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Abstract

In this work we study stochastic Landau–Lifshitz–Gilbert equations (SLLGEs) in one dimension, with 
non-zero exchange energy only. Firstly, by introducing a suitable transformation, we convert the SLLGEs to 
a highly nonlinear time dependent partial differential equation with random coefficients, which is not fully 
parabolic. We then prove that there exists a pathwise unique solution to this equation and that this solution 
enjoys the maximal regularity property. Following regular approximation of the Brownian motion and using 
reverse transformation, we show existence of strong solution of SLLGEs taking values in a two-dimensional 
unit sphere S2 in R3. The construction of the solution and its corresponding convergence results are based 
on Wong–Zakai approximation.
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1. Introduction

The study of the theory of magnetic behaviour in ferromagnetic materials was initiated by 
Weiss [65], see also [11], and references therein, and further developed by Landau and Lifshitz 
[47] and Gilbert [35]. This theory suggests that the magnetization M of a ferromagnetic material 
occupying an open bounded region D ⊂ R

d, d = 1, 2, 3 at temperatures below the critical, the 
so-called Curie temperature satisfies, for t > 0 and x ∈ D, the following Landau–Lifshitz–Gilbert 
equations (LLGEs):

∂M
∂t

(t, x) = λ1M(t, x) × H(t, x) − λ2M(t, x) × (M(t, x) × H(t, x)), (1.1)

where × is the vector cross product in R3 and H is the so-called effective field, which is the 
negative of the gradient (with respect to M) of the total magnetic energy functional E , which 
is the sum of the anisotropy energy, exchange energy and electronic energy, see Visintin [63]. 
There are evidences that a large part of the mathematical difficulty of the problem seems to stem 
from the exchange energy. In such situation, when the energy functional consists of the exchange 
energy only, E = 1

2

∫
D

|∇M(x)|2 dx, we have H = �M and we obtain the following version of 
the LLGEs:⎧⎪⎨
⎪⎩

∂M
∂t

(t, x) = λ1M(t, x) × �M(t, x) − λ2M(t, x) × (M(t, x) × �M(t, x)), t > 0, x ∈ D,
∂M
∂n

(t, x) = 0, t > 0, x ∈ ∂D,

M(0, x) = M0(x), x ∈ D.

(1.2)

Here M : [0, T ] × D → S
2 denote the magnetism of a ferromagnetic material, where S2 repre-

sents the two dimensional unit sphere in R3, with the assumption that the material is saturated at 
the initial time, i.e.

|M0(x)|R3 = 1 for a.e. x ∈ D. (1.3)

The parameters λ1 �= 0, λ2 > 0 are constants. n is the outer unit normal vector at the boundary 
∂D.

1.1. Stochastic Landau–Lifshitz–Gilbert equations

It is known in the literature that the stationary solutions of equations (1.2) corresponding 
to the equilibrium states of the ferromagnet are not unique in general, and depend upon the 
dimensionality of the domain. An important physical question in the theory of ferromagnetism 
is the description of phase transitions between different equilibrium states induced by thermal 
fluctuations of the effective field H . In order to understand this, the LLGEs need to be suitably 
modified in order to incorporate random fluctuations of the field H into the dynamics of the 
magnetization M and to describe noise-induced transitions between equilibrium states of the 
ferromagnet. A simple way to incorporate the noise into the LLGEs, see e.g. Brzeźniak et al. [18]
is to perturb the effective field by a Gaussian noise, that is to replace H in (1.1) (or �M in (1.2)) 
by H +η (resp. by �M +η), where informally η is a space-time white noise. It is noteworthy, see 
for e.g. [45], [11], [34], [18] etc., that the main technical issue rests in the fact that the noise must 



JID:YJDEQ AID:9719 /FLA [m1+; v1.295; Prn:31/01/2019; 14:57] P.3 (1-50)
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preserve the invariance property under coordinate transformation and this plays an important 
role in preserving the non-convex constraint condition (1.3). Moreover, following [46] and [34], 
assumption on the smallness of λ2 in physical problems justifies the negligance of noise in the 
second term on the right hand side of (1.2). Thus the stochastic version of (1.2) become

⎧⎪⎨
⎪⎩

dM(t) = (λ1M(t) × �M(t) − λ2M(t) × (M(t) × �M(t))) dt + (M(t) × g) ◦ dW(t),
∂M
∂n

(t, x) = 0, on (0,∞) × ∂D,

M(0, x) = M0(x), on D,

(1.4)

where ◦ dW(t) stands for the Stratonovich differential, W is a real-valued Wiener process, g :
D → R

3 is a given function with certain regularity.
If both the exchange and anisotropy energies are present, the total energy E of the LLGEs 

takes the form

E(M) = Ean(M) + Eex(M) =
∫
D

(
ψ(M(x)) + 1

2
|∇M(x)|2

)
dx

where Ean(M) := ∫
D

ψ(M(x))dx stands for the anisotropy energy and Eex(M) :=∫
D

|∇M(x)|2dx stands for the exchange energy, the effective field H takes the form �M −
∇ψ(M).

Brzeźniak et al. in [18] have introduced the Gaussian noise with ψ = 0 into three dimensional 
bounded domain for LLGEs in the Stratonovich sense, and proved existence of weak martingale 
solutions taking values in a sphere S2. In recent years, Brzeźniak and Li in [20] have general-
ized the results with non-zero anisotropy energy and multidimensional noise. Finite dimensional 
analysis of this kind has been studied in [46], [48]. In [17], Brzeźniak et al. have considered the 
one-dimensional situation and prove the large deviations principle for small noise asymptotic of 
solutions to the SLLGEs, and the noise by 

√
εdW(t). The main ingredients of their proof are 

the pathwise uniqueness in one dimension, maximal regularity property of the solution and weak 
convergence techniques. In this context it is worth mentioning that the first two authors of this 
paper, in [21–23], have initiated studies on phase transition between different equilibrium states 
under the effect of random fluctuations of Lévy or jump type in the Marcus canonical form. To 
be little more precise, they have proved existence of weak martingale solution for SLLGEs in 
three dimensions perturbed by jump noise in the Marcus canonical form with non-zero exchange 
energy only, see [21], and with non-zero anisotropy energy, see [22] (see also [19] and [24] for 
related works by the authors), whereas, in [23], the authors have established large deviations 
principle for small noise asymptotic of solutions for a one-dimensional problem.

In this context, we now mention certain significant numerical studies of SLLGEs. [7] proposes 
a convergent finite element approximation to prove the long-time dynamics of both the finite and 
the infinite ensembles of ferromagnetic spins with space time white noise. [8] constructs a fully 
discrete finite-element-based discretization of SLLGEs whose solutions approximate weak mar-
tingale solutions of SLLGEs for vanishing discretization parameters, see [9] also. The authors of 
the paper [36] have reformulated SLLGEs into a partial differential equation (PDE), but with-
out Itô terms, to obtain time-differentiable solutions. They have employed the θ -linear scheme 
for the numerical solution of the transformed equation. In our present paper, we have adopted 
some techniques from [36] to obtain the solvability of the time dependent transformed PDEs. 
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Another linear finite element scheme to solve the SLLGEs has been proposed in [2] to announce 
a convergent time semi-discrete scheme to work with the Itô form. The last paper differs from 
all previous papers as it deals with the LLGEs in the so called Gilbert form, see [35] and [3] for 
some related deterministic results, and with an infinite dimensional noise (correlated in space).

1.2. Problem description

For the sake of reader’s convenience, let us fix some notations before we describe the problem. 
For a domain D, we will use the notation Lp for the space Lp(D; R3), Wm,p for the Sobolev 
space Wm,p(D; R3), and so on. We will often write Hm instead of Wm,2.

In this paper we consider the case d = 1 and we assume that D to be a bounded open interval in 
R. In particular, we take D = (0, 1). The main reason for considering a one-dimensional problem 
is the availability of pathwise uniqueness and maximal regularity properties, which seem to be 
absent in multidimensional domain (see Subsection 1.5). The SLLGEs in consideration in this 
paper is of the form

dM =
(
λ1M × Mxx − λ2M × (M × Mxx)

)
dt + (M × g) ◦ dW(t), in (0, T ) × D,

(1.5)

Mx(t,0) = 0 = Mx(t,1), ∀ t ∈ (0, T ), (1.6)

M(0, x) = M0(x), ∀x ∈ D, (1.7)

where g : D → R
3 is a given function such that g ∈ W

2,∞, T > 0 is fixed and W(t), t ∈ [0, T ]
is the standard real-valued Brownian motion defined on a complete probability space (	, F, P), 
where Ft = σ {W(s), s ∈ [0, t]} and ◦ dW(t) stands for the Stratonovich differential.

One of the most fundamental questions related to problems similar to the above is the question 
about robustness, i.e., whether the solutions depend in a continuous way of the coefficients (the 
Wiener process in our case). Let us describe our approach to this question, see also [13], [27] and 
others.

Let Wn(t), t ∈ [0, T ], n ∈ N be a sequence of pathwise continuously differentiable stochastic 
processes on (	, F, P) such that

Wn(t,ω) → W(t,ω) uniformly in t ∈ [0, T ], a.e. on 	. (1.8)

Let Fn
t = σ {Wn(s) : s ∈ [0, t]}.

Let us now consider the following stochastic system:

dMn =
(
λ1Mn × (Mn)xx − λ2Mn ×

(
Mn × (Mn)xx

))
dt + (Mn × g)dWn(t), in (0, T ) × D,

(1.9)

(Mn)x(t,0) = 0 = (Mn)x(t,1) ∀ t ∈ (0, T ), (1.10)

Mn(0, x) = M0(x), ∀x ∈ D. (1.11)

Our goal is to prove (1.5)–(1.7) has a unique strong solution in some suitable space which is 
a limit as n → ∞ of the solutions of sequence of an approximated system (1.9)–(1.11). Con-
vergence results of this kind are well known in the literature, see [13] and references therein. 
Although the motivation of [13] differs from the present paper as former one deals with the linear 
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equations. We use ideas from [17] and [36] to prove that the time dependent PDEs (1.13)–(1.15)
are solvable and the solutions depend continuously with respect to the approximation. The tech-
nique is based on Wong–Zakai approximation. It is worth mentioning that the higher order 
non-linear terms and complicated non-linearity structure of F in the transformed equation (1.13)
are hard to tackle.

1.3. Wong–Zakai approximation for related problems

Let us mention here some of the growing literature rationalized to the establishment of Wong–
Zakai approximation of stochastic evolution type equations. Starting from the celebrated work 
of Wong and Zakai [66], which involved piecewise linear approximations of one-dimensional 
Wiener process, Clark in his Phd thesis [25], see also [26], McShane in [54], Stroock–Varadhan 
in [60] had expanded the area by dealing with multi-dimensional Wiener process. For a quick 
survey, see Doss [31], Malliavin [52,53], Sussman [59], Ikeda–Watanabe [44], Elworthy [33], 
Moulinier [55], Bismut [10], to name a few. Since then the result has been generalised in many 
directions and in varied areas. One should also mention the papers of Brzeźniak and Carroll [14], 
Brzeźniak, Capinski and Flandoli [13], Brzeźniak and Flandoli [16], Gyöngy [37], Gyöngy and 
Pröhle [38], Gyöngy and Shmatkov [39], Nowak [56], Tessitore and Zabczyk [64], Hausenblas 
[40], Dawidowicz and Twardowska [28].

On a related note, motivated by the SLLGEs, Hocquet [41] studied the well-posedness of the 
two-dimensional Stochastic Harmonic Map flow (similar to the case when λ1 = 0 in LLGEs) 
and proved a stochastic counterpart of the so-called “Struwe solutions” [61] of the deterministic 
model. On another related note, the rough paths theory (see for e.g. the seminal paper by Lyons 
[50] and the recent monograph by Lyons et al. [51]) is intimately related to Wong–Zakai results as 
it essentially allows to construct solutions as limits of Wong–Zakai type approximations. In this 
connection, a few recent results, e.g. Bailleul and Gubinelli [6], Deya, Gubinelli, Hofmanová and 
Tindel [29], Hocquet, Hofmanová [42], Hofmanová, Leahy and Nilssen [43], on various rough 
PDEs and construction of their weak solutions using energy methods (similarly to the paper 
under consideration) are worth mentioning. See Section 1.5 for further discussion.

1.4. Contribution of the paper and the main ideas

By introducing a suitable transformation, we define a new process m from M by:

m(t, x) = e−W(t)GM(t, x), ∀t ∈ [0, T ], a.e.x ∈ D, (1.12)

where G : L2 → L
2 is bounded linear map which is also skew symmetric (see Lemma 2.2). Ex-

ploiting properties of the linear map G, we observe that (see Goldys et al. [36] for the derivation), 
the SLLGEs (1.5)–(1.7) can be converted to highly non-linear time dependent partial differen-
tial equation (PDE) (called often the robust equation) with random coefficients (but without Itô 
terms):

∂m
∂t

= λ1(m × mxx) − λ2m × (m × mxx) + F(t,m), in (0, T ) × D, (1.13)

mx(t,0) = 0 = mx(t,1), ∀ t ∈ (0, T ), (1.14)

m(0, x) = m0(x), ∀x ∈ D, (1.15)
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where

F(t,m) = λ1m × C̃(W(t),m(t, ·)) − λ2m ×
(

m × C̃(W(t),m(t, ·))
)
, (1.16)

C̃(W(t),m(t, ·)) = e−W(t)G
(

sin(W(t))Cm +
[
1 − cos(W(t))

]
(GCm + CGm)

)
,

(1.17)

Cm = m × gxx + 2mx × gx, (1.18)

and Gm = m × g. (1.19)

By introducing a regular approximation of the Brownian Motion, see (1.8), it is natural to 
consider a family of time dependent equations (1.9)–(1.11) containing the time derivative of 
these approximations. These equations are, by means of a similar exponential transformation 
(1.12), converted into equations (2.15)–(2.17), which turn out to be, as one would usually expect, 
approximations of the PDEs (1.13)–(1.15). However, this verification is not straightforward and 
involves technicality and hard work. It is worth to emphasise here that this work is the first result 
of this kind for PDEs with constraints, and we are hopeful that similar ideas may be borrowed to 
other constraint PDEs.

Using the Faedo–Galerkin approximation, energy and compactness methods, the existence of 
solutions mn and m for the approximated system (i.e., (2.15)–(2.17)) and the transformed system 
(i.e. (1.13)–(1.15)) have been proved respectively in Theorem 3.2 and Theorem 4.1. Pathwise 
uniqueness of the corresponding solutions follow from Theorem 3.16. Moreover, these evolution 
PDEs (1.13)–(1.15) have solutions which are differentiable with respect to time variable. We then 
prove in Theorem 5.1, that the solution of (2.15)–(2.17) converge to the solution of (1.13)–(1.15)
in the natural topology of L∞(0, T ; L2). Taking into account the ultra-contractivity property of 

the heat semigroup, i.e. the semigroup generated by A := − d2

dx2 in the space L2 and owing to 

the special structure of the equation, we see in Theorem 6.1, that both the solutions mn and m
have the so called maximal regularity, i.e. belong to the space L∞(0, T ; H1) ∩ L2(0, T ; D(A)). 
Furthermore, in Theorem 6.4, the convergence of mn to m have been established in the maximal 
regularity space. In this respect, we have used some ideas from a paper [17] of the first named 
author about the Large Deviation Principle (LDP) for the SLLGEs confirming thus a belief that 
there is a deeper relationship between the LDP and the Wong–Zakai approximation.

