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Abstract

We are interested in almost global existence cases in the general theory for nonlinear wave equations, 
which are caused by critical exponents of nonlinear terms. Such situations can be found in only three cases 
in the theory, cubic terms in two space dimensions, quadratic terms in three space dimensions and quadratic 
terms including a square of unknown functions itself in four space dimensions. Except for the last case, 
criteria to classify nonlinear terms into the almost global, or global existence case, are well-studied and 
known to be so-called null condition and non-positive condition.

Our motivation of this work is to find such a kind of the criterion in four space dimensions. In our previous 
paper, an example of the non-single term for the almost global existence case is introduced. In this paper, 
we show an example of the global existence case. These two examples have nonlinear integral terms which 
are closely related to derivative loss due to high dimensions. But it may help us to describe the final form 
of the criterion.
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1. Introduction

First we shall outline the general theory on the initial value problem for fully nonlinear wave 
equations,

{
utt − �u = H(u,Du,DxDu) in Rn × [0,∞),

u(x,0) = εf (x), ut (x,0) = εg(x),
(1.1)

where u = u(x, t) is a scalar unknown function of space–time variables,

Du = (ux0 , ux1 , · · · , uxn), x0 = t,

DxDu = (uxixj
, i, j = 0,1, · · · , n, i + j ≥ 1),

f, g ∈ C∞
0 (Rn) and ε > 0 is a “small” parameter. We note that it is impossible to construct a 

general theory for “large” ε due to blow-up results. For example, see Glassey [6], Levine [16], 
or Sideris [20]. Let

λ̂ = (λ; (λi), i = 0,1, · · · , n; (λij ), i, j = 0,1, · · · , n, i + j ≥ 1).

Suppose that the nonlinear term H = H(̂λ) is a sufficiently smooth function with

H(̂λ) = O(|̂λ|1+α)

in a neighborhood of ̂λ = 0, where α ≥ 1 is an integer. Let us define the lifespan T̃ (ε) of classical 
solutions of (1.1) by

T̃ (ε) = sup{t > 0 : ∃ a classical solution u(x, t) of (1.1)
for arbitrarily fixed data, (f, g)}.

When T̃ (ε) = ∞, the problem (1.1) admits a global solution, while we only have a local solution 
on [0, ̃T (ε)) when T̃ (ε) < ∞. For local solutions, one can measure the long time stability of 
a zero solution by orders of ε. Because the uniqueness of the solution of (1.1) may yield that 
limε→+0 T̃ (ε) = ∞. Such an uniqueness theorem can be found in Appendix of John [11] for 
example.

In Chapter 2 of Li and Chen [18], we have long histories on the estimate for T̃ (ε). The lower 
bounds of T̃ (ε) are summarized in the following table. Let a = a(ε) satisfy

a2ε2 log(a + 1) = 1 (1.2)

and c stand for a positive constant independent of ε. Then, due to the fact that it is impossible to 
obtain an L2 estimate for u itself by standard energy methods, we have
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T̃ (ε) ≥ α = 1 α = 2 α ≥ 3

n = 2 ca(ε) in general case,

cε−1 if
∫
R2

g(x)dx = 0,

cε−2 if ∂2
uH(0) = 0

cε−6 in general case,
cε−18 if ∂3

uH(0) = 0,

exp(cε−2) if ∂3
uH(0) = ∂4

uH(0) = 0

∞

n = 3 cε−2 in general case,
exp(cε−1) if ∂2

uH(0) = 0
∞ ∞

n = 4 exp(cε−2) in general case,
∞ if ∂2

uH(0) = 0
∞ ∞

n ≥ 5 ∞ ∞ ∞

The result for n = 1 is that

T̃ (ε) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε−α/2 in general case,

cε−α(1+α)/(2+α) if
∫
R

g(x)dx = 0,

cε−α if ∂
β
u H(0) = 0 for 1 + α ≤ ∀β ≤ 2α.

(1.3)

For references on these results, see Li and Chen [18]. We shall skip to refer them here. But we 
note that two parts in this table are different from the one in Li and Chen [18]. One is the general 
case in (n, α) = (4, 1). In this part, the lower bound of T̃ (ε) is exp(cε−1) in Li and Chen [18]. 
But later, it has been improved by Li and Zhou [19]. Another is the case for ∂3

uH(0) = 0 in 
(n, α) = (2, 2). This part is due to Katayama [13]. But it is missing in Li and Chen [18]. Its reason 
is closely related to the sharpness of results in the general theory. The sharpness is achieved by 
the fact that there is no possibility to improve the lower bound of T̃ (ε) in sense of order of ε by 
blow-up results for special equations and special data. It is expressed in the upper bound of T̃ (ε)

with the same order of ε as in the lower bound. On this matter, Li and Chen [18] say that all these 
lower bounds are known to be sharp except for (n, α) = (4, 1). But before this article, Li [17]
says that (n, α) = (2, 2) has also open sharpness while the case for ∂3

uH(0) = 0 is still missing. 
Li and Chen [18] might have dropped the open sharpness in (n, α) = (2, 2) by conjecture that 
∂4
uH(0) = 0 is a technical condition. No one disagrees with this observation because the model 

case of H = u4 has a global solution in two space dimensions, n = 2. However, Zhou and Han 
[26] have obtained this final sharpness in (n, α) = (2, 2) by studying H = u2

t u + u4. This puts 
Katayama’s result into the table after 20 years from Li and Chen [18]. We note that Godin [7]
has showed the sharpness of the case for ∂3

uH(0) = ∂4
uH(0) = 0 in (n, α) = (2, 2) by studying 

H = u3
t . This result has been reproved by Zhou and Han [25].

We now turn back to another open sharpness of the general case in (n, α) = (4, 1). It has 
been obtained by our previous work, Takamura and Wakasa [23], by studying model case of 
H = u2. This part had been open more than 20 years in the analysis on the critical case for 
model equations, utt − �u = |u|p (p > 1). In this way, the general theory and its optimality 
have been completed.

