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Abstract

This article studies propagating traveling waves in a class of reaction–diffusion systems which include 
a model of microbial growth and competition in a flow reactor proposed by Smith and Zhao [17], and 
isothermal autocatalytic systems in chemical reaction of order m with a decay order n, where m and n
are positive integers and m �= n. A typical system in autocatalysis is A + 2B → 3B (with rate k1ab2) and 
B → C (with rate k2b), where m = 2 and n = 1, involving two chemical species, a reactant A and an 
auto-catalyst B whose diffusion coefficients, DA and DB , are unequal due to different molecular weights 
and/or sizes. Here a is the concentration density of A, b that of B and C an inert chemical species. The two 
constants k1 and k2 are material constants measuring the relative strength of respective reactions.

It is shown that there exist traveling waves when m > 1 and n = 1 with suitable relation between the 
ratio DB/DA, traveling speed c and rate constants k1, k2. On the other hand, it is proved that there exists 
no traveling wave when one of the chemical species is immobile, DB = 0 or n > m for all choices of other 
parameters.
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1. Introduction

In this paper we study reaction–diffusion systems of the form

(I)

{
ut = DAuxx − f (u, v),

vt = DBvxx + f (u, v) − g(v),
(1.1)

where f is a C1 function defined on [0, ∞) × [0, ∞), g a C1 function defined on [0, ∞) with 
properties

f (u,0) = f (0, v) = 0, and f (u, v) > 0 on (0,∞) × (0,∞),

g(0) = 0 and g(v) > 0 on (0,∞),

where DA, DB are positive constants representing the diffusion coefficients of two different 
species. The particular feature we are interested in is the existence and non-existence of traveling 
waves. Without loss of generality, we shall assume in what follows that DA = 1 and use d in 
place of DB , since the general case can be transformed to this one by a simple non-dimensional 
scaling.

Many interesting phenomena in population dynamics, bio-reactors and chemical reactions 
can be modeled by a system of the form as in (1.1). For example, a system modeling microbial 
growth and competition in a flow reactor was first studied in [1] and [17], where a special case 
is f (u, v) = F(u)v, g(v) = Kv, K a positive constant, and F(0) = 0 and F ′(0) > 0. In that 
context, u is the density of nutrient and v that of microbial population. g(v) is the death rate of 
microbial. Subsequent works with emphasis on traveling waves appeared later in [18] and more 
recently in [10]. Furthermore, when F(u) = u, it is reduced to a classical diffusive epidemic 
model of Kermack and Mckendric [11].

Another interesting case arises from isothermal autocatalytic chemical reaction between two 
chemical spices A and B taking the form:

A + mB −→ (m + 1)B with rate r[A][B]m,

where m is an integer and r > 0 is a rate constant. In that situation, f (u, v) = uvm with u the 
concentration density of A and v that of B . If there is no decay, then g(v) = 0. The resulting 
system is

{
ut = uxx − uvm,

vt = dvxx + uvm,
(1.2)

after a simple non-dimensional transformation. The global dynamics of the Cauchy problem 
as well as existence of traveling wave, sharp estimate of minimum speed and stability were 
investigated in [3,4,12,13,15] for m > 1 case.

Furthermore, it was demonstrated in [2] by asymptotic analysis and numerical computation, 
and rigorously proved for m = 1 in [5] that any small amount of B introduced locally with uni-
form initial distribution of A can generate traveling wave. The feature seems to be contradictory 
to the fact that in the relevant experimental result of chemical reactions, the initiation of traveling 
wave calls for sufficient amount of B to be added [20]. To overcome this lacking of threshold 
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phenomenon, Gray [6] made the observation that the auto-catalyst B cannot be stable indefi-
nitely and should be used to produce other chemicals. In particular, it was suggested in [14] that 
B decays to an inert product C at a rate of order n,

B −→ C with rate kvn.

The resulting PDE system is

(II)

{
ut = uxx − uvm

vt = dvxx + uvm − kvn,
(1.3)

where m, n ≥ 1 and k > 0 is a rate constant, after a simple scaling. It is also being suggested in 
[11] as simple model for the spread of infectious diseases. We assume throughout that m �= n.

This is the system of our main interest in this paper. Furthermore, in the context of microbial 
growth and competition in a flow reactor model, we have f (u, v) = F(u)vm, g(v) = kvn. In 
addition to the fact that (II) is important in many applications, it is mathematically rather chal-
lenging. The system has very different property than related systems which have been studied in 
the literature. In particular, unlike the system (1.2), where a traveling wave means both u and v
are fronts, the traveling wave for (1.3) has u being a front, but v being a pulse, which increases 
the difficulty in analysis. We make it clear in what follows.

Traveling wave: (u(x, t), v(x, t)) is called a traveling wave solution to (1.3) if u(x, t) =
a(z), v(x, t) = b(z), with z = x − ct and the positive functions (a, b) ∈ C2(R) satisfy

(TW)

⎧⎪⎨
⎪⎩

a′′(z) + ca′(z) − a(z)bm(z) = 0, −∞ < z < ∞,

db′′(z) + cb′(z) + a(z)bm(z) − kbn(z) = 0, −∞ < z < ∞,

lim
z→−∞(a, b) = (a0,0), lim

z→∞(a, b) = (a1,0),

(1.4)

where a0 < a1 are two positive numbers and the positive constant c is the wave speed.
The case of m = n with m = 1 in (1.4) is a representative case of the system being studied in 

[1,17,18] and later in [10]. Other related results appeared in [8,9]. Whereas m = n with m > 1
case has been studied in [7] and [19]. The existence of traveling wave is proved for various cases 
in those works.

But, the arguments in above works cannot be carried out to cover the more general case of 
m �= n. In particular, it is fairly easy to prove, as was done by many authors that the graph of v is 
bell-shaped when m = n, but we are unable to verify it for our case of m �= n in general.

We also note that related works on steady-states solution are obtained for the system (1.2) in 
[16] and for the system (1.3) in [21].

Our main result is as follows.

Theorem 1.

(1) Suppose m > 1 = n and d > 1. There exists a traveling wave solution to (II) if (d −1)c2 = k, 
d2 > (8m −1)(d −1)2 +6(d −1)d provided either m ≥ 2, (m −2)(d −1) < 1 or 1 < m < 2
and 2 − m 	 1.

(2) There exists no traveling wave solution to (II) if either 1 ≤ m < n or m > n and d = 0.
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(3) Fix a1 > a0 > 0, there exists no traveling wave solution to (II) when m > 1 = n and d > 0 if

c ≤ k(m+1)/2(m−1)d1/2

a
1/(m−1)

1 (a1 − a0)
.

