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Abstract

In this paper, we study the initial boundary value problem of semilinear wave equations:
Uy — Au = uf "'u, xeQ, >0,
u(x,0) =up(x), wu(x,0)=u;(x), xeQ,
u(x,t) =0, xedQ, =0,

where Q< R¥ is a bounded domain, 1 <p<oo for N =1,2; 1<p<% for N>3. First, by
using a new method, we introduce a family of potential wells which include the known
potential well as a special case. Then by using it, we obtain some new existence theorems of
global solutions, and prove that for any ee (0,d) (d is the depth of the known potential well)
all solutions with initial energy E(0) satisfying 0 < E(0) <e can only lie either inside of some
smaller ball or outside of some bigger ball of space H}(Q).

© 2002 Published by Elsevier Science (USA).
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1. Introduction

The potential well was introduced by Sattinger [8] in order to prove the global
existence of solutions for nonlinear hyperbolic equations which have not necessary
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positive definite energy. After that many authors [3,6,7,9,10] studied the global
existence and nonexistence of solutions of the initial boundary value problem for
various nonlinear evolution equations by using the potential well method, but the
potential wells used in these work were defined by the same method as Sattinger [8],
and the results obtained in these work were similar each other.

In this paper, we study the initial boundary value problem of semilinear wave
equations:

—Au=uf""u, xeQ, 1>0, (1.1)
u(x7 O) = uo(X), (X O) = “1( ) xe, (12)
u(x,t) =0, xe€9Q, t=0, (1.3)

where Q< RY is a smooth bounded domain, p satisfies

(Hy) l<p<oo for N=1,2, 1<p<x7+; for N>=3.

On the global existence, nonexistence and blow-up of solutions for problem (1.1)-
(1.3), there have been many results [1,2,4,5,7,9]. First by using the new method, we
introduce a family of potential wells which include the known potential well as a
special case. And give some results on the properties of this family of potential wells.
Then by using it we obtain some new existence and nonexistence theorems of global
solutions for problem (1.1)—~(1.3) by which the known results are improved very
much. Finally, we prove that for any given ee(0,d) (d is the depth of the known
potential well), all solutions of problem (1.1)—(1.3) with initial energy E(0) satisfying
0<E(0)<e can only lie either inside of some smaller ball or outside of some bigger
ball of space H}(Q).

The method used in this paper can be applied for some class of other nonlinear
evolution equations. So the phenomena of vacuum isolating of solutions are
discovered for some class of nonlinear evolution equations.

In this paper, we denote || - [|,) by [[ - [|,, [ - [[ = [| - [|, and (u,v) = [ouvdx.

2. Introducing of potential wells

For problem (1.1)—(1.3) we also define

1
E()—*Iluzll +*|IV I —7II ull[y1,

1 2 1 1
J(u) =§||V”|| —mﬂuﬂﬁh
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2 1
I(u) = [[Vul[” = |[ull} 1,

and the potential well
W ={ueH)(Q)|I(u)>0,J(u)<d}u{0},

where

d= inf (Sup J(Xu))

ueHy(Q) \1>0
u#0
or equivalently [7]
d = inf J(u)

subject to ue H}(Q), ||Vul||#0, I(u) = 0.
On the value of d we have [7]

:ot_C,‘f’ * p—1

where C, is the imbedding constant from H}(Q) into L/™1(Q):

[[ua] |1 < Ci| [V
or
ol
C, = sup———.
' [V |

In the following, d always is defined by (2.1).
Furthermore, for problem (1.1)—(1.3) and 6€(0, 1) we define

Js(u) = || ul|* Pl st

2
1—5 p+1
IR

157

In the following Lemmas 2.1-2.10 we always assume that p satisfies (Hyp), 0<d <1

and ue H}(Q).

Lemma 2.1. If J(u) <d(9), then Js(u) >0 if and only if
L

1
0<||Vu |<(1”+ 5)
2C

p+1
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Proof. If (2.2) holds, then we have

lully < CHVul 7 = oY [Vul 7| Vul P < p+

p1 S | [Vu?,

hence J5(u)>0. On the other hand, from Js(u) >0 we have ||Vu||>0, and by

Iw) = 152 VUl 4 J3a) <d(5) (23)

we can obtain (2.2). O

Lemma 2.2. If J(u)<d(9), then Js(u) <O if and only if

l
p+1
[|Vul| > (2C”“ 5) . (2.4)