In Appendix C we present some comments about our proof and possible, not yet verified, 
links with the theory of quasilinear parabolic equations.

Referring here to that discussion of a possible use of the quasilinear structure of equation 
(C.3), we just say that it might be possible to prove Theorem 6.4 exploiting the maximal reg-
ularity and the principle of continuous dependence of solutions on coefficients, see e.g. [12]. 
But even in the linear case studied in [13], where, the variational theory of evolution equations 
and semigroup theory are used to study the robust equation (1.13), this has not been so easy to 
achieve, see also [27]. We hope that this matter will be further investigated.

Finally, again using the reverse transformation,

M(t, x) = eW(t)Gm(t, x), Mn(t, x) = eWn(t)Gmn(t, x), ∀t ∈ [0, T ], a.e.x ∈ D,

one can observe that the SLLGEs and its corresponding approximated system have unique solu-
tions M and Mn in the maximal regular space and in addition, the convergence of Mn to M has 
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been proved in the maximal regular space. This is the main result of this paper, which has been 
proved in Theorem 7.1.

We now briefly describe the content of the paper. We start with Section 2, containing some 
auxiliary facts that will be useful in the later course of analysis. In addition, by introducing a 
suitable transformation, we convert the SLLGEs to a highly nonlinear time dependent partial 
differential equation with random coefficients. In Section 3, we prove the existence of a path-
wise unique solution stated in Theorem 3.2 and Theorem 3.16. We devote Section 4 to state the 
corresponding existence and uniqueness theorem for the approximated system. In Section 5, we 
first prove the convergence result in the space L∞(0, T ; L2) and then obtain the progressively 
measurability of both the approximated and limiting processes with respect to the corresponding 
filtrations. In Section 6, we present Theorem 6.1 and Theorem 6.4 which contains the proof of 
solution in maximal regular space and the convergence result in this space. We return to the study 
of SLLGEs and prove existence of strong solution and its corresponding convergence result in 
the maximal regular space in Section 7. Finally, we have listed a basic result and some vector 
algebraic identities in the Appendix.

1.5. Remarks and open questions

(1) We believe that the results from this paper can be generalised to the case when the noise 
coefficient in equation (1.6) is not linear with respect to M. For instance, if the smallness of 
λ2 is not assumed, then the noise term takes the following form

[
M × (M × g1) + M × g2

]
◦ dW(t).

It is straightforward to see that transformation like (1.12) will not work for noises with 
nonlinear coefficient. Therefore the difficulty lies in identifying a suitable transformation for 
this kind of noise, which is unknown till date. We believe that following the work [59] by 
Sussman, this may be achieved for real-valued Brownian Motion, and this work is under 
investigation by the authors.

(2) Is it possible to extend our technique, which is based on Wong–Zakai approximation, to a 
more general setting where transformation (1.12) is not applicable, i.e. when the Wiener 
process is no longer one-dimensional (and nor the corresponding vector fields commute)? 
For instance, when the noise term is of the form

M × (M × g1) ◦ dW1(t) + (M × g2) ◦ dW2(t)

where W1 and W2 are two independent Wiener processes.
(3) Can the rough path theory of Terry Lyons be of help with respect to the two previous ques-

tions?
(4) Is the Wong–Zakai theorem true also for stochastic LLGEs in multidimensional domains 

where there is, at least so far, no uniqueness result?
(5) Is the Wong–Zakai theorem true also for stochastic LLGEs (in the Marcus form) driven by 

Lévy processes?



JID:YJDEQ AID:9719 /FLA [m1+; v1.295; Prn:31/01/2019; 14:57] P.8 (1-50)
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2. The auxiliary equations

In this section, we provide some basic results on the operators and the spaces required and in 
the next subsection, following [36] we define new processes m and mn using the operator G and 
the regular approximation of the Brownian motion respectively.

2.1. Preliminaries

We define the Laplacian with the Neumann boundary conditions by

{
D(A) := {m ∈H

2 : mx(0) = mx(1) = 0},
Am := −�m = −mxx, m ∈ D(A).

(2.1)

We note that the operator A is self-adjoint and nonnegative in L2. Define A1 := I + A. We 
note that V := Dom(A1/2

1 ) when endowed with the graph norm coincides with H1. Also the 
operator A−1

1 is compact. Later on we will use that V ↪→L
2 ↪→ V′ is a Gelfand triple.

For any real number β ≥ 0, we write Xβ for the domain of the fractional power operator 
D(Aβ

1 ) endowed with the norm |x|Xβ := |Aβ
1 x| and X−β denotes the dual space of Xβ so that 

Xβ ⊂ L2 ⊂ X−β is a Gelfand triple. Note that for β ∈ [0, 34 ),

Xβ =H
2β .

Now we specify the following, well known, interpolation inequality which will be useful in 
the course of analysis in later subsections.

|u|2
L∞ ≤ k2|u|L2 |u|H1 , ∀u ∈ H

1, (2.2)

where the optimal value of the constant k is

k = 2 max
(

1,
1√|D|

)
.

We recall a simple result from [17].

Lemma 2.1. Let u be any element of H1 such that

|u(x)|R3 = 1 ∀ x ∈ D.

Then in (H1)′, we have

u × (u × uxx) = −|ux |2R3u − uxx. (2.3)

Lemma 2.2. Assume that g ∈ L
∞. Let G : L2 → L

2 be a map defined by

[Gu](x) = u(x) × g(x), ∀u ∈ L
2, x ∈ D.

Then G is a well defined and bounded linear map. Further, G∗ = −G.
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For proof see Lemma 3.1 of Goldys et al. [36].

2.2. New processes m and mn

Following the discussion in Section 1.4, we recall that by using the operator G, we can define 
a new process m from M by:

m(t, x) = e−W(t)GM(t, x), ∀t ∈ [0, T ], a.e.x ∈ D.

Let g ∈ W
2,∞. Using the transformation (1.12), we observe that if M is a solution of (1.5)–(1.7), 

then m is a solution of (1.13)–(1.15) and vice versa. Note that the condition (1.3) about the initial 
data M0 is equivalent to an analogous one for m0, i.e.

|m0(x)|R3 = 1 for a.e. x ∈ D. (2.4)

Note that, one could have also considered the transformation (1.12) for all t ≥ 0, rather than 
t ∈ [0, T ], with a fixed T > 0. Moreover, as one can easily prove |[etG(u)](x)|R3 = |u(x)|R3 for 
a.a. x ∈ D, for all t ∈ [0, T ], we see that the following saturation conditions for M and m are 
equivalent:

|M(t, x)|R3 = 1 for a.e. x ∈ D, for all t ∈ [0, T ],
|m(t, x)|R3 = 1 for a.e. x ∈ D, for all t ∈ [0, T ].

It is worth mentioning here that the equivalence of the (weak) solutions to the original and 
the transformed system has been proved in Section 4 of [36]. In fact, this idea has been exploited 
later in our main result, Theorem 7.1.

For convenience of the reader, we repeat below some of the basic algebraic calculations from 
[36]. Using (1.18)–(1.19) we have

GCm + CGm = (Cm × g) + (Gm × gxx) + (Gm)x × gx

= (m × gxx) × g + 2(mx × gx) × g + (m × g) × gxx + 2(mx × g) × gx

+ (m × g) × gxx + 2(mx × g) × gx + 2(m × gx) × gx

= (m × gxx) × g + (m × g) × gxx + 2
(
(mx × gx) × g + (mx × g) × gx

+ (m × gx) × gx

)
. (2.5)

Hence, substituting (2.5) in (1.17), (1.16) becomes:

F(t,m) = λ1m × e−W(t)G
{

sin(W(t))
(

m × gxx + 2mx × gx

)
+ [1 − cos(W(t))]

(
(m × gxx) × g + (m × g) × gxx + 2

(
(mx × gx) × g

+ (mx × g) × gx + (m × gx) × gx

))}
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− λ2m ×
(

m × e−W(t)G
{

sin(W(t))
(

m × gxx + 2mx × gx

)
+ [1 − cos(W(t))]

(
(m × gxx) × g + (m × g) × gxx + 2

(
(mx × gx) × g

+ (mx × g) × gx + (m × gx) × gx

))})
. (2.6)

Thus in simplified form, we can rewrite F as:

F(t,m) = λ1m × F̂ (t,m) − λ2m × (m × F̂ (t,m)), (2.7)

where

F̂ (t,m) = e−W(t)G sin(W(t))
(

m × gxx + 2mx × gx

)
+ e−W(t)G[1 − cos(W(t))]

(
(m × gxx) × g + (m × g) × gxx + 2

(
(mx × gx)

× g + (mx × g) × gx + (m × gx) × gx

))
:= S(W)S(m) + C(W)C(m), (2.8)

and

S(W) := e−W(t)G sin(W(t)), (2.9)

S(m) := m × gxx + 2mx × gx, (2.10)

C(W) := e−W(t)G[1 − cos(W(t))], (2.11)

C(m) := (m × gxx) × g + (m × g) × gxx + 2
(
(mx × gx) × g

+ (mx × g) × gx + (m × gx) × gx

)
. (2.12)

We note that S and C are linear in m.

Remark 2.3. We note that G : L2 → L
2 is bounded linear map which is also skew symmetric 

(see Lemma 2.2). Thus, {e−sG}s∈R is uniformly continuous group of unitary linear maps on L2. 
It follows (see Corollary 1.4 (d) and Corollary 4.4 in [57]) that the map R � s �→ e−sG(1 − cos s)

is of C∞-class. In particular, it is Lipschitz on bounded sets, i.e., for every bounded set B , there 
exists a positive constant L1 (depending on B) such that

‖e−sG(1 − cos s) − e−rG(1 − cos r)‖L(L2) ≤ L1|s − r|, s, r ∈ B,

where L(L2) denotes the space of all bounded linear operators from L2 to L2. This implies that 
C is locally Lipschitz, i.e.,

‖C(W2) − C(W1)‖L(L2) ≤ L1 |W2(t) − W1(t)|. (2.13)
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In similar manner we can prove that S is locally Lipschitz, i.e., there exists a positive constant 
L2 (depending on B)

‖S(W2) − S(W1)‖L(L2) ≤ L2 |W2(t) − W1(t)|. (2.14)

Before moving to next subsection, let us consider the corresponding approximated system which 
is similar to (1.13)–(1.15), where the Brownian motion W is replaced by the regular approxi-
mation Wn of W , i.e. we will consider the Wong–Zakai approximated system of (1.13)–(1.15)
which is:

∂mn

∂t
= λ1(mn × mn

xx) − λ2mn × (mn × mn
xx) + Fn(t,mn), (2.15)

mn
x(t,0) = 0 = mn

x(t,1), (2.16)

mn(0) = m0, (2.17)

where

Fn(t,mn) = λ1mn × C̃(Wn(t),mn(t, ·)) − λ2mn × (mn × C̃(Wn(t),mn(t, ·))), (2.18)

where C̃ is given in (1.17).

3. Existence and uniqueness of a solution to problem (1.13)–(1.15)

In this section, we state definition of a weak solution to (1.13)–(1.15) and prove existence 
theorem followed by pathwise uniqueness theorem. The construction of the solution is based on 
the Faedo–Galerkin approximation, energy and compactness methods.

Definition 3.1. (Weak solution) Let T > 0 be fixed and W be any continuous function on [0, T ]. 
A function m ∈ L2(0, T ; H1) is said to be a weak solution of the system (1.13)–(1.15) if the 
following hold:

1. supt∈[0,T ] |m(t)|H1 < ∞;
2. For almost every t ∈ [0, ∞), m(t) × mxx(t) ∈ L

2 we have

T∫
0

|m(t) × mxx(t)|2L2dt < ∞; (3.1)

3. m satisfies the following saturation condition

|m(t, x)|R3 = 1 for a.e. x ∈ D, for all t ∈ [0, T ]; (3.2)
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4. For all φ ∈H
1,

〈m(t), φ〉L2 = 〈m(0),φ〉L2 − λ1

t∫
0

∫
D

〈mx(s, x),φx(x) × m(s, x)〉R3dxds

− λ2

t∫
0

∫
D

〈mx(s, x), (m × φ)x(s, x) × m(s, x)〉R3dxds

+
t∫

0

∫
D

〈F(s,m(s, x)),φ(x)〉R3dxds (3.3)

holds for all t ∈ [0, T ].

We now introduce the following notation for the set of all R3-valued functions defined on 
the domain D which belong to the Sobolev space H1 := H 1(D; R3) and satisfy the saturation 
condition (3.2) (or (1.3)):

H
1(D;S2) :=

{
m ∈ H

1 such that |m(x)|R3 = 1 for a.a. x ∈ D
}
. (3.4)

In other words, H1(D; S2) is the set of all functions belonging to the Sobolev space H1 whose 
values are in the sphere. Since D is one-dimensional, H1 is embedded in C(D; R3), the ‘a.a.’ 
condition in (3.4) can be replaced by ‘all’.

Theorem 3.2. Let m0 ∈ H
1(D; S2). Then there exists a weak solution m to the system 

(1.13)–(1.15) satisfying the following:

1. There exists a positive constant C, depending on T , λ1, λ2, |m0|H1 , such that

sup
t∈[0,T ]

|m(t)|H1 ≤ C. (3.5)

2. For almost every t ∈ [0, ∞), m(t) ×mxx(t) ∈ L
2 and for every T > 0, there exists a positive 

constant C, depending on T , λ1, λ2, |m0|H1 , such that we have

T∫
0

|m(t) × mxx(t)|2L2dt ≤ C. (3.6)

Remark 3.3. A direct consequence of the above theorem is that the solution m(t) is weakly con-
tinuous with values in H1. In fact, we will prove later in Proposition 6.3 that m ∈ C([0, T ]; H1).

Remark 3.4. A different approach to prove Theorem 3.2 would be via the finite element approx-
imation, see [36]. However, since the formulation of our result is different that the one in [36], 
see Proposition 6.7 therein, for the sake of reader’s convenience and completeness, we provide 
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a proof here, though by a different but classical approach, namely the Faedo–Galerkin approx-
imation. Another important reason for including the proof is that in our setting, the function 
t �→ W(t) is only assumed to be a continuous function, without any Hölder regularity. This is 
important as it should make possible to use the current approach in order to study the SLLGEs 
driven by a one dimensional fractional Brownian Motion, see e.g. Duncan et al. [32].