After the completion of the general theory, we are interested in the almost global existence, 
namely, the case where T̃ (ε) has an lower bound of the exponential function of ε with a nega-
tive power. Such a case appears in (n, α) = (2, 2), (3, 1), (4, 1) in the table of the general theory. 
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It is remarkable that Klainerman [14] and Christodoulou [4] have independently found a spe-
cial structure on H = H(Du, DxDu) in (n, α) = (3, 1) which guarantees the global existence. 
This algebraic condition on nonlinear terms of derivatives of the unknown function is so-called 
“null condition”. It has been also established independently by Godin [7] for H = H(Du) and 
Katayama [12] for H = H(Du, DxDu) in (n, α) = (2, 2). The null condition had been supposed 
to be not sufficient for the global existence in (n, α) = (2, 2). For this direction, Agemi [1] pro-
posed “non-positive condition” in this case for H = H(Du). This conjecture has been verified 
by Hoshiga [8] and Kubo [15] independently. It might be necessary and sufficient condition to 
the global existence. On the other hand, the situation in (n, α) = (4, 1) is completely different 
from (n, α) = (2, 2), (3, 1) because H has to include u2.

In our previous paper [24], we get the first attempt to clarify a criterion on H guaranteeing 
the global existence by showing different blow-up example of H from u2 only. More precisely, 
we have an almost global existence and its optimality for an equation of the form

utt − �u = u2 − 1

π2

t∫
0

dτ

∫
|ξ |≤1

(utu)(x + (t − τ)ξ, τ )√
1 − |ξ |2 dξ

− ε2

2π2

∫
|ξ |≤1

f (x + tξ )2√
1 − |ξ |2 dξ

(1.4)

in R4 × [0, ∞). We note that the third term in the right-hand side of (1.4) can be neglected 
by simple modification. One can say that this result is the first example of the blowing-up of a 
classical solution to nonlinear wave equation with non-single and indefinitely signed term in high 
dimensions. We note that (1.4) arises from a neglect of derivative loss factors in Duhamel’s term 
for positive and single nonlinear term, u2. Therefore one can conclude that derivative loss factors 
in Duhamel’s term due to high dimensions do not contribute to any order of ε in the estimate of 
the lifespan.

In this paper, we show that, in contrast with (1.4), another equation of the form

utt − �u = u2 − 1

2π2

t∫
0

dτ

∫
|ω|=1

(utu)(x + (t − τ)ω, τ)dSω

− ε

4π2

∫
|ω|=1

(εf 2 + �f + 2ω · ∇g)(x + tω)dSω

(1.5)

admits a global classical solution in R4 × [0, ∞). Both the first integral terms in (1.4) and (1.5)
look similar to each others. The essential difference is that the second integral term in (1.5) has 
linear terms of the initial data. This part mainly comes from a neglect of derivative loss factors 
in the linear part. Therefore one may say that derivative loss factors in the linear part due to high 
dimensions contribute to estimates of the lifespan.

This paper is organized as follows. In the next section, our main theorems are stated in more 
general situation on space dimensions and nonlinear terms as well as our motivation of this 
work by some integral equation. In section 3, we investigate a relation between such an integral 
equation and (1.5). The decay estimate of the linear part is studied in section 4. The proof of the 
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local existence appears in section 5, for which a priori estimate in section 6 is required. In the 
final section, blow-up result is proved to show the optimality of the local existence.

This work has begun since the second author was in the 2nd year of the master course, Grad-
uate School of Systems Information Science, Future University Hakodate.

2. Main results

This work is initiated by Agemi and Takamura [2] which attempts to make a new repre-
sentation formula of a solution of the following initial value problem for inhomogeneous wave 
equations. {

∂2
t u − �u = F in Rn × [0,∞),

u(x,0) = εf (x), ut (x,0) = εg(x), x ∈ Rn,
(2.1)

where u = u(x, t) is an unknown function, f, g and F = F(x, t) are given smooth functions. 
In [2], it has proved that, for n ≥ 3, a smooth solution of (2.1) has to satisfy the following integral 
equation.

(n − 2)ωnu(x, t) = ε

∫
|ω|=1

{tω · ∇f + (n − 2)f + tg} (x + tω)dSω

+ (n − 3)

t∫
0

dτ

∫
|ω|=1

ut (x + (t − τ)ω, τ)dSω

+
t∫

0

(t − τ)dτ

∫
|ω|=1

F(x + (t − τ)ω, τ)dSω,

(2.2)

where ωn is a measure of the unit sphere in Rn, i.e.

ωn = 2πn/2

� (n/2)
=

⎧⎪⎨⎪⎩
2(2π)m

(2m − 1)!! for n = 2m + 1,

2πm+1

m! for n = 2m + 2,

(m = 1,2,3, · · · ).

In view of (2.2), neglecting the second term in the right-hand side, we obtain a representation 
formula of a solution of some wave equation. With a small modification, it may have the same 
initial data as in (2.1). Our problem arises in this way.

In fact, let us define our integral equation of an unknown function u by

u(x, t) = εV (x, t) + N(F)(x, t), (2.3)

where

V (x, t) = 1

ωn

∫ (
tω · ∇f

n − 2
+ f + tg

)
(x + tω)dSω (2.4)
|ω|=1
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and

N(F)(x, t) = 1

(n − 2)ωn

t∫
0

(t − τ)dτ

∫
|ω|=1

F(x + (t − τ)ω, τ)dSω. (2.5)

Then, we have the following theorem.

Theorem 2.1. Let n ≥ 3. Assume that f ∈ C3(Rn), g ∈ C2(Rn) and F ∈ C2(Rn × [0, ∞)). 
Then, a solution of the integral equation (2.3) satisfies the following initial value problem for 
inhomogeneous wave equation.{

∂2
t u(x, t) − �u(x, t) = F(x, t) − H(x, t) in Rn × [0,∞),

u(x,0) = εf (x), ut (x,0) = εg(x), x ∈ Rn,
(2.6)

where H is defined by

H(x, t) = n − 3

(n − 2)ωn

t∫
0

dτ

∫
|ω|=1

(∂tF )(x + (t − τ)ω, τ)dSω

+ n − 3

(n − 2)ωn

∫
|ω|=1

F(x + tω,0)dSω

+ ε(n − 3)

(n − 2)ωn

∫
|ω|=1

{�f + (n − 2)ω · ∇g} (x + tω)dSω.

