dðdÞ ¼ Eð0Þ; then the

conclusion of Theorem 3.6 also holds.

4. Vacuum isolating of solutions

In this section we shall prove the main result, i.e. the behaviour of vacuum
isolating of solutions for problem (1.1)–(1.3).
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Theorem 4.1. Let p satisfy ðH0Þ; u0ðxÞAH1
0 ðOÞ; u1ðxÞAL2ðOÞ: Assume 0oeod;

d1od2 are the two roots of equation dðdÞ ¼ e: Then

(i) All solutions of problem (1.1)–(1.3) with initial energy Eð0Þ ¼ e belong to Wd for
dAðd1; d2Þ; provided Iðu0Þ40 or jjru0jj ¼ 0:

(ii) All solutions of problem (1.1)–(1.3) with initial energy Eð0Þ ¼ e belong to Vd for

dAðd1; d2Þ; provided Iðu0Þo0:

Proof. (i) Let uðtÞ be any solution of problem (1.1)–(1.3) with initial energy Eð0Þ ¼ e

and Iðu0Þ40 or jjru0jj ¼ 0; T be the existence time of uðtÞ: First by the proof of
Corollary 3.3 and Theorem 3.2 we have u0ðxÞAWd for dAðd1; d2Þ: Next we prove
uðtÞAWd for dAðd1; d2Þ; 0otoT : In fact if it is false, then we must have a t0Að0;TÞ
such that uðt0ÞA@Wd for some dAðd1; d2Þ; i.e. Jdðuðt0ÞÞ ¼ 0; jjruðt0Þjja0 or
Jðuðt0ÞÞ ¼ dðdÞ: From energy equality

EðtÞ ¼ 1
2
jjutjj2 þ JðuÞ ¼ Eð0ÞodðdÞ; 0otoT ð4:1Þ

we see that Jðuðt0ÞÞ ¼ dðdÞ is impossible. On the other hand, if Jdðuðt0ÞÞ ¼ 0 and
jjruðt0Þjja0; then by Theorem 2.5 we have Jðuðt0ÞÞXdðdÞ; which contradicts (4.1).

(ii) Let uðtÞ be any solution of problem (1.1)–(1.3) with initial energy Eð0Þ ¼ e and
Iðu0Þo0; T be the existence time of uðtÞ: Since the sign of Jdðu0Þ is not changed for
dAðd1; d2Þ; we have Jdðu0Þo0 for dAðd1; d2Þ: From this and Jðu0ÞpEð0ÞodðdÞ for
dAðd1; d2Þ we obtain u0ðxÞAVd for dAðd1; d2Þ: Next we prove uðtÞAVd for dAðd1; d2Þ;
0otoT : If it is false, then we must have a t0Að0;TÞ such that uðt0ÞA@Vd for some
dAðd1; d2Þ; i.e. Jdðuðt0ÞÞ ¼ 0 or Jðuðt0ÞÞ ¼ dðdÞ: From (4.1) we see that Jðuðt0ÞÞ ¼
dðdÞ is impossible. On the other hand, let t0 be the first time such that Jdðuðt0ÞÞ ¼ 0;
then JdðuðtÞÞo0 for 0ptot0: From (4.1) and Lemma 2.2 it follows that

jjruðtÞjj4ð pþ1

2C
pþ1
�
dÞ

1
p�1 for 0ptot0: Hence we have jjruðt0ÞjjXð pþ1

2C
pþ1
�
dÞ

1
p�1: Thus by

Theorem 2.5 we get Jðuðt0ÞÞXdðdÞ; which contradicts (4.1). &

From Theorem 4.1 and Lemma 2.4 we can obtain the following:

Theorem 4.2. Let p; uiðxÞ ði ¼ 0; 1Þ; e and di ði ¼ 1; 2Þ be the same as those in

Theorem 4.1. Then

(i) All solutions of problem (1.1)–(1.3) with initial energy Eð0Þ satisfying 0oEð0Þpe

belong to Wd for dAðd1; d2Þ; provided Iðu0Þ40 or jjru0jj ¼ 0:
(ii) All solutions of problem (1.1)–(1.3) with initial energy Eð0Þ satisfying

0oEð0Þpe belong to Vd for dAðd1; d2Þ; provided Iðu0Þo0:

From Theorem 4.2 and the invariance of the sign of Jdðu0Þ for dAðd1; d2Þ we can
get the following:

Corollary 4.3. Let p; uiðxÞ ði ¼ 0; 1Þ; e and di ði ¼ 1; 2Þ be the same as those in

Theorem 4.1. Then for any one dAðd1; d2Þ; both Wd and Vd are invariant under the flow

of (1.1)–(1.3), respectively, provided 0oEð0Þpe:
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Corollary 4.4. Let p; uiðxÞ ði ¼ 0; 1Þ; e and di ði ¼ 1; 2Þ be the same as those in

Theorem 4.1. Then

(i) All solutions of problem (1.1)–(1.3) with initial energy Eð0Þ satisfying 0oEð0Þpe

belong to %Wd1 ; provided Iðu0Þ40 or jjru0jj ¼ 0:
(ii) All solutions of problem (1.1)–(1.3) with initial energy Eð0Þ satisfying

0oEð0Þpe belong to %Vd2 ; provided Iðu0Þo0:

Proof. Let uðtÞ be any solution of problem (1.1)–(1.3) with initial energy Eð0Þ
satisfying 0oEð0Þpe; T be the existence time of uðtÞ: First from energy equality

1
2
jjutjj2 þ JðuÞ ¼ Eð0Þpdðd1Þðdðd2ÞÞ;

we have JðuÞpdðd1Þð¼ dðd2ÞÞ for 0ptoT :
For fixed tA½0;TÞ letting d-d1 ðd-d2Þ in JdðuÞ40 ðJdðuÞo0Þ for the case (i)

(case(ii)) we obtain Jd1ðuÞX0 ðJd2ðuÞp0Þ for 0ptoT :
From Corollary 4.4, Lemmas 2.1 and 2.2 we can obtain Theorem 4.5.