Remark 3.5. The paper [17] deals with a more general SLLGEs in the presence of anisotropy 
energy in the case when the space dimension d = 1 and the authors established the existence, 
the uniqueness, the regularity of the solutions. Moreover they also proved the large deviation 
principle. However, the results from [17] can not be directly applied here in order to prove our 
Theorem 3.2 due to two facts. Firstly, here we do not work with the SLLGEs and rather we work 
with the transformed quasilinear PDE (1.13)–(1.15), which has a very involved structure of the 
nonlinear term denoted by F ; secondly, as mentioned in Remark 3.4, here W is not simply a 
trajectory of a Brownian motion but rather any real-valued continuous function. On the other 
hand, in the present paper we use some ideas from [17], see the proof of Theorems 6.1, and 
especially the proof of Theorem 6.4.

To prove this theorem, we first construct the Faedo–Galerkin solution.

3.1. Faedo–Galerkin approximation and energy estimate for the approximating sequence

For each k ∈N, let L2
k be the linear span of the first k elements of the orthonormal basis of L2

composed of eigenvectors of the operator A defined earlier and let

Pk : L2 → L
2
k (3.7)

be the corresponding orthogonal projection. Define the maps

Q1
k : L2

k � mk �→ Pk(mk × (mk)xx) ∈ L
2
k,

Q2
k : L2

k � mk �→ Pk(mk × (mk × (mk)xx)) ∈ L
2
k,

Q3
k : L2

k � mk �→ Pk(F (t,mk)) ∈ L
2
k.

For each k ∈ N, let mk : [0, T ] × 	 → L
2
k be a solution of the following ordinary differential 

equation on L2
k :

dmk

dt
= λ1Q

1
k − λ2Q

2
k + Q3

k, (3.8)

mk(0) = Pkm(0), (3.9)

(mk)x(t,0) = (mk)x(t,1) = 0,∀ t ∈ (0, T ). (3.10)

Lemma 3.6. The maps Qi
k; i = 1, 2, 3 are Lipschitz on balls and for all mk ∈ L

2
k , and i = 1, 2, 3,

〈Qi
k(mk),mk〉L2 = 0.
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Proof. Qi
k for i = 1, 2 are polynomials in mk variable, hence continuously differentiable func-

tions. Therefore they are Lipschitz on balls in L2
k . Q3

k is polynomial in mk with bounded 
coefficients, hence continuously differentiable with respect to mk. Therefore it is Lipschitz on 
balls in mk variable on L2

k .
Since mk ∈ L

2
k , mk = Pkmk ∈ L

2
k . Now using the identity 〈a×b, b〉R3 = 0 and the self adjoint 

property of Pk , we have

〈Q1
k(mk),mk〉L2 = 〈Pk(mk × (mk)xx),mk〉L2 = 〈mk × (mk)xx,Pkmk〉L2

= 〈mk × (mk)xx,mk〉L2 =
∫
D

〈mk(x) × (mk)xx(x),mk(x)〉R3dx = 0.

In similar way we can prove 〈Qi
k(mk), mk〉L2 = 0 for i = 2, 3. �

We note that from Lemma 3.6 the coefficients Qi
k, i = 1, 2, 3 are locally Lipschitz on L2

k . 
Hence by the deterministic version of Theorem 3.1 of Albeverio et al. [1], (3.8)–(3.10) has unique 
global strong solution in L2

k .

Lemma 3.7. Let mk ∈ L
2
k be such that mk satisfies (3.8)–(3.10). Then |mk(t)|L2 = |Pkm(0)|L2 , 

for all t ∈ [0, T ].

Proof. Taking inner product of (3.8) with mk and using Lemma 3.6 we get

1

2

d

dt
|mk(t)|2L2 = 〈Q1

k(mk),mk〉L2 + 〈Q2
k(mk),mk〉L2 + 〈Q3

k(mk),mk〉L2 = 0,

and this implies |mk(t)|L2 = |Pkm(0)|L2 , for all t ∈ [0, T ]. �
Lemma 3.8. For all mk ∈ L

2
k , such that mk satisfies (3.8)–(3.10), we have the following esti-

mates:

1.

〈Q1
k(mk), (mk)xx〉L2 = 0, 〈Q2

k(mk), (mk)xx〉L2 = −|mk × (mk)xx |2L2 . (3.11)

2. For every ε > 0 there exists Cε > 0 such that

|〈Q3
k(mk), (mk)xx〉L2 | ≤ ε|mk × (mk)xx |2L2 + Cε(|(mk)x |2L2 + 1). (3.12)

Proof. Both the equalities in (3.11) can be followed from Lemma 3.3 of [18]. Since g ∈ W2,∞, 
using vector product 〈a × b, a〉R3 = 0, 〈a × b, c〉R3 = 〈b × c, a〉R3 = 〈c × a, b〉R3 , Young’s in-
equality and from (2.6), we have

|〈Q3
k(mk), (mk)xx〉L2 | = |〈PkF(t,mk), (mk)xx〉L2 | = |〈F(t,mk), (mk)xx〉L2 |

=
∣∣∣λ1

∫ 〈
mk(x) × (mk(x))xx, F̂ (t,mk(x))

〉
R3

dx
D
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− λ2

∫
D

〈
mk(x) × (mk(x))xx,

(
mk(x) × F̂ (t,mk(x))

)〉
R3

dx

∣∣∣
=

∣∣∣λ1

〈
mk × (mk)xx, F̂ (t,mk)

〉
L2

− λ2

〈
mk × (mk)xx,

(
mk × F̂ (t,mk)

)〉
L2

∣∣∣
≤ |λ1|

{ ε

2|λ1| |mk × (mk)xx |2L2 + Cε|λ1||F̂ (t,mk)|2L2

}

+ |λ2|
{ ε

2|λ2| |mk × (mk)xx |2L2 + Cε|λ2||F̂ (t,mk)|2L2

}

≤ |λ1|
{ ε

2|λ1| |mk × (mk)xx |2L2 + Cε|λ1|
(

1 + |(mk)x |2L2

)}

+ |λ2|
{ ε

2|λ2| |mk × (mk)xx |2L2 + Cε|λ2||
(

1 + |(mk)x |2L2

)}

≤ ε|mk × (mk)xx |2L2 + Cε,λ1,λ2

(
1 + |(mk)x |2L2

)
. �

Lemma 3.9. Let mk be as before. Then there exists a positive constant C = C(T , λ1, λ2, |m0|H1)

such that for every k ∈N,

|mk|L∞(0,T ;H1) ≤ C; (3.13)

and |mk × (mk)xx |L2(0,T ;L2) ≤ C. (3.14)

Proof. Taking L2-inner product of (3.8) with (mk)xx , we get

−1

2

d

dt
|(mk)x(t)|2L2 = 〈Q1

k(mk), (mk)xx〉L2 + 〈Q2
k(mk), (mk)xx〉L2 + 〈Q3

k(mk), (mk)xx〉L2 .

Using Lemma 3.8 in the above equation, using part 2 of Lemma 3.8 with ε = λ2 and then inte-
grating over [0, t] we get,

|(mk)x(t)|2L2 + 2λ2

t∫
0

|mk(s) × (mk)xx(s)|2L2ds

= |(mk)x(0)|2
L2 − 2

t∫
0

〈Q3
k(mk(s)), (mk(s))xx〉L2ds

≤ |m(0)|2
H1 + λ2

t∫
0

|mk(s) × (mk)xx(s)|2L2ds + C

t∫
0

(1 + |(mk)x(s)|2L2)ds.

Hence we have

|(mk)x(t)|2L2 + λ2

t∫
0

|mk(s) × (mk)xx(s)|2L2ds ≤ |m(0)|2
H1 + C

t∫
0

(1 + |(mk)x(s)|2L2)ds.
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Now using Gronwall’s inequality, we have, for every T > 0,

sup
t∈[0,T ]

|mk(t)|H1 ≤ C(T ,λ2, |m0|H1), for each k, (3.15)

and

t∫
0

|mk(s) × (mk)xx(s)|2L2ds ≤ C(T ,λ2, |m0|H1) for each k. (3.16)

Hence (3.13) and (3.14) are obtained. �
Lemma 3.10. Let mk be as before. Then there exists a positive constant C = C(T , λ2, |m0|H1)

such that for every k ∈N and for every q ∈ [1, 2],

|mk|H 1(0,T ;Lq ) ≤ C. (3.17)

Proof. Using the embedding in one dimension H1 ↪→ L
r for any r ∈ [1, ∞], Hölder’s inequality 

with 1
q

= 1
2 + 1

r
for r ∈ [1, ∞] and Lemma 3.9, we get

|mk × (mk × (mk)xx)|2L2(0,T ;Lq )
=

T∫
0

|mk(t) × (mk(t) × (mk(t))xx)|2Lq dt

≤
T∫

0

|mk(t)|2Lr |mk(t) × (mk(t))xx |2L2dt ≤
(

sup
t∈[0,T ]

|mk(t)|2Lr

)( T∫
0

|mk(t) × (mk(t))xx |2L2dt
)

≤
(

sup
t∈[0,T ]

|mk(t)|2H1

)( T∫
0

|mk(t) × (mk(t))xx |2L2dt
)

≤ C. (3.18)

Now 1
q

= 1
2 + 1

r
for r ∈ [1, ∞] gives q ∈ [1, 2], thus we have

∣∣∣Pk

(
mk × (mk × (mk)xx)

)
− mk × (mk × (mk)xx)

∣∣∣
Lq

≤ C

∣∣∣Pk

(
mk × (mk × (mk)xx)

)
− mk × (mk × (mk)xx)

∣∣∣
L2

→ 0 as k → ∞.

Thus by Dominated Convergence Theorem, we have

∣∣∣Pk

(
mk × (mk × (mk)xx)

)
− mk × (mk × (mk)xx)

∣∣∣
L2(0,T ;Lq )

→ 0 as k → ∞. (3.19)
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Hence using (3.18) and (3.19) we have∣∣∣Pk

(
mk × (mk × (mk)xx)

)∣∣∣
L2(0,T ;Lq )

≤ |Pk

(
mk × (mk × (mk)xx)

)
− mk × (mk × (mk)xx)

∣∣∣
L2(0,T ;Lq )

+
∣∣∣mk × (mk × (mk)xx)

∣∣∣
L2(0,T ;Lq )

≤ C. (3.20)

Similarly we can prove that 
∣∣∣Pk

(
mk × (mk)xx

)∣∣∣
L2(0,T ;Lq )

≤ C. Now for q ∈ [1, 2], we have

|F(t,mk)|2L2(0,T ;Lq )
≤

T∫
0

|F(t,mk(t))|2L2dt ≤
T∫

0

(1 + |mk(t)|2L2)dt

≤ T + T sup
t∈[0,T ]

|mk(t)|2H1 ≤ C. (3.21)

Using similar techniques as in (3.19) and (3.20) we have from (3.21),∣∣∣PkF(t,mk)

∣∣∣
L2(0,T ;Lq )

≤ C.

Therefore, by (3.8), we have

∣∣∣∣dmk

dt

∣∣∣∣
L2(0,T ;Lq )

≤ |λ1|
∣∣∣Pk(mk × (mk)xx)

∣∣∣
L2(0,T ;Lq )

+
∣∣∣PkF(t,mk)

∣∣∣
L2(0,T ;Lq )

+ |λ2|
∣∣∣Pk

(
mk × (mk × (mk)xx)

)∣∣∣
L2(0,T ;Lq )

≤ C.

Together with (3.13) we finally conclude that there exists a constant C > 0 such that

|mk|H 1(0,T ;Lq ) ≤ |mk|L2(0,T ;Lq ) +
∣∣∣∣dmk

dt

∣∣∣∣
L2(0,T ;Lq )

≤ C.

This completes the proof. �
3.1.1. Existence of weak solution

Using Banach Alaoglu Theorem and (3.13) and (3.17) we have the following:
there exist m, M, F such that for some subsequence mk (still denoted by the same) and for every 
q ∈ [1, 2],

(i) mk → m weakly star in L∞(0, T ;H1) and weakly in H 1(0, T ;Lq), (3.22)

(ii) mk × (mk)xx →M weakly in L2(0, T ;L2), and (3.23)

(iii) F (t,mk) → F weakly in L2(0, T ;L2). (3.24)



JID:YJDEQ AID:9719 /FLA [m1+; v1.295; Prn:31/01/2019; 14:57] P.18 (1-50)
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Lemma 3.11. For 2 ≤ r < ∞, limk→∞ |mk − m|Lr (Q) = 0, where Q := [0, T ] × D.

Proof. By compact embedding H1 ↪→ L
p for 1 ≤ p ≤ ∞. Let X0 = H

1, X = L
p, X1 = L

q

for 1 < q ≤ 2. We note that X0 and X1 are reflexive. So, X0 ↪→ X ↪→ X1 and X0 ↪→ X is 

compact for 1 < q ≤ 2, q ≤ p ≤ ∞. Let α0 = r > 1, α2 = 2 and Y = {v ∈ Lr (0, T ; H1), 
dv

dt
∈

Lr (0, T ; Lq)}. Then by Theorem 3.2.1 of Temam [62], for T < ∞, the embedding Y ↪→
Lr (0, T ; Lp) is compact. Take in particular, r = p ≥ q , we have Y ↪→ Lr (Q) is compact. As 
H

1 ↪→ L
r continuously, we have for r ≥ q ,

|mk|L∞(0,T ;Lr ) ≤ C, ∀ k ≥ 1. (3.25)

By (3.25) and (3.17) we have, |mk|Y ≤ C, ∀ k ≥ 1. Hence {mk}k≥1 has a convergent subse-
quence (still denoted by the same) in Lr (Q). Let us assume that the limit be m̃, i.e., mk → m̃
in Lr (Q). We will show that m = m̃ in Lr (Q). Now we need to assume r ≥ 2 ≥ q ≥ 1. As 
Lr (Q) ↪→ L2(Q) continuously, mk → m̃ in L2(Q). So,

|m − m̃|2L2(Q)
= 〈m − m̃,m − m̃〉L2(Q) = lim

k→∞〈m − mk,m − m̃〉L2(Q)

= lim
k→∞

T∫
0

∫
D

〈m(t, x) − mk(t, x),m(t, x) − m̃(t, x)〉R3dxdt

= lim
k→∞ L∞(0,T ;H−1)〈m − mk,m − m̃〉L1(0,T ;H−1) = 0.

So m = m̃ a.e. in Q. Hence m = m̃ in Lr (Q). Thus limk→∞ |mk − m|Lr (Q) = 0 for r ≥ 2. �
Lemma 3.12. For almost every t ∈ [0, T ], φ ∈ C∞

c (D),

∫
D

〈m(t) − m0, φ〉dx = λ1

t∫
0

∫
D

〈M, φ〉dx ds − λ2

t∫
0

∫
D

〈M, φ × m〉dx ds

+
t∫

0

∫
D

〈F,m〉dx ds.

We omit the proof of the above Lemma and refer a reader to the proof of Proposition 3.27 of 
[49].

