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Abstract

We study models for N cyclically coupled variables (e.g., neuron activities) with overall negative delayed 
feedback, and without symmetry or monotonicity properties. Our aim is to extract the common parts of 
similar approaches that are known in dimensions one, two and three so far, to exhibit how these parts 
work for general dimension N , and to show how this framework includes previous as well as new results. 
We provide a fixed point theorem and a related theorem on periodic orbits for semiflows on Banach spaces, 
which then yield periodic solutions of cyclic delayed negative feedback systems for general N . We also give 
criteria for the global asymptotic stability in the same systems, which are derived by relating the systems to 
interval maps.
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1. Introduction

As in [20], we consider a cyclically coupled system of differential equations of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẏ1(t) = −μ1y1(t) + f1(y2(t − τ2))

ẏ2(t) = −μ2y2(t) + f2(y3(t − τ3))

. . .

ẏN (t) = −μNyN(t) + fN(y1(t − τ1)),

with delays τj ≥ 0 and with decay coefficients μj > 0, j = 1, . . . , N , and C1 feedback functions 
fj : R → R, j = 1, . . . , N . Systems of this type appear in various biological applications, e.g., 
as models for protein synthesis, for neural networks with a cyclical structure, or for oscillators 
generating biological rhythms. See for example [12], [19], [26], [38], [43] for more details. Some 
systems may have the above form only after a transformation of the form y = y∗ + x, where 
y∗ ∈ RN is an equilibrium of the original equation; compare [19], pp. 42-43.

The theory of such systems in the case of monotone coupling is established in [31], the main 
result being that a Poincaré-Bendixson-type theorem holds. In particular, if the ω-limit set of a 
solution does not contain equilibria, then it must be a nonconstant periodic solution.

We study the existence of periodic solutions to the above system without monotonicity condi-
tions, but with the assumption that each fj has either negative or positive feedback with respect 
to zero, and that the overall feedback is negative. That is, for x ∈ R \ {0} and j = 1, . . . , N one 
has

sign[fj (x) · x] = σj ∈ {−1,+1}, and σ1 · σ2 · . . . · σN = −1. (H1)

The latter implies that fj (0) = 0, j = 1, ..., N , holds so the system has the only constant solution 
y1 = y2 = . . . = yN ≡ 0.

In the non-monotone case with negative delayed feedback, even for N = 1, the dynamics can 
be complicated (see [24], [25], and the related results for ordinary differential equations from 
[11]).

For the cases N = 1 or N = 2, periodic solutions were obtained from versions of the Browder 
ejective fixed point theorem in, e.g., [16], [33], and [1]. A similar approach yielded periodic 
solutions of two-dimensional systems with two or even four delays in papers [39], [36], [44], and 
for arbitrary N in papers [17], [26].

In the present paper, we try to do as much as possible for general N , under the assumption of 
cyclic negative coupling (which is not assumed in all of the quoted references).

We now outline how the above system is transformed to a more convenient standard form 
(compare [1]). Setting τ := τ1 + τ2 + ... + τN and z1 := y1, z2 := y2(t − τ2), ..., zN := yN(t −
τ2 − τ3 − ... − τN), the system transforms into a system with the single delay τ that appears only 
in the last equation.

By further transformations of the form xj (t) = −yj (t) and gj (x) := fj (−x), we can achieve 
that for the transformed system
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(S)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1(t) = −μ1x1(t) + g1(x2(t))

ẋ2(t) = −μ2x2(t) + g2(x3(t))

. . . . . .

ẋN (t) = −μNxN(t) + gN(x1(t − τ))

one has

xgj (x) > 0 for x �= 0 and j = 1,2, ...,N − 1 and xgN(x) < 0 for x �= 0. (H2)

We consider system (S) (where the gj are C1 functions) from now on. We assume that N ≥ 2
and that

aj := g′
j (0) �= 0, (j = 1,2, ...,N), (H3)

which together with (H2) implies a1, a2, ..., aN−1 > 0 and aN < 0, and we set

a := −a1 · a2 · . . . · aN > 0.

By a solution of system (S) we mean an N -tuple of functions (x1, x2, ..., xN), where x1 :
[−τ, ∞) → R is continuous and has a differentiable restriction to [0, ∞), and x2, x3, ..., xN :
[0, ∞) → R are differentiable, and the equations in system (S) hold for all t ≥ 0. Set C :=
C0([−τ, 0], R). As the state space for system (S), we shall mostly use the set X := C × RN−1, 
since only the past of the x1-variable plays a role in the system.