The organization of the paper is as follows. In Section 2 we derive some preliminary results 
which shows the non-existence part of Theorem 1. In addition, they serve as the basis of more 
important results to be proved in subsequent sections. In Section 3, we treat the case of m > n

and n = 1, with d = 0 to show interesting behavior of the solutions. In Section 4, we prove the 
existence of traveling waves.

2. Preliminary results

In this section we discuss some basic facts about the system (1.4). In particular, we shall derive 
some simple properties of traveling wave solutions.

Proposition 1. Suppose (a, b) is a positive solution of (1.4) on (−∞, X) with X either a fixed 
number or ∞. Then, for z ≤ X,

(i) the following identities hold:

a′(z) + c
(
a(z) − a0

) =
z∫

−∞
bm(s)a(s) ds,

db′(z) + cb(z) =
z∫

−∞

(
kbn(s) − bm(s)a(s)

)
ds. (2.5)

Consequently, a′ > 0 on (−∞, X). In particular, if X = ∞, and (a, b) is a traveling wave 
solution, then

c(a1 − a0) =
∞∫

−∞
kbn(s) ds =

∞∫
−∞

bm(s)a(s) ds. (2.6)

Therefore, both integrals in (2.6) are finite when (a, b) is a traveling wave solution of (1.4).
(ii) Let (a, b) be a traveling wave solution. If b achieves a local maxima at z1, with value bmax, 

then

bmax < a1 − a(z1) < a1 − a0,

and

a(z1)
(
a1 − a(z1)

)m−n
> k

(iii) ecz/d(a(z) + b(z) − a0) is an increasing function if d ≥ 1.
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Proof. The two identities in (2.5) are a direct consequence of integrating the first and second 
equations in (1.4) on (−∞, z), respectively. The addition of the two identities in (2.5) gives

a′(z) + db′(z) + c
(
a(z) + b(z) − a0

) = k

z∫
−∞

bn(s) ds (2.7)

and let z → ∞, we derive (2.6) by using the boundary conditions at z = ±∞.
For (ii), from the equation

db′(z) + cb(z) =
z∫

−∞

(
kbn(s) − bm(s)a(s)

)
ds,

we have

cbmax < c(a1 − a0) − c
(
a(z1) − a0

) = c
(
a1 − a(z1)

)
by using (2.5) and (2.6). The other inequality follows from the equation and the above estimate 
of bmax.

The proof of (iii) is based on writing (2.7) as

d
{
ecz/d

(
a(z) + b(z) − a0

)}′ = (d − 1)a′(z)ecz/d + kecz/d

z∫
−∞

bn(s) ds.

An integration yields

d(a + b − a0) = (d − 1)

z∫
−∞

a′(s)ec(s−z)/d ds + d

c
k

z∫
−∞

bn(s)
(
1 − ec(s−z)/d

)
ds.

This completes the proof of the proposition. �
A direct corollary of the above is the following two non-existence results.

Corollary 1. There exist no traveling wave solution if either (i) m < n or (ii) m > n and d = 0.

Proof. It follows directly from the fact that, for a traveling wave solution, kbn dominates abm at 
−∞ for case (i), and at ∞ in case of (ii). �
Remark. It is of interest to know what exactly happens when d = 0, which will be done in next 
section, especially in comparison to the case of autocatalysis without decay. Our analysis reveals 
some interesting phenomena. From now on, we shall assume m > n. Simple integration shows
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a(z) − a0 = 1

c

z∫
−∞

(
1 − e−c(z−s)

)
a(s)bm(s) ds,

b(z) = 1

c

z∫
−∞

(
1 − e−c(z−s)/d

)(
kbn(s) − a(s)bm(s)

)
ds.

Consequently, any non-trivial non-negative solution (a(z), b(z)) coming out of z = −∞ will be 
positive and increasing until a(z)bm(z) > kbn(z).

In the following, we shall look at the special case of n = 1 more closely. Most results in what 
follows will be on this case unless otherwise stated. The system (1.4) now takes the form

(TW1)

⎧⎪⎨
⎪⎩

a′′(z) + ca′(z) − a(z)bm(z) = 0, −∞ < z < ∞,

db′′(z) + cb′(z) + a(z)bm(z) − kb(z) = 0, −∞ < z < ∞,

lim
z→−∞(a, b) = (a0,0), lim

z→∞(a, b) = (a1,0).

(2.8)

Let

λ0 = c + √
c2 + 4dk

2d
,

which is the positive root of quadratic equation dλ2 − cλ − k = 0. Easy computation shows

z∫
−∞

eλ0sb′′(s) ds = eλ0z
(
b′(z) − λ0b(z)

) + λ2
0

z∫
−∞

eλ0sb(s) ds,

z∫
−∞

eλ0sb′(s) ds = eλ0zb(z) − λ0

z∫
−∞

eλ0sb(s) ds.

Hence,

z∫
−∞

eλ0s
[
db′′(s) + cb′(s) − kb(s)

]
ds = eλ0z

(
db′(z) − dλ0b(z) + cb(z)

)

= −
z∫

−∞
eλ0sa(s)bm(s) ds.

This implies

db′(z) + (c − dλ0)b(z) < 0 on (−∞,X),
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if b > 0 on the same interval. An integration then shows

dλ0 − c

d

z∫
−∞

b(s) ds > b(z).

If (a, b) are traveling waves solution, then since

dλ0 − c

d
< min

(√
k

d
,
k

c

)
,

√
k

d

∞∫
−∞

b(s) ds > bmax and k

∞∫
−∞

b(s) ds = c(a1 − a0),

we get

√
kd

c
bmax < (a1 − a0).

This, in combination with a1b
m−1
max > k gives

c >
k(m+1)/2(m−1)d1/2

a
1/(m−1)

1 (a1 − a0)
.

This is a low bound of speed c.

Proposition 2. Suppose (a, b) is a traveling waves solution of (2.8), then the following statements 
hold.

(1) b′ + λ0b > 0 on (−∞, ∞).
(2) db′ − lb < 0 on (−∞, ∞), where l = (

√
c2 + 4kd − c)/2.

(3) Furthermore, if 0 < d ≤ 1, or d > 1 and k + (1 −d)cλ0 ≥ 0, then a′ +db′ > 0 on (−∞, ∞).
(4) The linearized system at (a0, 0) when z → −∞ has a unique solution satisfying, with λ3 =

l/d ,

(
a(z) − a0

)
e−λ3z → 0, b(z)e−λ3z → 1.

Proof. It is easy to check that

d
(
b′ + λ0b

)′ = (dλ0 − c)
(
b′ + λ0b

) − abm.

