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This work deals with the homogenization of hysteresis-free pro-
cesses in ferromagnetic composites. A degenerate, quasilinear,
parabolic equation is derived by coupling the Maxwell–Ohm sys-
tem without displacement current with a nonlinear constitutive
law:

∂ �B
∂t

+ curl

{
A
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x
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)
· curl �H

}
= curl �Ea, �B ∈ �α

(
�H,

x

ε

)
.

Here A is a periodic positive-definite matrix, �α(·, y) is maximal
monotone and periodic in y, �Ea is an applied field, and ε > 0.
An associated initial- and boundary-value problem is represented
by a minimization principle via an idea of Fitzpatrick. As ε → 0
a two-scale problem is obtained via two-scale convergence, and an
equivalent coarse-scale formulation is derived. This homogeniza-
tion result is then retrieved via Γ -convergence, and the continuity
of the solution with respect to the operator �α and the matrix A is
also proved. This is then extended to some relaxation dynamics.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the homogenization of hysteresis-free processes in ferromagnetic compos-
ites. The main aim is to illustrate a method that rests upon a variational representation of maximal
monotonicity, a two-scale formulation, and scale-transformations.

Two-scale approach to homogenization. We proceed along the following path, which may be applied
to the homogenization of a large class of nonlinear partial differential equations with monotonicity.
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(i) First we represent processes in a composite by an initial- and boundary-value problem with
data that periodically oscillate in space on a short length-scale, provide a formulation in the frame-
work of Sobolev spaces, and prove existence of a solution.

(ii) We then derive a two-scale model via Nguetseng’s two-scale convergence.
(iii) By integrating this problem with respect to the fine-scale variable (upscaling), we derive a

purely coarse-scale model.
(iv) We prove that, conversely, any solution of the latter problem may be retrieved as an average

of solutions of the fine-scale model (downscaling). This guarantees that no spurious solution was
introduced by upscaling, so that the coarse-scale problem may actually be regarded as an effective
(or homogenized) model – namely, a macroscopic model capable of representing the behavior of the
composite.

(v) Finally, we retrieve and interpret this homogenization result via De Giorgi’s notion of
Γ -convergence. This also allows us to prove the stability with respect to variations of the nonlinear
operator.

The possibility of applying variational techniques stems from a variational formulation of (either
stationary or evolutionary) maximal monotone operators that is due to Fitzpatrick.

A quasilinear parabolic model of ferromagnetic processes. Let us briefly outline the model that we
shall deal with. By coupling the Maxwell system without displacement current (so-called eddy-current
approximation) with the Ohm law in a domain Ω , we get an equation of the form

�Bt + ∇ × (
A(x) · ∇ × �H) = ∇ × �Ea (�Bt := ∂ �B/∂t, ∇× := curl), (1.1)

where by A(x) we denote the resistivity matrix, and by �Ea an applied electric field. We couple this
equation with the constitutive relation

�B ∈ �α( �H, x). (1.2)

Here �α(·, x) is a (possibly multivalued) maximal monotone mapping, which we do not assume to be
cyclically monotone. We neglect hysteresis, under the assumption that the hysteresis loop is so thin
that it may be replaced by a curve; this behavior is exhibited e.g. by soft iron, mild steel and other
materials of engineering interest.

It may be noticed that the system (1.1) and (1.2) is degenerate, quasilinear and parabolic; the
degeneration is due to the occurrence of the curl operator in the second-order operator. (1.1) entails
that the field �B is divergence-free, provided it is so at the initial instant.

By a theory pioneered by Fitzpatrick [34], the monotone structure of this problem allows for a
variational formulation. The system (1.1), (1.2) is actually equivalent to a minimization principle:

find (�B, �H) ∈ X such that J (�B, �H) = inf J (= 0), (1.3)

for a suitable definition of the space X and of the functional J : X → R+ , see (2.6).
If the mapping �α(·, x) is multivalued, the system (1.1), (1.2) may be interpreted as the weak for-

mulation of a free boundary problem, see e.g. [67, Sect. IV.8] and references therein. This setting may
be compared with the weak formulation of the classical Stefan model: both problems are quasilinear
parabolic, include a maximal monotone discontinuous operator, and are intended to represent a free
boundary problem. In the present model, however, the fields are vector-valued, and the second-order
operator is degenerate.

For the Stefan problem the actual existence of a free boundary has extensively been studied, and
nowadays the appropriate conditions for this to occur are fairly understood. This author does not
know of investigations in that direction for electromagnetic models like this. In the present article,
however, we are just concerned with the weak formulation of this vector problem.

Besides the quasi-stationary constitutive relation (1.2), we shall also consider some dynamics of
relaxation, for instance

b �Ht + �α( �H, x) � �B (b being a positive constant). (1.4)
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The corresponding Cauchy problem represents a maximal monotone relation between the fields �B
and �H in a suitable space of time-dependent functions. The alternative dynamics

b�Bt + �B ∈ �α( �H, x) (1.5)

is also briefly discussed. In either case, as b → 0 the original problem is retrieved. As it is illustrated
in Section 9 of [70], the latter dynamics account for eddy-current dissipation; see also Chap. 12 of [8].
On the other hand, this author is not aware of any physical motivation for (1.4) in ferromagnetism,
which here is only considered in order to complete the analysis.

Monotonicity and variational formulation. By a classical transformation that was introduced for
other free boundary problems by Baiocchi [4] and Duvaut [31], we shall integrate Eq. (1.1) in time.
This yields

�B + ∇ ×
(

A(x) · ∇ ×
t∫

0

�H(τ )dτ

)
= �B0 + ∇ × �Eapp ∗ 1 =: �G in ΩT , (1.6)

so that eliminating the field �B by (1.2) we get

�γ ( �H) := �α( �H) + ∇ ×
(

A(x) · ∇ ×
t∫

0

�H(τ )dτ

)
� �G in ΩT . (1.7)

Under natural assumptions on the growth of �α, the operator �γ is maximal monotone in a suitable
space of functions of (x, t). By the theory pioneered by Fitzpatrick [34], this equation may be repre-
sented as a minimization problem, see e.g. [69].

Here we are especially concerned with the derivation of an effective model, in the case of a fine
mixture of materials, which we represent by assuming that the data �α, A, �B0 and �Ea periodically
oscillate in space on a short length-scale. We also address the stability with respect to the data,
including the monotone mapping �α and the matrix A.

Although physically it would be perfectly sound to assume the cyclical monotonicity of �α, here we
do not require it, in view of certain extensions that however we do not develop here. This however
rules out an estimate procedure and the corresponding regularity: loosely speaking, it is not possible
to multiply the equation by the field �H . If for instance a cyclically monotone mapping �α depended
explicitly on time in a nondifferentiable way, that estimate procedure would also be precluded; the
present procedure would then be of interest.

Outline. This article is organized as follows. In Section 2 we outline the variational formulation of
maximal monotone operators due to Fitzpatrick, and some results of [71] on scale-transformations. In
Section 3 we illustrate the ferromagnetic model, and introduce a weak formulation of an initial- and
boundary-value problem for the system (1.1), (1.2). In Section 4 we prove existence and uniqueness of
the solution via a fairly standard argument,1 and reformulate the problem as a minimization principle
via Fitzpatrick’s theory. In Section 5 we derive a two-scale model by passing to the two-scale limit
(in the sense of Nguetseng [48]) in the problem with oscillating data. In Section 6 we formulate a
coarse-scale homogenized problem, and prove its equivalence to the two-scale model. In Section 7
we retrieve the homogenized problem by Γ -convergence, and show that an analogous procedure
may be used to prove the continuity of the dependence of the solution on the operator �α (structural
stability). In Section 8 we illustrate the extension to relaxation dynamics, as an alternative to the

1 The same remark applies to other standard results; some proofs are displayed whereas other are omitted, trying to com-
promise between completeness and repetitiveness.
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quasi-stationary constitutive relation (1.2). Finally, in Appendix A we review some basic elements of
two-scale convergence, for the reader’s convenience.

Literature. Homogenization, namely the macroscopic representation of the behavior of composite ma-
terials, has extensively been studied, starting with the seminal works of Babuška [3], De Giorgi and
Spagnolo [30,57], Tartar [58], Bensoussan, Lions and Papanicolaou [7], and so on; see e.g. the mono-
graphs [2,5,26,40,45,49,50,55,59]. De Giorgi’s notion of Γ -convergence of [29] has also successfully
been applied to the homogenization of stationary problems, see e.g. [13,14,20,27].

The notion of two-scale convergence was introduced by Nguetseng [48], and was then further de-
veloped by Allaire [1] and others; see also the survey paper [41], and Cioranescu, Damlamian and
Griso’s reformulation via periodic unfolding [24,25]. The homogenization of maximal (possibly non-
cyclical) monotone operators was addressed in several works, see e.g. [21–23,28,35,36,56].

After the seminal paper [34] of Fitzpatrick, several authors addressed the representation of mono-
tone operators, see e.g. [18,19,42–44,51–53]. Presently this research is under further expansion, but
apparently it has not yet intensively been used in connection with partial differential equations. This
author regards this approach as promising, especially in view of the application of variational tech-
niques to certain evolutionary problems. This may also be compared with Ghoussoub’s approach [37].

The point of view of the present work rests on a two-scale approach, that was applied to quasilin-
ear models of continuum mechanics, electromagnetism and heat conduction, see e.g. [62,65,66,70,71]
and references therein.

Vector free boundary models of nonlinear electromagnetic processes have been studied e.g. in [9–
11,60,64]; all in all they have received much less attention than scalar Stefan-type problems. The
homogenization of the corresponding univariate model was dealt with in [12]. Homogenization of the
quasilinear Maxwell system in a three-dimensional body without symmetry hypotheses was stud-
ied in [64]. The setting considered in the present article is less general than that of the latter
work; however, the homogenization is here achieved by a different procedure. Moreover, at vari-
ance with [64], here the maximal monotone relation is not assumed to be cyclically monotone, and
the Fitzpatrick theory and Γ -convergence are applied. The homogenization of a hysteresis-free quasi-
stationary model of ferromagnetism was also addressed in [70] assuming the magnetostatic equations,
instead of the eddy-current approximation as in this paper. Moreover that work dealt with the ho-
mogenization of the relaxation dynamics

A(x)�Bt + α−1(�B, x) � �H, (1.8)

which is different from both (1.4) and (1.5).

2. Fitzpatrick’s theory and scale-transformations

In this section we briefly outline the variational formulation of maximal monotone operators due
to Fitzpatrick, and review some results of scale-transformations, that we shall use in this work.

Fitzpatrick’s theory. Let B be a real Banach space. For any mapping α : B → P (B ′) with nonempty
graph A := {(ξ, ξ ′): ξ ′ ∈ α(ξ)}, in [34] Fitzpatrick introduced the convex and lower semicontinuous
function

fα
(
ξ, ξ ′) := 〈

ξ ′, ξ
〉 + sup

{〈
ξ ′ − ξ ′

0, ξ0 − ξ
〉
:

(
ξ0, ξ

′
0

) ∈ A
}

= sup
{〈

ξ ′, ξ0
〉 + 〈

ξ ′
0, ξ

〉 − 〈
ξ ′

0, ξ0
〉
:

(
ξ0, ξ

′
0

) ∈ A
} ∀(

ξ, ξ ′) ∈ B × B ′, (2.1)

which is now named after him, and proved the following result.
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Theorem 2.1. (See [34].)