Lemma 3.13. Let m0 ∈ H
1(D; S2). Let m(t) be weakly continuous with values in H1 such that 

m ∈ C([0, T ]; L2) satisfying (3.5), (3.6) and (3.3). Then

T∫
0

∣∣∣m(s) ×
(

m(s) × mxx(s)
)∣∣∣2

L2
ds < ∞ (3.26)
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and m satisfy (1.13)–(1.15) in the strong sense i.e., for all t ∈ [0, T ] we have

m(t) = m(0) + λ1

t∫
0

m(s) × mxx(s)ds − λ2

t∫
0

m(s) ×
(

m(s) × mxx(s)
)
ds

+
t∫

0

F(s,m(s))ds. (3.27)

Proof of Lemma 3.13. Let us first prove (3.26). By the embedding H1 ↪→ L
∞ in one-

dimension, from (3.5) we have

sup
t∈[0,T ]

|m(t)|L∞ ≤ sup
t∈[0,T ]

|m(t)|H1 < ∞. (3.28)

Now using (3.6) and (3.28) we have

T∫
0

∣∣∣m(t) ×
(

m(t) × mxx(t)
)∣∣∣2

L2
dt ≤

T∫
0

∫
D

∣∣∣m(t, x) ×
(

m(t, x) × mxx(t, x)
)∣∣∣2

R3
dx dt

≤
T∫

0

∫
D

|m(t, x)|2
R3 |m(t, x) × mxx(t, x)|2

R3dx dt

≤
T∫

0

|m(t)|2
L∞

∫
D

|m(t, x) × mxx(t, x)|2
R3dx dt

≤ sup
t∈[0,T ]

|m(t)|2
H1

( T∫
0

|m(t) × mxx(t)|2L2dt
)

< ∞.

Also recalling |F(t, m(t))|2
L2 ≤ C

(
|m(t)|2

L2 + |mx(t)|2
L2

)
, we have

T∫
0

|F(t,m(t))|2
L2dt = C

T∫
0

|m(t)|2
H1dt ≤ CT sup

t∈[0,T ]
|m(t)|2

H1 < ∞.

Since the equation (3.3) is satisfied for all φ ∈ H
1, so in particular for φ ∈ C∞

c (D), using inte-
gration by parts in (3.3) we have for all t ∈ [0, T ]

m(t) = m(0) + λ1

t∫
m(s) × mxx(s)ds − λ2

t∫
m(s) ×

(
m(s) × mxx(s)

)
ds
0 0
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+
t∫

0

F(s,m(s))ds in L
2.

This completes the proof of Lemma 3.13. �
Lemma 3.14. Let m be as before. Then for any bounded real valued measurable function φ :
D →R we have for all s ∈ [0, T ],

1.

∫
D

〈m(s, x) × mxx(s, x),φm(s, x)〉R3dx = 0

2.

∫
D

〈m(s, x) ×
(

m(s, x) × mxx(s, x)
)
, φm(s, x)〉R3dx = 0

3.

∫
D

〈F(s,m(s, x)),φm(s, x)〉R3dx = 0

For proof see Lemma 4.7 in [18].

Lemma 3.15. Let m be as before satisfying (3.5)–(3.6) and (3.27). Then |m(t, x)|R3 = 1, for a.e. 
x ∈ D and for all t ∈ [0, T ].

Proof of Lemma 3.15. Let φ ∈ C∞
c (D; R). Let us define a function I : L

2 � m �→
〈m, φm〉L2 ∈R. Using the calculus in Hilbert space we have

〈DI (m), v〉L2 = 2〈φm, v〉L2 .

By fundamental theorem of calculus,

I (m(t)) − I (m(0)) =
t∫

0

d

ds
I (m(s))ds =

t∫
0

〈DI (m(s)),m′(s)〉L2ds = 2

t∫
0

〈φm(s),m′(s)〉L2ds

(3.29)

where ′ denotes the derivative with respect to time variable. Using (3.27) we note that m satisfies

m′(t, x) = λ1

(
m(t, x) × mxx(t, x)

)
− λ2m(t, x) ×

(
m(t, x) × mxx(t, x)

)
+ F(t,m(t, x)). (3.30)

Multiplying (3.30) with φm and integrating in D and using (3.26) we get

∫
〈m′(s, x),φm(s, x)〉R3dx = λ1

∫
〈m(s, x) × mxx(s, x),φm(s, x)〉R3dx
D D
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Z. Brzeźniak et al. / J. Differential Equations ••• (••••) •••–••• 21
− λ2

∫
D

〈m(s, x) ×
(

m(s, x) × mxx(s, x)
)
, φm(s, x)〉R3dx

+
∫
D

〈F(s,m(s, x)),φm(s, x)〉R3dx.

This implies

〈m′(s),φm(s)〉L2 = λ1〈m(s) × mxx(s),φm(s)〉L2

− λ2〈m(s) ×
(

m(s) × mxx(s)
)
, φm(s)〉L2

+ 〈F(s,m(s)),φm(s)〉L2 . (3.31)

Using (3.31) from (3.29) we have

I (m(t)) − I (m(0)) =λ1

t∫
0

〈m(s) × mxx(s),φm(s)〉L2ds

− λ2

t∫
0

〈m(s) ×
(

m(s) × mxx(s)
)
, φm(s)〉L2ds

+
t∫

0

〈F(s,m(s)),φm(s)〉L2ds. (3.32)

Now using Lemma 3.14 we have first, second and third term of the right hand side of (3.32)
vanish. Hence I (m(t)) = I (m(0)), ∀t ∈ [0, T ], i.e., 〈m(t), φm(t)〉L2 = 〈m(0), φm(0)〉L2 , ∀t ∈
[0, T ]. Since φ is arbitrary and |m0(x)|R3 = 1 for a.e. x ∈ D, we have |m(t, x)|R3 = 1, for a.e. 
x ∈ D, ∀ t ∈ [0, T ]. This completes the proof of Lemma 3.15. �
3.1.2. Proof of Theorem 3.2

Properties (3.5) and (3.6) follow from (3.13) and (3.14) respectively. From Lemma 3.15 we 
conclude that |m(t, x)|R3 = 1, for a.e. x ∈ D, ∀ t ∈ [0, T ]. From Lemma 3.12 it follows that m
satisfies (1.13)–(1.15) in weak sense. Therefore, finally we conclude that m is a weak solution to 
(1.13)–(1.15).

3.1.3. Pathwise uniqueness

Theorem 3.16. Assume m ∈ L4(0, T ; H1) satisfying property 3 of Definition 3.1, is a solution 
to (1.13)–(1.15). Then m′ ∈ L2(0, T ; V′) and m solve, together with (1.14)–(1.15), the following 
equation (in the weak sense with respect to the Gelfand triple V ⊂L

2 ⊂ V′):

∂m(t)

∂t
+ λ2Am(t) = λ2|m(t)x |2R3m(t) + λ1(m(t) × (m(t)xx)) + F(t,m(t)), t ∈ (0, T ).

(3.33)
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22 Z. Brzeźniak et al. / J. Differential Equations ••• (••••) •••–•••
Moreover, if mi ∈ L4(0, T ; H1), for i = 1, 2, are solutions to (1.13)–(1.15) with the same 
initial data m0 ∈H

1(D; S2), then m1(t) = m2(t), ∀t ∈ [0, T ].

Before we embark on a proof let us recall [17, Lemma 2.3].

Lemma 3.17. Let m be an element of H1(D; S2). Then, in V′, we have

m × (m × mxx) = −|mx |2R3m − mxx. (3.34)

If additionally m ∈H
2, then (with · on the LHS denoting the scalar product in R3)

m(x) · mxx(x) = −|mx(x)|2
R3 , for a.a. x ∈ D.

Proof of Theorem 3.16. We assume that m ∈ L4(0, T ; H1) satisfying property 3 of Defini-
tion 3.1 is a solution of (1.13)–(1.15). Then by employing Lemma 3.17, as in the proof of [17, 
Theorem 4.1], we can show that each m solves (3.33) with (1.14)–(1.15). We note also that since 
m ∈ L4(0, T ; H1) and m satisfies (3.2), both terms Am and |mx |2

R3 m belong to L2(0, T ; V′). 
Moreover, by (3.1), m × mxx ∈ L2(0, T ; V′). Since it’s obvious that F(·, m(·)) ∈ L2(0, T ; V′), 
we infer that m′ ∈ L2(0, T ; V′), and this concludes the proof of the 1st part of the Theorem.

Let m1, m2 ∈ L4(0, T ; H1) be two solutions of (1.13)–(1.15) for which we do not assume at 
this moment that m1(0) = m2(0).

Let z = m2 − m1. Then, by the first part z ∈ L2(0, T ; V) and z′ ∈ L2(0, T ; V′) and z is a 
solution of

∂z

∂t
+ λ2Az = λ2

[
|(m2)x |2R3m2 − |(m1)x |2R3m1

]
+ λ1

(
(m2 × (m2)xx) − (m1 × (m1)xx)

)
+ F(t,m2) − F(t,m1). (3.35)

Hence, by applying using Lemma 1.2 Chapter-III in Temam [62] to |z|2
L2 , we obtain

1

2

d

dt
|z(t)|2

L2 = −λ2〈Az, z〉L2 + λ2〈|(m2)x |2R3m2 − |(m1)x |2R3m1, z〉L2

+ λ1

(
〈(m2 × zxx), z〉L2 − 〈(z × (m1)xx), z〉L2

)
+ 〈F(t,m2) − F(t,m1), z〉L2

:=
4∑

i=1

Ji(t). (3.36)

Now we estimate each Ji’s for i = 1, 2, 3, 4. Using definition of A, we have

J1(t) = −λ2〈Az(t), z(t)〉L2 = −λ2|zx(t)|2L2 . (3.37)

For simplicity we take λ2 = 1 in J2(t).
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J2(t) = 〈|(m2)x |2R3 m2 − |(m1)x |2R3 m1, z〉L2

= 〈|(m2)x |2R3(m2 − m1) + m1

(
(m2)x |2R3 − |(m1)x |2R3

)
, z〉)L2

= 〈|(m2)x |2R3z, z〉L2 +
(
((m2)x + (m1)x)((m2)x − (m1)x)

)
m1, z〉)L2

= 〈|(m2)x |2R3z, z〉L2 + 〈
(
(m1)x + (m2)x

)
zxm1, z〉L2

:=
3∑

i=1

J i
2(t). (3.38)

We now derive estimates for fixed η > 0, and a generic constant C > 0. Using (2.2) and Young’s 
inequality, we have

J 1
2 (t) = 〈|(m2)x |2R3z, z〉L2 ≤ |(m2)x |2L2 |z|2L∞ ≤ k2|(m2)x |2L2 |z|L2 |z|H1

≤ k2|(m2)x |2L2 |z|L2

(
|z|L2 + |zx |L2

)
≤ k2|(m2)x |2L2 |z|2L2 + k2|(m2)x |2L2 |z|L2 |zx |L2

≤ k2|(m2)x |2L2 |z|2L2 + k4

2η2 |(m2)x |4L2 |z|2L2 + η2|zx |L2 . (3.39)

Again using (2.2), Hölder’s inequality and Young’s inequality we have

J 2
2 (t) = 〈(m1)xm1zx, z〉L2 ≤ |(m1)x |L2 |m1|L∞|zx |L2 |z|L∞

≤ |(m1)x |L2 |zx |L2 |z|L∞ ≤ k|(m1)x |L2 |zx |L2 |z|1/2
L2 (|z|1/2

L2 + |zx |1/2
L2 )

≤ k|(m1)x |L2 |zx |L2 |z|L2 + k|(m1)x |L2 |z|1/2
L2 |zx |3/2

L2

≤ k2

η2 |(m1)x |2L2 |z|2L2 + η2|zx |2L2 + k4

4η6
|(m1)x |4L2 |z|2L2 + 3

4
η2|zx |2L2

≤ k2

η2 |(m1)x |2L2 |z|2L2 + k4

4η6
|(m1)x |4L2 |z|2L2 + 7

4
η2|zx |2L2 . (3.40)

Proceeding in similar manner as in J 2
2 (t), we have

J 3
2 (t) ≤ k2

η2 |(m2)x |2L2 |z|2L2 + k4

4η6
|(m2)x |4L2 |z|2L2 + 7

4
η2|zx |2L2 . (3.41)

Substituting (3.39)–(3.41) in (3.38) we achieve

J2(t) ≤ k2
(
|(m2)x |2L2 + k2

2η2 |(m2)x |4L2 + 1

η2

2∑
i=1

|(mi )x |2L2 + k2

4η6

2∑
i=1

|(mi )x |4L2

)
|z|2

L2

+ 9η2

2
|zx |2L2 . (3.42)
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In order to estimate J3(t), we note that 〈z × (m1)xx, z〉L2 = 0, hence using Hölder’s inequality, 
(2.2) and Young’s inequality we estimate 〈m2 × zxx, z〉L2 .

〈m2 × zxx, z〉L2 = −〈z × (m2)x, zx〉L2 ≤ |z|L∞|(m2)x |L2 |zx |L2

≤ k2

η2 |(m2)x |2L2 |z|2L2 + η2|zx |2L2 + k4

4η6
|(m2)x |4L2 |z|2L2 + 3

4
η2|zx |2L2

≤ k2

η2 |(m2)x |2L2 |z|2L2 + k4

4η6
|(m2)x |4L2 |z|2L2 + 7

4
η2|zx |2L2 .

Finally, J3(t) becomes:

J3(t) ≤ k2

η2 |(m2)x |2L2 |z|2L2 + k4

4η6
|(m2)x |4L2 |z|2L2 + 7

4
η2|zx |2L2 . (3.43)

Now using (2.7) and simple vector algebraic identity, we estimate J4(t) as:

J4(t) = 〈F(t,m2) − F(t,m1), z〉L2

≤ |〈λ1m2 × F̂ (t,m2) − λ2(m2 × (m2 × F̂ (t,m2)))

− λ1(m1 × F̂ (t,m1)) + λ2(m1 × (m1 × F̂ (t,m1))), z〉L2 |
≤ |λ1||〈m2 × F̂ (t,m2) − (m1 × F̂ (t,m1)), z〉L2 |

+ |λ2||〈(m2 × (m2 × F̂ (t,m2))) − (m1 × (m1 × F̂ (t,m1))), z〉L2 |

:=
2∑

i=1

J i
4(t).