If there exists z0 such that db′ + λ0b(z0) = 0, then db′ + λ0b < 0 and (db′ + λ0b)′ < 0 on 
(z0, ∞), which implies b must reach zero at a finite z. We reach a contradiction. Thus, the first 
statement holds true.

The second statement was already proved above. For the third, if 0 < d ≤ 1, a′ + db′ solves

(
a′ + db′)′ = − c

d

(
a′ + db′) + c(1 − d)

d
a′ + kb,

a simple integration then yields the desired result using the fact that a′ + db′ > 0 when z 	 −1. 
But, if d > 1 and k + (1 − d)cλ0 ≥ 0,
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(
a′ + db′)′ = − c

d

(
a′ + db′) + c(1 − d)

d
a′ + kb

= − c

d

(
a′ + db′) + c(1 − d)

d

(
a′ + db′) + (

k + (1 − d)cλ0
)
b + c(d − 1)

(
b′ + λ0b

)
≥ c

d

(
a′ + db′) + c(1 − d)

d

(
a′ + db′),

using the result of the first statement. Again, this shows a′ + db′ > 0 on (−∞, ∞). Finally, let 
ā = a′, b̄ = b′, an equivalent dynamical system to (1.4) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a′ = ā,

ā′ = −cā + abm,

b′ = b̄,

b̄′ = − c

d
b̄ − 1

d
abm + k

d
b.

It is easy to verify that the linearized system at (a0, 0, 0, 0) with α ∼ a − a0, ζ ∼ ā, β ∼ b, η ∼ b̄

is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α′ = ζ,

ζ ′ = −cζ,

β ′ = η,

η′ = − c

d
β ′ + k

d
β.

Computation shows that the four eigenvalues of the matrix A associated with the above system 
and corresponding eigenvectors are

λ1 = 0, e1 = [1,0,0,0]T ; λ2 = −c, e2 = [1,−c,0,0]T ;

λ3 = −c + √
c2 + 4kd

2d
, e3 = [0,0,1, λ3]T ;

λ4 = −c − √
c2 + 4kd

2d
, e4 = [0,0,1, λ4]T .

Therefore, the last statement is true. �
Remark. An interesting fact which follows directly from the proposition is that any positive 
solution (a, b) of (2.8) coming out of x = −∞ must go along the direction of e3 with asymptotic 
behavior of

a(z) − a0 = o
(
eλ3z

)
, b(z) = O

(
eλ3z

)
.

This is because the unique solution along the direction of e1 must be (a(z), b(z)) ≡ (a0, 0), ∀z. 
Therefore, there is a unique positive solution (a, b) of (2.8) which exists on (−∞, Z) for any 
given (a0, c, k), where Z is either finite or ∞. We shall give a complete answer to the case of 
d = 0 in next section, and also derive the asymptotic behavior of (a(z), b(z)) as z → ∞.
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3. The case of d = 0

We study in more details the case of d = 0 in this section. This is because it is the only case 
we know that b is bell-shaped and also because (a, b) is always positive solution on (−∞, ∞)

with interesting asymptotic behavior at z = ∞. In particular, it has very different behavior from 
the case of m = n, or with the autocatalytic reaction system without decay. For simplicity, we 
shall treat only the case of n = 1.

The main result of this section is stated as follows.

Theorem 2. Suppose d = 0. Then, any positive solution (a, b) of (2.8) which exists on some 
interval (−∞, Z) is positive on (−∞, ∞). Furthermore, b(z) is bell-shaped which tends to 
zero as z → ∞, and a(z) is strictly increasing and tends to ∞ as z → ∞. Moreover, the exact 
asymptotic behavior of (a, b) is given by:

a(z)z−(m−1)/m → A0, b(z)z1/m → B0, as z → ∞,

where

B0 =
(

c(m − 1)

m

)1/m

, A0 = kB
−(m−1)
0 .

Remark. The detailed study of asymptotic behavior of (a, b) for d = 0 case proves to be im-
portant for the study of other cases. First, the asymptotic behavior is universal no matter what 
the value of d is, under the conditions that (a, b) are positive on (−∞, ∞) and a(z) → ∞ as 
z → ∞. Second, it plays an important role in establishing the existence of traveling wave in next 
section.

We shall prove the theorem through a series of lemmas.

Lemma 1. Suppose d = 0. Then, any positive solution (a, b) of (2.8) which exists on some in-
terval (−∞, Z), is positive on (−∞, ∞). Moreover, b has the property that b increases up to 
a point z0 at which kb(z) = a(z)bm(z) and then it decreases for z > z0 to zero as z → ∞. 
Moreover, a(z) → ∞ as z → ∞ and both 

∫ ∞
−∞ bm(s)a(s) ds and 

∫ ∞
−∞ b(s) ds are divergent.

Proof. It is clear that b′ > 0 as long as kb(z) > a(z)bm(z). If kb(z) > a(z)bm(z) holds for all z, 
then a(z) → ∞ as z → ∞ and kb(z) > a(z)bm(z) must be violated. Therefore, there will be a 
point where kb(z) = a(z)bm(z). At such a point, b′(z) = 0 but b′′(z) < 0, and b starts to decrease 
immediately and b′ can never change sign again. This rules out the possibility that b(z) = 0 at 
some finite point, since right before that b′ must turn positive. Hence, b(z) ↘ to a finite value L
as z → ∞. If L > 0, then again, a(z) → ∞ as z → ∞, which in turn yields b′(z) < −L for all 
z � 1, a contradiction. Thus, b(z) ↘ 0 as z → ∞. Consequently, a(z) → ∞ as z → ∞, because 
a finite limit would yield b′(z) > 0 for all z � 1.

If one integral is finite, then the other must be finite from the equation. But, that would imply 
a(z) ↗ to a finite limit as z → ∞. We reach a contradiction. This completes the proof of the 
lemma. �
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Lemma 2. Suppose d = 0. Then, any positive solution (a, b) of (2.8) has the property that

a′(z)
a(z)

→ 0 as z → ∞.

Furthermore,

a(z)bm−1(z) → k as z → ∞.

Proof. Let f (z) = a′(z)/a(z). Then,

f ′(z) = a′′(z)a(z) − (a′(z))2

a2(z)
= −ca(z)a′(z) + a2(z)bm(z)

a2(z)
− f 2(z)

= −cf (z) − f 2(z) + bm(z).

It is clear that f (z) → 0 as z → ∞ since a(z) → ∞ and b(z) → 0 as z → ∞.
Let g(z) = Lb(z) − a(z)bm(z), with L > k a constant.

g′ = Lb′ − a′bm − mabm−1b′ = 1

c

(
L − mabm−1)(kb − abm

) − a′bm.