(i) α is monotone if and only if

fα
(
ξ, ξ ′) = 〈

ξ ′, ξ
〉 ∀(

ξ, ξ ′) ∈ A; (2.2)

(ii) α is maximal monotone if and only if

fα
(
ξ, ξ ′) �

〈
ξ ′, ξ

〉 ∀(
ξ, ξ ′) ∈ B × B ′, (2.3)

fα
(
ξ, ξ ′) = 〈

ξ ′, ξ
〉 ⇔ (

ξ, ξ ′) ∈ A. (2.4)

Note that, by (2.3), fα(ξ, ξ ′) = 〈ξ ′, ξ〉 is tantamount to fα(ξ, ξ ′) � 〈ξ ′, ξ〉. By applying this result,
in this paper we shall meet several inequalities that are equivalent to the corresponding equality.

The system (2.3), (2.4) extends the following classical statement, that applies to cyclically mono-
tone mappings and is known as the Fenchel inequality, see e.g. [32,33,38,39,54]. If F : B → R ∪ {+∞} is
a proper function (i.e., F �≡ +∞), then, denoting its convex conjugate function by F ∗ and its subdif-
ferential by ∂ F ,

F (ξ) + F ∗(ξ ′) �
〈
ξ ′, ξ

〉 ∀(
ξ, ξ ′) ∈ B × B ′,

F (ξ) + F ∗(ξ ′) = 〈
ξ ′, ξ

〉 ⇔ ξ ′ ∈ ∂ F (ξ).
(2.5)

Generalizing Theorem 2.1, nowadays one says that a lower semicontinuous and convex function
f : B × B ′ → R ∪ {+∞} represents a (necessarily monotone) operator α whenever it fulfills the sys-
tem (2.3), (2.4). Any maximal monotone operator α is thus represented by its Fitzpatrick function fα .
We may thus provide a variational formulation of the corresponding maximal monotone relation:

setting J
(
ξ, ξ ′) := f

(
ξ, ξ ′) − 〈

ξ ′, ξ
〉 ∀(

ξ, ξ ′) ∈ B × B ′,

ξ ′ ∈ α(ξ) ⇔ J
(
ξ, ξ ′) = inf J (= 0). (2.6)

We emphasize that this infimum necessarily vanishes, by Fitzpatrick’s Theorem 2.1. This variational
approach may be used to prove existence of a solution. It also enables one to apply De Giorgi’s notion
of Γ -convergence to problems with noncyclically monotone operators; see [68–71].

Example. Theorem 2.1 also applies to maximal monotone operators that occur in evolutionary equa-
tions, e.g.,

ut + A(u) � g with A maximal monotone and g prescribed. (2.7)

More precisely, let us assume that we are given a triple of real Banach spaces

V ⊂ H = H ′ ⊂ V ′ with continuous and dense injections. (2.8)

Let us define the operator Dt as the time-derivative in the sense of vector-valued distributions
]0, T [ → V ′ , for a fixed T > 0. Let us fix any q ∈ [2,+∞[, and set

Xq
0 := {

v ∈ Lq(0, T ; V ) ∩ W 1,q′(
0, T ; V ′): v(0) = 0

} (
q′ := q/(q − 1)

)
,

α(v) = D v ∀v ∈ Xq
.

(2.9)

t 0
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(The elements of Xq
0 may be identified to continuous functions [0, T ] → H .) This operator is clearly

linear and positive in Xq
0, hence maximal monotone, although not cyclically monotone. Let us assume

that A is a maximal monotone operator Lq(0, T ; V ) → P (Lq′
(0, T ; V ′)) and is defined everywhere, so

that

Dt + A : Xq
0 → P

(
Lq′(

0, T ; V ′)) ⊂ P
((

Xq
0

)′)
is maximal monotone. (2.10)

We claim that, if f A : Lq(0, T ; V ) × Lq′
(0, T ; V ′) → R ∪ {+∞} is a representative function of A, then

f : Xq
0 × (

Xq
0

)′ → R ∪ {+∞}:(
ξ, ξ ′) �→

{
f A(ξ, ξ ′ − Dtξ) + 1

2 ‖ξ(T )‖2
H if ξ ′ ∈ Lq′

(0, T ; V ′),
+∞ otherwise

(2.11)

is a representative function of Dt + A, as it may be checked directly. For this example see also, e.g.,
[16,47,68].

One might also deal with a nonhomogeneous initial condition v(0) = v0, for a prescribed v0 ∈ H ,
at the only expense of replacing Xq

0 by an affine space.
The present discussion may easily be extended to several other equations, e.g.,

t∫
0

u(τ )dτ + A(u) � g, (2.12)

utt + A(ut) + Λu � g (with Λ : H → H linear and cyclically monotone), (2.13)

ut + ux + A(u) � g (for x ∈ I ⊂ R). (2.14)

Further examples may be found e.g. in [69].

Upscaling and downscaling of monotone operators. In the remainder of this section we review some
results of [71], that will be used in this paper. Henceforth we shall assume that B is a separable
reflexive real Banach space, and that p, p′ ∈ ]1,+∞[ are conjugate indices. Dealing with any space of
integrable functions of y ∈ Y (the unit torus, see Appendix A), we shall label the subspace of functions
having vanishing mean by appending the index ∗, and identify B (B ′ , resp.) with the subspace of
L p(Y; B) (L p′

(Y; B ′), resp.) of constant mappings. For any v ∈ L1(Y; B) let us define the average and
oscillating components v̂ and ṽ as in (A.5). We shall denote by 〈·, ·〉 (〈〈·,·〉〉, resp.) the canonical duality
pairing between B ′ and B (L p(Y; B) and L p′

(Y; B ′), resp.). Obviously,

〈〈 v̂, z̃ 〉〉 = 〈〈̃v, ẑ 〉〉 = 0 ∀v ∈ Lp(Y; B), ∀z ∈ Lp′(Y; B ′). (2.15)

Let V and Z be such that

V (Z, resp.) is a subspace of Lp∗ (Y; B)
(
Lp′
∗

(
Y; B ′), resp.

)
, (2.16)

〈〈z, v〉〉 = 0 ∀v ∈ V, ∀z ∈ Z. (2.17)

(We shall see an example in Section 6.) Let us denote by B(S) (L(S), resp.) the σ -algebra of the
Borel- (Lebesgue-, resp.) measurable subsets of a topological (measurable, resp.) space over any set
S �= ∅. Let us also denote by C1 ⊗ C2 the σ -algebra generated by any pair of σ -algebras C1 and C2.
We shall say that ϕ is a measurable representative function (of some monotone operator) whenever
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⎧⎪⎨⎪⎩
ϕ : B × B ′ × Y → R ∪ {+∞} is measurable w.r.t. B

(
B × B ′) ⊗ L(Y),

ϕ(·, ·, y) is convex and lower semicontinuous for a.e. y,

ϕ
(
ξ, ξ ′, y

)
�

〈
ξ ′, ξ

〉 ∀(
ξ, ξ ′) ∈ B × B ′, for a.e. y ∈ Y.

(2.18)

We shall denote by ‖ · ‖ the norm of both B and B ′ .

Proposition 2.2. (See [71].) Let V , Z and ϕ fulfill (2.16)–(2.18). If

∃C > 0, ∃h ∈ L1(Y): ∀(
ξ, ξ ′) ∈ B × B ′, for a.e. y ∈ Y,

ϕ
(
ξ, ξ ′, y

)
� C

(‖ξ‖p + ∥∥ξ ′∥∥p′) + h(y),

(2.19)

then

ϕ0
(
ξ, ξ ′) := inf

{∫
Y

ϕ
(
ξ + v(y), ξ ′ + z(y), y

)
dy: (v, z) ∈ V × Z

}
∀(

ξ, ξ ′) ∈ B × B ′ (2.20)

is a representative function in B × B ′ (of some monotone operator), and is coercive, i.e., the set {(ξ, ξ ′) ∈
B × B ′: ϕ0(ξ, ξ ′) � M} is bounded, for any M ∈ R.

We shall refer to ϕ0 as the upscaled representative function of ϕ .

Theorem 2.3 (Upscaling and downscaling of representable operators). (See [71].) Let V , Z and ϕ fulfill (2.16)–
(2.19); define ϕ0 as in (2.20), and denote by

α : Lp(Y; B) × Y → P
(
Lp′(Y; B ′)), α0 : B → P

(
B ′) (2.21)

the operators that are respectively represented by ϕ and ϕ0 . Then:

(i) (Downscaling or integration) If u ∈ B + V and w ∈ B ′ + Z , then

w(y) ∈ α
(
u(y), y

)
for a.e. y ∈ Y ⇒ ŵ ∈ α0( û ); (2.22)

(ii) (Upscaling or disintegration) On the other hand, if

ū ∈ B, w̄ ∈ B ′, w̄ ∈ α0(ū), (2.23)

then there exist u ∈ L p(Y; B) and w ∈ L p′
(Y; B ′) such that

ũ ∈ V, w̃ ∈ Z, û = ū, ŵ = w̄, (2.24)

w(y) ∈ α
(
u(y), y

)
for a.e. y ∈ Y. (2.25)

In conclusion, for any (ū, w̄) ∈ B × B ′ ,

w̄ ∈ α0(ū) ⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∃(u, w) ∈ Lp(Y; B) × Lp′(Y; B ′) such that

w(y) ∈ α
(
u(y), y

)
for a.e. y ∈ Y,

ū =
∫

Y

u(y)dy, w̄ =
∫

Y

w(y)dy.

(2.26)
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Theorem 2.4 (Upscaling of maximal monotone operators). (See [71].) Let V , Z and ϕ fulfill (2.16)–(2.18). Let
us assume that

∃C1, C2 > 0, ∃h1,h2 ∈ L1(Y): for a.e. y ∈ Y, ∀(
ξ, ξ ′) ∈ B × B ′,

C1
(‖ξ‖p + ∥∥ξ ′∥∥p′) + h1(y) � ϕ

(
ξ, ξ ′, y

)
� C2

(‖ξ‖p + ∥∥ξ ′∥∥p′) + h2(y), (2.27)

and define ϕ0 as in (2.20). If ϕ(·, ·, y) represents a maximal monotone operator for a.e. y ∈ Y , then ϕ0 also
represents a maximal monotone operator.

3. A model of ferromagnetic evolution

In this section we outline a hysteresis-free model of ferromagnetism, and formulate a weak prob-
lem in the framework of Sobolev spaces.