Using Young’s inequality, 〈z × F̂ (t, m2), z〉L2 = 0, and |m1(x)R3 = 1, for a.e. x ∈ D, J 1
4 (t)

becomes:

J 1
4 (t) = |λ1||〈m2 × F̂ (t,m2) − (m1 × F̂ (t,m1)), z〉L2 |

≤ |λ1||(m2 − m1) × F̂ (t,m2) + m1 × (F̂ (t,m2) − F̂ (t,m1)), z〉L2 |
≤ |λ1||〈z × F̂ (t,m2), z〉L2 | + |λ1||m1 × (F̂ (t,m2) − F̂ (t,m1)), z〉L2 |

≤ |λ1|
1∫

0

|m1(x)|R3 |F̂ (t,m2(x)) − F̂ (t,m1(x))|R3 |z(x)|R3dx

≤ |λ1||F̂ (t,m2) − F̂ (t,m1)|L2 |z|L2 . (3.44)

Proceeding as in J 1
4 (t), and using the standard vector algebraic identities, we have,

J 2(t) ≤ |λ2||〈z × (m2 × F̂ (t,m2)), z〉L2 | + |λ2||m1 × (m2 × F̂ (t,m2) − m1 × F̂ (t,m1)), z〉L2 |
4
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≤ |λ2|
1∫

0

∣∣∣z × F̂ (t,m2(x)) − m1 ×
(
F̂ (t,m2(x)) − F̂ (t,m1(x))

)∣∣∣
R3

|z(x)|R3dx

= |λ2|
1∫

0

|F̂ (t,m2(x))|R3 |z(x)|2
R3dx + |λ2||F̂ (t,m2) − F̂ (t,m1)|L2 |z|L2 . (3.45)

Now using the embedding H1 ↪→ L
∞, (2.8) |F̂ (t, m2)|L2 ≤ C(1 + |(m2)x |L2 , and Young’s in-

equality, the first term on the right hand side of (3.45) becomes:

1∫
0

|F̂ (t,m2(x))|R3 |z(x)|2
R3dx ≤ C

(
1 + |(m2)x |L2

)
|z|2

L2 + η2|zx |2L2 + C

η2

(
1 + |(m2)x |2L2

)
|z|2

L2 .

(3.46)

In order to estimate right hand side of (3.44) and second term on right hand side of (3.45), we 
now use (2.8) and Remark 2.3 and estimate the following term.

|F̂ (t,m2) − F̂ (t,m1)|L2

=
∣∣∣e−W(t)G sin(W(t))

(
z × gxx + 2zx × gx

)
+ e−W(t)G[1 − cos(W(t))]

(
(z × gxx) × g + (z × g) × gxx + 2

(
(zx × gx)

× g + (zx × g) × gx + (z × gx) × gx

))∣∣∣
L2

≤ ‖e−W(t)G sin(W(t))‖L(L2)|z × gxx + 2zx × gx |L2

+ ‖e−W(t)G[1 − cos(W(t))]‖L(L2)

∣∣∣(z × gxx) × g + (z × g) × gxx + 2
(
(zx × gx)

× g + (zx × g) × gx + (z × gx) × gx

))∣∣∣
L2

≤ C
(
|z|L2 + |zx |L2

)
. (3.47)

Using Young’s inequality and (3.47), from (3.44) we have

J 1
4 (t) ≤ C

(
|z|2

L2 + |z|L2 |zx |L2

)
≤ C|z|2

L2 + C

η2 |z|2
L2 + η2|zx |2L2 . (3.48)

Substituting (3.46) and (3.47) in (3.45) we have

J 2
4 (t) ≤ C

(
1 + 1

η2 + |(m2)x |L2 + 1

η2 |(m2)x |2L2

)
|z|2

L2 + 2η2|zx |2L2 . (3.49)

Hence, combining (3.48) and (3.49) we have

J4(t) ≤ C
(

1 + 1

η2 + |(m2)x |L2 + 1

η2 |(m2)x |2L2

)
|z|2

L2 + 3η2|zx |2L2 .
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Therefore, combining all these estimates of Ji’s for i = 1, . . . , 4 and substituting back in (3.36), 
we have

1

2

d

dt
|z(t)|2

L2 ≤ −λ2|zx |2L2 + k2
(
|(m2)x |2L2 + k2

2η2 |(m2)x |4L2 + 1

η2

2∑
i=1

|(mi )x |2L2

+ k2

4η6

2∑
i=1

|(mi )x |4L2

)
|z|2

L2 + 9η2

2
|zx |2L2 + k2

η2 |(m2)x |2L2 |z|2L2

+ k4

4η6
|(m2)x |4L2 |z|2L2 + 7

4
η2|zx |2L2

+ C(1 + 1

η2 + |(m2)x |L2 + 1

η2 |(m2)x |2L2)|z|2L2 + 3η2|zx |2L2

= −λ2|zx |2L2 + ϕC(t)|z|2
L2 + 29

4
η2|zx |2L2 , (3.50)

where

ϕC(t) = C
(

1 + 1

η2 + |(m2)x |L2 + 1

η2 |(m2)x |2L2

)
+ k2(1 + 1

η2 )|(m2)x |2L2

+ k4(
1

2η2 + 1

4η6
)|(m2)x |4L2 +

2∑
i=1

(k2

η2 |(mi )x |2L2 + k2

4η6
|(mi )x |4L2

)
.

We note that as mi ∈ L4(0, T ; H1) for i = 1, 2, so ϕC is integrable on [0, T ], i.e.,∫ t

0 ϕC(s)ds < ∞. Choosing η so that 
37

4
η2 = λ2, i.e., η =

(
4λ2

37

)1/2

. Then we have from (3.50),

1

2

d

dt
|z(t)|2

L2 ≤ ϕC(t)|z(t)|2
L2 .

Integrating in (0, t) we get

|z(t)|2
L2 ≤ |z(0)|2

L2 + 2

t∫
0

ϕC(s)|z(s)|2
L2ds.

Using Gronwall’s inequality we get

|z(t)|2
L2 ≤ |z(0)|2

L2e
2

∫ t
0 ϕC(s)ds . (3.51)

Thus if m1(0) = m2(0) then we have z(0) = m1(0) − m2(0) = 0. Hence from (3.51) we 
have |z(t)|2

L2 = 0, ∀t ∈ [0, T ]. This implies 
∫ 1

0 |z(t, x)|2
R3dx = 0, ∀t ∈ [0, T ]. Thus we have 

z(t, x) = 0, ∀t ∈ [0, T ], a.e. x ∈ (0, 1). �
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4. Existence and uniqueness of solutions to (2.15)–(2.17)

In this section we return to the study of the system of equations (2.15)–(2.17) and state exis-
tence and uniqueness theorem for mn.

Analogous to Definition 3.1 we can define weak solution for the system of equations 
(2.15)–(2.17).

Theorem 4.1. Let m0 ∈ H
1(D; S2). Then there exists a unique solution mn ∈ C([0, T ]; H1) to 

the equation (2.15)–(2.17), i.e., it satisfies the following:

1. For every T > 0,

sup
t∈[0,T ]

|mn(t)|H1 ≤ C(T ,λ2, |m0|H1); (4.1)

2. For almost every t ∈ [0, ∞), mn(t) × mn
xx(t) ∈ L

2 and every T > 0 we have

T∫
0

|mn(t) × mn
xx(t)|2L2dt ≤ C(T ,λ2, |m0|H1); (4.2)

3. |mn(t, x)|R3 = 1, a.e. x ∈ D and for all t ∈ [0, T ];
4. For all φ ∈ H

1,

〈mn(t), φ〉L2 = 〈m(0),φ〉L2 − λ1

t∫
0

∫
D

〈mn
x(s, x),φx(x) × mn(s, x)〉R3dx ds

− λ2

t∫
0

∫
D

〈mn
x(s, x), (mn × φ)x(s, x) × mn(s, x)〉R3dx ds

+
t∫

0

∫
D

〈Fn(s,mn(s, x)),φ(x)〉R3dx ds,

holds for all t ∈ [0, T ].

Remark 4.2. We note that proof of Theorem 4.1 is completely analogous to the proof of Theo-
rem 3.2. The only difference here is that because of the term Fn(t, mn) (see (2.18) which involves 
the approximation Wn) present in the equation (2.15), constants in (4.1) and (4.2) will be depen-
dent on n, say Cn. Then exploiting (1.8) we can choose a large constant C (independent of n) 
such that supn∈N Cn := C < ∞.
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5. Convergence of solution of the auxiliary equation

In this section we first prove the convergence result in the space L∞(0, T ; L2) and then obtain 
the progressively measurability of both the approximated and limiting processes with respect to 
the corresponding filtrations.

Theorem 5.1. If m and mn are the unique solutions to the equations (1.13) and (2.15) respec-
tively, then we have the following convergence:

mn(·,ω) → m(·,ω) as n → ∞ for almost all ω ∈ 	 (5.1)

in the natural topology of � := L∞(0, T ; L2) ∩ L2(0, T ; V).

Proof. We split the proof in three steps. In Step I, we will prove the following Lemma 5.2, while 
in Step II, we will apply this Lemma specifically to our case. In Step III, we will apply Step II 
and prove the required convergence in L2(0, T ; V ).

Step I:

Lemma 5.2. Let mi : [0, T ] → H
1 be two weak solutions of

∂mi

∂t
+ λ2Ami = λ2|(mi )x |2R3mi + λ1(mi × (mi )xx) + Fi(t,mi ) (5.2)

for i = 1, 2 where

Fi(t,mi ) = λ1mi × F̂i(t,mi ) − λ2mi × (mi × F̂i(t,mi ))

and F̂i is given by F̂i(t, mi ) = S(Wi)S(mi ) + C(Wi)C(mi ) and S, S, C, C are given by 
(2.9)–(2.12). Then there exists a constant C > 0 and an integrable function ϕC , so that we have 
the following estimate

|m2(t) − m1(t)|2L2 ≤
(
|m2(0) − m1(0)|2

L2 + C

t∫
0

|W2(s) − W1(s)|ds
)
e2

∫ t
0 ϕC(s)ds, t ∈ [0, T ].

Proof of Lemma 5.2. We note that S and C are linear in m. Let z = m2 − m1. Then z is a weak 
solution of

∂z

∂t
+ λ2Az = λ2

[
|(m2)x |2R3m2 − |(m1)x |2R3m1

]
+ λ1

(
(m2 × (m2)xx) − (m1 × (m1)xx)

)
+ F2(t,m2) − F1(t,m1). (5.3)

Now again using Lemma 1.2 Chapter-III in Temam [62] to |z|2
L2 , we have

1 d |z(t)|2 2 = −λ2〈Az, z〉L2 + λ2〈|(m2)x |2 3 m2 − |(m1)x |2 3 m1, z〉L2

2 dt L R R
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+ λ1

(
〈(m2 × zxx), z〉L2 − 〈(z × (m1)xx), z〉L2

)
+ 〈F2(t,m2) − F1(t,m1), z〉L2

:=
4∑

i=1

Li(t). (5.4)

Now we estimate each Li for i = 1, 2, 3, 4. We note that Li = Ji for i = 1, 2, 3. So the estimates 
of L1, L2, L3 follow from (3.37), (3.42) and (3.43) respectively. We now derive estimate L4(t)

for fixed η > 0, and a generic constant C > 0.

L4(t) = 〈F2(t,m2) − F1(t,m1), z〉L2

≤ |〈λ1(m2 × F̂2(t,m2)) − λ2(m2 × (m2 × F̂2(t,m2)))

− λ1(m1 × F̂1(t,m1)) + λ2(m1 × (m1 × F̂1(t,m1))), z〉L2 |
≤ |λ1||〈m2 × F̂2(t,m2) − (m1 × F̂1(t,m1)), z〉L2 |

+ |λ2||〈(m2 × (m2 × F̂2(t,m2))) − (m1 × (m1 × F̂1(t,m1))), z〉L2 |

:=
2∑

i=1

Li
4(t). (5.5)

Using (2.8) and proceeding similarly as in (3.47), we have∣∣∣F̂2(t,m2) − F̂1(t,m1)

∣∣∣
L2

≤
∣∣∣S(W2)

[
S(m2 − m1)

]∣∣∣
L2

+
∣∣∣[S(W2) − S(W1)

]
S(m1)

∣∣∣
L2

+
∣∣∣C(W2)C(m2 − m1)

∣∣∣
L2

+
∣∣∣[C(W2) − C(W1)

]
S(m1)

∣∣∣
L2

≤ C
[
|z|L2 + |zx |L2 + |W2 − W1|

(
1 + |(m1)x |L2

)]
. (5.6)

Using (5.6), Hölder’s inequality, |(m1)x |L2 |z|L2 ≤ 1

2
+ |z|2

L2 |(m1)x |2
L2

2
and |z|L2 ≤ 1

2
+ |z|2

L2

2
and arguments similar to (3.44) (as in J 1

4 (t) in Theorem 3.16), we get

L1
4(t) ≤ |λ1||〈z × F̂2(t,m2), z〉L2 | + |λ1||m1 × (F̂2(t,m2) − F̂1(t,m1)), z〉L2 |

≤ |λ1||F̂2(t,m2) − F̂1(t,m1)|L2 |z|L2

≤ C
[
|z|L2 + |zx |L2 + |W2 − W1|(1 + |(m1)x |L2)

]
|z|L2

≤ η2|zx |2L2 + C
[
|z|2

L2 + 1

η2 |z|2
L2 + |W2 − W1|

(
1 + 1

2

(
1 + |(m1)x |2L2

)
|z|2

L2

]
. (5.7)

Using |F̂2(t, m2)|L2 ≤ C(1 +|(m2)x |L2), |m1(x)R3 = 1, for a.e. x ∈ D, and (5.6) and proceeding 
similar manner as in (5.7) and also following arguments in (3.45) (as in J 2

4 (t) in Theorem 3.16), 
we have
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L2
4(t) ≤ |λ2|

∣∣∣〈z ×
(

m2 × F̂2(t,m2)
)
, z

〉
L2

∣∣∣
+ |λ2|

∫
D

∣∣∣〈m1(x) ×
(

m2(x) × F̂2(t,m2(x)) − m1(x) × F̂1(t,m1(x))
)
, z(x)

〉
R3

∣∣∣dx

≤ |λ2|
∫
D

(
|z(x)|R3 |F̂2(t,m2(x))|R3 + |m1(x)|R3 |F̂2(t,m2(x)) − F̂1(t,m1(x))|R3

)

× |z(x)|R3dx

≤ |λ2||z|L∞|z|L2 |F̂2(t,m2)|L2 + |λ2||F̂2(t,m2) − F̂1(t,m1)|L2 |z|L2

≤ C
{
|z|L2 |z|L∞(1 + |(m2)x |L2) + |z|L2

(
|z|L2 + |zx |L2 + |W2 − W1|

(
1 + |(m1)x |L2

))}
:= L21

4 (t) + L22
4 (t). (5.8)

Now, using the embedding H1 ↪→ L
∞ and Young’s inequality, the first term on right hand side 

of (5.8) becomes:

L21
4 (t) = C|z|L2 |z|L∞

(
1 + |(m2)x |L2

)
≤ C|z|L2

(
|z|L2 + |zx |L2

)(
1 + |(m2)x |L2

)

= C
(

1 + |(m2)x |L2 + 1

η2 (1 + |(m2)x |2L2)
)
|z|2

L2 + η2|zx |2L2 . (5.9)

Using Young’s inequality, the second term on right hand side of (5.8) becomes:

L22
4 (t) = C|z|L2

(
|z|L2 + |zx |L2 + |W2 − W1|

(
1 + |(m1)x |L2

))

≤ C
(

1 + 1

η2 + |W2 − W1|
(

1 + |(m1)x |2L2

))
|z|2

L2 + C|W2 − W1| + η2|zx |2L2 .