(2.7)

We shall make use of this theorem with F(x, t) = u(x, t)2 and n = 4. The proof of this theo-
rem appears in the next section.

Remark 2.1. The uniqueness of the solution of (2.6) with F(x, t) = |u(x, t)|p (p ≥ 2) is open. 
The restricted uniqueness theorem such as in Appendix 1 in John [11] cannot be applicable 
because (99a) in [11] does not hold for this case.

Remark 2.2. It is remarkable that Huygens’ principle holds for V in (2.4) even if the space 
dimension is even number. See (4.2) below. Moreover, in view of (2.4) and (2.5), we need lower 
regularities on the data and inhomogeneous term than those from H ≡ 0 to obtain a classical 
solution.

In order to describe our main theorems, let us define a lifespan T̂ (ε) of the integral equation 
(2.3) by

T̂ (ε) = sup{t > 0 : ∃ a solution u of (2.3) with F = F(u)

for arbitrarily fixed data, (f, g)},

where “solution” means a classical solution of (2.6) for p ≥ 2, or the C1 solution of (2.3) for 
1 < p < 2. Our assumption on F = F(s) is that
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{
there exists a constant A > 0 such that F ∈ C1(R) satisfies
|F (j)(s)| ≤ A|s|p−j (j = 0,1) for s ∈ R, 1 < p < 2,

(2.8)

or {
there exists a constant A > 0 such that F ∈ C2(R) satisfies
|F (j)(s)| ≤ A|s|p−j (j = 0,1,2) for s ∈ R, p ≥ 2

(2.9)

respectively. We also assume on the data that⎧⎨⎩ at least one of f ∈ C4
0(Rn) and g ∈ C3

0(Rn) does not
vanish identically and have compact support
contained in {x ∈ Rn : |x| ≤ k} with some constant k > 1.

(2.10)

We now introduce a critical number p1(n) as a positive root of the following quadratic equation.

ζ(p,n) ≡ 2
(

1 + (n − 1)p − (n − 2)p2
)

= 0. (2.11)

This is the analogy to Strauss’ number defined by a positive root of γ (p, n) ≡ 2 + (n + 1)p −
(n − 1)p2 = 0. See Remark 2.3 below.

Then, we have the following lower bounds of the lifespan which mean long time existences 
of the solution.

Theorem 2.2. Let n ≥ 3. Assume that (2.8), (2.9) and (2.10) are fulfilled. Then there exists a 
positive constant ε0 = ε0(f, g, n, p, k) such that the lifespan T̂ (ε) satisfies

T̂ (ε) = ∞ for p > p1(n),

T̂ (ε) ≥ exp
(
cε−p(p−1)

)
for p = p1(n),

T̂ (ε) ≥ cε−2p(p−1)/ζ(p,n) for 1 < p < p1(n)

(2.12)

for any ε with 0 < ε ≤ ε0, where c is a positive constant independent of ε.

Remark 2.3. We note that

p1(n) = n − 1 + √
n2 + 2n − 7

2(n − 2)
≤ p0(n) = n + 1 + √

n2 + 10n + 7

2(n − 1)

and that its equality holds if and only if n = 3. Here p0(n) is Strauss’ number on semilinear 
wave equations, utt − �u = |u|p . See Strauss [21,22] for this number. Also see Takamura and 
Wakasa [24] for references therein on lifespan estimates for this equation. Therefore the exponent 
(n, p) = (4, 2) is in the super critical case for the equation (2.6) with F(x, t) = |u(x, t)|p . The 
key fact is that the linear part V in (2.4) decays faster than that of a solution of the free wave 
equation.

For the upper bounds of the lifespan, our assumption on the data is the following.
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⎧⎨⎩ Let f ≡ 0, g(x) = g(|x|) and g ∈ C2
0([0,∞)) satisfy that

(i) supp g ⊂ {x ∈ Rn : |x| ≤ k} with k > 0,

(ii) there exists k0 such that g(|x|) > 0 for 0 < k0 < |x| < k.

(2.13)

Then, we have the following theorem.

Theorem 2.3. Let n ≥ 3. Assume that (2.13) is fulfilled. Then there exists a positive constant 
ε0 = ε0(g, n, p, k) such that the lifespan T̂ (ε) satisfies

T̂ (ε) ≤ Cε−2p(p−1)/ζ(p,n) for 1 < p < p1(n),

T̂ (ε) ≤ exp
(
Cε−p(p−1)

)
for p = p1(n)

(2.14)

for any ε with 0 < ε ≤ ε0, where C is a positive constant independent of ε.

The proofs of both Theorem 2.2 and Theorem 2.3 are similar to those of our previous theorems 
in [24] which are based on John’s iteration argument in a weighted L∞ space by John [10]. They 
are described after the next section.

3. Proof of Theorem 2.1

First we shall prove the initial condition in (2.6). It is trivial to get the first condition by setting 
t = 0 in (2.3). Rewriting

ω · ∇f (x + tω) = ∂t (f (x + tω)),

we have that

ut (x, t) = ε

ωn

∫
|ω|=1

{
((n − 1)∂t + t∂2

t )f

n − 2
+ (1 + t∂t )g

}
(x + tω)dSω

+
t∫

0

dτ

∫
|ω|=1

(1 + (t − τ)∂t )F (x + (t − τ)ω, τ)

(n − 2)ωn

dSω.

(3.1)

Therefore the second condition follows from setting t = 0 in this equation.
For the proof of the equation in (2.6), we shall employ the well-known fact that a function 

M(x, t) defined by

M(x, t) = 1

ωn

∫
|ω|=1

m(x + tω)dSω

for m ∈ C2(Rn) satisfies the initial value problem of Darboux equation,⎧⎨⎩
(

∂2
t − � + n − 1

t
∂t

)
M = 0

M(x,0) = m(x), M (x,0) = 0.