The Maxwell–Ohm equations and the constitutive relation. Henceforth we shall mark vectors of R3

by an arrow, as it often occurs in the physical literature. We assume that a domain Ω of R3 is
occupied by a ferromagnetic metal surrounded by an insulator (e.g., air), denote the magnetic field
by �H , the magnetization by �M , and the magnetic induction by �B; in Gauss units, �B = �H + 4π �M . We
also denote the electric field by �E , the electric current density by �J , an applied electromotive force
by �Ea , and the speed of light in vacuum by c. We assume that the electric resistivity is a positive-
definite, symmetric 3 × 3-tensor A = A(x), with components Aij(x).

Because of the high conductivity, in metals the displacement current �Dt := ∂ �D/∂t is usually dom-
inated by the Ohmic current, provided that the onset of high frequencies is excluded; the term �Dt

is accordingly neglected (so-called eddy-current approximation). The Ampère, Faraday, Gauss and Ohm
laws respectively read

c∇ × �H = 4π �J in ΩT := Ω × ]0, T [, (3.1)

c∇ × �E = −�Bt in ΩT , (3.2)

∇ · �B = 0 in ΩT (∇· := div), (3.3)

A(x) · �J = �E + �Ea in ΩT . (3.4)

We also assume the boundary condition

�ν × �H = �0 on (∂Ω) × ]0, T [; (3.5)

here by �ν we denote a normal vector field on ∂Ω . In order to simplify the display of formulas, we
shall drop the constants 4π and c. By (3.1), (3.2) and (3.4), we thus get

�Bt + ∇ × [
A(x) · ∇ × �H − �Ea

] = �0 in ΩT , (3.6)

that we couple with (3.5) and with the initial condition

�B(·,0) = �B0 in Ω, (3.7)

for a prescribed divergence-free field �B0. (In passing, note that the Gauss law (3.3) is then implicit
in (3.6).) We set
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(v ∗ 1)(t) :=
t∫

0

v(τ )dτ ∀t ∈ R, ∀v ∈ L1(R),

�G := �B0 + ∇ × �Eapp ∗ 1 in ΩT ;

(3.8)

note that the field �G is divergence-free. We then reformulate the Cauchy problem (3.6) and (3.7) as

�B + ∇ × (
A(x) · ∇ × �H ∗ 1

) = �G in ΩT . (3.9)

Let us now come to the constitutive relation between the fields �B and �H . Soft iron, mild steel
and some other ferromagnetic materials are characterized by a very narrow and high hysteresis loop;
more precisely, as these fields move along the loop, the order of magnitude of the variation of |�B|
is much larger than that of | �H|. In first approximation, the loop may then be replaced by a maximal
monotone graph of the form

�B ∈ �H + �β( �H, x) =: �α( �H, x) in ΩT . (3.10)

Here �β(·, x) may be the subdifferential of a lower semicontinuous convex function (e.g., the modulus
function), so that �α(·, x) is maximal cyclically monotone. However, in this paper we just assume that
�α is maximal monotone, and use the techniques of Section 2. In Section 8, we shall also consider the
alternative relaxation dynamics (1.4) and (1.5).

Weak formulation. Let us set

V := {�v ∈ L2(Ω)3: ∇ × �v ∈ L2(Ω)3, �ν × �v = �0 on ∂Ω
}; (3.11)

this trace condition is set in H−1/2(∂Ω)3 (the dual of the fractional Sobolev space H1/2(∂Ω)3). V is
a Hilbert space equipped with the graph norm. We claim that the operator

L2(0, T ; V ) → H1(0, T ; V ′) : �v �→ ∇ × [
A(x) · ∇ × �v ∗ 1

]
is linear, continuous and maximal monotone: it is actually positive and defined on the whole space.
Indeed, denoting by 〈〈·,·〉〉 the duality product between L2(0, T ; V ) and L2(0, T ; V ′), we have

〈〈∇ × (
A(x) · ∇ × �v ∗ 1

)
, v

〉〉 = T∫
0

dt

∫
Ω

(
A(x) · ∇ × �v ∗ 1

) · ∇ × v dx

= 1

2

T∫
0

dt
d

dt

∫
Ω

∣∣A(x)1/2 · ∇ × �v ∗ 1
∣∣2

dx

= 1

2

∫
Ω

∣∣A(x)1/2 · ∇ × �v ∗ 1
∣∣2

(x, T )dx � 0. (3.12)

We shall be mainly concerned with processes in a periodic inhomogeneous material, and assume
that �α, A and �G explicitly depend on x with period ε in each coordinate direction. Equivalently, we
prescribe that these fields depend on y = x/ε, that we let range through the 3-dimensional (flat) unit
torus Y . We also assume that
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�α : R3 × Y → P
(
R3) is B

(
R3

) ⊗ L(Y)-measurable, (3.13)

�α(·, y) is maximal monotone for a.e. y ∈ Y, (3.14)

A ∈ L∞(Y)3×3, A(y) is symmetric for a.e. y ∈ Y, (3.15)

∃C > 0:
3∑

i, j=1

Aij(y)vi v j � C |�v|2 ∀�v ∈ R3, for a.e. y ∈ Y, (3.16)

�G ∈ L2(YT )3, ∇ · �G = 0 in D′(YT ). (3.17)

Next we set

�αε(·, x) := �α(·, x/ε), Aε(x) := A(x/ε), �Gε(x, ·) := �G(x/ε, ·) for a.e. in R3, (3.18)

in place of �α(·, x), A(x) and �G(x, ·), and provide a weak formulation of the system (3.6) and (3.10).

Problem 3.1ε . Find �Bε, �Hε ∈ L2(ΩT )3 such that �Hε ∗ 1 ∈ L2(0, T ; V ) and

�Bε ∈ �αε( �Hε, x) a.e. in ΩT , (3.19)∫ ∫
ΩT

[
(�Bε − �Gε) · �v + Aε · ∇ × �Hε ∗ 1 · ∇ × �v]

dx dt = 0 ∀�v ∈ L2(0, T ; V ). (3.20)

The inclusion (3.19) is tantamount to the following variational inequality:∫ ∫
ΩT

(T − t)(�Bε − �w) · ( �Hε − �v)dx dt � 0

∀(�v, �w) ∈ (
L2(ΩT )3)2

such that �w ∈ �αε(�v, ·) a.e. in ΩT (3.21)

(the factor (T − t) might be dropped, but it will turn out to be convenient). Eq. (3.20) is clearly
equivalent to

�Bε + ∇ × (
Aε(x) · ∇ × �Hε ∗ 1

) = �Gε in V ′, for a.e. t ∈ ]0, T [. (3.22)

Remark. The integration in time has lead us to define an especially weak notion of solution, in which
just the primitive of the field �Hε is assumed to belong to the variational space V . This will allow us
to deal with very weak assumptions on the data.

The next statement will be used in the next sections.

Lemma 3.1. Any solution (�Bε, �Hε) of Problem 3.1ε fulfills the equation∫ ∫
ΩT

(
(T − t)(�Bε − �Gε) · �Hε + 1

2

∣∣Aε(x)1/2 · ∇ × �Hε ∗ 1
∣∣2

)
dx dt = 0. (3.23)

Proof. We cannot select �w = �Hε in (3.20), as this function does not have the necessary regularity. We
then use a less direct procedure. For any h > 0 and any function v ∈ L2(R), first we set

D+
h v(t) := v(t + h) − v(t)

, D−
h v(t) := v(t) − v(t − h) ∀t ∈ R, (3.24)
h h
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and note that

b∫
a

v(t)D+
h v(t)dt � 1

2

[
v(b + h)2 − v(a)2], b∫

a

v(t)D−
h v(t)dt � 1

2

[
v(b)2 − v(a − h)2].

Next we extend Eq. (3.22) and the fields �Bε , �Hε , �Gε to any t < 0 (t > T , resp.) with the value that
they attain at 0 (T , resp.). Multiplying (3.22) by D+

h
�Hε ∗ 1 (which is an element of L2(0, T ; V )) and

integrating in time, we get∫ ∫
Ωt

(�Bε − �Gε) · D+
h

�Hε ∗ 1 dx dτ + 1

2

∫
Ω

∣∣Aε(x)1/2 · ∇ × �Hε ∗ 1
∣∣2

(x, t + h)dx � 0

for a.e. in t ∈ ]h, T [. (3.25)

A further integration in ]0, T [ and then the passage to the limit as h → 0 yield∫ ∫
ΩT

{
(T − t)(�Bε − �Gε) · �Hε + 1

2

∣∣Aε(x)1/2 · ∇ × �Hε ∗ 1
∣∣2

}
dx dt � 0. (3.26)

Multiplying (3.22) by D−
h

�Hε ∗ 1 and proceeding similarly, we get the opposite inclusion. �
4. Existence of a solution and reformulation

In this section we show the existence of a solution of Problem 3.1ε , via a classical argument. We
then reformulate the constitutive relation (3.19) via Fitzpatrick’s theory.

Proposition 4.1. Assume that (3.13)–(3.18) are fulfilled and that

∃C1 > 0, ∃h1 ∈ L2(Y): ∀�v ∈ R3, ∀ �w ∈ �α(�v, ·),
�w · �v � C1|�v|2 + h1(y) for a.e. y, (4.1)

∃C2 > 0, ∃h2 ∈ L2(Y): ∀�v ∈ R3, ∀ �w ∈ �α(�v, ·),
| �w| � C2|�v| + h2(y) for a.e. y. (4.2)

Then there exists a solution of Problem 3.1ε . The field �B is uniquely determined; if �α−1(·, y) is single-valued
for a.e. y ∈ Y , then �H is also unique.

The hypotheses (4.1) and (4.2) are consistent with the above model, see (3.10), as the map-
ping β( �H, x) represents the magnetization, which is a bounded field.

Proof. We display this standard argument, for the sake of completeness. Throughout this proof we
shall drop the index ε, in order to render formulas more readable. We proceed through approximation,
derivation of uniform estimates, and passage to the limit.

(i) Approximation. We fix any m ∈ N, set

k := T

m
, �Gn

m := 1

k

nk∫
(n−1)k

�G(·, ξ)dξ for n = 1, . . . ,m,

and introduce an implicit time-discretization scheme of Problem 3.1ε .
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Problem 3.1εm. Find �Bn
m ∈ L2(Ω)3 and �Hn

m ∈ V (n = 1, . . . ,m) such that

�Bn
m + k∇ ×

(
A · ∇ ×

n∑
j=1

�H j
m

)
= �Gn

m in V ′, for n = 1, . . . ,m, (4.3)

�Bn
m(x) ∈ α

( �Hn
m(x), x

)
for a.e. x ∈ Ω. (4.4)

This system may be solved stepwise. At each step, by eliminating �Bn
m we get an equation of the

form

Λn
m

( �Hn
m

) = �Gn
m in V ′, for n = 1, . . . ,m, (4.5)

for a maximal monotone and coercive operator Λn
m : V → V ′ . By a classical theory, see e.g. [6,15,17],

this equation has a solution �Hn
m . By (4.3), this determines �Bn

m ∈ V ′; moreover, by (4.2) and (4.4),
�Bn

m ∈ L2(Ω)3.