It is seen by the method of steps that any initial value ψ = (ϕ, x0
2 , x0

3 , ...x0
N) ∈ X defines a 

unique corresponding solution (x1, x2, ..., xN) of (S). For this solution we have x1
∣∣[−1,0] = ϕ

and x2(0) = x0
2 , ..., xN(0) = x0

N . (In section 2, we partially consider more general linear equa-
tions, which require a state space including a past of all variables.)

With the aj from above, the linearization of system (S) at the zero solution is

(L)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1(t) = −μ1x1(t) + a1x2(t)

ẋ2(t) = −μ2x2(t) + a2x3(t))

. . . . . .

ẋN (t) = −μNxN(t) + aNx1(t − τ)

The general approach that we take is well-known, but so far not in arbitrary dimension: the 
oscillation properties of solutions define a return map on an appropriate cone, and such map can 
be shown to satisfy the conditions of some version of the ejective fixed point theorem.

We exhibit the connections between terms appearing in the Laplace transform of the equa-
tion, spectral projections, and the bilinear form named after Jack Hale in Section 2. There we 
also provide a general strategy to obtain lower estimates for these terms, and show how these 
considerations give a unified view on several previous results.

With view on the nonlinear system (S), we provide a suitable fixed point theorem and a corre-
sponding theorem on periodic orbits in section 3. This periodicity result is stated for semiflows 
on Banach spaces, and thus not dependent on a particular type of equation.
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One main condition of that theorem is a lower bound for a spectral projection on a cone 
within which one searches for fixed points. We comment on the circumstances under which this 
condition may or may not be satisfied in Section 4; there and in other places we use the detailed 
analysis of system (L) from [4].

In Section 5 we construct a return map for system (S), based on a condition which guarantees 
oscillatory behavior for the solutions starting in a suitable cone. This condition is in general 
weaker than absence of real eigenvalues.

Applying the main result of Section 3 to this map, we obtain a theorem on existence of periodic 
solutions in Section 6.

We take another point of view in Section 7, where we give a result on global stability of the 
zero solution of system (S) under different assumptions.

The final Section 8 briefly comments on possible alternative approaches, and corrects some 
minor errata from [20].

2. Characteristic equation, eigenspace projection, and Laplace transform

Consider a general N -dimensional linear retarded non-homogeneous differential equation of 
the form

(L,h) ẋ(t) = Lxt + h(t)

with x(t) ∈ RN , xt (θ) := x(t + θ) (θ ∈ [−τ, 0]) as usual, and with a continuous and lin-
ear functional L : C0([−τ, 0], RN) → RN , and h : R → RN continuous. The Riesz repre-
sentation theorem implies that L can be written as a Riemann-Stieltjes-Integral in the form 
Lϕ = ∫ 0

−τ
dη(θ)ϕ(θ), with a matrix-valued function η : [−τ, 0] → RN×N of bounded varia-

tion. The space CN := C0([−τ, 0], RN) and the functional L can be complexified in the obvious 
way by defining CN

C := C0([−τ, 0], CN) and LC(u + iv) := Lu + iLv for u, v ∈ CN . We use 
the max-norm on CN and CN

C .
The exponential Ansatz φ(t) = eλtw with λ ∈ C, w ∈ CN for complex-valued solutions of 

the homogeneous equation (L, h = 0) leads to the equation

�(λ)w = 0,

with the characteristic matrix

�(λ) := λIN −
0∫

−τ

eλθdη(θ)

(where IN is the N × N identity matrix), see [18], p. 200.
φ as above is a nonzero solution if and only if λ is a zero of the characteristic function, i.e.,

χ(λ) := det(�(λ)) = 0,

and 0 �= w is an eigenvector for the eigenvalue zero of �(λ).
For λ ∈ C, we also define a linear functional Kλ,L : CN

C → CN associated to λ and the func-
tional L by
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Kλ,L(ϕ) := ϕ(0) +
0∫

−τ

dη(θ) ·
⎛
⎝ 0∫

θ

e−λ(s−θ)ϕ(s) ds

⎞
⎠ .