At the point where g = 0, abm−1 = L,

g′ = 1 − m

c
abm(k − L) − a′bm = bm

(
m − 1

c
a(L − k) − a′

)
> 0

if z � 1. Therefore, either g(z) > 0, ∀z � 1 or g(z) < 0, ∀z � 1. If g(z) < 0, ∀z � 1, then

cb′ = kb − abm < −(L − k)b

and an integration would yield b(z) decay exponentially as z → ∞, which contradicts the fact 
that 

∫ ∞
b(s) ds = ∞. Hence, g(z) > 0, ∀z � 1. Similarly, if L < k, Lb(z) − a(z)bm(z) < 0, 

∀z � 1. This shows a(z)bm−1(z) → k as z → ∞. �
Lemma 3. Suppose d = 0 and (a, b) is a positive solution of (2.8). Then, there exist positive 
constants M1, M2 > 0 such that

M1
(
1 + |z|)(m−1)/m

< a(z) < M2
(
1 + |z|)(m−1)/m

on (−∞,∞).

Consequently,

c1
(
1 + |z|)−1/m

< b(z) < c2
(
1 + |z|)−1/m

on (−∞,∞)

for some positive constants c1, c2.
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Proof. An integration of the first equation in (2.8) on (z0, z) shows

a′ + ca |zz0
=

z∫
z0

a(s)bm(s) ds >

z∫
z0

3k

4
b(s) ds >

3k

4
b(z)(z − z0),

by Lemma 2, if z0 is sufficiently large. Using the fact that a′/a → 0 as z → ∞, there holds

ca(z) >
3

5
kzb(z) >

1

2
km/(m−1)za−1/(m−1), ∀z � 1,

which is the same as a(z) > M1(1 + |z|)(m−1)/m on (−∞, ∞) for some positive constant M1. 
On the other hand, define h(z) = a′(z) − Lcb(z), L > 0 a constant.

h′(z) = a′′(z) − Lcb′(z) = −ca′(z) + a(z)bm(z) − Lkb(z) + La(z)bm(z)

= −c
(
a′(z) − Lcb(z)

) − Lc2b(z) − Lkb(z) + (1 + L)a(z)bm(z).

Since a(z)bm−1(z) → k as z → ∞, it follows that

h′(z) = −ch(z) + (
k − Lc2)b(z) + h.o.t.

If L > k/c2, an integration of the above equation on (z0, z) yields

h(z)ecz − h(z0)e
cz0 <

1

2

(
k − Lc2) z∫

z0

ecsb(s) ds

if z0 is sufficiently large. Then, a′(z1) − Lcb(z1) < 0 at some z1 � 1, and hence h(z) < 0 for all 
z > z1. This is because at any point z > z1 with h(z) = 0 we must have h′(z) < 0, a contradiction. 
Thus,

a′(z) < Lcb(z) < Lc(k + 1)a−1/(m−1)(z).

An integration then implies

a(z) < M(1 + z)(m−1)/m ∀z � 1,

where M > 0 is a constant. This proves the bounds of a(z). The bounds of b(z) are easy conse-
quences of a(z)bm−1(z) → k as z → ∞, and those of a. �
Lemma 4. Let d = 0. The asymptotic behavior of a(z) and b(z) as z → ∞ is given as follows:

a(z)z−(m−1)/m → A0, b(z)z1/m → B0, as z → ∞,
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where

B0 =
(

c(m − 1)

m

)1/m

, A0 = kB
−(m−1)
0 .

Proof. It was shown in Lemma 3 that

a′(z) − Lcb(z) > 0, if Lc2 > k, ∀z � 1.

Similarly,

a′(z) − Lcb(z) < 0, if Lc2 < k, ∀z � 1.

Hence,

a′(z)
b(z)

→ k

c
as z → ∞.

We use this fact to prove (abm)′(z) < 0 ∀z � 1. Let f (z) = a(z)bm(z).

f ′(z) = a′(z)bm(z) + ma(z)bm−1(z)b′(z),

f ′′ = a′′bm + 2mbm−1a′b′ + m(m − 1)abm−2(b′)2 + mabm−1b′′

f ′′ + cf ′ = bmf + mbm−1b′(2a′ + ca
) + m(m − 1)abm−2(b′)2 + m

c
abm−1(kb′ − f ′).

Thus,

f ′′ +
(

c + m

c
abm−1

)
f ′ = bmf + mbm−1b′

(
2a′ +

(
c + k

c

)
a

)
+ m(m − 1)abm−2(b′)2

.

If f ′(z1) = 0, then a′b = −mab′ at the point, and

f ′′ = bm

(
abm −

(
c + k

c

)
a′

)
+ mbm−2b′

(
2a′b − m − 1

m
a′b

)
.

Since

a(z)bm(z) ∼ kb(z), a′(z) ∼ k

c
b(z), ∀z � 1,

at z = z1,

a(z)bm(z) −
(

c + k

c

)
a′(z) ∼ kb(z) − kb(z) −

(
k

c

)2

b(z) < 0

if z1 is sufficiently large. Consequently, f ′′(z1) < 0. Thus, (abm)′(z) < 0 and it follows that 
a′′(z) < 0, ∀z � 1, because (abm)(z) → 0 as z → ∞.
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We can now derive the exact asymptotic behavior of a(z) and b(z) as z → ∞. Since

ca′(z) ∼ kb(z), a(z)bm−1(z) ∼ k as z → ∞,

ca′(z) ∼ k

(
k

a(z)

)1/(m−1)

, that is ca′(z)a1/(m−1)(z) = km/(m−1) + o(1).

An integration on [1, z] then yields

c(m − 1)

m
am/(m−1)(z) = km/(m−1)z + o(z).

This, and a(z)bm−1(z) → k as z → ∞, yields the result of lemma. �
Remark. It can be shown using the above argument that a(z)bl(z) is strictly increasing (decreas-
ing) if 0 < l < m − 1 (l > m − 1) for all z � 1.

Proof of Theorem 2. It follows directly from the above lemmas. �
4. Existence of traveling wave

In this section, we show the existence of traveling wave solutions for a particular combination 
of c, d and k.

Let d > 1, l = (
√

c2 + 4kd − c)/2. It is easy to verify that

db′′ + cb′ − kb = db′′ − lb′ + λ0
(
db′ − lb

)
.

If

(d − 1)c2 = k, (4.9)

then λ0 = c. This is the case we shall focus our attention on in this section. That is, we assume

d > 1, (d − 1)c2 = k

throughout this section. The main result in this section is the following existence result.

Theorem 3. Suppose m > 1, d > 1 but close to 1 is the sense that (8m −1)(d −1)2 +6(d −1)d <

d2 and (4.9) is satisfied. Then, there exists a positive solution (a, b) of (2.8) with the property that 
b(z) → 0 as z → ∞ for any a0 suitably large. Furthermore, they are traveling wave solutions 
provided m ≥ 2 and (m − 2)(d − 1) < 1.