Proof. If Js(u) <0, then from

1 _
p+ = OlIVul P < ful < €2 [Vl ||

p+1 ==
we can get (2.4). On the other hand, from (2.4) and (2.3) we obtain Js(u)<0. O

Lemma 2.3. If' J(u) = d(0), then Js(u) =0 if and only if

1
p+1 p—1

Lemma 2.4. As function of 0, d(J) possesses the following properties on the interval
0<o<1:

(i) d(0) = d(1) = 0;

(i) d(0) takes the maximum, d(dy) =
defined by (2.1);

(iil) d(0) is increasing on [0, dy] and decreasing on [dy, 1];

(iv) For any given e€(0,d), the equation d(d) = e has exactly two roots 6 € (0, d)
and 0, € (09, 1).

where o and d are as

—d at 6y = +1,

Proof. Clearly it is enough to prove (ii) and (iii), and they can be obtained by

2/ 2 1-9 2 2.1 p+1
/ — -1 - [ (- _= -
d'(0) = Aop (pl 5 1) p,lAép (5 5 ),
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where

2

1/p+1\r-1
A== . O
2(2655“)

Theorem 2.5.
d(0) = inf J(u) (2.5)
subject to ue H}(Q), ||Vul|#0,Js5(u) = 0.

Proof. If Js(u) =0 and ||Vu||#0, then from

1-0 1-96
J ) = 5= [Vul o+ J5 (1) = —— |Vl

and

p+1 2 1 - 2
T(SHV“H = ||“||§,L<Cf+l\|vu|\p [[Vul]",

it follows that J(u)>d(0). From this and the definition of C, we get (2.5). O
Corollary 2.6.

d =d(dy) = inf J(u)
subject to ue H}(Q), ||Vu||#0, I(u) = 0.

Proof. This corollary can be obtained by Theorem 2.5 and the fact that Jj, (u) = 0 is
equivalent to I(u) =0. O

Remark 2.1. The value of the depth d of the potential well W given by Lemma 2.4
and Corollary 2.6 is exactly the same as that obtained by Payne and Sattinger [7], but
it is obtained by a different method in this paper.

According to Theorem 2.5 and Corollary 2.6, now we can define a family of
potential wells as follows:

Ws = {ue Hy(Q) | J5(u)>0,J(u) <d(5)}u {0}, 0<d<I,

Ws = WsLdWs = {ue Hy(Q) | Js(u)=0,J (1) <d(5)} u{0}.
Clearly, we have

Ws, = W.
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Remark 2.2. From

1-0
J(u) = = |IVull’ + J5(u)

we see that J5(u) >0 implies J(u) > 0.

In addition, we define

Vs ={ueHy(Q)| J5(u)<0,J(u)<d(6)}, 0<d<I,
Vs =Vs00Vs = {ue H)(Q) | J5(u) <0,J(u)<d(5)},

V ={ue H}(Q) | I(u)<0,J(u)<d},

1
p+1 \r-1

1
_ p+1 N\t
B(;:B(;uaBa:{ueHé(Q) ||W||<(W5) }

1
Cc 1 P+1 IITI
Bé—{ueHO(Q) ||Vu|>(2c£+l 5) }

Clearly, we have V5, = V.
Note that J(u)<%||Vu|\2, hence for any given d€(0, 1), when

1

Lip+1 \p-1

we have J(u)<d(0) and J5(u) > 0. This implies
1

1
o [P+l NPT Lip+1 S\t
Bs<= W, 9 satisfies (—ZCfH 5) =(1- 5)2(2&:+1 0 .

From this, Lemmas 2.1 and 2.2 we have

Theorem 2.7. Let W5, Vs, Bs, B§ and 0 be as defined above. Then

Bsc Wsc< B;, Vs < Bg.
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Corollary 2.8.
Bs, «cW<Bs, VcB;,

where

p+1

By, = {ue HY(Q) | ||Vul|<C.7 '},

1

1 1 1
p+1 5 p—l: p—1 ZC_%
200! +1) "

Lemma 2.9. (i) If 0<d' <3" <y, then Wy = Wy
(11) If 50 < 5/ < (S” < 1, the}’l K;I/ (e V()‘/.

Proof. This lemma can be obtained from the definition of W3 and Vs and Lemma
24. O

Lemma 2.10. Assume that 0<J(u)<d for some given ue H(Q), 6, <3, are the two
roots of equation d(0) = J(u). Then the sign of Js(u) is not changed for d e (01, 9,).