This corresponds to K from formula (4.7), p. 206 in [18].
Recall the notion of the adjoint matrix M̂ to a given matrix M = (mij ) ∈ CN×N , which is 

the transpose of the matrix of cofactors: If m̂ij is the algebraic complement or cofactor to the 
coefficient mij in M (that is, (−1)i+j times the determinant of dimension N − 1 obtained by 
canceling the i−th row and the j−th column in M) then (M̂)ij = m̂ji , i, j = 1, ..., N . One has 

M̂ ·M = M · M̂ = det(M) · IN , so M−1 = 1

det(M)
M̂ in case M is invertible. (The adjoint matrix 

is not to be confused with the transposed matrix.)
We focus on the consideration of the situation when λ ∈C is a simple zero of the characteristic 

function χ , i.e.,

χ(λ) = det(�(λ)) = 0, χ ′(λ) �= 0,

and that w ∈ CN \ {0} is a corresponding vector in the (one-dimensional) kernel of �(λ). Then 
the (complex) one-dimensional subspace of CC spanned by the function φλ,w : [−τ, 0] 
 θ �→
eλθw ∈CN is invariant under the semigroup generated by the homogeneous equation (L, 0), and 
λ is an isolated eigenvalue of its infinitesimal generator A with eigenfunction φλ,w . (See [18], 
section 7.3, in particular, Theorem 4.1 on p. 205.)

We state some simple properties of �(λ):

Remark 2.1. Assume that λ ∈C is a simple zero of the characteristic function χ . Then
a) The adjoint matrix �̂(λ) is of rank one and has the form

�̂(λ) = w · v

with a column vector w and a row vector v (dyadic product), which are right and left eigenvectors 
(for the eigenvalue zero) of �(λ) in the sense that

�(λ)w = 0, v�(λ) = 0.

b) The function φ(t) := eλtw satisfies φ′(t) = Lφt , and the function ψ(t) := e−λtv satisfies 
the adjoint equation

ψ̇(t) = −
0∫

−τ

ψ(t − θ) dη(θ)

as defined in formula (21.4), p. 105 in [14].

Proof. Ad a): 1. Differentiating �̂(μ) · �(μ) = det(�(μ)) · IN = χ(μ) · IN at μ = λ, we obtain 
that (�̂)′(λ) · �(λ) + �̂(λ) · (�)′(λ) = χ ′(λ) · IN . If we had �̂(λ) = 0, it would follow from 
χ ′(λ) �= 0 that �(λ) is invertible. Hence �̂(λ) �= 0.
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2. Since �̂(λ) · �(λ) = det(�(λ)) · IN = 0, every row of �̂(λ) is ‘orthogonal’ to the image 
space (column space) of �(λ). Since 0 is a simple eigenvalue of �(λ), that column space has 
codimension 1, so the rank of �̂(λ) is at most one. In view of the first part, the rank is one.

3. It follows that �̂(λ) is of the form w · v, with both vectors nonzero. wi �= 0 for some i ∈
{1, ..., N} and �̂(λ)�(λ) = 0 together imply v�(λ) = 0. Similarly, �(λ)�̂(λ) = 0 and vj �= 0
for some j together imply �(λ)w = 0.

Ad b): These facts are known from [14]; we include a short proof for completeness.

φ̇(t) − Lφt = λeλtw − L([−τ,0] 
 θ �→ eλ(t+θ)w) = eλt [λIN −
0∫

−1

eλθdη(θ)]
︸ ︷︷ ︸

=�(λ)

w = 0.

ψ̇(t) +
0∫

−τ

ψ(t − θ) dη(θ) = v · [−λe−λt IN +
0∫

−τ

e−λ(t−θ) dη(θ)]

= −e−λtv · [λIN −
0∫

−τ

eλθ dη(θ)]
︸ ︷︷ ︸

=�(λ)

= 0. �

We still assume that λ is a simple zero of χ . With w as above, every ϕ ∈ CN
C has a spectral 

projection πλϕ to the eigenspace C · [θ �→ eλθw], obviously of the form (πλϕ)(θ) = cλ(ϕ) ·
eλθ (θ ∈ [−τ, 0]) with a complex linear functional cλ : CN

C →CN satisfying

cλ([θ �→ eλθw]) = w.

In [14], formula (20.5), p. 100, a bilinear form C0([0, τ ], CN∗) × C0([−τ, 0], CN) → C
associated to η (and thereby to L) is introduced. We denote it by (α, β) �→ [α, β]H , namely,

[α,β]H = α(0)β(0) −
0∫

−τ

θ∫
0

α(s − θ)dη(θ)β(s) ds.

Here CN∗ stands for row vectors, and the ds-integration is the ‘inner’ integration while the 
variable θ runs from −τ to 0, and the order of terms in the integrand is chosen to suitably 
express the matrix multiplication (row vector times matrix times column vector). It is known that 
the spectral projection of any ϕ ∈ CN

C can be expressed with the help of this bilinear form.
One has the following relation between spectral projection, the functional Kλ,L from above, 

the solution ψ of the adjoint equation and the bilinear form defined by Hale.