(3.2)

t
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Then it follows from (3.1) and (3.2) that

utt (x, t) = ε

ωn

∫
|ω|=1

{
(1 + t∂t )�f

n − 2
+ (2∂t + t∂2

t )g

}
(x + tω)dSω

+
t∫

0

dτ

∫
|ω|=1

(2∂t + (t − τ)∂2
t )F (x + (t − τ)ω, τ)

(n − 2)ωn

dSω + F(x, t)

n − 2
.

On the other hand, operating � to (2.3) yields that

�u(x, t) = ε

ωn

∫
|ω|=1

{(
1 + t∂t

n − 2

)
�f + t�g

}
(x + tω)dSω

+
t∫

0

(t − τ)dτ

∫
|ω|=1

�F(x + (t − τ)ω, τ)

(n − 2)ωn

dSω.

Therefore, it follows from (3.2) that

utt (x, t) − �u(x, t) = ε

ωn

∫
|ω|=1

{
3 − n

n − 2
�f + (2∂t + t (∂2

t − �))g

}
(x + tω)dSω

+
t∫

0

dτ

∫
|ω|=1

{2∂t + (t − τ)(∂2
t − �)}F(x + (t − τ)ω, τ)

(n − 2)ωn

dSω

+ F(x, t)

n − 2
.

Splitting 2∂t into (n − 1)∂t + (3 − n)∂t and making use of (3.2) again, we have that

utt (x, t) − �u(x, t) = ε

ωn

∫
|ω|=1

{
3 − n

n − 2
�f + (3 − n)(∂t )g

}
(x + tω)dSω + F(x, t)

n − 2

+ 3 − n

(n − 2)ωn

t∫
0

dτ

∫
|ω|=1

∂t (F (x + (t − τ)ω, τ))dSω.

Since

∂t (F (x + (t − τ)ω, τ)) = (∂tF )(x + (t − τ)ω, τ) − ∂τ (F (x + (t − τ)ω, τ))

and

t∫
∂τ

⎛⎜⎝ ∫
F(x + (t − τ)ω, τ)dSω

⎞⎟⎠dτ = ωnF(x, t) −
∫

F(x + tω,0)dSω,
0 |ω|=1 |ω|=1
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we finally obtain that

utt (x, t) − �u(x, t)

= (3 − n)ε

(n − 2)ωn

∫
|ω|=1

{�f + (n − 2)(∂t )g} (x + tω)dSω

+ 3 − n

(n − 2)ωn

∫
|ω|=1

F(x + tω,0)dSω + F(x, t)

+ 3 − n

(n − 2)ωn

t∫
0

dτ

∫
|ω|=1

(∂tF )(x + (t − τ)ω, τ)dSω.

This ends the proof of Theorem 2.1. �
4. Decay estimate of the linear part

In this section, we get a space–time decay estimate of V in (2.4) which plays an essential role 
to define our weighted L∞ space.

Lemma 4.1. Under the same assumption as in Theorem 2.2, there exists a positive constant Cn,k

depending only on n and k such that V satisfies

(t + |x| + 2k)n−2|∇α
x V (x, t)|

≤ Cn,k

⎛⎝ ∑
|β|≤|α|+2

‖∇β
x f ‖L∞(Rn) +

∑
|γ |≤|α|+1

‖∇γ
x g‖L∞(Rn)

⎞⎠ (4.1)

for |α| ≤ 2, (x, t) ∈ Rn × [0, ∞), and

supp V ⊂ {(x, t) ∈ Rn × [0,∞) : −k ≤ t − |x| ≤ k}. (4.2)

Proof. First we note that the support property (4.2) immediately follows from the representation 
of V in (2.4), and that it is enough to prove the lemma for |α| = 0. For (4.1) with |α| = 0, one 
can employ the standard argument as in Lemma 3.2 in Agemi, Kubota and Takamura [3].

When t ≥ k, taking into account of (4.2), one can make use of

tn−1
∫

|ω|=1

|ϕ(x + tω)|dSω ≤ ‖∇xϕ‖L1(Rn) for ϕ ∈ C1
0(Rn), t > 0

with

t ≥ 1

5
(t + |x| + 2k) .

Hence we obtain that
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|V (x, t)| ≤ Cn,k

(t + |x| + 2k)n−2

⎛⎝ ∑
1≤|β|≤2

‖∇β
x f ‖L1(Rn) +

∑
|γ |=1

‖∇γ
x g‖L1(Rn)

⎞⎠
with some positive constant Cn,k depending only on n and k. When t ≤ k, (2.4) yields that

|V (x, t)| ≤ Cn,k

⎛⎝ ∑
|β|≤1

‖∇β
x f ‖L∞(Rn) + ‖g‖L∞(Rn)

⎞⎠
with a different constant Cn,k > 0. Therefore the proof is completed. �
5. Proof of Theorem 2.2

Following Takamura and Wakasa [24], we prove Theorem 2.2 in this section. We note that 
its proof is similar to the one of odd dimensional case in [24] because of Huygens’ principle 
for the linear part of the integral equation, (4.2). It is obvious that the theorem follows from the 
following proposition.

Proposition 5.1. Let n ≥ 3. Suppose that the assumptions (2.8), (2.9) and (2.10) are fulfilled. 
Then, there exists a positive constant ε0 = ε0(f, g, n, p, k) such that (2.3) admits a unique solu-
tion u ∈ C1(Rn × [0, T ]) for 1 < p < 2, u ∈ C2(Rn × [0, T ]) for p ≥ 2, as far as T satisfies

T ≤ cε−2p(p−1)/ζ(p,n) if 1 < p < p1(n),

T ≤ exp
(
cε−p(p−1)

)
if p = p1(n),

there is no bound if p > p1(n)

(5.1)

for 0 < ε ≤ ε0, where c is a positive constant independent of ε.

The solution is constructed by almost the same way as in [24]. Actually, we shall set U =
u − εV and rewrite (2.3) with F = F(u) into the following form.

U = N(F(U + εV )). (5.2)

Since V exists globally in time, we have to consider the lifespan of the solution of (5.2). Let us 
define the sequence of functions, {Um}m∈N by

Um = N(F(Um−1 + U0)) and U0 = εV .