(5.10)

Substituting (5.9), (5.10) in (5.8) we have

L2
4(t) ≤ C

{
1 + 1

η2 + |(m2)x |L2 + 1

η2 |(m1)x |2L2 + |W2 − W1|
(

1 + |(m1)x |2L2

)}
|z|2

L2

+ C|W2 − W1| + 2η2|zx |2L2 .

Hence, substituting back (5.9) and (5.10) in (5.8) and then using (5.7), L4(t) becomes:

L4(t) ≤
{

3η2|zx |2L2 + C(1 + 1

η2 ) + |(m2)x |2L2 + 1

η2 |(m1)x |2L2 (5.11)

+ |W2 − W1|
(

1 + |(m1)x |2L2

)}
|z|2

L2 + C|W2 − W1|.
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We choose η so that 
37

2
η2 = λ2, i.e., η =

(
2λ2

37

)1/2

. Thus combining the estimates of Li, i =
1, 2, 3 (see (3.37), (3.42), (3.43) respectively) and (5.11) and substituting back in (5.4), we have

1

2

d

dt
|z(t)|2

L2 + λ2

2
|zx(t)|2L2 ≤ ϕC(t)|zu(t)|2

L2 + C|W2(t) − W1(t)|, (5.12)

where

ϕC(t) = C
(

1 + 37

2λ2
+ |(m2)x |L2 + 37

2λ2
|(m2)x |2L2

)
+ k2

(
1 + 37

2λ2

)
|(m2)x |2L2

+ k4
( 37

4λ2
+ 1

4

( 37

2λ2

)3)|(m2)x |4L2 +
2∑

i=1

(k2

η2 |(mi )x |2L2 + k2

4η6
|(mi )x |4L2

)

+ C
(
|(m1)x |2L2 + 1

)
|W2(t) − W1(t)|.

We note that as mi ∈ L4(0, T ; H1) for i = 1, 2, ϕC is integrable on [0, T ], i.e. 
∫ t

0 ϕC(s)ds < ∞, 
for t ∈ [0, T ]. Using Gronwall’s inequality we get

|z(t)|2
L2 ≤

(
|z(0)|2

L2 + C

t∫
0

|W2(s) − W1(s)|ds
)
e2

∫ t
0 ϕC(s)ds . (5.13)

Step II: Choosing m2 = mn, m1 = m, W2 = Wn and W1 = W in Lemma 5.2 and using (2.17)
and (1.8) i.e., the fact that the Brownian motion W is approximated by sequence of suitable 
regular stochastic process Wn, we infer that (5.1) holds in the space L∞(0, T ; L2).

Step III: From Step II and inequality (5.12), it can be also deduced by standard methods the 
convergence of zn to 0 in the space L2(0, T ; V).

This completes the proof. �
Theorem 5.3. m and mn as processes from [0, T ] × 	 to L2 are progressively measurable with 
respect to the filtration Ft and Fn

t .

Proof. Since for each i, each Qi
k’s are polynomials in mk with bounded coefficients and mk’s 

are solutions of (3.8)–(3.9), hence mk’s are progressively measurable. Hence (mk(t), φ) is pro-
gressively measurable for any φ ∈ L

2. Since mk(t, ω) → m(t, ω) weakly in L2 for a.e. ω ∈ 	, 
for each t ∈ [0, T ], thus it follows that (m(t), φ) is progressively measurable for any φ ∈ L

2. 
Since strong and weak measurability are equivalent in a separable Hilbert space H , so m is 
progressively measurable process. The proof for mn is analogous. �
6. Convergence in stronger topology via the maximal regularity

This section is devoted to prove maximal regularity of solutions m and mn to both the re-
spective system of equations. The key ingredients of the proof are the maximal regularity and 
ultracontractivity properties of the semigroup generated by the Laplace operator with the Neu-
mann boundary conditions and the estimates for weak solutions of equations (1.13)–(1.15) and 
(2.15)–(2.17) obtained in Theorems 4.1 and 3.2.
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32 Z. Brzeźniak et al. / J. Differential Equations ••• (••••) •••–•••
Secondly, we prove the convergence of the solutions in maximal regular space, stated as in 
Theorem 6.4.

We note that using part 3 of Theorem 3.2 we have |m(t, x)|R3 = 1, ∀t ∈ [0, T ], a.e. x ∈ D.
Using (2.3), (1.13) becomes:

∂m
∂t

= λ1(m × mxx) + λ2(mxx + |mx |2R3m) + F(t,m), in (0,1) × (0, T ). (6.1)

Using the definition of A, (6.1) reduces to:

∂m
∂t

+ λ2Am = λ2|mx |2R3m + λ1(m × mxx) + F(t,m), in (0,1) × (0, T ). (6.2)

Theorem 6.1. (Maximal Regularity Theorem) Assume d = 1. Suppose m : [0, T ] → H
1 is a weak 

solution of (1.13), mn : [0, T ] → H
1 is a weak solution of (2.15). Then for every m0 ∈ H

1(D; S2), 
there exist positive constants Ci = Ci(T , |m0|H1 , λ1, λ2), i = 1, 2, such that for every n ∈N,

T∫
0

(|mn
xx(s)|2L2 + |mn

x(s)|4L4

)
ds ≤ C1, (6.3)

and

T∫
0

(|mxx(s)|2L2 + |mx(s)|4L4

)
ds ≤ C2. (6.4)

Proof. Let us fix T > 0, r > 0 and δ ∈ ( 5
8 , 34 ). Let us choose λ1 = λ2 = 1.

Let {e−tA}t≥0 be the semigroup generated by A. Hence, m can be written in mild form as:

m(t) =e−tAm0 +
t∫

0

e−(t−s)A(m(s) × mxx(s))ds +
t∫

0

e−(t−s)A|mx(s)|2R3 m(s)ds

+
t∫

0

e−(t−s)AF(s,m(s))ds (6.5)

:=
4∑

i=1

Ii(t). (6.6)

We note that e−tA is ultracontractive [see [5]], i.e., there exists a positive constant C = C(p, q)

such that for 1 ≤ p ≤ q ≤ ∞,

|e−tAf |Lq ≤ C

t
1
2 ( 1

p
− 1

q
)
|f |Lp , f ∈ L

p, t > 0, (6.7)
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and A has maximal regularity property, i.e., there exists a C > 0 such that for any f ∈
L2(0, T ; L2) and

u(t) =
t∫

0

e−(t−s)Af (s)ds, t ∈ [0, T ],

we have

t∫
0

|Au(t)|2
L2dt ≤ C

t∫
0

|f (t)|2
L2dt. (6.8)

Using Theorem 1.1 in Pazy [57], we conclude that A1 = A + I generates a semigroup denoted 
by e−tA1 . Furthermore using (6.7) we observe that

|e−tA1f |Lq = |e−tAe−tI f |Lq ≤ C|e−tAf |Lq ≤ C

t
1
2 ( 1

p
− 1

q
)
|f |Lp , f ∈ L

p, t > 0. (6.9)

We split our proof in two steps. In Step I we will show the second part of the inequality (6.4) i.e., 
we will show

T∫
0

|m(t)|4
W1,4dt ≤ C(T ,‖m0‖H1),

which will give us

T∫
0

|mx(t)|4L4dt ≤ C(T ,‖m0‖H1).

In Step II we deduce the first part of the inequality (6.4), i.e., 
∫ T

0 |mxx(t)|2
L2dt ≤ C(T , ‖m0‖H1).

Step I: We will first show that

T∫
0

|m(t)|4
W1,4dt ≤ C(T ,‖m0‖H1).

From Section 2, recall the definition of Xδ for δ ≥ 0, and note that due to the Sobolev imbedding 
Xδ ↪→ W

1,4 holds for δ ∈ ( 5
8 , 34 ) (see Appendix A). Hence it is sufficient to prove the following 

stronger estimate:

T∫
0

|Aδ
1m(t)|4

L2dt ≤ C(T ,‖m0‖H1).
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We note from part (c) of Theorem 6.13 in Pazy [57], that for every t > 0 the operator Aδe−tA

and Aδ
1e

−tA1 are bounded and

‖Aδe−tA‖ ≤ C

tδ
, (6.10)

‖Aδ
1e

−tA1‖ ≤ C

tδ
, (6.11)

where ‖ · ‖ is the operator norm.
Now we will estimate each of Ii’s, i = 1, 2, 3, 4, from (6.6).
Estimate of I1: Recall I1(t) := e−tAm0. For each t ∈ [0, T ], using (6.11) we have

|Aδ
1I1(t)|4L2 = |(I + A)δe−t (I+A)etI m0|4L2 ≤ Cet |Aδ

1e
−tA1m0|4L2

≤ CeT |Aδ−1/2
1 e−tA1A1/2

1 m0|4L2 ≤ C‖Aδ−1/2
1 e−tA1‖4|A1/2

1 m0|4L2

≤ C

t4δ−2 |A1/2
1 m0|4L2 = C

t4δ−2 |m0|4H1,

and therefore, since δ < 3
4 so that 2 − 4δ > −1 we infer that

T∫
0

|Aδ
1I1(t)|4L2dt ≤ C|m0|4H1

T∫
0

1

t4δ−2 dt = C|m0|4H1

T∫
0

t2−4δdt ≤ C|m0|4H1 .

Estimate of I2: We move to I2(t) :=
∫ t

0 e−(t−s)A(m(s) × mxx(s))ds. Let us take f = m × mxx

and substituting it in (6.9) and using (6.11) we have,

|Aδ
1e

−(t−s)A1f (s)|L2 ≤ ‖Aδ
1e

−(t−s)A1‖|f (s)|L2 ≤ C

(t − s)δ
|f (s)|L2 , 0 < s < t < T . (6.12)

Hence using (6.12) we have

T∫
0

|Aδ
1I2(t)|4L2dt ≤

T∫
0

( t∫
0

|Aδ
1e

−(t−s)Af (s)|L2ds
)4

dt

=
T∫

0

( t∫
0

|Aδ
1e

−(t−s)A1f (s)e(t−s)I |L2ds
)4

dt

≤ C

T∫
0

( t∫
0

(t − s)−δ|f (s)|L2ds
)4

dt.
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Now exploiting Young’s inequality, δ < 3
4 and using (3.6) we obtain

T∫
0

|Aδ
1I2(t)|4L2dt ≤ C

( T∫
0

s
−4δ

3

)3( T∫
0

|f (s)|2
L2ds

)2 ≤ C(T ,‖m0‖H1).

Estimate of I3: We move to I3(t) =: ∫ t

0 e−(t−s)A|mx(s)|2
R3 m(s)ds. We note that for f =

|mx |2
R3m, using (3.5) we have

sup
0≤s≤t

|f (s)|L1 = sup
0≤s≤t

( 1∫
0

|mx(s, x)|2
R3 |m(s, x)|R3dx

)

= sup
0≤s≤t

|mx(s)|2L2 ≤ sup
0≤s≤t

|m(s)|2
H1 < ∞. (6.13)

Hence using f = |mx |2
R3m ∈ L∞(0, T ; L1), and putting it in (6.9) with p = 1, q = 2, we see that 

there exists a positive constant C (depending on p, q) such that using (6.13) we achieve

|Aδ
1e

−(t−s)Af (s)|L2 ≤ |Aδ
1e

−(t−s)A1e(t−s)I f (s)|L2 ≤ C|Aδ
1e

−(t−s)A1
2 e

−(t−s)A1
2 f (s)|L2

≤ ‖Aδ
1e

−(t−s)A1
2 ‖|e −(t−s)A1

2 f (s)|L2

≤ C

(t − s)δ+ 1
4

|f (s)|L1 ≤ C

(t − s)δ+ 1
4

sup
s∈[0,t]

|f (s)|L1

≤ C

(t − s)δ+ 1
4

sup
r∈[0,T ]

|m(r)|2
H1 , 0 < s < t < T .

Therefore,

T∫
0

|
t∫

0

Aδ
1e

−(t−s)Af (s)ds|4
L2dt ≤ C sup

r∈[0,T ]
|m(r)|8

H1

T∫
0

( t∫
0

ds

(t − s)δ+ 1
4

)4
dt.

Using δ + 1
4 < 1 and (3.5) we achieve

T∫
0

|Aδ
1I3(t)|4L2dt ≤ C(T ,‖m0‖H1).

Estimate of I4: We move to I4(t) =: ∫ t

0 e−(t−s)AF(s, m(s))ds. Now using (2.6), g ∈ W
2,∞, the 

semigroup generated by G, e−W(t)G is bounded in L2, implementing simple vector product rule 
|a × b|R3 = |a|R3 |b|R3 | sin θ | and also using |m(t, x)|R3 = 1, ∀t ≥ 0, a.e. x ∈ D, we have

|F(s,m(s))|L2 ≤ C(1 + |mx(s)|L2) ≤ C|m(s)|H1 . (6.14)
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Hence using (6.11), (6.14) and (6.9) we have

|Aδ
1e

−(t−s)AF(s,m(s))|L2 ≤ |Aδ
1e

−(t−s)A1e(t−s)IF (s,m(s))|L2

≤ C‖Aδ
1e

−(t−s)A1‖|F(s,m(s))|L2

≤ C

(t − s)δ
|F(s,m(s))|L2

≤ C

(t − s)δ
sup

r∈[0,T ]
|m(r)|H1 , 0 < s < t < T .

Thus as δ < 1 and using Theorem 3.2

T∫
0

|Aδ
1I4(t)|4L2dt ≤ C sup

r∈[0,T ]
|m(r)|4

H1

[ T∫
0

( t∫
0

(t − s)−δds
)4

dt
]

≤ C sup
r∈[0,T ]

|m(r)|4
H1 ≤ C(T ,‖m0‖H1).

Step II: Now we will show that

T∫
0

|mxx(t)|2L2dt ≤ C(T ,‖m0‖H1). (6.15)

We note that I1(t) = e−tAm0 satisfies the equation 
dI1(t)

dt
+ AI1(t) = 0, I (0) = I0. Multiplying 

this equation with AI1(t) we see that

T∫
0

|AI1(t)|2L2dt ≤ C(T ,‖m0‖H1).

Now using maximal inequality (6.8) and (3.6) we have

T∫
0

|AI2(t)|2L2dt ≤ C

T∫
0

|m(t) × mxx(t)|2L2dt ≤ C(T ,‖m0‖H1).