(ii) A priori estimates. In order to rewrite the time-discretized Problem 3.1εm in continuous form, for
any family {φn

m}n=0,...,m we define the piecewise-linear and piecewise-constant interpolate functions:

φm(t) := φn−1
m + [

t − (n − 1)h
]
φn

m, φ̄m(t) := φn
m

∀t ∈ ]
(n − 1)h,nh

]
, for n = 1, . . . ,m. (4.6)

Eq. (4.3) then reads

�Bm + ∇ × (A · ∇ × �̄Hm ∗ 1) = �Gm in V ′, a.e. in ]0, T [. (4.7)

Let us multiply this equation by �̄Hm (∈ L2(0, T ; V )), and then integrate in time. Denoting by A1/2

the square root of the positive-definite, symmetric tensor-function A, we get

∫ ∫
Ωt

(�Bm − �Gm) · �̄Hm dx dτ + 1

2

∫
Ω

∣∣A(x)1/2 · ∇ × �̄Hm ∗ 1
∣∣2

(x, t)dx = 0 for a.e. t ∈ ]0, T [. (4.8)

By the hypotheses (3.16), (3.17), (4.1) and (4.2), this yields

‖�Bm‖L2(ΩT )3 ,‖ �̄Hm‖L2(ΩT )3 ,‖ �̄Hm ∗ 1‖L∞(0,T ;V ) � Constant. (4.9)

(iii) Passage to the limit.
By the above uniform estimates there exist �B, �H ∈ L2(ΩT )3 such that �H ∗ 1 ∈ L∞(0, T ; V ) and, as

m → ∞ along a suitable sequence,2

�Bm ⇀ �B, �Hm, �̄Hm ⇀ �H in L2(ΩT )3, (4.10)

�̄Hm ∗ 1
∗
⇀ �H ∗ 1 in L∞(0, T ; V ). (4.11)

2 We denote the strong, weak, and weak star convergence respectively by →, ⇀,
∗
⇀.



A. Visintin / J. Differential Equations 250 (2011) 1521–1552 1533
Eq. (3.20) then follows. In order to derive the inclusion (3.19), we note that (4.4) is equivalent to∫ ∫
ΩT

(T − t)(�Bm − �w) · ( �̄Hm − �v)dx dt � 0

∀(�v, �w) ∈ (
L2(ΩT )3)2

such that �w ∈ �α(�v, ·) a.e. in ΩT . (4.12)

Moreover, by the lower semicontinuity of convex functionals,

lim suph→0

∫ ∫
ΩT

(T − t)�Bm · �̄Hm dx dt

(4.7)= − lim infm→+∞
∫ ∫
ΩT

{ t∫
0

[
(A · ∇ × �̄Hm ∗ 1) · ∇ × �̄Hm

]
dτ + (T − t)�Gm · �̄Hm

}
dx dt

= −1

2
lim infm→+∞

∫ ∫
ΩT

∣∣A1/2 · ∇ × �̄Hm ∗ 1
∣∣2

dx dt − lim
m→+∞

∫ ∫
ΩT

(T − t)�Gm · �̄Hm dx dt

� −1

2

∫ ∫
ΩT

∣∣A1/2 · ∇ × �H ∗ 1
∣∣2

dx dt −
∫ ∫
ΩT

(T − t)�G · �H dx dt

(3.23)=
∫ ∫
ΩT

(T − t)�B · �H dx dt. (4.13)

By passing to the superior limit in (4.12), we thus retrieve (3.21), that is, the inclusion (3.19).
We are left with the proof of uniqueness. Let (�Bi, �Hi) (i = 1,2) be two solutions. We would like to

select �v = �H1 − �H2 in (3.20), and then use the monotonicity of �α(·, x) to infer that∫ ∫
ΩT

∣∣A(x)1/2 · ∇ × ( �H1 − �H2) ∗ 1
∣∣2

dx dt � 0. (4.14)

This inequality entails that ∇ × �H1 ∗ 1 = ∇ × �H2 ∗ 1 a.e. in ΩT , whence also �B1 = �B2 by (3.22). If
�α−1(·, y) is single-valued for a.e. y ∈ Y , then by (3.19) �H1 = �H2 a.e. in ΩT .

But this choice of �v is not admissible, since a priori �H1 − �H2 /∈ L2(0, T ; V ). The time-discretization
argument of Lemma 3.1 however makes this procedure rigorous. (We omit these details, that closely
mimic that proof.) �
Remarks. (i) If we assume that �Eappε ∈ L2(ΩT )3 and �B0ε ∈ L2(Ω)3 (so that �Gε ∈ H1(0, T ; V ′),
see (3.8)) and �H0ε ∈ V , then further estimates can be derived by taking the incremental ratio in
time of the approximate equation (4.3), and multiplying it by the incremental ratio in time of �Hm . By
the monotonicity of �α(·, x), this entails the uniform estimate

‖�Bm‖H1(0,T ;L2(Ω)3),‖ �Hm‖H1(0,T ;L2(Ω)3)∩L∞(0,T ;V ) � Constant, (4.15)

which corresponds to an extra-regularity for the solution. However we shall refrain from assum-
ing these further hypotheses, and proceed without the corresponding extra-regularity. (The enhanced
generality allows one to extend the present results to more general equations.)

(ii) Whenever the mapping �α is cyclically monotone, further a priori estimates can be derived by
multiplying the approximate equation (4.3) by the incremental ratio in time of �Hm .
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Reformulation of (3.19). Let ϕ(·, ·, y) be the Fitzpatrick function of �α(·, y), see (2.1), for a.e. y ∈ Y ;
let us then set ϕε(·, ·, x) := ϕ(·, ·, x/ε). Thus

ϕ : R3 × R3 × Y → R ∪ {+∞} is B
(
R3 × R3) ⊗ L(Y)-measurable, (4.16)

ϕ(·, ·, y) is convex and lower semicontinuous, for a.e. y, (4.17)

ϕ
(�ξ, �ξ ′, y

)
�

〈�ξ ′, �ξ 〉 ∀(�ξ, �ξ ′) ∈ R3 × R3, for a.e. y, (4.18)

ϕ
(�ξ, �ξ ′, y

) = 〈�ξ ′, �ξ 〉 ⇔ �ξ ′ ∈ α(�ξ, y) for a.e. y. (4.19)

Let us also assume that

∃C3 > 0, ∃h3 ∈ L1(Y): ∀(�ξ, �ξ ′) ∈ R3 × R3,

ϕ
(�ξ, �ξ ′, y

)
� C3

(|�ξ |2 + ∣∣�ξ ′∣∣2) + h3(y) for a.e. y ∈ Y, (4.20)

∃C4 > 0, ∃h4 ∈ L1(Y): ∀(�ξ, �ξ ′) ∈ R3 × R3,

ϕ
(�ξ, �ξ ′, y

)
� C4

(|�ξ |2 + ∣∣�ξ ′∣∣2) + h4(y) for a.e. y ∈ Y. (4.21)

By (4.18) and (4.19), the inclusion (3.21) is equivalent to∫ ∫
ΩT

(T − t)
[
ϕε( �Hε, �Bε) − �Hε · �Bε

]
dx dt � 0, (4.22)

and also to the corresponding equality. Lemma 3.1 then yields the next statement.

Proposition 4.2. In Problem 3.1ε the inclusion (3.19) may equivalently be replaced either by the inequality

Ψε( �Hε, �Bε) :=
∫ ∫
ΩT

{
(T − t)

[
ϕε( �Hε, �Bε) − �Gε · �Hε

] + 1

2

∣∣A1/2
ε · ∇ × �Hε ∗ 1

∣∣2
}

dx dt � 0, (4.23)

or by the corresponding equality.

(Eq. (3.19) is not equivalent to (4.23): it is rather the system (3.19) and (3.20) that is equivalent
to (3.20) and (4.23).)

As Ψε is nonnegative, by means of Eq. (3.9) we may eliminate the field �Bε , and reformulate Prob-
lem 3.1ε as a minimization principle.

Proposition 4.3. Problem 3.1ε is equivalent to the search for a field �Hε that minimizes the functional

Ψ̄ε(�v) :=
∫ ∫
ΩT

{
(T − t)

[
ϕε

(�v, �Gε − ∇ × (
A(x) · ∇ × �v ∗ 1

)) − �Gε · �v] + 1

2

∣∣A1/2
ε · ∇ × �v ∗ 1

∣∣2
}

dx dt

∀�v ∈ L2(ΩT )3 such that �v ∗ 1 ∈ L2(0, T ; V ), (4.24)

and this is tantamount to Ψ̄ε( �Hε) = 0.

Existence of a solution might thus be proved via the direct method of the calculus of variations.
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5. Two-scale formulation

In this section we derive a two-scale model by passing to the two-scale limit in Problem 3.1ε .
This will provide a detailed representation of the physical process, at both the coarse- and fine-length
scales, and will be the basis for the homogenization procedure of the next section.

We assume that

�Gε → �G in L2(ΩT )3, (5.1)

and introduce a two-scale model. At the fine scale we shall account for periodic conditions by denot-
ing the 3-dimensional (flat) unit torus by Y . We shall denote by v̂ and ṽ the average and oscillating
components of any field v as in (A.5), and define the partial gradients ∇x and ∇y as in Appendix A.

Problem 5.1. Find �B, �H, �H� ∈ L2(ΩT × Y)3 such that

�̂H ∗ 1 ∈ L2(0, T ; V ), ∇y × �H� ∗ 1 ∈ L2(ΩT × Y)3, (5.2)

∇y · �B = 0 in D′(ΩT × Y), ∇y × �H = �0 in D′(ΩT × Y)3, (5.3)

∇y · �H� = 0 in D′(ΩT × Y),

∫
Y

�H� dy = �0 a.e. in ΩT , (5.4)

�B ∈ �α( �H, y) a.e. in ΩT × Y, (5.5)

∫ ∫
ΩT

( �̂B − �G) · �w dx dt +
∫ ∫ ∫
ΩT ×Y

A(y) · [(∇x × �̂H + ∇y × �H�) ∗ 1
] · (∇x × �w + ∇y × �w�)dx dy dt = 0

∀ �w ∈ L2(0, T ; V ), ∀ �w� ∈ L2(ΩT × Y)3 such that ∇y × �w� ∈ L2(ΩT × Y)3. (5.6)

The inclusion (5.5) is equivalent to a variational inequality analogous to (3.19) (here with inte-
gration over ΩT × Y ). By selecting first �w� = �0 and then �w = �0 in (5.6), we see that this two-scale
equation is equivalent to the system of a coarse-scale and a fine-scale equation:

�̂B + ∇x ×
{∫

Y

A(y) · (∇x × �̂H + ∇y × �H�) ∗ 1 dy

}
= �G in L2(0, T ; V ′), (5.7)

∇y × [
A(y) · (∇x × �̂H + ∇y × �H�) ∗ 1

] = �0 in L2(ΩT ; H−1(Y)3). (5.8)

In order to reformulate (5.5), we prove the next statement.