Remark. The only requirement for a0 is in Lemma 6 below and it is met if

a0 >

(
d

m − 1

)(m−1)/m(
(mσ + c)dσ

)1/m
,

where σ = l/d .
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It is easy to check that under (4.9), the identity

a′′ + ca′ + db′′ + cb′ − kb = 0

can be written as

(
ecza′(z) + (

db′(z) − lb(z)
)
ecz

)′ = 0.

An integration then gives

a′(z) + db′(z) − lb(z) = 0. (4.10)

We now do a change of variables, taking advantage of the monotonicity of a and the 1st order 
equation (4.10) to replace the second equation in (2.8) to arrive at a 2nd order non-autonomous 
system.

Let a = a(z) be the independent variable, P(a) = a′(z), Q(a) = b(z), then an equivalent 
system to (2.8), using its 1st equation and (4.10) is

(III)

⎧⎨
⎩

PP ′ + cP = aQm, for a > a0,

PQ′ = σQ − 1
d
P, for a > a0,

P (a0) = Q(a0) = 0,

where σ = l/d . It is easy to prove there exist positive solutions (P, Q) with the property P(a0) =
Q(a0) = 0 on a ∈ (a0, a0 + δ] with δ > 0 small. Furthermore, computation shows, when 0 <
a − a0 	 1,

P(a) = η1(a − a0) + η2(a − a0)
α + h.o.t., Q(a) = ξ1(a − a0)

1/m + ξ2(a − a0) + h.o.t.

with

α = 2m − 1

m
, η1 = mσ, ξ1 =

(
mσ(c + mσ)

a0

)1/m

,

ξ2 = − mσ(c + (1 + α)mσ)

d(mσ(c + mσ) + (m − 1)σ (c + (1 + α)mσ))
, η2 = m

ξ2

ξ1

mσ(c + mσ)

c + (1 + α)mσ
.

In addition, P is positive before Q reaches zero.

Lemma 5. Let 0 < δ < a0/(mσ + c). Suppose (P (a), Q(a)) are positive in (a0, A), for some 
A > a0, then P(a) − δQm(a) > 0 in the same interval. Moreover,

Qm−1(a) ≤ σd

a0
(mσ + c) on [a0,A].
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Proof. It is clear that P(a) > δQm(a) when a is close to a0. We consider the quantity P(a) −
δQm(a). Using the system (III) we have

P(a)
[
P(a) − δQm(a)

]′ = −cP (a) − mδQm−1(a)

(
σQ(a) − 1

d
P (a)

)
+ aQm(a)

=
(

−c + mδ

d
Qm−1(a)

)(
P(a) − δQm(a)

)

+ Qm(a)

(
a − (mσ + c)δ + mδ2

d
Qm−1(a)

)
.

Consequently, when δ is in the given range, P(a) − δQm(a) > 0.
Next, substitute P(a) − δQm(a) > 0 into the second equation of (III), we get

P(a)Q′(a) = σQ(a) − 1

d
P (a) ≤ σQ(a) − δ

d
Qm(a) < 0

if δQm−1(a) > dσ . This implies

Qm−1(a) ≤ dσ

δ
for any δ <

a0

mσ + c
.

Taking

δ → a0

mσ + c
,

we derive the desired inequality. This completes the proof of lemma. �
Lemma 6. Let (P, Q) be as in Lemma 5. Then,

P(a) − εaQm(a) > 0 on [a0,A) if ε <
1

mσ + c
(4.11)

and Q(a) ≤ ma/d on [a0, A). Consequently, assuming

a0 >
[
σd(mσ + c)

]1/m
(

d

m − 1

)m/(m−1)

,

aQm−1(a) ≤ 2σd(mσ + c).

Proof. The inequality (4.11) holds at a = a0 by Lemma 5. If there exists a such that the inequal-
ity holds in [a0, a) but at a = a, P(a) − εaQm(a) = 0, it must be true that

[
P(a) − εaQm(a)

]′ ≤ 0

at this point. But, detailed calculation shows
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I (a) ≡ P(a)
[
P(a) − εaQm(a)

]′
= −cP (a) − mεaQm−1(a)

(
σQ(a) − 1

d
P (a)

)
+ aQm(a) − εP (a)Qm(a)

= Qm(a)

(
a − εa(mσ + c) + m

d
ε2a2Qm−1(a) − ε2aQm(a)

)
> 0

at a = a. A contradiction. Therefore, (4.11) holds. The bound on Q(a) is proved in what follows.
Consider Q(a) − Ma−1/(m−1), with M = (2dσ(mσ + c))1/(m−1). The function is negative if 

0 < a − a0 	 1. Suppose there exists a > a0 such that the function is zero at a. Then, [Q(a) −
Ma−1/(m−1)]′ ≥ 0 at a. But,

P(a)
[
Q(a) − Ma−1/(m−1)

]′ = σQ(a) − 1

d
P (a) + M

m − 1
a−m/(m−1)P (a)

= M

m − 1
a−m/(m−1)P (a) + σMa−1/(m−1) − 1

d
P (a) < 0,

since (4.11) yields σMa−1/(m−1) < P (a)/2d and the assumption on a0 and Lemma 5 imply

M

m − 1
a−m/(m−1) = M−(m−1)

m − 1
Qm(a) < P(a)/2d.

We reach a contradiction! �
Next, we show that the resulting solution cannot be the one with the property that Q(a) = 0

at some point, while P stays positive.

Lemma 7. Let (P, Q) be as in Lemma 6. Then, there exists δ > 0 such that Q(a) − δP (a) ≥ 0
on [a0, A], if d − 1 is close to zero in the sense that

(8m − 1)(d − 1)2 + 6(d − 1)d < d2. (4.12)

Proof. It is clear that the inequality holds at a = a0 for any δ > 0. Furthermore,

P [Q − δP ]′ = σQ − P

d
− δ

(−cP + aQm
)

= σ(Q − δP ) − δaQm−1(Q − δP ) + P

(
δ(σ + c) − δ2aQm−1 − 1

d

)
.

Using the bound of Lemma 6 on Q, we derive

δ(σ + c) − δ2aQm−1 − 1

d
≥ δ(σ + c) − δ22σd(mσ + c) − 1

d
> 0

for some δ > 0 provided

(σ + c)2 > 8σ(mσ + c),

which is exactly the condition as in (4.12). �
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Now, we switch back to the original formulation (2.8). It is clear that under the assumptions 
of Lemma 6 and Lemma 7, (a, b) is a positive solution of (2.8) on (−∞, ∞). We derive further 
properties of such solutions before proving the main result.