Again by substituting u = I3(t), f = |mx |2
R3m in maximal inequality (6.8), Step I and using 

|m(s)|2
L2 = ∫ 1

0 |m(s, x)|2
R3dx = 1, we get

T∫
0

|AI3(t)|2L2dt ≤ C

T∫
0

|mx(t)|4L2 |m(t)|2
L2dt ≤ C

T∫
0

|m(t)|4
H1dt ≤ C(T ,‖m0‖H1).
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Again by substituting u = I4(t), f = F(t, m(t)) in maximal inequality (6.8) we have

T∫
0

|AI4(t)|2L2dt ≤ C

T∫
0

|F(t,m(t))|2
L2dt ≤ C

T∫
0

|m(t)|2
H1dt ≤ C sup

0≤s≤T

|m(s)|2
H1

≤ C(T ,‖m0‖H1).

Hence (6.15) is obtained. This completes the proof of (6.4).
Now (6.3) can be obtained by proceeding in the similar manner as in the proof of the inequality 

(6.4). Note that, following Remark 4.2, we infer that in this case, the constant at first may depend 
on n, which can later be made independent of n. �
Corollary 6.2. Using (3.5) in Theorem 3.2 and (6.4) we have m ∈ L∞(0, T ; H1) ∩
L2(0, T ; D(A)). Again using (4.1) in Theorem 4.1 and (6.3) we can conclude that mn ∈
L∞(0, T ; H1) ∩ L2(0, T ; D(A)).

Proposition 6.3. The solution m lie in the space C([0, T ]; H1).

Proof. Using the fact that m ∈ L2(0, T ; H2) and 
dm
dt

∈ L2(0, T ; L2), we have

m ∈ C([0, T ]; H1). �
Finally, as a consequence of Theorem 5.1 and Corollary 6.2 we have the following key result.

Theorem 6.4. If m and mn are the unique solutions to the equations (1.13) and (2.15) respec-
tively such that m, mn ∈ L4(0, T ; H1), then we have the following convergence:

mn(·,ω) → m(·,ω) as n → ∞ for almost all ω ∈ 	 (6.16)

in the natural topology of � := L∞(0, T ; H1) ∩ L2(0, T ; D(A)).

Proof. Let us choose λ1 = λ2 = 1. Our aim is to prove (omitting ω for simplicity of notations)

lim
n→∞

[
sup

s∈[0,T ]
|mn(t) − m(t)|2

H1 +
T∫

0

|(mn
xx(t) − mxx(t))|2L2dt

]
= 0.

Similarly to equation (3.35), if we substitute zn := mn − m then zn(t) satisfies

zn(t) =
t∫

0

zn
xx(s)ds +

t∫
0

(
|mn

x(s)|2R3 mn(s) − |mx(s)|2R3 m(s)
)
ds

+
t∫

0

(
mn(s) × mn

xx(s) − m(s) × mxx(s)
)

+
t∫

0

(
Fn(s,mn) − F(s,m)

)
ds,
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for all t ∈ [0, T ]. Taking inner product in L2 with zn
xx , (i.e., by applying Lemma 1.2 Chapter-III 

in Temam [62] to |zn
xx |2L2 ) and integrating by parts, we have for all t ∈ [0, T ],

|zn
x(t)|2L2 + 2

t∫
0

|zn
xx(s)|2L2ds

= −2

t∫
0

〈(
|mn

x(s)|R3 − |mx(s)|R3

)(
|mn

x(s)|R3 + |mx(s)|R3

)
mn(s), zn

xx(s)
〉
L2

ds

− 2

t∫
0

〈
(|mx(s)|2R3z

n(s), zn
xx(s)

〉
L2

ds − 2

t∫
0

〈
zn(s) × mn

xx(s), z
n
xx(s)

〉
L2

ds

− 2

t∫
0

〈
Fn(s,mn(s)) − F(s,m(s)), zn

xx(s)
〉
L2

ds

:=
4∑

i=1

Ii (t) (6.17)

In order to estimate the terms Ii(t) for i = 1, 2, 3, we follow the steps due to [17], see Step 3 
of the proof of Lemma 6.3, and [23], and obtain the following estimates: for fixed η > 0, and a 
generic constant C > 0, we have for all t ∈ [0, T ],

I1(t) ≤ 3

η2

t∫
0

|zn
xx(s)|2L2 ds +

(
Cη2 + η6

2

) t∫
0

(
|mn

x(s)|4L4 + |mx(s)|4L4

)
|zn(s)|2

H1ds;

(6.18)

I2(t) ≤ 1

η2

t∫
0

|zn
xx(s)|2L2 ds + 4η2

t∫
0

|mx(s)|4L4 |zn(s)|2
L2 ds; (6.19)

I3(t) ≤ 1

η2

t∫
0

|zn
xx(s)|2L2 ds + k2η2

t∫
0

|mn
x(s)|2L2 |zn(s)|2

H1 ds. (6.20)

We will now estimate the term I4. Note,

I4(t) ≤
t∫

0

|〈mn(s) × F̂ n(s,mn(s)) − (m(s) × F̂ (s,m(s))), zn
xx(s)〉L2 |

+|〈(mn(s) × (mn(s) × F̂ n(s,mn(s)))) − (m(s) × (m(s) × F̂ (s,m(s)))), zn
xx(s)〉L2 |ds

:= 2

t∫
[I1

4 (s) + I2
4 (s)]ds. (6.21)
0
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Following similar steps involved in estimating L4(t) in Lemma 5.2, in order to estimate 
I i

4(s), i = 1, 2 we have for all s ∈ [0, T ],

I1
4 (s) ≤ 2

η2 |zn
xx(s)|2L2 + 4Cη2

[
|zn(s)|2

L2 + |zn
x(s)|2L2 + |Wn(s) − W(s)|2(1 + |mn

x(s)|2L2)
]

+ 4η2|mn
x(s)|2L2(|zx(s)|2L2 + |zn

x(s)|2L2), (6.22)

and

I2
4 (s) :=

∣∣∣〈zn(s) ×
(

mn(s) × F̂ n(s,mn(s))
)
, zn

xx(s)
〉
L2

∣∣∣
+

∣∣∣〈mn(s) ×
(

mn(s) × F̂ n(s,mn(s)) − m × F̂ (s,m(s))
)
, zn

xx(s)
〉
L2

∣∣∣
:= I21

4 (s) + I22
4 (s). (6.23)

Hence using |F̂ n(s, mn(s))|L2 ≤ 1 + |mn
x(s)|L2 , |mn(x)|R3 = 1, for a.e. x ∈ D, and Young’s 

inequality, we have for all s ∈ [0, T ],

I21
4 (s) =

∣∣∣〈zn(s) ×
(

mn(s) × F̂ n(s,mn(s))
)
, zn

xx(s)
〉
L2

∣∣∣
≤ C |zn(s)|L∞

(
1 + |mn

x(s)|L2

)
|zn

xx(s)|L2

≤ 1

η2 |zn
xx(s)|2L2 + 4η2(1 + |mn

x(s)|2L2)|zn(s)|2
H1 . (6.24)

Using |mn(x)|R3 = 1, for a.e. x ∈ D, and Young’s inequality, I22
4 (s) becomes:

I22
4 (s)

=
∣∣∣〈mn(s) ×

(
mn(s) × F̂ n(s,mn(s)) − m(s) × F̂ (s,m(s))

)
, zn

xx(s)
〉
L2

∣∣∣
≤

∫
D

|mn(s, x)|R3

∣∣∣mn(s, x) × F̂ n(s,mn(s, x)) − m(s, x) × F̂ (s,m(s, x))|R3 |zn
xx(s, x)

∣∣∣
R3

dx

≤
∫
D

∣∣∣(mn(s, x) − m(s, x)
)

× F̂ n(s,mn(s, x))

∣∣∣
R3

|zn
xx(s, x)|R3dx

+
∫
D

∣∣∣m(s, x) ×
(
F̂ n(s,mn(s, x)) − F̂ (s,m(s, x)

)∣∣∣
R3

|zn
xx(s, x)|R3dx

≤ 1

η2 |zn
xx(s)|2L2 + 4η2

(
1 + |mn

x(s)|2L2

)
|zn(s)|2

H1 + 4η2|Wn(s) − W(s)|2
(

1 + |mn
x(s)|2L2

)
.

(6.25)
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Combining (6.22)–(6.25) in (6.21), we get for all t ∈ [0, T ],

I4(t) ≤ 5

η2 |zn
xx(t)|2L2 + Cη2

{(
1 + |mn

x(t)|2L2

)
|zn(t)|2

H1 + |Wn(t) − W(t)|2
(

1 + |mn
x(t)|2L2

)}
.

(6.26)

Choosing η > 0 such that 
15

η2 = 1, and substituting (6.18), (6.19), (6.20), (6.26) in (6.17) we get

|zn
x(t)|2L2 +

t∫
0

|zn
xx(s)|2L2ds ≤

t∫
0

φn(s)|zn(s)|2
H1ds +

t∫
0

ψn(s)ds

where

ψn(s) = C
(

1 + |mx(s)|2L2

)
|Wn(s) − W(s)|2,

and

φn(s) = C
(
|mn

x(s)|4L4 + |mx(s)|4L4

)
+ 15k2|mn

xx(s)|2L2 + C
(

1 + |mn
x(s)|2L2

)
.

Using Gronwall’s inequality we have

sup
t∈[0,T ]

|zn
x(t)|2L2 +

T∫
0

|zn
xx(s)|2L2ds ≤ e

∫ T
0 φn(s)ds

( T∫
0

ψn(s)ds
)
. (6.27)

We note that ψn ∈ L1(0, T ) and using Theorem 4.1 and equation (1.8) we have

T∫
0

ψn(s)ds ≤ C|Wn − W |2L∞(0,T )

T∫
0

(1 + |mn
x(s)|2L2)ds → 0 as n → ∞. (6.28)

Using m, mn ∈ L4(0, T ; H1), and Theorem 6.1, we infer that

sup
n∈N

T∫
0

φn(s)ds < ∞. (6.29)

Hence using (6.28), (6.29) in (6.27), the convergence result (6.16) follows. This completes the 
proof. �
Corollary 6.5. Suppose that mn → m in the sense of (6.16). Then if F is defined by (1.16), then 
Fn(·, mn) → F(·, m) in L2(0, T ; L2).
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Proof. Recalling (2.7) and (2.8), first we see that

|Fn(·,mn) − F(·,m)|L2(0,T ;L2)

≤
∣∣∣λ1

(
mn × F̂ n(·,mn) − m × F̂ (·,m)

)∣∣∣
L2(0,T ;L2)

+
∣∣∣λ2

(
mn × (mn × F̂ n(·,mn)) − m × (m × F̂ (·,m))

)∣∣∣
L2(0,T ;L2)

. (6.30)

Now using (2.8), and proceeding as in (5.6), and using the assumption that g ∈W
2,∞, we obtain

|F̂ n(·,mn) − F̂ (·,m)|L2(0,T ;L2)

≤
∣∣∣e−W(t)G sin(W(t))

(
(mn − m) × gxx + 2(mn − m)x × gx

)
+ e−W(t)G[1 − cos(W(t))]

(
((mn − m) × gxx) × g + ((mn − m) × g) × gxx

+ 2
(
((mn − m)x × gx)g + ((mn − m)x × g) × gx + ((mn − m) × gx) × gx

))∣∣∣
L2(0,T ;L2)

≤ C|mn − m
∣∣∣
L2(0,T ;H1)

. (6.31)

Also from the definition of F̂ n in (2.8), we note that

|F̂ n(·,mn)|L2(0,T ;H1) ≤ C|mn|L2(0,T ;H1). (6.32)

Again using simple algebraic identities, (6.31), (6.32) and (6.16), we have

∣∣∣λ1

(
mn × F̂ n(·,mn) − m × F̂ (·,m)

)
|L2(0,T ;L2)

≤ |λ1||mn × F̂ n(·,mn) − m × F̂ n(·,mn)|L2(0,T ;L2)

+ |λ1||m × F̂ n(·,mn) − m × F̂ (·,m)|L2(0,T ;L2)

≤ C|λ1||mn − m|L∞(0,T ;H1)(1 + |mn|L∞(0,T ;H1)) + |λ1||m|L∞(0,T ;H1)|mn − m|L2(0,T ;H1)

≤ C|mn − m|L∞(0,T ;H1) → 0 as n → ∞. (6.33)

Similarly, we can prove that

|λ2

(
mn × (mn × F̂ n(·,mn)) − m × (m × F̂ (·,m))

)
|L2(0,T ;L2) → 0 as n → ∞. (6.34)

Thus combining (6.33) and (6.34), from (6.30) we have Fn(·, mn) → F(·, m) in
L2(0, T ; L2). �
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7. Proof of the main result

The main result of this paper is the following theorem:

Theorem 7.1. Let m and mn be the solutions of the system of equations (1.13)–(1.15) and 
(2.15)–(2.17) respectively. Let W(t) be the one dimensional Brownian motion and Wn(t) be 
the regular approximation of W(t) given by (1.8). Let G be the bounded linear operator given in 
Lemma 2.2. Then there exist unique solutions M and Mn of (1.5)–(1.7) and (1.9)–(1.11) respec-
tively and are given by

M(t) = eW(t)Gm(t), Mn(t) = eWn(t)Gmn(t), ∀t ∈ [0, T ]. (7.1)

Moreover for almost all ω ∈ 	, we have the following convergence:

Mn(·,ω) → M(·,ω) in C([0, T ];H1) ∩ L2(0, T ;D(A)), as n → ∞.

Remark 7.2. As in this work, the authors in [36] transformed the SLLGEs into a partial dif-
ferential equation with random coefficients. They proposed a convergent θ -linear scheme for 
the numerical solution of the reformulated equation, and as a consequence, they proved the ex-
istence of weak martingale solutions to the original SLLGEs. The key difference between the 
current work and [36] lies on the type of approximations – Wong–Zakai in our case and finite 
element for [36]. Let us point out that in the very first paper on the numerical approximations 
to the SLLGEs, see Remark (iii) on page 505 in [8], the authors pointed out that the Wong–
Zakai approximation for the SLLGEs is an open problem. Through this current work we resolve 
this open problem in one dimension. Moreover, here we are able to achieve the uniqueness and 
the convergence in a stronger topology than the one used in [36], which might be due to the 
one-dimensionality of the space domain as compared to two and three dimensional domains 
in [36].

Proof. Step 1 – Existence of M and Mn:
We note that m satisfies (3.3), ∀ ψ ∈ H

1. Using vector product rule 〈a, b × c〉R3 = 〈b, c × a〉R3 , 
it can be shown that m satisfies

〈mt ,ψ〉L2(DT ) + λ1〈m × ∇m,∇ψ〉L2(DT ) + λ2〈m × ∇m,∇(m × ψ)〉L2(DT )

− 〈F(t,m),ψ〉L2(DT ) = 0 ∀ψ ∈ L2(0, T ;W1,∞), (7.2)

where DT := (0, T ) × D.
Exploiting the result, see Lemma 4.1 of [36], that weak solutions to the original and the 

transformed system are equivalent, existence of M can be proved. Existence of Mn can also be 
proved analogously.