We also denote a weighted L∞ norm of U by

‖U‖ = sup
(x,t)∈Rn×[0,T ]

{w(|x|, t)|U(x, t)|}

with the weighted function
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w(r, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
τ+(r, t)n−2τ−(r, t)q if p >

n − 1

n − 2
,

τ+(r, t)n−2
(

log 4
τ+(r, t)

τ−(r, t)

)−1

if p = n − 1

n − 2
,

τ+(r, t)n−2+q if 1 < p <
n − 1

n − 2
,

where we set

q = (n − 2)p − (n − 1)

and

τ+(r, t) = t + r + 2k

k
, τ−(r, t) = t − r + 2k

k
.

Proof of Proposition 5.1. In view of Proposition 5.1 in [24], the proof of this proposition follows 
from the following a priori estimate.

Lemma 5.1. Let n ≥ 3 and N be a linear integral operator defined in (2.5). Assume that U, U0 ∈
C0(Rn × [0, T ]) with supp U ⊂ {(x, t) ∈ Rn × [0, T ] : |x| ≤ t + k}, supp U0 ⊂ {(x, t) ∈ Rn ×
[0, T ] : t −k ≤ |x| ≤ t +k}, and ‖U‖, ‖τn−2+ U0w

−1‖ < ∞. Then, there exists a positive constant 
Cn,ν,p depending on n, ν and p such that

‖N(|U0|p−ν |U |ν)‖ ≤ Cn,ν,pk2

∥∥∥∥∥τn−2+
w

U0

∥∥∥∥∥
p−ν

‖U‖νEν(T ) (5.3)

for 0 ≤ ν ≤ p, where Eν is defined by

Eν(T ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if p >
n − 1

n − 2
,(

2T + 3k

k

)νδ

if p = n − 1

n − 2
,(

2T + 3k

k

)−νq

if 1 < p <
n − 1

n − 2
,

(5.4)

for 0 ≤ ν < p with any δ > 0 and

Ep(T ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if p > p1(n),

log
2T + 3k

k
if p = p1(n),(

2T + 3k

k

)ζ(p,n)/2

if 1 < p < p1(n).

(5.5)

This lemma is proved in the next section.
The construction of the solution in our proposition is completely same as in the proof of lower 

bounds of the lifespan in odd space dimensions in the section 5 of Takamura and Wakasa [24], 
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if (n − 1)/2 in the exponent of τ+, (n + 1)/(n − 1) in the definition of Eν(T ), q , p0(n) and 
γ (p, n) are substituted by (n − 2), (n − 1)/(n − 2), q , p1(n), and ζ(p, n) in all the questions 
respectively. Therefore, Proposition 5.1 immediately follows from Lemma 5.1 which is proved 
in the next section. �
6. A priori estimates

In this section we prove Lemma 5.1 which plays a key role in the proof of Theorem 2.2. The 
proof follows from the following basic estimate.

Lemma 6.1 (Basic estimate). Let N be the linear integral operator defined by (2.5) and a1 ≥ 0, 
a2 ∈ R and a3 ≥ 0. Then, there exists a positive constant Cn,p,a1,a2,a3 such that

N
{
τ

−(n−2)p+a1+ τ
a2− (log(4τ+/τ−))a3

}
(x, t)

≤ Cn,p,a1,a2,a3k
2w(r, t)−1

(
2T + 3k

k

)a1

Ea1,a2,a3(T )
(6.1)

for |x| ≤ t + k, t ∈ [0, T ], where Ea1,a2,a3(T ) is defined by

Ea1,a2,a3(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if a2 < −1 and a3 = 0,

log
2T + 3k

k
if a2 = −1 and a3 = 0,(

2T + 3k

k

)δa3

if a2 ≤ −1 and a3 > 0,(
2T + 3k

k

)1+a2

if a2 > −1,

(6.2)

where δ stands for any positive constant.

To prove this lemma, we shall employ the following lemma which is established by funda-
mental identity for spherical means by John [9].

Lemma 6.2. (See John [9].) Let b ∈ C([0, ∞)). Then, the identity

∫
|ω|=1

b(|x + ρω|)dSω = 23−nωn−1(rρ)2−n

ρ+r∫
|ρ−r|

λb(λ)h(λ,ρ, r)dλ, (6.3)

holds for x ∈ Rn, r = |x| and ρ > 0, where

h(λ,ρ, r) = {λ2 − (ρ − r)2}(n−3)/2{(ρ + r)2 − λ2}(n−3)/2. (6.4)

For the proof of this lemma, see Lemma 4.1 in Agemi, Kubota and Takamura [3]. In order to 
estimate h(λ, ρ, r), we shall make use of the following four inequalities.
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Lemma 6.3. Let h(λ, ρ, r) be the function defined by (6.4). Suppose that |ρ − r| ≤ λ ≤ ρ + r , or 
equivalently |λ − r| ≤ ρ ≤ λ + r , and ρ ≥ 0. Then the following inequalities hold.

h(λ,ρ, r) ≤ 4n−3rn−3λn−3, (6.5)

h(λ,ρ, r) ≤ 2n−3ρn−3r(n−3)/2λ(n−3)/2, (6.6)

h(λ,ρ, r) ≤ 8n−3ρn−3rn−3, (6.7)

h(λ,ρ, r) ≤ 2n−3ρn−3λn−3. (6.8)

Proof. (6.5), (6.6) and (6.7) are due to Lemma 4.2 in Agemi, Kubota and Takamura [3] with el-
ementary computations. (6.8) is due to Lemma 2.2 in Georgiev [5] with geometrical observation. 
But one may prove (6.8) also by elementally computation as follows.