Lemma 8. Let (a, b) be a positive solution of (2.8) with the property that

M1a
′(z) < b(z) < M2

(
a′(z)
a(z)

)1/m

on (−∞,∞),

where M1, M2 are positive constants, then b(z) → 0 as z → ∞.

Proof. First, it is impossible that lim infz→∞ b(z) > 0. For, otherwise, we would have
limz→∞ a(z) = ∞, and

a′(z) = e−cz

z∫
−∞

ecsa(s)bm(s) ds → ∞ as z → ∞.

This is clearly absurd. If there exists no limit of b(z) as z → ∞, then there exist sequences {xn}
and {yn} with the property that xn, yn → ∞ as n → ∞ and

lim
n→∞b(xn) = b0 > 0, lim

n→∞b(yn) = 0,

where b0 is a positive constant. But, since |b′(z)| < Mb(z) for some M > 0, we would have

∞∫
−∞

bm+1(z) dz = ∞

as well as a(z) → ∞ as z → ∞. On the other hand, by the assumption of the lemma,

z∫
−∞

bm+1(s) ds < M

z∫
−∞

a′(s)
a1+1/m(s)

ds < ∞,

a clear contradiction. Hence, b(z) → 0 as z → ∞. �
A direct consequence of the above lemma is the following result.

Corollary 2. Let (a, b) as in Lemma 8, then

∞∫
−∞

bm+δ(z) dz < ∞

for any δ > 0.
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Remark. We are now ready to prove Theorem 3. Due to the lengthy procedure, we give a sketch 
of the line of arguments. First, we suppose (a, b) is not a traveling wave solution. We then show 
it must have the asymptotic behavior as given in Theorem 2, which is the leading order expansion 
of a positive solution as z → ∞. Second, we proceed to find higher order asymptotics of such 
a solution and reach a contradiction when some coefficients in the asymptotic expansion of it 
determined by system (2.8) proves to be inconsistent with (4.9).

Proof of Theorem 3. Suppose to the contrary that (a, b) is not a traveling wave solution. Then,

a(z) → ∞, and

z∫
A

a(s)bm(s) ds → ∞ as z → ∞, ∀A > 0.

Since

db′(s) + cb(s)|zA =
z∫

A

(
kb(s) − a(s)bm(s)

)
ds

and db′(z) + cb(z) → 0 as z → ∞, the integral on the right is convergent for any A > 0 fixed. 
That is,

z∫
A

b(s) ds → ∞ as z → ∞, ∀A > 0.

We proceed to show that a(z)bm−1(z) → k as z → ∞. If there exists A > 0 such that 
a(z)bm−1(z) ≤ k, ∀z ≥ A, then

db′(A) + cb(A) =
∞∫

A

(
a(s)bm(s) − kb(s)

)
ds ≤ 0 and db′(z) + cb(z) ≤ 0, ∀x ≥ A.

Hence, b(z) ↘ 0 exponentially as z → ∞. This, in turn, would imply a′(z) ↘ 0 exponentially as 
z → ∞, and a(z) ↗ a1 > 0, as z → ∞. A clear contradiction to our assumption that (a, b) are 
not traveling wave solutions. Therefore, ∀A > 0, there exists z > A such that a(z)bm−1(z) > k.

If a(z)bm−1(z) ≥ k for all z � 1, we easily deduce, using

the convergence of

∞∫
A

(
kb(s) − a(s)bm(s)

)
ds and the divergence of

∞∫
A

b(s) ds

that

a(z)bm−1(z) → k as z → ∞.

Otherwise, there exist a sequence of local maxima {xn} and a sequence of local minima {yn} with 
xn > yn, a(xn)b

m−1(xn) > k, a(yn)b
m−1(yn) < k, xn, yn → ∞ as n → ∞. We show
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a(z)bm−1(z) → k as z → ∞ (4.13)

by proving

lim
n→∞a(xn)b

m−1(xn) = lim
n→∞a(yn)b

m−1(yn) = k.

Next, consider f (z) = a(z)bl(z), with l > 0.

f ′ = a′bl + lab′bl−1,

f ′′ = a′′bl + 2la′b′bl−1 + l(l − 1)abl−2(b′)2 + labl−1b′′.

f ′′ + cf ′ = (
a′′ + ca′)bl + b′bl−1(cla + 2la′) + l(l − 1)abl−2(b′)2

+ labl−1

d

(−cb′ + kb − abm
)

= abm

(
bl − labl−1

d

)
+ klabl

d
+ lb′bl−1

(
c(d − 1)

d
a + 2a′

)

+ l(l − 1)abl−2(b′)2
.

Let l = m − 1, then the equation becomes

f ′′ + cf ′ = − l

d
f 2 + kl

d
f + f bl+1 + alb′bl−2

(
c(d − 1)

d
b + (l − 1)b′ + 2

a′

a
b

)
. (4.14)

Define

E(x) = 1

2

(
f ′)2 − kl

2d
f 2 + l

3d
f 3.

E′(z) =
(

f ′′ − kl

d
f + l

d
f 2

)
f ′

= −c
(
f ′)2 + f ′f bl+1 + alb′bl−2

(
c(d − 1)

d
b + (l − 1)b′ + 2

a′

a
b

)
f ′

= (
f ′)2

(
− c

d
+ (m − 2)b′

b

)
− c(d − 1)

d
a′blf ′ − (3l − 1)a′b′bl−1f ′ + f ′f bl+1

≤ (
f ′)2

(
− c

d
+ |m − 2|σ

)
− c(d − 1)

d
a′blf ′ − (3l − 1)a′b′bl−1f ′ + f ′f bl+1.

It is clear by our assumption |m − 2|(d − 1) < 1, the bound a′ = O(b), Corollary 2 and Young’s 
inequality that for any ε > 0,

E(z2) − E(z1) < ε
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provided z2 > z1 � 1. Let the local maximum value at xn be k +η2 and the local minimum value 
at yn be k − η1, then E(xn) < E(yn) + ε means

−kl

2

(
(k + η2)

2 − (k − η1)
2) + l

3

(
(k + η2)

3 − (k − η1)
3) < ε,

which can be simplified to

l(η1 + η2)

(
k

2
(η2 − η1) + 1

3

(
η2

2 + η2
1 − η1η2

))
< ε.

If η2 ≥ η1, then we deduce

l

12
(η1 + η2)

2 < ε.

If η2 < η1 but η2 > μη1 with

μ = 6k

3k + √
9k2 + 24η1k

,

k

2
(η2 − η1) + l

3

(
η2

2 + η2
1 − η1η2

) ≥ 1

3
(1 − μ)η1 = (

√
9k2 + 24η1k − 3k)2

72k
.