Proof. First J(u)>0 implies ||[Vu||#0. If the sign of Js(u) is changed, then there

must exist a 6" € (41, d2) such that Js () = 0. So by Theorem 2.5 and Lemma 2.4 we
have

J(u)=d(5")>d(d,) = d(52),

which contradicts J(u) = d(d,) =d(5,). O

3. Existence and nonexistence of global solutions

In [9], Tsutsumi studied the initial boundary value problem of semilinear wave
equations in the following form:

d’u
k| -
i + AAu+f(u) =0,

u(0) =uy, u,(0) =uy

in a Hilbert space H< V. Taking A4 = —A, f(u) = —|ul’'u, H = LX(Q), V = H(Q)
in [9, Theorem 6], we can only obtain the following:
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Theorem 3.1. Let p satisfy
N
(H)) 2<p<owo for N=1,2; 2<p<ﬁ for N=3.

Assume that ug(x)e W H*(Q), uy (x) e H}(Q) and E(0)<d. Then problem (1.1)~(1.3)
has a unique global solution u(t)eC([0,T]); H*(Q)nH}(Q))nC' ([0, T];
H{}(Q))nC([0, TVIL*(Q)), and u(t)e W for te[0, T), for any T >0.

Remark 3.1. Note that uye W implies that E(0) > J(ug) > Js, (uo) >0 if || V|| #0 or
that E(0)=J(up) = 0 if ||[Vu|| = 0.

From (H;) we see that Theorem 3.1 is only applicable for N<3. On the other
hand from Theorem 3.1 we cannot conclude whether there exists a global weak
solution of problem (1.1)~(1.3) provided uy(x)e W, u;(x) e L*(Q).

Next we give a new existence theorem of global weak solutions for problem (1.1)-
(1.3).

Theorem 3.2. Let p satisfy (Ho), uo(x)eHM(Q), ui(x)el*(Q). Suppose that
0<E(0)<d, 01<0y are the two roots of equation d(0) = E(0) and Js,(uy) >0 or
[|Vuo|| =0. Then problem (1.1)~«(1.3) admits a global weak solution
u(t)e L* (0, co; HY (Q)) with u,(t)e L™ (0, co; L*(Q)) and u(t)e W; for de(d,d,)
and 0<t< 0.

Proof. Let {w;(x)} be a system of base functions of H}(Q). Construct approximate
solutions of problem (1.1)—(1.3)

m

Up (X, 1) = Zgjm(t)wj(x), m=12,..,
J=1

satisfying
(thsr, ws) + (Vi Vwg) = (|um|p_lum, wg), s=1,2,...,m, (3.1)
uy,(0) = Zajmwj(x)—mo(x) in H}(Q), (3.2)
=1
m
i (0) =Y bimwy(x) s ur (x) in LA(Q). (3.3)
=1

Multiplying (3.1) by ¢,,,(¢), summing for s and integrating with respect to ¢, we
obtain

1 2 1 2 1 I
E, (1) :EHuth +§||vum|| —mﬂumﬂﬁl

1 1
=3 (O 45 [1Vetn O ==l Q)15 = En(0).  (3.4)

(-
p+
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Note that Js,(up) >0 implies ||[Vup||#0. So by an argument similar to that of
Lemma 2.10, we can prove J5(up) >0 for o€ (d1,02). From this and J(up) <E(0) =
d(01) we obtain uy(x) € W for o€ (01, 02). If || Vug|| = 0, then uy(x) € W for €(0, 1).
For any fixed d€(0;,d,), we have J5(u,(0)) >0 and E,,(0) <d(0) (if Js,(up) >0) or
un(0)€Bs (if ||Vug|| =0, § is defined in Theorem 2.7) thereby u,,(0)e W; for
sufficiently large m.

Next, we prove that u,(t) e W; for sufficiently large m and #>0. If it is false, then
we must have a #o> 0 such that u,, (z)) e W5, 1.e. Js5(un(t9)) = 0 and ||Vu,,(¢0)|| #0 or
J(um(t9)) = d(9). From (3.4) we have

J(um (1)) <En(0)<d(0), >0,

hence J(u,()) = d(6) is impossible. If Js5(u,(29)) = 0 and ||Vu,,(1)||#0, then by
Theorem 2.5 we have J(uy, (%)) =d(0), which is also impossible. Thus from (3.4) and