Proposition 2.2. Assume that λ ∈ C is a simple zero of the characteristic function χ , and that 
v, w and ψ are as in Remark 2.1, so �̂(λ) = w · v. Then

∀ϕ ∈ CN : (πλϕ)(θ) = cλ(ϕ) · eλθ (θ ∈ [−τ,0]), with
C
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cλ(ϕ) = 1

χ ′(λ)
w · v · Kλ,L(ϕ) = 1

χ ′(λ)
w · [ψ ∣∣[0, τ ], ϕ]H . (2.1)

Proof. 1. Assume ϕ ∈ CN
C . With the infinitesimal generator A as introduced above, the spectral 

projection is given by the Dunford integral of the resolvent R(z; A):

πλ = 1

2πi

∮
|z−λ|=ε

R(z;A)dz,

with ε > 0 small enough so that λ is the only spectral value of A in the closed ball B(λ, ε). (See, 
e.g., [40], p. 321, and formula (8-10) on p. 315 for the case when f = 1 on B(λ, ε) and zero 
otherwise.)

We now interchange the evaluation at ϕ ∈ CN
C with the integral (which is possible since the 

Riemann sums for the integral converge even in Lc(C
N
C , CN

C )), and then also exchange the eval-
uation at θ ∈ [−τ, 0] with the integral (which is possible since this evaluation is continuous from 
CC to Cn). Thus we obtain

(πλϕ)(θ) = 1

2πi

∮
|z−λ|=ε

[R(z;A)ϕ](θ) dz = Resλ[z �→ (R(z;A)ϕ)(θ)]

(where the last integral is CN−valued, and the residue is to be understood component-wise). We 
now employ formula (4.6) from Corollary 4.1, p. 206 of [18] to obtain

(πλϕ)(θ) = Resλ[z �→ ezθ · ([�(z)]−1Kz,L(ϕ) +
0∫

θ

e−zsϕ(s) ds)].

The second term in the above sum (together with the factor ezθ ) represents a holomorphic func-

tion of z and thus does not contribute to the residue, and we have [�(z)]−1 = 1

det�(z)
�̂(z) =

1

χ(z)
�̂(z), if |z − λ| = ε. Further, if f, g are holomorphic in a neighborhood of λ and g has a 

simple zero at λ, then Resλ
f
g

= f (λ)
g′(λ)

. Thus we arrive at

(πλϕ)(θ) = eλθ

χ ′(λ)
�̂(λ)Kλ,L(ϕ)

which in view of �̂(λ) = w · v proves the first equation in (2.1). For the second equation, we 
show that the numbers [ψ ∣∣ , ϕ]H and v · Kλ,L(ϕ) are equal.
[0, τ ]
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[ψ∣∣[0, τ ], ϕ]H = ψ(0)ϕ(0) −
0∫

−τ

θ∫
0

ψ(s − θ)dη(θ)ϕ(s) ds

= v · ϕ(0) −
0∫

−τ

θ∫
0

e−λ(s−θ)v dη(θ)ϕ(s) ds

= v · [ϕ(0) +
0∫

−τ

dη(θ)

⎛
⎝ 0∫

θ

e−λ(s−θ)ϕ(s) ds

⎞
⎠

= v · Kλ,L(ϕ). �
Recall now that the Laplace transform is defined by (Lx)(λ) := ∫∞

0 e−λtx(t) dt, for x :
[0, ∞) → CN and λ ∈ C such that the integral converges (as improper Riemann integral in 
each of the N components). L has the following properties (assuming all indicated derivatives 
and integrals exist, and x is defined at least on [−τ, ∞) for the last property):

For M ∈Cn×n,L(Mx)(λ) = M(Lx)(λ)

(Lẋ)(λ) = −x(0) + λ(Lx)(λ) (2.2)

[Lx(· − τ)](λ) = e−λτ

⎡
⎣ 0∫
−τ

e−λtx(t) dt + (Lx)(λ)

⎤
⎦ .

Proposition 2.3. Let x : [−τ, ∞) → Cn be a solution of equation (L, h) with initial function 
ϕ ∈ (C0[−τ, 0], RN), and that λ ∈ C is such that the Laplace transforms appearing below all 
converge absolutely in the sense of Lebesgue integrals. (This is, e.g., the case when x and h are 
both bounded and Re (λ) < 0). Then

�(λ)(Lx)(λ) = Kλ,L(ϕ) + (Lh)(λ).