4ρ2λ2 − {λ2 − (ρ − r)2}{(ρ + r)2 − λ2}
= λ4 + {4ρ2 − (ρ + r)2 − (ρ − r)2}λ2 + (ρ − r)2(ρ + r)2

= (λ2 + ρ2 − r2)2 ≥ 0. �
Proof of Lemma 6.1. The proof is almost the same as the one in the estimates for Iodd in 
Lemma 4.5 of Takamura and Wakasa [24]. We denote various positive constants depending only 
on n and p by C which may change at place to place. By virtue of Lemma 6.2, we have that

N
{
τ

−(n−2)p+a1+ τ
a2− (log(4τ+/τ−))a3

}
(x, t) = I (r, t),

where we set

I (r, t) = Cr2−n

t∫
0

(t − τ)3−ndτ

t−τ+r∫
|t−τ−r|

τ+(λ, τ )−(n−2)p+a1τ−(λ, τ )a2 ×

×
(

log 4
τ+(λ, τ )

τ−(λ, τ )

)a3

λh(λ, t − τ, r)dλ.

(6.9)

We shall estimate I (r, t) on three domains,

D1 = {(r, t) | r ≥ t − r > −k and r ≥ 2k},
D2 = {(r, t) | r ≥ t − r > −k and r ≤ 2k},
D3 = {(r, t) | t − r ≥ r}.

(i) Estimate in D1.
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Making use of (6.8), we get

I (r, t) ≤ Cr2−n

t∫
0

dτ

t+r−τ∫
|t−τ−r|

λn−2 ×

× τ+(λ, τ )−(n−2)p+a1τ−(λ, τ )a2

(
log 4

τ+(λ, τ )

τ−(λ, τ )

)a3

dλ.

Changing variables in the above integral by

α = τ + λ, β = τ − λ,

we get

I (r, t) ≤ Cr2−n

t−r∫
−k

(
β + 2k

k

)a2

dβ

t+r∫
|t−r|

(α − β)n−2 ×

×
(

α + 2k

k

)−(n−2)p+a1
(

log 4
α + 2k

β + 2k

)a3

dα.

It follows from

r

k
= r + 2r + r

4k
≥ τ+(r, t)

4

in D1 that

I (r, t) ≤ Cτ+(r, t)2−n

(
t + r + 2k

k

)a1
t−r∫

−k

(
β + 2k

k

)a2

dβ ×

×
t+r∫

t−r

(
α + 2k

k

)−1−q (
log 4

α + 2k

β + 2k

)a3

dα.

(6.10)

When a3 = 0, α-integral in (6.10) is dominated by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ckτ

−q
− if p >

n − 1

n − 2
,

k log
τ+
τ−

if p = n − 1

n − 2
,

Ckτ
−q
+ if 1 < p <

n − 1

n − 2

and β-integral in (6.10) is dominated by
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−k

1 + a2
if a2 < −1,

k log
t − r + 2k

k
if a2 = −1,

k

1 + a2

(
t − r + 2k

k

)1+a2

if a2 > −1.

(6.1) is now established for a3 = 0.
When a3 > 0, we employ the following simple lemma.

Lemma 6.4. Let δ > 0 be any given constant. Then, we have

logX ≤ Xδ

δ
f or X ≥ 1.

The proof of this lemma follows from elementary computation. We shall omit it. Then, it 
follows from Lemma 6.4 that

I (r, t) ≤ C(4δ−1)a3τ+(r, t)2−n

(
t + r + 2k

k

)a1+δa3

×

×
t−r∫

−k

(
β + 2k

k

)a2−δa3

dβ

t+r∫
t−r

(
α + 2k

k

)−1−q

dα.

The α-integral above can be estimated by the same manner in the case of a3 = 0. The β-integral 
is dominated by ⎧⎪⎪⎨⎪⎪⎩

−k

1 + a2 − δa3
if a2 ≤ −1,

k

1 + a2 − δa3

(
t − r + 2k

k

)1+a2−δa3

if a2 > −1
(6.11)

with δ > 0 satisfying 1 + a2 − δa3 > 0. Therefore I is bounded in D1 by the quantity in the 
right-hand side of (6.1) as desired. It is obvious that such a restriction on δ > 0 is finally removed 
from the statement.

(ii) Estimate in D2 or D3.
In this case, the proof is completely same as the one in the estimates for Iodd in Lemma 4.5 

in Takamura and Wakasa [24], if (n − 1)/2 in the exponent of τ+ is substituted by (n − 2). 
Because the key fact, 1 − (n − 2)p < 0, is also trivial. Therefore, the proof of Lemma 6.1 is now 
completed. �
Proof of Lemma 5.1. Due to Huygens’ principle for the linear part V , (4.2), one can replace 
τ− by τ−χ{−k≤t−r≤k} in (6.1) when 0 ≤ ν < p. Then, the integral with respect to the variable 
β = τ − λ is bounded. In order to establish Lemma 5.1, it is sufficient to show{

N
(
τ

−(n−2)(p−ν)
+ w−νχ{−k≤t−r≤k}

)
(x, t) ≤ Cn,ν,pk2Eν(T ) for 0 ≤ ν < p,

N(w−p)(x, t) ≤ C k2E (T ) for ν = p.
n,p,p p
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To this end, setting ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a1 = a3 = 0, a2 = −νq if p >

n − 1

n − 2
,

a1 = a2 = 0, a3 = ν if p = n − 1

n − 2
,

a1 = −νq, a2 = a3 = 0 if 1 < p <
n − 1

n − 2

for 0 ≤ ν < p and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a1 = a3 = 0, a2 = −pq if p >

n − 1

n − 2
,

a1 = a2 = 0, a3 = p if p = n − 1

n − 2
,

a1 = −pq, a2 = a3 = 0 if 1 < p <
n − 1

n − 2

for ν = p in (6.1), we have (5.3). �
7. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 which obviously follows from Proposition 7.1 below. 
Its proof is almost the same as the one in odd dimensional case of Theorem 2.2 in Takamura and 
Wakasa [24] once the similar iteration frame is established.

Proposition 7.1. Suppose that the assumptions of Theorem 2.3 are fulfilled. Let u be a 
C0-solution of (2.3) in Rn × [0, T ]. Then, there exists a positive constant ε0 = ε0(g, n, p, k)

such that T cannot be taken as

T > exp
(
cε−p(p−1)

)
if p = p1(n), (7.1)

T > cε−2p(p−1)/ζ(p,n) if 1 < p < p1(n) (7.2)

for 0 < ε ≤ ε0, where c is a positive constant independent of ε.