Lemma 5.1. Any solution (�B, �H, �H�) of Problem 5.1 fulfills the following equation

∫ ∫
ΩT

{
(T − t)( �̂B − �G) · �̂H + 1

2

∫
Y

∣∣A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1
∣∣2

dy

}
dx dt = 0. (5.9)

Proof. We cannot select �w = �̂H and �w� = �H� in (5.6), as these functions do not have the necessary
regularity. We then use the procedure of Lemma 3.1 with the notation (3.24).
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First, we extend Eq. (5.6) and the fields �B , �H , �H� , �G to any t < 0 (t > T , resp.) with the value that
they attain at 0 (T , resp.). By selecting �w = D+

h
�H ∗ 1 and �w� = D+

h
�H� ∗ 1 in (5.6) and integrating in

]0, t[ for any t ∈ ]0, T [, we get∫ ∫
Ωt

(�B − �G) · D+
h

�Hε ∗ 1 dx dτ

+ 1

2

∫ ∫
Ω×Y

∣∣A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1
∣∣2

(x, y, t + h)dx dy � 0 (5.10)

for a.e. in t ∈ ]0, T [. A further integration in ]0, T [ and the passage to the limit as h → 0 yield∫ ∫
ΩT

{
(T − t)( �̂B − �G) · �̂H + 1

2

∫
Y

∣∣A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1
∣∣2

dy

}
dx dt � 0. (5.11)

Similarly, by selecting �w = D−
h

�H ∗ 1 and �w� = D−
h

�H� ∗ 1 in (5.6), we get the opposite inclusion. �
Reformulation of the constitutive relation. Next we assume that ϕ is a representative function (of
some monotone operator) that fulfills (4.16)–(4.21). The inclusion (5.5) is then tantamount to∫ ∫ ∫

Ωt×Y

(
ϕ( �H, �B, y) − �B · �H)

dx dy dτ � 0 for a.e. t ∈ ]0, T [. (5.12)

As ∫ ∫ ∫
Ωt×Y

�B · �H dx dy dτ
(A.5)=

∫ ∫
Ωt

�̂B · �̂H dx dτ +
∫ ∫ ∫
Ωt×Y

�̃B · �̃H dx dy dτ

(5.3)=
∫ ∫
Ωt

�̂B · �̂H dx dτ for a.e. t ∈ ]0, T [, (5.13)

integrating (5.12) in time we get∫ ∫ ∫
ΩT ×Y

(T − t)ϕ( �H, �B, y)dx dy dt �
∫ ∫
ΩT

(T − t) �̂B · �̂H dx dt; (5.14)

by (4.18), conversely (5.14) entails (5.5). By (5.9), (5.14) is tantamount to∫ ∫ ∫
ΩT ×Y

(T − t)
[
ϕ( �H, �B, y) − �G · �̂H]

dx dy dt

+ 1

2

∫ ∫ ∫
ΩT ×Y

∣∣A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1
∣∣2

dx dy dt � 0. (5.15)

Note that the inequalities (5.12) and (5.15) cannot be strict, because of (4.18).
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We have thus proved that (5.5) is equivalent to (5.15), provided that (5.6) is fulfilled:

Proposition 5.2. In Problem 5.1 the inclusion (5.5) may equivalently be replaced either by (5.15) or by the
corresponding equality.

This problem might also be restated as a variational principle, in analogy with Proposition 4.3.

Existence and uniqueness of the solution.

Theorem 5.3. Assume that (3.13)–(3.18) are fulfilled. For any ε > 0, let (�Bε, �Hε) be a solution of Problem 3.1ε .
Then there exist �B, �H, �H� that fulfill (5.2)–(5.4), and such that, as ε → 0 along a suitable subsequence,

�Bε ⇀
2

�B, �Hε ⇀
2

�H in L2(ΩT × Y)3, (5.16)

∇ × �Hε ∗ 1⇀
2

∇x × �̂H ∗ 1 + ∇y × �H� ∗ 1 in L2(ΩT × Y)3. (5.17)

The triple (�B, �H, �H�) then solves Problem 5.1. The fields �B and �H� are uniquely determined; if �α−1(·, y) is
single-valued for a.e. y ∈ Y , then �H is also unique, and in (5.16) the whole sequences converge.

Proof. The argument of Proposition 4.1 yields the following uniform estimates:

‖�Bε‖L2(ΩT )3 ,‖ �Hε‖L2(ΩT )3 ,‖ �Hε ∗ 1‖L∞(0,T ;V ) � Constant. (5.18)

By Propositions A.1 and A.4, then there exist (�B, �H, �H�) ∈ L2(ΩT × Y)3 that fulfill (5.2)–(5.4), (5.16),
(5.17). Hence, by the definition (A.1) of weak two-scale convergence,

Aε(x) · ∇ × �Hε ∗ 1⇀
2

A(y) · (∇x × �̂H + ∇y × �H�) ∗ 1

Aε(x)1/2 · ∇ × �Hε ∗ 1⇀
2

A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1
in L2(ΩT × Y)3. (5.19)

Let us next select any �w and any �w� as it is prescribed in (5.6), with (say) �w� ∈ C1(ΩT )3. Replacing
�w(x, t) by �w(x, t) + ε �w�(x, x/ε, t) in (3.20), and passing to the limit, we then get (5.6).

By two-scale lower semicontinuity, see (A.12),

lim infε→0

∫ ∫
ΩT

(T − t)ϕε( �Hε, �Bε, x)dx dt �
∫ ∫ ∫
ΩT ×Y

(T − t)ϕ( �H, �B, y)dx dy dt. (5.20)

Note that

Aε(x)1/2 · ∇ × �Hε ∗ 1⇀
2

A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1 in L2(ΩT × Y)3, (5.21)

whence, applying (A.12) again,

lim infε→0

∫ ∫
ΩT

∣∣Aε(x)1/2 · ∇ × �Hε ∗ 1
∣∣2

dx dt

�
∫ ∫ ∫
ΩT ×Y

∣∣A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1
∣∣2

dx dy dt. (5.22)

By passing to the inferior limit in (4.23) we then get (5.15), namely, (5.5).
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In order to show the uniqueness of the solution, let (�Bi, �Hi, �H�i) (i = 1,2) be two solutions. We
would like to select �w = �H1 − �H2 and �w� = �H�1 − �H�2 in (5.6), and then use the monotonicity of
�α(·, y) to infer that∫ ∫ ∫

ΩT ×Y

∣∣A(y)1/2 · [∇x × ( �̂H1 − �̂H2) + ∇y × ( �H�1 − �H�2)
] ∗ 1

∣∣2
dx dy dt � 0. (5.23)

The squared-bracketed term then vanishes a.e. in ΩT × Y . Therefore

∇x × �̂H1 = ∇x × �̂H2, ∇y × �H�1 = ∇y × �H�2 a.e. in ΩT × Y, (5.24)

whence �B1 = �B2 by (5.7), and �H�1 = �H�2 by (5.4). If �α−1(·, y) is single-valued for a.e. y ∈ Ω , then
by (5.5) �H1 = �H2 a.e. in ΩT × Y .

But this choice of �w and �w� is not admissible, since a priori

�H1 − �H2 /∈ L2(0, T ; V ), ∇y × ( �H�1 − �H�2) /∈ L2(ΩT × Y)3.

The time-discretization argument of Lemma 3.1 however makes this procedure rigorous. (We omit
these details, that closely mimic that proof.) �
6. Homogenization

In this section we derive a coarse-length scale model by integrating the two-scale Problem 5.1
with respect to the fine-scale variable, and show that these two problems are equivalent. First we
homogenize the partial differential equation, then the constitutive relation.

Homogenization of the elliptic operator. In view of homogenizing the (degenerate) linear elliptic part
of Eq. (5.6), first we eliminate the field �H� ∗ 1 by means of (5.8). We do so by mimicking a standard
procedure for the homogenization of elliptic problems in divergence form; see e.g. [1,7,26] and, for
the double curl, [64].

The field �H� ∗ 1 must fulfill (5.4) and the linear elliptic equation (5.8), where it is coupled with �̂H
via ∇x × �̂H ∗ 1. The latter may also be regarded as a cell problem in Y , since the variables x, t just
occur as parameters. Thus

�H� ∗ 1 = �L(∇x × �̂H ∗ 1), �L being a linear operator. (6.1)

For j = 1,2,3, let us denote by �e j the unit vector in the direction of the ith coordinate axis, and set

R j := (∇x × �̂H) · �e j in H−1(Y)3, a.e. in ]0, T [,
�z j := �L(�e j)

(∈ R3) a.e. in Y. (6.2)

Hence, as �̂H ∗ 1 ∈ L2(0, T ; V ),

∇x × �̂H ∗ 1 =
3∑

i=1

R j ∗ 1�e j a.e. in ΩT , (6.3)

�H� ∗ 1
(6.1)= �L

(
3∑

R j ∗ 1�e j

)
=

3∑
R j ∗ 1�z j a.e. in ΩT × Y, (6.4)
i=1 i=1
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3∑
j=1

R j ∗ 1
{∇y × [

A(y) · (�e j + ∇y × �z j)
]} (5.8)= �0 in H−1(Y)3. (6.5)

In order to fulfill the last equation, we prescribe

∇y × [
A(y) · (�e j + ∇y × �z j)

] = �0 in H−1(Y)3, j = 1,2,3. (6.6)

For any j this elliptic problem has one and only one divergence-free solution �z j ∈ H1∗(Y)3 (the index ∗
denotes the subspace of functions having vanishing mean). Setting �v · A · �w := ∑

i, j vi Ai j w j for any
vectors �v , �w , let us then define the (symmetric and constant) homogenized matrix

Ai j :=
∫

Y

[�ei + ∇y × �zi(y)
] · A(y) · [�e j + ∇y × �z j(y)

]
dy

(6.6)=
∫

Y

�ei · A(y) · [�e j + ∇y × �z j(y)
]

dy for i, j ∈ {1,2,3}. (6.7)

This matrix is determined by the fine-scale fields �z j ’s, whose evaluation only needs the integration of
three linear elliptic problems in the reference cell Y , see (6.6). As, by (6.4) and (6.7),

A · ∇x × �̂H ∗ 1 =
∫

Y

A(y) · (∇x × �̂H ∗ 1 + ∇y × �H� ∗ 1)dy a.e. in ΩT ,

the coarse-scale equation (5.7) yields the homogenized equation

�̂B + ∇x × (A · ∇x × �̂H ∗ 1) = �G in L2(0, T ; V ′). (6.8)

As �̂H determines �H� via (5.8), in turn this single-scale equation entails the two-scale equation (5.6).
We have thus proved the next statement.

Proposition 6.1. Let �B, �H, �H� ∈ L2(ΩT × Y)3 be such that

�̂H ∗ 1 ∈ L2(0, T ; V ), ∇y × �H� ∗ 1 ∈ L2(ΩT × Y)3, (6.9)

and define A as in (6.7). If �B, �H, �H� fulfill (5.6), then �̂B, �̂H ∈ L2(ΩT )3 satisfy (6.8). Conversely, for any
�̂B, �̂H ∈ L2(ΩT )3 such that �̂H ∗ 1 ∈ L2(0, T ; V ) and that satisfy (6.8), there exist �B, �H, �H� ∈ L2(ΩT × Y)3

that fulfill (5.6) and (6.9).