1-6
J(um) = T ||vum||2 + Jé(um)y
we obtain
1 \pT
p+ p—
INEZAGIIES (Fﬁf“é> )
1 \FT
p+ =
i Ol < CATm0)l <€ (2555
and

||“mt(l)||2 <2d(0)

for t>0 and sufficiently large m. From these and the compactness method, we can
prove that problem (1.1)~(1.3) admits a global weak solution u(¢) e L= (0, co; H} (Q))
with u, (1) e L% (0, c0; L*(Q)) and u(f) e W for 0<t< co. From the arbitrariness of J,
we obtain u(t) € W for 6€(d1,02) and 0<z< oo. Theorem 3.2 is proved. [

Corollary 3.3. If in Theorem 3.2 the assumption Js,(up) >0 or ||Vuy|| = 0 is replaced
by I(up) >0 or ||Vug|| =0, i.e. uo(x)e W, then the conclusion of Theorem 3.2 also
holds.

Proof. This corollary can be obtained from the fact that 7(u) >0 implies Js, (o) >0
and Js, (uo)?]go(uo). O

From Corollary 4.4 of this paper, we can obtain the following:

Corollary 3.4. Under the conditions of Theorem 3.2 we have u(t)e W, for 0<t< co.
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From Lemma 2.1, Corollary 3.4 and proof of Theorem 3.2, we can obtain the
following:

Theorem 3.5. Suppose that p, u;(x) (i=0,1) and E(0) satisfy the conditions of
Theorem 3.2, 8| <0 are the two roots of equation d(5) = E(0), and uy(x) € Bs,. Then
problem (1.1)~(1.3) admits a global weak solution u(t)e L* (0, oo; H}(Q)) with
u(£)e L (0, oo; L2(Q)) and u(t) e Bs, with ||u,(1)||</2d(d,) for 0<t< o0.

Theorem 3.6. Suppose that p and u;(x) (i = 0, 1) satisfy the conditions of Theorem 3.2,
and E(0) =0, ||[Vup|| = 0. Then problem (1.1)~(1.3) admits a unique global solution
u(t) =0.

Proof. Since ||Vuy|| = 0 implies J(up) = 0, and by E(0) = 0 we have u; = 0. From
this we see that u(z) =0 is a global solution of problem (1.1)—(1.3). On the other
hand, the uniqueness of solution can be obtained from the following Theorem 4.7 of
this paper. [

Theorem 3.7. Let p satisfy (Hy), uo(x)e H} (Q), ui(x)e L*(Q). Assume that E(0)<0
or E(0) =0, (up,u;) >0 or 0<E(0)<d, I(uy) <0, (up,u;) >0. Then the existence time
T of solutions for problem (1.1)~(1.3) are finite. Furthermore, if we make a further
assumption 1 <p<%for N =3 or (ug,u;) >0 for the case E(0) <0, then for all cases
solutions u(t) of problem (1.1)~(1.3) must blow-up in a finite time, i.e.

lim |[Vu(z)[| = co

and

lirr} [u()|l, = oo for some q=2.
-

Proof. (1) E(0)<0, or E(0) =0, (uop,u;)>0.

From the last part of the proof of Theorem 4.2 in [1] we know that the existence
time 7" of solutions of problem (1.1)—(1.3) are finite

(1) If E(0)<0 and 1<p<% for N =3, then in [1, Theorem 4.2], we have

tiny ([l + [Vl ?) = 0. (3.5)

From (3.5) and energy equality

1 > 2 1
E(t) = 5 [lu]|” + 5 [[Vul|” — lullb} = E(0)

p+1
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we have

lim [ = - (3.6)
From (3.6) and

[ul] 1 < Cif[ V|
we obtain

fim [|Va] = oo

(i) If E(0)<0, p satisfies (Ho) and (uo,u;) >0, then by

1 -0
2

1
3|+ == Vol P + T, (o) = E(0) (37)

it follows that Jj, (up) <0 and I(up) <0. The remainder of proof is the same as that of
the following:
(iii) If E(0) =0, (up,u;) >0, then from

0< (ug, ur) <[luol| ||t [| < 20

|Vuo]| |||

we have ||Vug||>0, ||u;||>0. From this and (3.7) we get Js,(up) <0 and I(uo) <O.
The remainder of proof is the same as that of (2).

(2) 0<E(0)<d, I(uy)<0 and (o, u;)>0. We also define M(r) = ||u||*. Then by
the proof of Theorem 4.3 in [7] we can obtain M(¢)>0. And by M(0) = 2(ug, u;) >0

we get M(¢)>0 and M (¢) is increasing for #>0. Again by the proof of Theorem 4.3
in [7] we can obtain finally

. _ -
lim [, = 0. g2 (3.8)
Again by [|u||<||Vul|| and (3.8) we get

lim ||Vu|| = 0. d

t—>T
Corollary 3.8. If in the case 0<E(0)<d of Theorem 3.7, assumption I(up)<O0 is

replaced by Js (up) <0, 01 is the smaller root of equation d(5) = E(0), then the
conclusion of Theorem 3.6 also holds.