Proof. Similarly to the proof of Proposition 7.1 in [24], we may assume that the solution of (2.3)
is radially symmetric without loss of the generality. Let u = u(r, t) be a C0-solution of

u = εV + N(|u|p) in (0,∞) × [0, T ], (7.3)

where we set

V (r, t) = Cr2−nt3−n

t+r∫
|t−r|

λg(λ)h(λ, t, r)dλ, (7.4)
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N(|u|p)(r, t) = Cr2−n

t∫
0

(t − τ)3−ndτ

t−τ+r∫
|t−τ−r|

λh(λ, t − τ, r)|u(λ, τ)|pdλ, (7.5)

where C and C are positive constants depending only on n.

[The 1st step] Inequality of u.

Lemma 7.1. Assume (2.13). Then there exists a positive constant Cn,g,k > 0 such that for t +k0 <

r < t + k1 and t ≥ k2,

V (r, t) ≥ Cn,g,k

rn−2
, (7.6)

where k1 = k + k0

2
and k2 = k − k0.

Proof. Let t + k0 < r < t + k1 and t ≥ k2/2. Then, (7.4) gives us

V (r, t) ≥ Cr2−nt3−n

k∫
k1

λg(λ)h(λ, t, r)dλ.

Note that

r + t + λ ≥ r, λ + r − t ≥ λ,

r + t − λ ≥ r + t − k ≥ 2t + k0 − k ≥ t, λ + t − r ≥ λ − k1

hold in the domain of the integral above for t + k0 < r < t + k1 and t ≥ k2. Hence, we get

V (r, t) ≥ Cr−(n−1)/2t−(n−3)/2

k∫
k1

λ(n−1)/2g(λ)(λ − k1)
(n−3)/2dλ

≥ C

(
k − k1

2

)(n−3)/2

r−(n−2)

k∫
(k+k1)/2

λ(n−1)/2g(λ)dλ

for t + k0 < r < t + k1 and t ≥ k2. Therefore we obtain (7.6). �
Making use of this estimate of V , we have the following iteration frame.

Lemma 7.2. Let u be a C0-solution of (7.3). Assume (2.13). Then u in �0 = {(r, t) : 2k ≤ t −
r ≤ r} satisfies
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u(r, t) ≥ C2(n−3)/2(t − r)(n−1)/2

r(3n−7)/2
×

×
∫ ∫
R(r,t)

{(t − r − τ + λ)(t + r − τ − λ)}(n−3)/2|u(λ, τ)|pdλdτ +

+ E1(t − r)(3n−5)/2−(n−2)p

r(3n−7)/2
εp,

(7.7)

where C is the one in (7.5),

E1 = CC
p
n,g,k(k1 − k0)

(n − 1)2(n−2)p−(3n−11)/2

and

R(r, t) = {(λ, τ ) : t − r ≤ λ, τ + λ ≤ t + r,2k ≤ τ − λ ≤ t − r} .

Proof. Comparing Lodd in (4.7) of [24] with radially symmetric form of N in (7.4) of this paper, 
the difference between the proof of Lemma 7.2 of [24] and the one of this lemma has to appear 
only in the second term, I2, which arises from the estimate of the linear part. In view of the 
proof of Lemma 7.2 in [24], the desired estimate immediately follows from simple replacement 
of 1 − (n − 1)p/2 in the exponent of α − β by 1 − (n − 2)p. �
[The 2nd Step] Comparison argument.

Let us consider a solution w of

w(t − r) = C2(n−5)/2(t − r)(n−1)/2

r(3n−7)/2

t−r∫
2k

(t − r − β)(n−3)/2dβ

×
t+r∫

2(t−r)+β

(t + r − α)(n−3)/2|w(β)|pdα

+ E1(t − r)(3n−5)/2−(n−2)p

2r(3n−7)/2
εp.

(7.8)

Then we have the following comparison lemma.

Lemma 7.3. Let u be a solution of (7.3) and w be a solution of (7.8). Then, u and w satisfy

u > w in �0.

Proof. Comparing the relation between u in Lemma 7.3 of [24] and w in (7.6) of [24] with the 
one between u in Lemma 7.2 and w in (7.8), one can find no difference in the structure of proofs 
of both Lemma 7.4 of [24] and this lemma. �
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By definition of w in (7.8), we have

w(ξ) ≥ Cξ3−n

2n−1

ξ∫
2k

(ξ − β)(n−3)/2|w(β)|pdβ

×
3ξ∫

2ξ+β

(3ξ − α)(n−3)/2dα + E1

2(3n−5)/2
ξ−q−(n−2)εp

in �0, where we set

ξ = r

2
, �0 = {t − r = ξ, r ≥ 4k}.

Hence we obtain that

w(ξ) ≥ Cξ3−n

2n−2(n − 1)

ξ∫
2k

(ξ − β)n−2|w(β)|pdβ + E1ξ
−q−(n−2)

2(3n−5)/2
εp

for ξ ≥ 2k. Then, it follows from the setting

W(ξ) = ξq+n−2w(ξ)

that

W(ξ) ≥ Dnξ
q+1

ξ∫
2k

(ξ − β)n−2|W(β)|pdβ

β(n−2)p+pq
+ E2ε

p for ξ ≥ 2k, (7.9)

where we set

Dn = C

2n−2(n − 1)
, E2 = E1

2(3n−5)/2
.

Iteration frame in the case of p = p1(n).
By virtue of (7.9), we get

W(ξ) ≥ Dn

ξ∫
2k

(
ξ − β

ξ

)n−2 |W(β)|p
βpq

dβ + E2ε
p for ξ ≥ 2k. (7.10)

The above inequality is the iteration frame for the critical case. This inequality is the same as the 
one in (7.8) in [24], if q is substituted by q.

Iteration frame in the case of 1 < p < p1(n).
Because of the fact that −(n − 2)p − pq < 0 for n ≥ 3, (7.9) yields
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W(ξ) ≥ Dnξ
−(n−2)−pq

ξ∫
2k

(ξ − β)n−2|W(β)|pdβ + E2ε
p for ξ ≥ 2k. (7.11)

The above inequality is the iteration frame for the subcritical case. This inequality is the same as 
the one in (8.2) in [24], if q is substituted by q.