Coarse-scale formulation. Let us first define

V1 := {∇ × ψ: ψ ∈ H1(Y)3}, Z1 := {∇θ : θ ∈ H1(Y)
}; (6.10)

this is a pair of orthogonal subspaces of L2∗(Y)3, actually, L2∗(Y)3 = V1 ⊕ Z1 (direct sum). Let us then
set

ϕ0
(�ξ, �ξ ′) := inf

{∫
ϕ

(�ξ + v, �ξ ′ + z, y
)

dy: (v, z) ∈ V1 × Z1

}
∀(�ξ, �ξ ′) ∈ R3 × R3. (6.11)
Y
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By part (i) of Theorem 2.3, this function represents a maximal monotone operator �α0 : R3 → P (R3).
This is trivially extended to time-dependent functions, namely, for any (�ξ, �ξ ′) ∈ L2(0, T )3 × L2(0, T )3,
just by replacing the functional

∫
Y ϕ(. . .)dy by

∫ T
0 dt

∫
Y ϕ(. . .)dy and V1 × Z1 by L2(0, T ; V1 × Z1).

Next we state a coarse-scale problem, that we shall then show to be the homogenized formu-
lation of Problem 3.1ε . We shall mark by an overbar certain fields that are independent of y, and
use the notation (A.5). For any ū ∈ B and any v ∈ L1∗(Y), by setting u(y) = ū + v(y) for a.e. y, we
then get û := ∫

Y u(y)dy = ū and ũ = v . Note the conceptual difference between ū (any field) and û
(the average of u). When selecting any element of B , we shall accordingly denote it by ū rather
than û.

Problem 6.1. Find �̄B, �̄H ∈ L2(ΩT )3 such that �̄H ∗ 1 ∈ L2(0, T ; V ) and

�̄B ∈ �α0( �̄H) a.e. in ΩT , (6.12)

�̄B + ∇x × (A · ∇x × �̄H ∗ 1 − �G) = �0 in L2(0, T ; V ′). (6.13)

In full analogy with Lemma 3.1 and Proposition 4.2, any solution of this problem fulfills the fol-
lowing equation ∫ ∫

ΩT

{
(T − t)( �̄B − �G) · �̄H + 1

2

∣∣A1/2 · ∇x × �̄H ∗ 1
∣∣2

}
dx dt = 0, (6.14)

and we have the next statement.

Proposition 6.2. In Problem 6.1 the inclusion (6.12) may equivalently be replaced either by the inequality

Ψ0( �̄H, �̄B) :=
∫ ∫
ΩT

{
(T − t)

[
ϕ0( �̄H, �̄B) − �G · �̄H] + 1

2

∣∣A1/2 · ∇x × �̄H ∗ 1
∣∣2

}
dx dt � 0, (6.15)

or by the corresponding equality.

As Ψ0 is nonnegative, we may eliminate the field �̄B via Eq. (6.13), and reformulate Problem 6.1 as
a minimization principle, in analogy with Proposition 4.3.

Proposition 6.3. Problem 6.1 is equivalent to the search for a field �̄H that minimizes the functional

Ψ̄0(�v) :=
∫ ∫
ΩT

{
(T − t)

[
ϕ0

(�v, �G − ∇x × (A · ∇x × �̄v ∗ 1)
) − �G · �̄v] + 1

2

∣∣A1/2 · ∇x × �̄v ∗ 1
∣∣2

}
dx dt

∀�v ∈ L2(ΩT )3 such that �v ∗ 1 ∈ L2(0, T ; V ), (6.16)

and this is tantamount to Ψ̄0( �̄H) = 0.

Full homogenization. Next we show that the two-scale Problem 5.1 is equivalent to the single-scale
Problem 6.1, by an obvious scale-transformation.

Theorem 6.4 (Upscaling and downscaling). Assume that (3.13)–(3.17) are fulfilled. If (�B, �H, �H�) is a solution of

Problem 5.1, then ( �̂B, �̂H) solves Problem 6.1. Conversely, any solution of the latter problem may be represented
in this way, provided that �α−1

0 is single-valued.
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(The latter restriction is fulfilled by the model of ferromagnetism that we outlined in Section 3.)

Proof. In Proposition 6.1 we have thus seen that Eq. (6.8) is the homogenized formulation of (5.6). By
the definition (6.11) of ϕ0,

∫ ∫
ΩT

(T − t)ϕ0( �̂H, �̂B)dx dt �
∫ ∫ ∫
ΩT ×Y

(T − t)ϕ( �H, �B, y)dx dy dt. (6.17)

The inequality (5.15) thus yields (6.15), that is (6.12). The first statement is thus proved.
The converse is a consequence of the uniqueness of the solution of Problem 6.1; this follows from

the monotonicity of �α0, provided that �α−1
0 is single-valued, via the procedure that we saw for Propo-

sition 4.1. �
By Theorem 5.3, we then infer that Problem 6.1 is the homogenized formulation of Problem 3.1ε .

Theorem 6.5 (Homogenization). Assume that (3.13)–(3.18) are fulfilled. For any ε > 0, let (�Bε, �Hε) be a
solution of Problem 3.1ε . Then there exist �B, �H ∈ L2(ΩT )3 such that �H ∗ 1 ∈ L2(0, T ; V ) and, as ε → 0 along
a suitable subsequence,

�Bε ⇀ �B, �Hε ⇀ �H in L2(ΩT )3, (6.18)

�Hε ∗ 1 ⇀ �H ∗ 1 in L2(0, T ; V ). (6.19)

The pair (�B, �H) then solves Problem 6.1.

7. Γ -convergence

In this section we retrieve and interpret the homogenization result of Section 6 via De Giorgi’s
notion of Γ -convergence, see e.g. [13,14,27,29]. More precisely:

(i) for any ε > 0 we represent Problem 3.1ε by the minimization of a functional Φε ,
(ii) we prove that as ε vanishes Φε Γ -converges to a functional Φ ,

(iii) we show that the minimization of the latter functional is equivalent to the homogenized Prob-
lem 6.1.

This corroborates the above two-scale analysis. Anyway it cannot surrogate it, since the form of
the homogenized problem was derived via the two-scale approach.

By Γ -convergence we then study the dependence of the solution upon variations of the data,
including the monotone operator �α. This obviously rests upon the variational formulation of mono-
tonicity due to Fitzpatrick.

Let us first set

H := {
(�B, �H) ∈ (

L2(ΩT )3)2
: �H ∗ 1 ∈ L2(0, T ; V )

}
, (7.1)

which is a Hilbert space equipped with the graph norm:

∥∥(�B, �H)
∥∥2

H := ‖�B‖2
L2(ΩT )3 + ‖ �H‖2

L2(ΩT )3 + ‖ �H ∗ 1‖2
L2(0,T ;V )

.
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For any ε > 0, let us recall the definitions (4.23) and (6.15) of the functionals Ψε and Ψ0, and set

Sε := {
(�B, �H) ∈ H: (3.22) holds

}
, (7.2)

Φε(�B, �H) :=
{

Ψε(�B, �H) if (�B, �H) ∈ Sε,

+∞ if (�B, �H) ∈ (L2(ΩT )3)2 \ Sε,
(7.3)

S := {
(�B, �H) ∈ H: (6.13) holds

}
, (7.4)

Φ0(�B, �H) :=
{

Ψ0(�B, �H) if (�B, �H) ∈ S,

+∞ if (�B, �H) ∈ (L2(ΩT )3)2 \ S.
(7.5)

As we saw, Ψε and Ψ0 are nonnegative. We may thus reformulate Propositions 4.3 and 6.3 as mini-
mization principles:

(�Bε, �Hε) ∈ Sε solves Problem 3.1ε ⇔ Φε(�Bε, �Hε) = inf Φε, (7.6)

(�B, �H) ∈ S solves Problem 6.1 ⇔ Φ0(�B, �H) = inf Φ0. (7.7)

Moreover, both infimal values vanish.

Theorem 7.1. If (3.13)–(3.17) are fulfilled, then Φε weakly Γ -converges to Φ0 in H. That is, for any
(�B, �H) ∈ S ,

for any sequence
{
(�Bε, �Hε)

}
in

(
L2(ΩT )3)2

,

if (�Bε, �Hε) ⇀ (�B, �H) in
(
L2(ΩT )3)2

, then lim infε→0 Φε(�Bε, �Hε) � Φ0(�B, �H), (7.8)

there exists a sequence
{
(�Bε, �Hε)

}
in

(
L2(ΩT )3

)2
such that

(�Bε, �Hε) ⇀ (�B, �H) in
(
L2(ΩT )3)2

, and lim supε→0 Φε(�Bε, �Hε) � Φ0(�B, �H). (7.9)

Proof. We proceed by two steps.
(i) If a sequence {(�Bε, �Hε)} in Sε is such that

�Bε ⇀ �B, �Hε ⇀ �H in L2(ΩT )3, (7.10)

then (�B, �H) ∈ S , and by Proposition A.1 there exists a pair (�B0, �H0) such that, up to subsequences,

�Bε ⇀
2

�B0, �Hε ⇀
2

�H0 in L2(ΩT × Y)3. (7.11)

Hence �̂B0 = �B and �̂H0 = �H a.e. in Ω . Therefore

lim infε→0

∫ ∫
ΩT

(T − t)ϕε(�Bε, �Hε, x)dx dt

(A.12)

�
∫ ∫ ∫
Ω ×Y

(T − t)ϕ(�B0, �H0, y)dx dy dt
(6.11)

�
∫ ∫
Ω

(T − t)ϕ0(�B, �H)dx dt. (7.12)
T T
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Moreover, as∫ ∫ ∫
ΩT ×Y

∣∣A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1
∣∣2

dx dy dt

=
∫ ∫ ∫
ΩT ×Y

{
(∇x × �̂H + ∇y × �H�) ∗ 1

} · A(y) · {(∇x × �̂H + ∇y × �H�) ∗ 1
}

dx dy dt

(6.7)=
∫ ∫
ΩT

{∇x × �̂H ∗ 1} · A · {∇x × �̂H ∗ 1}dx dt =
∫ ∫
ΩT

∣∣A1/2 · {∇x × �̂H ∗ 1}∣∣2
dx dt, (7.13)

(5.22) yields

lim infε→0

∫ ∫
ΩT

∣∣A1/2
ε · ∇ × �Hε ∗ 1

∣∣2
dx dt �

∫ ∫
ΩT

∣∣A1/2 · ∇x × �̂H ∗ 1
∣∣2

dx dy dt. (7.14)

By (7.12) and (7.14), we infer that lim infε→0 Φε(�Bε, �Hε) � Φ0(�B, �H). The condition (7.8) is thus estab-
lished.