4. Vacuum isolating of solutions

In this section we shall prove the main result, i.e. the behaviour of vacuum
isolating of solutions for problem (1.1)—(1.3).
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Theorem 4.1. Let p satisfy (Ho), uo(x)e H}(Q), ui(x)eL*(Q). Assume 0<e<d,
01<0y are the two roots of equation d() = e. Then

(1) All solutions of problem (1.1)—~(1.3) with initial energy E(0) = e belong to W for
0€(d1,02), provided I(ug) >0 or ||Vug|| = 0.

(ii) A/l solutions of problem (1.1)—(1.3) with initial energy E(0) = e belong to V for
0€(01,0,), provided I(uy) <O0.

Proof. (i) Let u(¢) be any solution of problem (1.1)—(1.3) with initial energy E(0) = ¢
and I(up) >0 or ||[Vug|| =0, T be the existence time of u(t). First by the proof of
Corollary 3.3 and Theorem 3.2 we have uy(x)e W, for de(d;,02). Next we prove
u(t)e Ws for 6€(01,02), 0<t<T. In fact if it is false, then we must have a 7€ (0, T')
such that u(t))edW, for some d6e(0;1,9,), i.e. Js(u(ty)) =0, |[|[Vu(ty)||#0 or
J(u(ty)) = d(9). From energy equality

E(t) =Y |u|]? +J(u) = E(0)<d(d), 0<t<T (4.1)

we see that J(u(f)) = d(0) is impossible. On the other hand, if J5(u(#)) =0 and
[|Vu(ty)]| #0, then by Theorem 2.5 we have J(u(t)) =d(d), which contradicts (4.1).

(ii) Let u(z) be any solution of problem (1.1)—(1.3) with initial energy E(0) = e and
I(up) <0, T be the existence time of u(¢). Since the sign of Js(uo) is not changed for
0€(01,072), we have Js(uy) <0 for de€(d;,02). From this and J(uy) < E(0) <d(J) for
0€(01,0,2) we obtain uy(x) € Vs for d€ (91, 02). Next we prove u(t) € Vs for d € (91, 02),
0<t<T. If it is false, then we must have a 7y€ (0, T) such that u(zy) € dV; for some
0€(01,02), 1.e. Js(u(to)) =0 or J(u(ty)) = d(5). From (4.1) we see that J(u(t)) =
d(0) is impossible. On the other hand, let #, be the first time such that Js5(u(t)) = 0,
then J5(u(t))<0 for 0<t<t. From (4.1) and Lemma 2.2 it follows that

1 1
||Vu(t)||>(2pc+,,i15)1'*1 for 0<r<t. Hence we have ||Vu(to)||>(2pc—ﬂ15)l’*1. Thus by

Theorem 2.5 we get J(u(ty))=>d(5), which contradicts (4.1). O
From Theorem 4.1 and Lemma 2.4 we can obtain the following:

Theorem 4.2. Let p, ui(x) (i=0,1), e and d; (i =1,2) be the same as those in
Theorem 4.1. Then

(i) All solutions of problem (1.1)—(1.3) with initial energy E(0) satisfying 0< E(0)<e
belong to W for € (d1,02), provided I(ug) >0 or ||Vuy|| = 0.

(ii) Al solutions of problem (1.1)~(1.3) with initial energy E(0) satisfying
0<E(0)<e belong to Vs for d€(01,92), provided I(uy) <O0.

From Theorem 4.2 and the invariance of the sign of Js(ug) for € (J;,02) we can
get the following:

Corollary 4.3. Let p, u;(x) (i=0,1), e and 6; (i =1,2) be the same as those in
Theorem 4.1. Then for any one d € (31, 02), both W5 and Vs are invariant under the flow
of (1.1)~(1.3), respectively, provided 0 < E(0)<e.
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Corollary 4.4. Let p, ui(x) (i=0,1), e and o; (i =1,2) be the same as those in
Theorem 4.1. Then

(i) All solutions of problem (1.1)~(1.3) with initial energy E(0) satisfying 0<E(0)<e
belong to Ws,, provided I(uy) >0 or ||Vug|| = 0.