Making use of (7.10) and (7.11), one can obtain Proposition 7.1 immediately by the same 
argument in [24]. Therefore the proof of Theorem 2.3 is now completed. �
References

[1] R. Agemi, Oral communication.
[2] R. Agemi, H. Takamura, Remarks on representations of solutions to the wave equations, Mathematical research 

note 94-004, Institute of Mathematics, University of Tsukuba, June 1994.
[3] R. Agemi, K. Kubota, H. Takamura, On certain integral equations related to nonlinear wave equations, Hokkaido 

Math. J. 23 (1994) 241–276.
[4] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 

39 (1986) 267–282.
[5] V. Georgiev, Existence of global solutions to supercritical semilinear wave equations, Serdica Math. J. 22 (1996) 

125–164.
[6] R.T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z. 132 (1973) 183–203.
[7] P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions, Comm. Partial Differential 

Equations 18 (1993) 895–916.
[8] A. Hoshiga, The existence of the global solutions to semilinear wave equations with a class of cubic nonlinearities 

in 2-dimensional space, Hokkaido Math. J. 37 (2008) 669–688.
[9] F. John, Plane Waves and Spherical Means, Applied to Partial Differential Equations, Interscience Publishers, Inc., 

New York, 1955.
[10] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979) 

235–268.
[11] F. John, Nonlinear Wave Equations, Formation of Singularities, Pitcher Lectures in Mathematical Sciences, Lehigh 

University, AMS, 1990.
[12] S. Katayama, Global existence for systems of nonlinear wave equations in two space dimensions. II, Publ. Res. Inst. 

Math. Sci. 31 (1995) 645–665.
[13] S. Katayama, Lifespan of solutions for two space dimensional wave equations with cubic nonlinearity, Comm. 

Partial Differential Equations 26 (2001) 205–232.
[14] S. Klainerman, The null condition and global existence to nonlinear wave equations, in: Nonlinear Systems of 

Partial Differential Equations in Applied Mathematics, Part 1, Santa Fe, N.M., 1984, in: Lectures in Appl. Math., 
vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293–326.

[15] H. Kubo, Asymptotic behavior of solutions of to semilinear wave equations with dissipative structure, Discrete 
Contin. Dyn. Syst. (Suppl.) (2007) 602–613, Proceedings of the 6th AIMS International Conference; in: Dynamical 
Systems and Differential Equations, 2007.

[16] H.A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt =
−Au +F(u), Trans. Amer. Math. Soc. 192 (1974) 1–21.

[17] T-T. Li, Lower bounds of the life-span of small classical solutions for nonlinear wave equations, in: M. Beals, R.B. 
Melrose, J. Rauch (Eds.), Microlocal Analysis and Nonlinear Waves, Minneapolis, MN, 1988–1989, in: The IMA 
Volumes in Mathematics and Its Applications, vol. 30, Springer-Verlag New York Inc., 1991, pp. 125–136.

[18] T-T. Li, Y. Chen, Global Classical Solutions for Nonlinear Evolution Equations, Pitman Monographs and Surveys 
in Pure and Applied Mathematics, vol. 45, Longman Scientific & Technical, 1992.

[19] T-T. Li, Y. Zhou, A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions, 
Indiana Univ. Math. J. 44 (1995) 1207–1248.

[20] T.C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations, Arch. Ration. Mech. Anal. 
86 (1984) 369–381.

[21] W.A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981) 110–133.

http://refhub.elsevier.com/S0022-0396(16)30012-2/bib41543934s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib41543934s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib414B543934s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib414B543934s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib436872693836s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib436872693836s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib47656F3936s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib47656F3936s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib473733s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib476F3933s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib476F3933s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib486F3038s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib486F3038s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4A3535s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4A3535s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4A3739s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4A3739s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4A3930s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4A3930s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B6174613935s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B6174613935s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B6174613031s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B6174613031s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B6C3836s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B6C3836s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B6C3836s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B3037s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B3037s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4B3037s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C653734s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C653734s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C693931s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C693931s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C693931s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C433932s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C433932s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C5A3935s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib4C5A3935s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib5369383462s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib5369383462s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib53743831s1


H. Takamura, K. Wakasa / J. Differential Equations 261 (2016) 1046–1067 1067
[22] W.A. Strauss, Nonlinear Wave Equations, CBMS Regional Conference Series in Mathematics, vol. 73, American 
Mathematical Society, Providence, RI, 1989, Published for the Conference Board of the Mathematical Sciences, 
Washington, DC.

[23] H. Takamura, K. Wakasa, The sharp upper bound of the lifespan of solutions to critical semilinear wave equations 
in high dimensions, J. Differential Equations 251 (2011) 1157–1171.

[24] H. Takamura, K. Wakasa, Almost global solutions of semilinear wave equations with the critical exponent in high 
dimensions, Nonlinear Anal. 109 (2014) 187–229.

[25] Y. Zhou, W. Han, Sharpness on the lower bound of the lifespan of solutions to nonlinear wave equations, Chin. Ann. 
Math. Ser. B 4 (2011) 521–526.

[26] Y. Zhou, W. Han, Blow up for some semilinear wave equations in multi-space dimensions, Comm. Partial Differen-
tial Equations 39 (2014) 651–665.

http://refhub.elsevier.com/S0022-0396(16)30012-2/bib53743839s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib53743839s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib53743839s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib54573131s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib54573131s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib54573134s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib54573134s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib5A4831315F74776Fs1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib5A4831315F74776Fs1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib5A483132s1
http://refhub.elsevier.com/S0022-0396(16)30012-2/bib5A483132s1

	Global existence for semilinear wave equations with the critical blow-up term in high dimensions
	1 Introduction
	2 Main results
	3 Proof of Theorem 2.1
	4 Decay estimate of the linear part
	5 Proof of Theorem 2.2
	6 A priori estimates
	7 Proof of Theorem 2.3
	References