Again, we have

(η1 + η2)
2 = O(ε).

Otherwise, η2 < 6k

3k+√
9k2+24η1k

η1. We note that the difference between η1 and η2 is bounded 

below by a constant multiple of η1 and tends to zero only when η1 tends to zero.
Now, if z1 < z2 are the locations of two local minimum values k − η1 and k − η3, we have

−kl

2

(
(k − η3)

2 − (k − η1)
2) + l

3

(
(k − η3)

3 − (k − η1)
3) < ε,

which is equivalent to

l(η1 − η3)

(
−k

2
(η3 + η1) + 1

3

(
η2

3 + η2
1 + η1η3

))
< ε.

If η3 ≤ η1, it is fine. If η3 > η1, then

k

2
(η3 + η1) − 1

3

(
η2

3 + η2
1 + η1η3

)
= k

2
(η3 + η1) − 1

2

(
η2

3 + η2
1

) + 1

6
(η1 − η3)

2

≥ l
(η1 − η3)

2.

6
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Hence,

1

6
(η1 − η3)

3 < ε.

This implies η3 ≤ η1 + O(ε1/3). That is, the worst case for local minimum values is non-
increasing, and for local maximum values it is comparatively fast reduction provided the local 
minimum values do not converge to k. This imbalance will cause non-convergence of the integral ∫ ∞
A

(kb(s) − a(s)bm(s)) ds if local maximum values do not converge to k.
Therefore,

lim
n→∞a(xn)b

m−1(xn) = lim
n→∞a(yn)b

m−1(yn) = k.

We prove (4.13).
It can be proved that

b′(z)
b(z)

→ 0 as z → ∞

using the equation

d

(
b′(z)
b(z)

)′
= −c

b′(z)
b(z)

− d

(
b′(z)
b(z)

)2

+ k − a(z)bm−1(z).

In particular, at any point where

−b′(z)
b(z)

= δ0 <
c

2d
,

cδ0

4
> k − abm−1 on (z,∞),

d

(
b′(z)
b(z)

)′
> − c

2

(
b′(z)
b(z)

)
+ k − a(z)bm−1(z) > 0.

Hence,

b′(z)
b(z)

→ 0 and
b′′(z)
b(z)

→ 0 as z → ∞.

We can now proceed exactly as in Section 3 to have the precise asymptotic behavior of (a, b) as 
in Lemma 3.

To reach a contradiction, we need to do further expansion of (a, b) to get the coefficients of 
next two orders. Let z > 0 and

a(z) = (
A0 + r(t)

)
z(m−1)/m, b(z) = (

B0 + s(t)
)
z−1/m, t = log z,

where A0, B0 are as described in Theorem 2, with r(t), s(t) → 0 as t → ∞.
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a′(z) = m − 1

m

(
A0 + r(t)

)
z−1/m + dr

dt
z−1/m,

a′′(z) = −m − 1

m2

(
A0 + r(t)

)
z−(1+m)/m + (m − 2)

m

dr

dt
· z−(1+m)/m + d2r

dt2
· z−(1+m)/m,

a(z)bm(z) = z−1/m
(
A0 + r(t)

)(
B0 + s(t)

)m

= A0B
m
0 z−1/m

(
1 + r(t)

A0

)(
1 + m

s(t)

B0
+ m(m − 1)

s(t)2

2B2
0

)
+ h.o.t.

= A0B
m
0 z−1/m + (

mks(t) + Bm
0 r(t)

)
z−1/m

+
(

mBm−1
0 r(t)s(t) + m(m − 1)

2
A0B

m−2
0 s2(t)

)
z−1/m + h.o.t.

Then, the first equation in (2.8) becomes

d2r

dt2
+

(
cet + m − 2

m

)
dr

dt
− mks(t)et − m − 1

m2

(
A0 + r(t)

)

−
(

mBm−1
0 r(t)s(t) + m(m − 1)

2
A0B

m−2
0 s2(t)

)
et + h.o.t. = 0. (4.15)

Similarly,

b′(z) = − 1

m

(
B0 + s(t)

)
z−(1+m)/m + ds

dt
z−(1+m)/m,

b′′(z) = 1 + m

m2

(
B0 + s(t)

)
z−(1+2m)/m − (2 + m)

m

ds

dt
z−(1+2m)/m + d2s

dt2
z−(1+2m)/m

and the second equation in (2.8) turns to

d
d2s

dt2
+

(
cet − d

(m + 2)

m

)
ds

dt
− ks(t)e2t − c

m

(
B0 + s(t)

)
et + (

mks(t) + Bm
0 r(t)

)
e2t

+
(

mBm−1
0 r(t)s(t) + m(m − 1)

2
A0B

m−2
0 s2(t)

)
e2t

+ d(m + 1)

m2

(
B0 + s(t)

) + h.o.t. = 0. (4.16)

Suppose

r(t) = e−t r(t) + e−2t r(t) + h.o.t., r(t) =
N∑

i=0

ri t
i , r(t) =

M∑
j=0

rj t
j ,

s(t) = e−t s(t) + e−2t s(t) + h.o.t., s(t) =
N∑

i=0

si t
i , s(t) =

M∑
j=0

sj t
j ,

with ri , si , i = 1, · · · , N and rj , s , j = 1, · · · , M constants, then
j
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dr(t)

dt
= −e−t r(t) + e−t dr(t)

dt
− 2e−2t r(t) + e−2t dr(t)

dt
+ h.o.t.

= e−t

(
−

N∑
i=0

ri t
i +

N∑
i=1

iri t
i−1

)
+ e−2t

(
dr(t)

dt
− 2r(t)

)
+ h.o.t.

=
(

−rN tN +
N−1∑
i=0

[
(i + 1)ri+1 − ri

]
t i

)
e−t + e−2t

(
dr(t)

dt
− 2r(t)

)
+ h.o.t.,

ds(t)

dt
= e−t

(
ds(t)

dt
− s(t)

)
+ e−2t

(
ds(t)

dt
− 2s(t)

)
+ h.o.t.

=
(

−sN tN +
N−1∑
i=0

[
(i + 1)si+1 − si

]
t i

)
e−t + e−2t

(
ds(t)

dt
− 2s(t)

)
+ h.o.t.