(ii) With the aim of proving (7.9), let us first fix any (�B, �H) ∈ S and note that, by part (ii) of
Theorem 2.3,

∃( �̃B, �̃H) ∈ L2(0, T ; V1 × Z1):∫ ∫ ∫
ΩT ×Y

(T − t)ϕ(�B + �̃B, �H + �̃H, y)dx dy dt =
∫ ∫
ΩT

(T − t)ϕ0(�B, �H)dx dt. (7.15)

By Proposition A.6, there exist sequences {�vε} and {�zε} in L2(ΩT )3 such that

�Bε := �B + �vε −→
2

�B + �̃B
�Hε0 := �H + �zε −→

2
�H + �̃H

in L2(ΩT × Y)3. (7.16)

Moreover, by the second part of Proposition A.4, there exists a sequence { �Hε1} in L2(R3
T ; H1∗(Y)3)

such that,

�Hε := �Hε0 + �Hε1 −→
2

�H + �̃H
∇x × �Hε ∗ 1 −→

2
∇x × �̂H ∗ 1 + ∇y × �H� ∗ 1

in L2(ΩT × Y)3. (7.17)

Note that ( �̂Bε, �̂Hε) = (�B, �H) ∈ S for any ε. Moreover,∫ ∫
ΩT

(T − t)ϕε(�Bε, �Hε, x)dx dt

(A.11)→
∫ ∫ ∫
Ω ×Y

(T − t)ϕ(�B + �̃B, �H + �̃H, y)dx dy dt
(7.15)=

∫ ∫
Ω

ϕ0(�B, �H)dx dt, (7.18)
T T
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∫ ∫
ΩT

∣∣Aε(x)1/2 · ∇ × �Hε ∗ 1
∣∣2

dx dt

(A.11)→
∫ ∫ ∫
ΩT ×Y

∣∣A(y)1/2 · (∇x × �̂H + ∇y × �H�) ∗ 1
∣∣2

dx dy dt

(7.13)=
∫ ∫
ΩT

∣∣A1/2 · ∇x × �̂H ∗ 1
∣∣2

dx dt. (7.19)

We then conclude that Φε(�Bε, �Hε) → Φ0(�B, �H). The condition (7.9) is thus established, too. �
Remark. Instead of the functional Φε(�Bε, �Hε) we might have used Φ̄ε( �Hε), which (loosely speaking)
is retrieved from the former by inserting the partial differential equations into the functional itself.
The analysis would have been analogous.

Structural stability. Next we replace �α by a sequence of maximal monotone mappings {�αn(·, x)} as
in (3.13) and (3.14), that converges in a sense to be specified, and assume that we are given two
sequences {An} and {�Gn} as in (3.15)–(3.17) such that

�Gn ⇀ �G in L2(ΩT )3,

An → A in L∞(ΩT )3×3. (7.20)

(The latter convergence might be weakened.) We intend to study the asymptotic behavior of the
corresponding solutions of Problem 3.1. We might also let �B , �Ha , �g vary; this further extension would
be straightforward, but we omit it for the sake of simplicity.

For any n, we define the Fitzpatrick function ϕn : R3 × R3 × Ω → R ∪ {+∞} of �αn , see (2.1). We
then set

Ψn( �H) :=
∫ ∫
ΩT

{
(T − t)

[
ϕn

( �H, �Gn − ∇ × (
An(x) · ∇ × �Hn ∗ 1

)
, x

) − �Gn · �H]

+ 1

2

∣∣An(x)1/2 · ∇x × �H ∗ 1
∣∣2

}
dx dt (� 0), (7.21)

and denote by (�Bn, �Hn) a minimizer. By a statement analogous to Proposition 4.3, this is a solution
of the corresponding (coarse-scale) Problem 3.1n . We then assume that another convex and lower
semicontinuous function ϕ : R3 × R3 × Ω → R ∪ {+∞} fulfills (4.16), (4.17), and is such that

∀(�ξ, �ξ ′) ∈ (
L2(Ω)3)2

, ∃ sequence
{(�ξn, �ξ ′

n

)}
in

(
L2(Ω)3)2

such that
(�ξn, �ξ ′

n

)
⇀

(�ξ, �ξ ′) in
(
L2(Ω)3)2

, lim infn→∞
〈�ξ ′

n,
�ξn

〉
�

〈�ξ ′, �ξ 〉
, and

lim infn→∞
∫
Ω

ϕn
(�ξn, �ξ ′

n, x
)

dx �
∫
Ω

ϕ
(�ξ, �ξ ′, x

)
dx, (7.22)

∀(�ξ, �ξ ′) ∈ (
L2(Ω)3)2

, ∀ sequence
{(�ξn, �ξ ′

n

)}
in

(
L2(Ω)3)2

,

if
(�ξn, �ξ ′

n

)
⇀

(�ξ, �ξ ′) in
(
L2(Ω)3)2

and lim supn→∞
〈�ξ ′

n,
�ξn

〉
�

〈�ξ ′, �ξ 〉
,

then lim supn→∞
∫

ϕn
(�ξn, �ξ ′

n, x
)

dx �
∫

ϕ
(�ξ, �ξ ′, x

)
dx. (7.23)
Ω Ω
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By (7.22), the inequality (4.18) is preserved as n → ∞; thus ϕ is a measurable representative
function (of some monotone operator) in (L2(Ω)3)2. We may then define Ψ0 as in (7.21), just with ϕ
in place of ϕn .

The argument of Theorem 7.1 yields the next statement.

Proposition 7.2. If the hypotheses (7.22) and (7.23) are fulfilled, then Ψn weakly Γ -converges to Ψ0 in
(L2(ΩT )3)2 .

8. Relaxation dynamics

In this section we replace the equilibrium relation (3.10) by either of the following dynamics of
relaxation: {

b �Ht + �α( �H, x) � �B a.e. in ΩT ,

�H(·,0) = �H0 a.e. in Ω,
(8.1){

b�Bt + �B ∈ �α( �H, x) a.e. in ΩT ,

�B(·,0) = �B0 a.e. in Ω,
(8.2)

with �H0, �B0 prescribed, �α(·, x) a maximal monotone mapping for a.e. x, and b a positive constant.
We shall see that, under suitable assumptions, each of these systems defines a maximal monotone
operator between �B and �H in a space of time-dependent functions. The above variational approach to
homogenization might thus be extended to these relaxation dynamics.

First relaxation mode. Next we provide a rather weak formulation of (8.1), assuming that (3.13)–(3.17)
are fulfilled and that a field �H0 ∈ L2(Ω)3 is prescribed.

Problem 8.1. Find �B ∈ L2(0, T ; V ′) and �H ∈ L2(ΩT )3 such that

�H ∈ H1(0, T ; V ′), �H ∗ 1 ∈ L2(0, T ; V ), (8.3){ 〈�B − b �Ht − �w, �H − �v〉 � 0 a.e. in ]0, T [,
∀(�v, �w) ∈ (D(ΩT )3)2 such that �w ∈ �α(�v, ·) a.e. in ΩT ,

(8.4)

�H(·,0) = �H0 in V ′, (8.5)

T∫
0

〈�B − �G, �v〉dt +
∫ ∫
ΩT

A(x) · ∇ × �H ∗ 1 · ∇ × �v dx dt = 0 ∀�v ∈ L2(0, T ; V ). (8.6)

The variational inequality (8.4) and Eq. (8.6) are respectively equivalent to

b �Ht + �α( �H, x) � �B in V ′, for a.e. t ∈ ]0, T [, (8.7)

�B + ∇ × (
A(x) · ∇ × �H ∗ 1

) = �G in V ′, for a.e. t ∈ ]0, T [. (8.8)

By eliminating the field �B , we thus get the hyperbolic inclusion

b �Ht + ∇ × (
A(x) · ∇ × �H ∗ 1

) + �α( �H, x) � �G in V ′, for a.e. t ∈ ]0, T [; (8.9)

conversely this equation yields the system (8.7), (8.8). Next we shall assume that

�H(·,0) = �H0 = �0 a.e. in Ω. (8.10)
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This condition is not really restrictive: if it is not fulfilled, it may be retrieved by replacing �α(·, x)
and �G by �α(· + �H0(x), x) and �G − t∇ × (A(x) · ∇ × �H0), respectively.

Let us next define the linear operator

Λ�v := b�vt + ∇ × (
A(x) · ∇ × �v ∗ 1

) (∈ L2(0, T ; V ′)),
∀�v ∈ Y 0 := {�v ∈ H1(0, T ; V ′) ∩ H−1(0, T ; V ), �v(·,0) = �0}

, (8.11)

and its domain in L2(ΩT )3, namely, D(Λ) := {�v ∈ Y 0: Λ�v ∈ L2(ΩT )3}. Problem 8.1 may then equiva-
lently be reformulated as follows.

Problem 8.1′ . Find �H ∈ L2(ΩT )3 ∩ D(Λ) such that

Λ �H + �α( �H, x) = �G a.e. in ΩT . (8.12)

We claim that∫ ∫
ΩT

(T − t)Λ�v · �v dx dt = 1

2

∫ ∫
ΩT

(
b|�v|2 + ∣∣A(x)1/2 · ∇ × �v ∗ 1

∣∣2)
dx dt ∀�v ∈ D(Λ). (8.13)

This equality directly follows from a formal calculation, that may be made rigorous via a simple
approximation procedure, along the lines of Lemma 3.1.

Proposition 8.1. If (3.13)–(3.17), (4.1) and (4.2) are fulfilled, then there exists one and only one solution of
Problem 8.1. If moreover �G ∈ W 1,1(0, T ; V ′) and �G(·,0) ∈ L2(Ω)3 , then

�H ∈ W 1,∞(
0, T ; L2(Ω)3) ∩ L∞(0, T ; V ), �B ∈ W 1,∞(

0, T ; V ′). (8.14)

Outline of the proof. This result is easily established via a standard argument; we just sketch it,
since our main concern stays in the formulation of a variational principle. One may approximate
Problem 8.1 by an (implicit) time-discretization scheme, with discretization parameter m, along the
lines of Section 4. Multiplying both (8.7)m and (8.8)m

3 by �Hm , via a standard procedure one gets
uniform estimates for �Hm in L∞(0, T ; L2(Ω)3) and for �Hm ∗ 1 in L∞(0, T ; V ). Comparing the terms
of (8.8)m one then obtains a uniform estimate for �Bm in L2(0, T ; V ′). A comparison in (8.7)m in turn
yields a uniform estimate for �Hmt in L2(0, T ; V ′). Therefore there exist �B and �H such that, as m
diverges along a suitable sequence,

�Bm ⇀ �B in L2(0, T ; V ′), (8.15)

�Hm
∗
⇀ �H in L∞(

0, T ; L2(Ω)3) ∩ H1(0, T ; V ′), (8.16)

�Hm ∗ 1 ⇀ �H ∗ 1 in L∞(0, T ; V ). (8.17)

The limit procedure in the nonlinear relation is then performed along the lines of Section 4.
Uniform estimates corresponding to the further regularity (8.14) are easily established by taking

the time-increment of Eqs. (8.7)m and (8.8)m , multiplying them by the time-increment of �Hm , and
mimicking the above estimate procedure.