Uniqueness of M and Mn follow from the uniqueness of m and mn (see Theorem 3.16) 
respectively.
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Step 2 – Convergence: We note that

Mn(t) − M(t) = eWn(t)Gmn(t) − eW(t)Gm(t)

= eWn(t)G
(

mn(t) − m(t)
)

+
(
eWn(t)Gm(t) − eW(t)Gm(t)

)
:= I1(t) + I2(t). (7.3)

We will now show that I1 → 0 in C([0, T ]; H1) as n → ∞.
Using (6.16), Theorem 5.1, Theorem 6.4, and {e−sG}s∈R and {e−sGx }s∈R are uniformly con-

tinuous group of unitary linear maps on L2, we have

∫
D

|(I1(t))x |2R3dx

≤ 2
∫
D

∣∣∣eWn(t)G
(

mn
x(t) − mx(t)

)∣∣∣2

R3
dx + 2|Wn(t)|2

∫
D

∣∣∣eWn(t)Gx

(
mn(t) − m(t)

)∣∣∣2

R3
dx

≤ 2‖eWn(t)G‖L(L2)|mn
x(t) − mx(t)|2L2 + 2|Wn(t)|2‖eWn(t)Gx ‖L(L2)|mn(t) − m(t)|2

L2

≤ C
{

sup
t∈[0,T ]

|mn(t) − m(t)|2
H1 + sup

t∈[0,T ]
|mn(t) − m(t)|2

L2

}

≤ C
{
|mn − m|2L∞(0,T ;H1)

+ |mn − m|2L∞(0,T ;L2)

}
→ 0 as n → ∞,

and ∫
D

|I1(t)|2R3dx ≤
∫
D

∣∣∣eWn(t)G
(

mn(t) − m(t)
)∣∣∣2

R3
dx

≤ ‖eWn(t)G‖L(L2) sup
t∈[0,T ]

|mn(t) − m(t)|2
L2 → 0 as n → ∞.

This implies that supt∈[0,T ] |I1(t)|2
H1 → 0 as n → ∞. Now, using Fundamental Theorem of 

Calculus, we have

I2(t) := eWn(t)Gm(t) − eW(t)Gm(t) =
Wn(t)∫

W(t)

esGGm(t)ds.

Using boundedness of Wn(t) and W(t), we have

W(t)∨Wn(t)∫
W(t)∧Wn(t)

s2ds ≤
(
W(t) ∨ Wn(t)

)2|Wn(t) − W(t)|

≤ |Wn(t) − W(t)|
(
[Wn(t)]2 + [W(t)]2 + 2|Wn(t)||W(t)|

)
≤ C|Wn(t) − W(t)| (7.4)



JID:YJDEQ AID:9719 /FLA [m1+; v1.295; Prn:31/01/2019; 14:57] P.44 (1-50)
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Using similar arguments, |Gm(t)|L2 ≤ C|m(t)|L2 and |Gmx(t)|L2 ≤ C|mx(t)|L2 , |Gxm(t)|L2 ≤
C|m(t)|L2 , (1.8) and Theorem 6.4, we have

∫
D

|(I2)x(t)|2R3dx ≤ 2
[∫

D

W(t)∨Wn(t)∫
W(t)∧Wn(t)

(
|esGGmx(t)|2R3 + |sesGx Gm(t)|2

R3

+ |esGGxm(t)|2
R3

)
ds dx

]
× |Wn(t) − W(t)|

≤
[ W(t)∨Wn(t)∫
W(t)∧Wn(t)

(
‖esG‖2

L(L2)
|Gmx(t)|2L2 + s2‖esGx ‖2

L(L2)
|Gm(t)|2

L2

+ |s|‖esG‖2
L(L2)

|Gxm(t)|2
L2

)
ds

]
× |Wn(t) − W(t)|

≤ C
(

sup
t∈[0,T ]

|mx(t)|2L2

)
|Wn(t) − W(t)|2 +

(
C|m(t)|2

L2

W(t)∨Wn(t)∫
W(t)∧Wn(t)

s2ds
)

× |Wn(t) − W(t)| +
(
C|m(t)|2

L2

W(t)∨Wn(t)∫
W(t)∧Wn(t)

|s|ds
)

× |Wn(t) − W(t)|

≤ C|m|L∞(0,T ;H1) × |Wn(t) − W(t)|2 → 0 as n → ∞.

Also using similar arguments as above, we have

∫
D

|I2(t)|2R3dx =
∫
D

∣∣∣
Wn(t)∫

W(t)

esGGm(t)ds

∣∣∣2

R3
dx

≤
W(t)∨Wn(t)∫

W(t)∧Wn(t)

‖esG‖2
L(L2)

|Gm(t)|2
L2ds × |Wn(t) − W(t)|

≤ C|Wn(t) − W(t)|2 → 0 as n → ∞.

This implies that supt∈[0,T ] |I2(t)|2
H1 → 0 as n → ∞. Hence we have Mn → M in

C([0, T ]; H1).
Now to show Mn → M in L2(0, T ; D(A)), it is enough to show that I1 and I2 converge to 

zero in L2(0, T ; D(A)). Let us calculate (I1)xx(t).

(I1)xx(t) = eWn(t)G
(

mn
xx(t) − mxx(t)

)
+ 2Wn(t)eWn(t)Gx

(
mn

x(t) − mx(t)
)

+ [Wn(t)]2eWn(t)Gxx

(
mn(t) − m(t)

)
.
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Hence we have,

|AI1(t)|2L2 ≤ C
{∣∣∣eWn(t)G

(
mn

xx(t) − mxx(t)
)∣∣∣2

L2
+ |Wn(t)|2

∣∣∣eWn(t)Gx

(
mn

x(t) − mx(t)
)∣∣∣2

L2

+ |Wn(t)|4
∣∣∣eWn(t)Gxx

(
mn(t) − m(t)

)∣∣∣2

L2

}
≤ C

{
|A(mn − m)(t)|2

L2 + |mn(t) − m(t)|2
H1 + |mn(t) − m(t)|2

L2

}
.

Integrating on [0, T ] and exploiting (6.16), we have

T∫
0

|AI1(t)|2L2dt ≤ C
{ T∫

0

|A(mn − m)(t)|2
L2dt +

T∫
0

|mn(t) − m(t)|2
H1dt

+
T∫

0

|mn(t) − m(t)|2
L2dt

}

≤ C
{
|mn − m|2L2(0,T ;D(A))

+ T |mn − m|2L∞(0,T ;H1)

}
→ 0 as n → ∞.

This proves that I1 converges to zero in L2(0, T ; D(A)).
Now we will estimate I2(t).

(I2)xx(t) =
Wn(t)∫

W(t)

[
sesGx Gmx(t) + esGGxmx(t) + esGGmxx(t) + sesGx Gxm(t)

+ s2esGxx Gm(t) + sesGx Gmx(t) + esGGxxm(t) + sesGx Gxm(t)

+ esGGxmx(t)
]
ds.

Now using Tonelli’s theorem, (7.4), arguments similar in obtaining (7.4), |Gm(t)|L2 ≤
C|m(t)|L2 , |Gmx(t)|L2 ≤ C|mx(t)|L2 , |Gxm(t)|L2 ≤ C|m(t)|L2 , |Gxmx(t)|L2 ≤ C|mx(t)|L2 , 
|Gxxm(t)|L2 ≤ C|m(t)|L2 , (1.8) and using Theorem 6.4 we have

|I2(t)|2D(A) : = |AI2(t)|2L2 =
∫
D

|(I2)xx(t)|2R3dx

≤ C
{ W(t)∨Wn(t)∫
W(t)∧Wn(t)

∫
D

(
|sesGx Gmx(t)|2R3 + |esGGxmx(t)|2R3

+ |esGGmxx(t)|2R3 + |sesGx Gxm(t)|2
R3 + |s2esGxx Gm(t)|2

R3

+ |sesGx Gmx(t)|2 3 + |esGGxxm(t)|2 3 + |sesGx Gxm(t)|2 3
R R R
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+ |esGGxmx(t)|2R3

)
dx ds

}
× |Wn(t) − W(t)|

≤ C
{
|mxx(t)|2L2 + |mx(t)|2L2 + |m(t)|2

L2

}
× |Wn(t) − W(t)|2

≤ C
{
|m(t)|2D(A) + |m(t)|2

H1

}
× |Wn(t) − W(t)|2.

Integrating this on [0, T ] and using (1.8), we get

T∫
0

|I2(t)|2D(A) ≤ C
{
|m|2L2(0,T ;D(A))

+ T |m|2L∞(0,T ;H1)

}
× sup

t∈[0,T ]
|Wn(t) − W(t)|2

→ 0 as n → ∞.

This implies that I2 → 0 in L2(0, T ; D(A)).
Hence Mn → M in L2(0, T ; D(A)). This completes the proof. �
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Appendix A. Basic result

In this Section we recall some results which are used in the course to prove our main theorems.

Result 1. We have the following embedding

W
2δ,2 ↪→W

1,4. (A.1)

Proof. We know from the general Sobolev embedding theorem that

W
s,p ↪→ L

np
n−sp , if s <

n

p
.

Thus, if we take n = 1, p = 2 and s = 2δ − 1, then we infer that

W
2δ−1,2 ↪→ L

2
1−2(2δ−1) ↪→ L

4, (A.2)

and the first embedding is true if 1 − 2(2δ − 1) > 0, i.e., if δ < 3
4 and the second embedding is 

true if 2
1−2(2δ−1)

> 4, i.e., if δ > 5
8 . Hence, in summary for δ ∈ ( 5

8 , 34 ), we have the embedding 

W
2δ−1,2 ↪→ L

4.
Using Xδ =H

2δ =W
2δ,2 if δ < 3

4 , we deduce (A.1). �
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Appendix B. Some algebraic identities

Here we will list all algebraic identities used in this paper. Assume that a, b, c, d ∈R
3. Then

a × b = −b × a, (B.1)

〈a × (b × c), d〉 = 〈c, (d × a) × b〉, (B.2)

〈a × b, c〉 = 〈b, c × a〉, (B.3)

〈a × b, b〉 = 0, (B.4)

−〈a × b, c〉 = 〈b, a × c〉, (B.5)

a × (b × c) = 〈a, c〉b − 〈a, b〉c (B.6)

|a × b| ≤ |a||b|. (B.7)

In particular, if 〈a, b〉 = 0, then (a × b) × b = b × (b × a) = 〈b, a〉b − 〈b, b〉a = −|b|2a and 
a × (a × b) = 〈a, b〉a − 〈a, a〉b = −|a|2b, i.e.

(a × b) × b = −|b|2a, if 〈a, b〉 = 0. (B.8)

a × (a × b) = −|a|2b, if 〈a, b〉 = 0. (B.9)

Corollary B.1.

〈a × (a × b), b〉 = −|a × b|2 (B.10)

Proof. Apply, (B.3) and then (B.1). �
Appendix C. Comments about our method of proving Theorems 6.1 and 6.4

Although equation (1.13) is a-priori a quasilinear “parabolic” since the coefficients in front 
of mxx depend only on m, it does not satisfy usual assumption that for fixed m, the map

u �→ λ1(m × uxx) − λ2m × (m × uxx) (C.1)

is a generator of an analytic or C0-semigroup, see e.g. a vague definition from the Introduction 
Chapter of Amann’s monograph [4], Theorem 5.1.1 from a very recent monograph [58] by Prüss 
and Simonett and/or Definition 4.1 from Chapter 6.4 of Pazy’s book [57]. Though in our paper, 
as well as other papers on the SLLGEs, we assume that the initial data m0 takes values in the 
unit sphere S2 (i.e., satisfies the saturation condition (1.3)), we believe that following [63] it can 
be proved that for every1 m0 ∈H

1 := H 1(D; R3), problem (1.13)–(1.15) has a weak solution m
which satisfies

|m(t, x)|R3 = |m0(x)|R3 , for all t ≥ 0, for a.a.x ∈ D. (C.2)

1 Our Theorem 3.2 is formulated for m0 ∈ H
1(D; S2).
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It is to be noted that only when m0 satisfies the constraint condition (1.3), one can show that 
the weak solution to the problem (1.13), satisfying additionally the condition (C.2), solves the 
following equation (see (3.33) in Theorem 3.16 later on)

∂m
∂t

+ λ2mxx = λ2|mx |2R3 m + λ1(m × (mxx)) + F(t,m(t)), t ∈ (0, T ), (C.3)

in the weak sense with respect to the Gelfand triple V ↪→L
2 ↪→ V′.

Coming back to the quasilinear equations approach, for a fixed m ∈ H
1(D; S2), in view of 

Lemma 3.17, the map C.1 can be written as

u �→ −λ2uxx + λ1(m × uxx) − λ2|mx |2R3u, (C.4)

which is a bounded linear map from H2 to L2, but it is not clear whether this map satisfies 
relevant assumptions, see for instance [58]. One way to do so would be to employ technique of 
[30]. But the authors of that paper in Section 2 have worked with different spaces and moreover, 
only have proved the existence of a local regular solution. Our approach here is different. We 
only consider the linear map consisting of the first term in (C.4) and then we use (3.1) and (6.3)
(i.e. that 

∫ T

0 |m(t) × mxx(t)|2
L2 ds < ∞ and 

∫ T

0 |mn
x(s)|4L4 ds < ∞, which are the consequences 

of a-priori estimates and utracontractivity of the heat semigroup), in order to deduce the maximal 
regularity of the solutions in Theorem 6.1.

To conclude, it might be possible to exploit the quasilinear structure of the equation but some 
additional work needs to be done. For instance, the map enjoys nice property not for every 
m ∈ H

1, but only for every m in a closed submanifold H1(D; S2). Further, although we can-
not prove this, but see Section 3 of [15] for a related result concerning different equation with 
constraints, we suspect that the problem (C.3) may not be even well-posed for all initial data 
m0 ∈H1 (although it is well-posed for initial data m0 ∈ H1(D; S2)).
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[12] Z. Brzeźniak, On analytic dependence of solutions of Navier–Stokes equations with respect to exterior force and 

initial velocity, Univ. Iagel. Acta Math. 28 (1991) 111–124.

http://refhub.elsevier.com/S0022-0396(19)30047-6/bib414257s1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib414257s1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib416C6F7571s1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib416C6F7571s1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib416Cs1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib416Cs1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib416D616E6Es1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib41s1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib41s1
https://arxiv.org/abs/1501.02074
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib4242502E6E756Ds1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib4242502E6E756Ds1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib42424E502E6E756Ds1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib42424E502E6E756Ds1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib42424E502E316E756Ds1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib42424E502E316E756Ds1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib426973s1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib42726F776Es1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib42727A5F31393931s1
http://refhub.elsevier.com/S0022-0396(19)30047-6/bib42727A5F31393931s1


JID:YJDEQ AID:9719 /FLA [m1+; v1.295; Prn:31/01/2019; 14:57] P.49 (1-50)
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