From (4.15), for order O(1), we have

et

(
c
dr(t)

dt
− mks(t)

)
= m − 1

m2
A0,

which yields a linear system

crN = −mksN,

c
(
(i + 1)ri+1 − ri

) = mksi, i = 1, · · · ,N − 1,

c(r1 − r0) − mks0 = m − 1

m2
A0. (4.17)

Similarly, from (4.16), for order O(et ), we obtain

(m − 1)ks(t) + Bm
0 r(t) = c

m
B0,

which implies a linear system, since Bm
0 = c(m − 1)/m,

(m − 1)ksi + Bm
0 ri = 0 ⇐⇒ mksi + cri = 0, i = 1, · · · ,N,

mks0 + cr0 = c

m − 1
B0. (4.18)

Together, (4.17) and (4.18) yield,

r2 = · · · = rN = 0, s2 = · · · = sN = 0,

cr1 = m − 1

m2
A0 + c

m − 1
B0 = cB0

m − 1

(
m − 1

m
(d − 1) + 1

)

s1 = −cr1

mk
= − cB0

km(m − 1)

(
m − 1

m
(d − 1) + 1

)

cr0 + mks0 = c
B0. (4.19)
m − 1
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To get the coefficients of rj , sj , j = 1, · · · , M , we look at the next order from the (4.15) and 
(4.16).

From (4.15), for order O(e−t ), we have

et
(
c
(
e−2t r(t)

)′ − mke−2t s(t)
)

= e−t

(
(m − 1)

m2
r(t)

)
+ e−t

(
mBm−1

0 r · s + m(m − 1)

2
A0B

m−2
0 s2

)

−
((

r(t)e−t
)′′ − m − 2

m

(
r(t)e−t

)′
)

.

This implies

c
(
r ′ − 2r

) − mks = (m − 1)

m2
r − (

r ′′ − 2r ′ + r
) +

(
mBm−1

0 r · s + m(m − 1)

2
A0B

m−2
0 s2

)

− m − 2

m

(
r ′ − r

)
. (4.20)

In a similar fashion, from (4.16), for order O(1), we get

(m − 1)ks(t) + Bm
0 r(t) = c

m
s − c

(
s′ − s

) −
(

mBm−1
0 r · s + m(m − 1)

2
A0B

m−2
0 s2

)

+ d(m + 1)

m2
B0. (4.21)

It is clear that we can assume M = 2, and we shall work out (r2, s2), (r1, s1) and (r0, s0) con-
secutively to reach a contradiction when we have the explicit expression of (r0, s0). It is easy to 
check that

r(t) =
2∑

j=0

rj t
j , s(t) =

2∑
j=0

sj t
j ,

r ′(t) − 2r(t) = −2r2t
2 + (2r2 − 2r1)t + (r1 − 2r0),

r ′′(t) − 2r ′(t) + r(t) = r1t − 2r1 + r0, r ′(t) − r(t) = −r1t + r1 − r0.

The linear system satisfied by (r2, s2) is, as follows directly from (4.20) and (4.21),

−2cr2 − mks2 =
(

mBm−1
0 r1s1 + m(m − 1)

2
A0B

m−2
0 s2

1

)
,

(m − 1)ks2 + Bm
0 r2 = −

(
mBm−1

0 r1s1 + m(m − 1)

2
A0B

m−2
0 s2

1

)
.

Hence,

cr2 = 1
(

mBm−1
0 r1s1 + m(m − 1)

A0B
m−2
0 s2

1

)
,

m − 1 2
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mks2 = −m + 1

m − 1

(
mBm−1

0 r1s1 + m(m − 1)

2
A0B

m−2
0 s2

1

)
.

In the same fashion, the linear system satisfied by (r1, s1) is,

2cr1 + mks1 = 2cr2 + m + 1

m2
r1 − (

mBm−1
0 (r1s0 + r0s1) + m(m − 1)A0B

m−2
0 s1s0

)
,

(m − 1)ks1 + Bm
0 r1 = 1 + m

m
s1 − (

mBm−1
0 (r1s0 + r0s1) + m(m − 1)A0B

m−2
0 s1s0

)
,

which in turn yields,

cr1 = 2cr2 + m + 1

m2
r1 − m + 1

m − 1
s1

+ 1

m − 1

(
mBm−1

0 (r1s0 + r0s1) + m(m − 1)A0B
m−2
0 s1s0

)
,

mks1 = −2cr2 − m + 1

m2
r1 + 2(m + 1)

m − 1
s1

− m + 1

m − 1

(
mBm−1

0 (r1s0 + r0s1) + m(m − 1)A0B
m−2
0 s1s0

)
.

At last, the linear system of (r0, s0) takes the form

2cr0 + mks0 = cr1 + m + 1

m2
r0 − m + 2

m
r1 −

(
mBm−1

0 r0s0 + m(m − 1)

2
A0B

m−2
0 s2

0

)
,

cr0 + mks0 = c(m + 1)

m − 1
s0 − cm

m − 1
s1 + d(m + 1)

m(m − 1)
B0

− m

m − 1

(
mBm−1

0 r0s0 + m(m − 1)

2
A0B

m−2
0 s2

0

)
.

The solutions are

cr0 = cr1 + m + 1

m2
r0 − m + 2

m
r1 − c

(m + 1)

m − 1
s0

+ c
m

m − 1
s1 − d(m + 1)

m(m − 1)
B0 + 1

m − 1

(
mBm−1

0 r0s0 + m(m − 1)

2
A0B

m−2
0 s2

0

)
,

mks0 = −cr1 − m + 1

m2
r0 + m + 2

m
r1 + 2c

(m + 1)

m − 1
s0 − 2c

m

m − 1
s1

+ 2d(m + 1)

m(m − 1)
B0 − m + 1

m − 1

(
mBm−1

0 r0s0 + m(m − 1)

2
A0B

m−2
0 s2

0

)
. (4.22)

But, the relation (4.10) yields

−m − 1
r0 − (r1 − 2r0) + k

s0 = d

(
s1 − s0 − 1

s0

)
,

m c m
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or, equivalently,

(m + 1)cr0 + mks0 = mcr1 + dmcs1 − d(1 + m)cs0.

This, combined with (4.22), gives

(d − 1)mcs1 − (d − 1)c(1 + m)s0 + (m + 2)r1 − m + 1

m
r0 + 2d(m + 1)

m
B0 = 0.

But, using the explicit values of (r1, s1) and the relation cr0 + mks0 = cB0/(m − 1), one would 
derive d = 0. This is absurd. Therefore, (a, b) must be a traveling wave. This completes the proof 
of theorem. �
Remark. The above asymptotic expansion of solutions can be made rigorous using boot-strap 
type of argument. But, for simplicity, we shall not do it here.

Remark. It is to verify that if 1 < m < 2, the above proof of existence of traveling wave is valid 
provided (2 − m) < cδ/d , where δ is as in Lemma 7.

Proof of Theorem 1. It is a direct consequence of non-existence results proved in Section 2 and 
Theorem 3. �
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