By (8.13), the operator Λ + �α is strictly monotone. By (8.9), �H is then uniquely determined;
by (8.4), �B is then also unique. �

3 By appending the index m we label the corresponding approximated equations and solutions.
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A minimization principle. Let us assume that (3.13)–(3.17), (4.1) and (4.2) are satisfied, and set

θ(�v) := Λ�v + �α(�v, ·) ∀�v ∈ D(θ) = D(Λ), (8.18)

so that (8.12) reads θ( �H) = �G . We shall use the Hilbert triple

D(θ) ⊂ L2(ΩT )3 = (
L2(ΩT )3)′ ⊂ D(θ)′ (8.19)

(with continuous and dense injections). Along the lines of (2.7)–(2.10), it is easily checked that the
operator θ : D(θ) → D(θ)′ is maximal monotone, although not cyclically monotone.

It is easily checked that, if ϕ : R3 × R3 × Ω → R ∪ {+∞} is a representative function of �α, then

f : D(θ) × L2(ΩT )3 → R ∪ {+∞}:(�ξ, �ξ ′) �→
∫ ∫
ΩT

(T − t)ϕ
(�ξ, �ξ ′ − Λ�ξ, x

)
dx dt + 1

2

∫ ∫
ΩT

(
b|�ξ |2 + ∣∣A(x)1/2 · ∇ × �ξ ∗ 1

∣∣2)
dx dt

(8.20)

is a representative function of θ , in the sense that

f is convex and lower semicontinuous, (8.21)

f
(�ξ, �ξ ′) �

∫ ∫
ΩT

(T − t)�ξ ′ · �ξ dt ∀(�ξ, �ξ ′) ∈ D(θ) × L2(ΩT )3, (8.22)

f
(�ξ, �ξ ′) =

∫ ∫
ΩT

(T − t)�ξ ′ · �ξ dt ⇔ �ξ ′ ∈ θ(�ξ). (8.23)

We may thus reformulate our problem as a minimization principle, for any �G ∈ L2(ΩT )3.

Problem 8.1′ . Find �H ∈ D(θ) that minimizes the functional

Ψ (�v) := f (�v, �G) −
∫ ∫
ΩT

(T − t)�G · �v dx dt, (8.24)

and this is equivalent to Ψ ( �H) = 0.

Under the above hypotheses, it is readily seen that this problem has one and only one solution.

Second relaxation mode. Next we discuss the mode (8.2), assuming that (3.13)–(3.17) are fulfilled and
that the fields �G ∈ H1(0, T ; V ′) and �B0 ∈ L2(Ω)3 are prescribed. We thus deal with a system of the
form

b�Bt + �B ∈ �α( �H, x) in ΩT , (8.25)

�Bt + ∇ × (
A(x) · ∇ × �H) = �Gt in ΩT , (8.26)

�B(·,0) = �B0 in Ω. (8.27)
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Here we shall not dwell on the weak formulation, which might be discussed along the lines of the
previous example, and rather go directly to the formulation of a minimization principle. By eliminat-
ing the field �B from (8.25) and (8.26), we get the integro-differential inclusion

∇ × [
A(x) · ∇ × (b �H + �H ∗ 1)

] + �α( �H, x) � �G + b �Gt, (8.28)

that we may assume to hold in V ′ , for a.e. t ∈ ]0, T [. Let us next define the maximal monotone linear
operator

�μ : L2(0, T ; V ) → L2(0, T ; V ′) : �v �→ ∇ × [
A(x) · ∇ × (b�v + �v ∗ 1)

]
, (8.29)

so that (8.28) also reads

�γ ( �H) := �μ( �H) + �α( �H, x) � �G + b �Gt in V ′, for a.e. t ∈ ]0, T [, (8.30)

with �γ maximal monotone. If ϕ : R3 × R3 × Ω → R ∪ {+∞} is a representative function of �α, then

g : D(θ) × L2(ΩT )3 → R ∪ {+∞}:(�ξ, �ξ ′) �→
∫ ∫
ΩT

(T − t)
[
ϕ

(�ξ, �ξ ′ − �μ(�ξ), x
) + �μ(�ξ) · �ξ]

dx dt

=
∫ ∫
ΩT

{
(T − t)ϕ

(�ξ, �ξ ′ − �μ(�ξ), x
)

+ b

2
(T − t)

∣∣A(x)1/2 · ∇ × �ξ ∣∣2 + 1

2

∣∣A(x)1/2 · ∇ × �ξ ∗ 1
∣∣2

}
dx dt (8.31)

is a representative function of �γ , in a sense analogous to (8.21)–(8.23). We may thus reformulate the
system (8.25)–(8.27) as a minimization principle.

Proposition 8.2. Find �H ∈ L2(ΩT )3 ∩ D(μ) such that

Ψ1(�v) := g(�v, �G) −
∫ ∫
ΩT

(T − t)(�G + b �Gt) · �v dx dt, (8.32)

and this is equivalent to Ψ1( �H) = 0.

Further relaxation modes. One may consider two further relaxation dynamics:

b�Bt + �α−1(�B, x) � �H in ΩT , (8.33)

b �Ht + �H � �α−1(�B, x) in ΩT . (8.34)

Existence of a weak solution may be proved for either of these inclusions coupled with the Maxwell
equation (8.8). On the other hand, here the formulation of a corresponding minimization principle
seems less natural.

By inserting the displacement current �Dt into the Ampère law (3.1), an even richer landscape of
models would be obtained.
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Appendix A. Two-scale convergence

In this section we review some basic properties of two-scale convergence, after [1,24,25,41,48,61].
Let us denote by Y the set [0,1[3 equipped with the metric and the differential structure of the

3-dimensional unit torus; we may thus identify any [0,1[3-periodic function on R3 with a function
on Y . Let us denote by ε a parameter that we assume to vanish along a fixed sequence. For any
bounded sequence {uε} of L2(R3), and any u ∈ L2(R3 × Y), we say that uε weakly two-scale converges
to u in L2(R3 × Y), and write uε ⇀

2
u, if

∫
R3

uε(x)θ(x, x/ε)dx →
∫ ∫

R3×Y

u(x, y)θ(x, y)dx dy ∀θ ∈ D
(
R3 × Y

)
. (A.1)

We shall denote the standard (single-scale) weak (strong, resp.) convergence by ⇀ (→, resp.).
We say that uε strongly two-scale converges to u in L2(R3 × Y), and write uε −→

2
u, whenever (A.1)

holds and ‖uε‖L2(R3) → ‖u‖L2(R3×Y ) . These definitions are trivially generalized to vector-valued, and
also to time-dependent functions, time being here regarded just as a parameter. These constructions
and the next two statements take over to functions that are just defined on a subdomain of R3, by
extending them with vanishing value outside that domain.

Proposition A.1. (See [1,48].) For any bounded sequence {uε} of L2(R3), there exists u ∈ L2(R3 × Y) such
that, possibly extracting a subsequence,

uε ⇀
2

u in L2(R3 × Y
)
. (A.2)

Proposition A.2. (See [1].) If uε ⇀
2

u in L2(R3 × Y), then

uε ⇀ û :=
∫

Y

u(·, y)dy in L2(R3), (A.3)

lim infε→0‖uε‖L2(R3) � ‖u‖L2(R3×Y) � ‖̂u‖L2(R3). (A.4)

If uε → û in L2(R3) then û = u, that is, u does not depend on y.

Dealing with functions of (x, y), we denote the gradient operator with respect to x (y, resp.) by ∇x

(∇y , resp.). We also set L2
rot(R3)3 := {�v ∈ L2(R3)3: ∇ × �v ∈ L2(R3)3}, which is a Hilbert space equipped

with the graph norm. For any v ∈ L1
loc(R3 × Y) we define the average and fluctuating components,

v̂(x) :=
∫

Y

v(x, y)dy, ṽ(x, y) := v(x, y) − v̂(x) for a.e. (x, y) ∈ R3 × Y. (A.5)

We shall use the index ∗ to label any subspace of functions of y ∈ Y that have vanishing average. For
instance, H1∗(Y) is a Banach space equipped with the norm ‖v‖H1(Y ) := ‖∇v‖L2(Y )3 .
∗
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Proposition A.3. (See [1,25,48].) If uε ⇀ u in H1(R3), then there exists u1 ∈ L2(R3; H1∗(Y)) such that, as
ε → 0 along a suitable subsequence,

∇uε ⇀
2

∇xu + ∇yu1 in L2(R3 × Y
)3

. (A.6)

Proposition A.4. (See [61].) Let {�uε} be a bounded sequence of L2
rot(R3)3 such that �uε ⇀

2
�u in L2(R3 × Y)3 .

Then �̂u ∈ L2
rot(R3)3 and ∇y × �u = �0 in D′(R3 × Y)3 . Moreover there exists �u1 ∈ L2(R3; H1∗(Y)3) such that

∇y · �u1 = 0 a.e. in R3 × Y , and, as ε → 0 along a suitable subsequence,

∇ × �uε ⇀
2

∇x × �̂u + ∇y × �u1 in L2(R3 × Y
)3

. (A.7)

Conversely, for any �u ∈ L2(R3 × Y)3 such that �̂u ∈ L2
rot(R3)3 and ∇y × �u = 0 in D′(R3 × Y)3 , and for any

�u1 ∈ L2(R3; H1∗(Y)3), there exists a sequence {�uε} of H1(R3)3 such that

�uε → �u in L2(R3)3
, ∇ × �uε −→

2
∇ × û + ∇y × �u1 in L2(R3 × Y

)3
. (A.8)

The two latter results are easily extended to functions defined on any Lipschitz subdomain of R3.

Proposition A.5. (See [63].) If

ψ : R3 × Y → R is measurable w.r.t. B
(
R3) ⊗ L(Y), (A.9)

∃c > 0, ∃ f ∈ L1(Y): ∀ξ ∈ R3, for a.e. (x, y), ψ(ξ, x, y) � c|ξ |2 − f (y), (A.10)

then

uε −→
2

u in L2(Ω × Y)3 ⇒

lim
ε→0

∫
Ω

ψ
(
uε(x), x, x/ε

)
dx =

∫ ∫
Ω×Y

ψ
(
u(x, y), x, y

)
dx dy, (A.11)

uε ⇀
2

u in L2(Ω × Y)3 ⇒

lim
ε→0

∫
Ω

ψ
(
uε(x), x, x/ε

)
dx �

∫ ∫
Ω×Y

ψ
(
u(x, y), x, y

)
dx dy. (A.12)

Proposition A.6. (See [61].)

(i) For any u ∈ L2(R3; H1∗(Y)) there exists a sequence {uε} of H1(R3) such that

uε → 0 in L2(R3), ε∇uε −→
2

∇yu in L2(R3 × Y
)3

. (A.13)

(ii) For any w ∈ L2(R3; H1∗(Y)3), there exists a sequence {wε} of H1(R3)3 such that

wε → 0 in L2(R3)3
, ε∇ × wε −→

2
∇y × w in L2(R3 × Y

)3
. (A.14)
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