Theorem 4.5. Let p; uiðxÞ ði ¼ 0; 1Þ; e and di ði ¼ 1; 2Þ be the same as those in

Theorem 4.1. Then,
(i) All solutions of problem (1.1)–(1.3) with initial energy Eð0Þ satisfying 0oEð0Þpe

lie inside of the ball %Bd1 (may be in @Bd1 ), provided u0ðxÞABd0 :
(ii) All solutions of problem (1.1)–(1.3) with initial energy Eð0Þ satisfying

0oEð0Þpe lie outside of the ball Bd2 (may be in @Bd2 ), provided u0ðxÞABc
d0 :

Corollary 4.6. Let p; uiðxÞ ði ¼ 0; 1Þ; e and di ði ¼ 1; 2Þ be the same as those in

Theorem 4.1. Then for any one dAðd1; d2Þ; both Bd and Bc
d are invariant under the flow

of (1.1)–(1.3), respectively, provided 0oEð0Þpe:

The result of Theorem 4.5 shows that for any given eAð0; dÞ; there is a
corresponding vacuum region of solutions

Ue ¼ uAH1
0 ðOÞ

p þ 1

2C
pþ1
�

d1

� � 1
p�1

������ ojjrujjo p þ 1

2C
pþ1
�

d2

� � 1
p�1

8<
:

9=
;

for the set of all solutions of problem (1.1)–(1.3) with initial energy Eð0Þ satisfying
0oEð0Þpe; there is no solution in Ue and all solutions are isolated by Ue: This
phenomenon which is first discovered in this paper can be called the phenomenon of
vacuum isolating of solutions.

The vacuum region Ue of solutions become bigger and bigger with decreasing of e: As
the limit case e ¼ 0; we obtain the biggest vacuum region of solutions (for Eð0ÞX0)

U0 ¼ uAH1
0 ðOÞ 0ojjrujjo p þ 1

2C
pþ1
�

� � 1
p�1

������
8<
:

9=
;:
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In fact we have the following:

Theorem 4.7. Let p; uiðxÞ ði ¼ 0; 1Þ be the same as those in Theorem 4.1. Then all

nontrivial solutions of problem (1.1)–(1.3) with initial energy Eð0Þ ¼ 0 lie outside of the

ball B1 (may be in @B1).

Proof. Let uðtÞ be any solution of problem (1.1)–(1.3) with initial energy Eð0Þ ¼ 0; T

be the existence time of uðtÞ: From energy equality

EðtÞ ¼ 1
2
jjutjj2 þ JðuÞ ¼ Eð0Þ ¼ 0

we have JðuðtÞÞp0 for 0ptoT : So by

p þ 1

2
jjrujj2pjjujjpþ1

pþ1pCpþ1
� jjrujjp�1jjrujj2;

we obtain that any tA½0;TÞ must have either jjruðtÞjj ¼ 0 or jjruðtÞjjXð pþ1

2C
pþ1
�
Þ

1
p�1:

Assume jjru0jj ¼ 0: We prove jjruðtÞjj � 0 for 0ptoT : If it is false, then we must

have tAð0;TÞ such that 0ojjruðtÞjjoð pþ1

2C
pþ1
�
Þ

1
p�1; which contradicts the above

conclusion on jjruðtÞjj: By a similar argument we can prove that if

jjru0jjXð pþ1

2C
pþ1
�
Þ

1
p�1; then we must have jjruðtÞjjXð pþ1

2C
pþ1
�
Þ

1
p�1 for 0ptoT : Theorem

4.7 is proved. &

Theorem 4.8. Let p; uiðxÞ ði ¼ 0; 1Þ be the same as those in Theorem 4.1. Then all

nontrivial solutions of problem (1.1)–(1.3) with initial energy Eð0Þo0 satisfy

jjrujj4 p þ 1

2C
pþ1
�

� � 1
p�1

ð4:2Þ

and

jjrujjX ðp þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2Eð0Þ

p
C

pþ1
�

 !1
p

: ð4:3Þ

Proof. First, from the proof of Theorem 4.7 we can obtain (4.2). On the other hand,
by energy equality we have

1

p þ 1
jjujjpþ1

pþ1X
1

2
jjrujj2 � Eð0ÞX2

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Eð0Þ

p
jjrujj:
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From this and

jjujjpþ1
pþ1pCpþ1

� jjrujjpjjrujj

we get (4.3). &

Remarks. Clearly the method and results of this paper can be generalized to more
general semilinear wave equations

utt � Du ¼ ajujp�1
u

and

utt � Du ¼ f ðuÞ:

Furthermore, the method of this paper can be applied to some other class of
nonlinear evolution equations.
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