(i) Al solutions of problem (1.1)~(1.3) with initial energy E(0) satisfying
0< E(0)<e belong to V;,, provided I(ugy) <0.

Proof. Let u(¢) be any solution of problem (1.1)-(1.3) with initial energy E(0)
satisfying 0< E(0)<e, T be the existence time of u(¢). First from energy equality

lu? + T (u) = E(0)<d(31)(d(52)),

we have J(u) <d(d)(= d(02)) for 0<t<T.

For fixed 1€[0,T) letting 60, (0—02) in Js5(u)>0 (Js(u)<0) for the case (i)
(case(ii)) we obtain Js, (1) =0 (J5,(u)<0) for 0<t<T.

From Corollary 4.4, Lemmas 2.1 and 2.2 we can obtain Theorem 4.5.

Theorem 4.5. Let p, u;(x) (i=0,1), e and 6; (i =1,2) be the same as those in
Theorem 4.1. Then,

(i) All solutions of problem (1.1)~(1.3) with initial energy E(0) satisfying 0<E(0)<e
lie inside of the ball Bs, (may be in OBs,), provided uy(x) € By, .

(i) All solutions of problem (1.1)=(1.3) with initial energy E(0) satisfying
0<E(0)<e lie outside of the ball Bs;, (may be in 9B;,), provided uy(x) € Bj .

Corollary 4.6. Let p, u;(x) (i=0,1), e and 6; (i =1,2) be the same as those in
Theorem 4.1. Then for any one 6 € (01,02), both Bs and B§ are invariant under the flow
of (1.1)~(1.3), respectively, provided 0 < E(0)<e

The result of Theorem 4.5 shows that for any given ee(0,d), there is a
corresponding vacuum region of solutions

1 L

p+1  \rT p+1
U, = ueHé(Q) (Zcfﬂél) <|[Vu ||<(2Cp+152>

for the set of all solutions of problem (1.1)—(1.3) with initial energy E(0) satisfying
0<E(0)<e, there is no solution in U, and all solutions are isolated by U,. This
phenomenon which is first discovered in this paper can be called the phenomenon of
vacuum isolating of solutions.

The vacuum region U, of solutions become bigger and bigger with decreasing of e. As
the limit case e = 0, we obtain the biggest vacuum region of solutions (for E(0)>0)

1
p+1
Up = { ue HY(Q) O<||Vu||<< CM)
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In fact we have the following:

Theorem 4.7. Let p, u;(x) (i =0,1) be the same as those in Theorem 4.1. Then all
nontrivial solutions of problem (1.1)—(1.3) with initial energy E(0) = 0 lie outside of the
ball By (may be in OBy).

Proof. Let u(¢) be any solution of problem (1.1)—(1.3) with initial energy £(0) =0, T
be the existence time of u(z). From energy equality

E(t) =} llu| + J (u) = E(0) = 0
we have J(u(#)) <0 for 0<t<T. So by

P+1 1 i 2
|| Vul? <||”||ﬁil<cf+l||vu||p [[Vu|[7,

1
we obtain that any 7€[0, 7') must have either ||Vu(z)|| =0 or ||Vu(t)||>(2”cﬂl)p71.

Assume ||Vig|| = 0. We prove ||Vu(t)|| = 0 for 0<¢<T. If it is false, then we must

1
have te(0,7) such that 0<|\Vu(t)||<(2”cﬂl)lf—‘, which contradicts the above

conclusion on ||Vu(z)||. By a similar argument we can prove that if

1 1
||Vu0||>(2pc+,,L)I’ I then we must have ||Vu(¢ )||>(1”+1 =1 for 0<¢<T. Theorem

4.7 is proved. [

Theorem 4.8. Let p, u;(x) (i =0,1) be the same as those in Theorem 4.1. Then all
nontrivial solutions of problem (1.1)—(1.3) with initial energy E(0)<0 satisfy

l

IV ||>(§C+,,+‘l) (42)
and
1
[ Vu|| > <(p * I)CH_IZE(O))p. (4.3)

Proof. First, from the proof of Theorem 4.7 we can obtain (4.2). On the other hand,
by energy equality we have

1
|u |I£L/*IIWH - E(0 VA O)[[Vul].

p+l
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From this and

1
[lully s < CEEH IVl V|

we get (4.3). O

Remarks. Clearly the method and results of this paper can be generalized to more
general semilinear wave equations

uy — Au = alul’'u
and
uy — Au = f(u).

Furthermore, the method of this paper can be applied to some other class of
nonlinear evolution equations.
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