Proof. Applying the Laplace transform to equation (L, h) and using (2.2) we obtain

−x(0) + λ(Lx)(λ) = L(t �→ Lxt )(λ) + (Lh)(λ). (2.3)

For the first term on the right-hand side we calculate, using a suitable version of Fubini’s theorem 
to reverse the order of integration (e.g., Theorem 8.8 in Section 8 of [37]):
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L(t �→ Lxt )(λ) =
∞∫

0

e−λt

0∫
−τ

dη(θ)x(t + θ))dt

=
0∫

−τ

dη(θ)

∞∫
0

e−λtx(t + θ) dt =
0∫

−τ

dη(θ)

∞∫
θ

e−λ(s−θ)x(s) ds

=
0∫

−τ

dη(θ)

⎡
⎢⎢⎢⎢⎢⎢⎣

0∫
θ

e−λ(s−θ)x(s) ds +
∞∫

0

e−λ(s−θ)x(s) ds

︸ ︷︷ ︸
=eλθ (Lx)(λ)

⎤
⎥⎥⎥⎥⎥⎥⎦

=
0∫

−τ

eλθdη(θ) · (Lx)(λ) +
0∫

−τ

dη(θ)

0∫
θ

e−λ(s−θ)x(s) ds.

Inserting this result in (2.3), collecting the terms which are multiples of (Lx)(λ) on the left hand 
side, and recalling that x0 = ϕ gives

[λIN −
0∫

−τ

eλθdη(θ)]
︸ ︷︷ ︸

=�(λ)

(Lx)(λ) = ϕ(0) +
0∫

−τ

dη(θ)

0∫
θ

e−λ(s−θ)ϕ(s) ds

︸ ︷︷ ︸
=Kλ,L(ϕ)

+(Lh)(λ),

which is the assertion. �
Corollary 2.4. In the case of Proposition 2.3, assume in addition that λ is a simple zero of the 
characteristic function χ , and that �̂(λ) = w · v as in Remark 2.1. Then

0 = v · Kλ,L(ϕ) + v · (Lh)(λ).

Proof. This follows directly from Proposition 2.3, using v · �(λ) = 0. �
We now consider special cases of the above formulas:

Corollary 2.5. If the functional L has the form Lϕ = Aϕ(0) +Bϕ(−τ) with A, B ∈RN×N then 
for λ ∈C

Kλ,L(ϕ) = ϕ(0) + e−λτB

0∫
−τ

e−λsϕ(s) ds,

and

�(λ) = λIN − e−λτB − A.
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Proof. The matrix-valued function η with Lϕ = ∫ 0
−τ

dη(θ)ϕ(θ) can be chosen as

η(θ) :=

⎧⎪⎪⎨
⎪⎪⎩

0, θ = −τ

B, − τ < θ < 0

B + A, θ = 0.

From the definitions of Kλ,L and �(λ) one obtains for ϕ ∈ C:

Kλ,L(ϕ) = ϕ(0) + B

0∫
−τ

e−λ(s−(−τ))ϕ(s) ds + A

0∫
0

... = ϕ(0) + e−λτB

0∫
−τ

e−λsϕ(s) ds,

and

�(λ) = λIN − e−λτB − eλ·0A = λIN − e−λτB − A. �
In [20], N−dimensional cyclic systems of the form (S) were considered for the special case 

N = 3 and τ = 1. The linear functional L corresponding to the linearization of such a system at 
the zero solution (namely, system (L)) takes the form Lϕ = Aϕ(0) + Bϕ(−τ) of Corollary 2.5, 
with ai := g′

i (0) (i = 1, ..., n) and the N × N -matrices

A :=

⎛
⎜⎜⎜⎜⎝

−μ1 a1 0 ... 0
0 −μ2 a2 ... 0

. . .

0 ... −μN−1 aN−1
0 .... −μN

⎞
⎟⎟⎟⎟⎠ , B :=

⎛
⎜⎜⎝

0 0 ... 0
...

0 0 ... 0
aN 0 ... 0

⎞
⎟⎟⎠ .

Corollary 2.6. For the case of the cyclic feedback system (S), and with A, B as above, one has 

for ϕ =

⎛
⎜⎜⎜⎜⎝

ϕ1
·
·
·

ϕN

⎞
⎟⎟⎟⎟⎠ that Kλ,L(ϕ) = ϕ(0) + e−λτ aN

⎛
⎜⎜⎜⎜⎝

0
·
·
·∫ 0

−τ
e−λsϕ1(s) ds

⎞
⎟⎟⎟⎟⎠,

�(λ) =

⎛
⎜⎜⎜⎜⎝

λ + μ1 −a1 0 ... 0
0 λ + μ2 −a2 ... 0

...

0 ... λ + μN−1 −aN−1

−e−λτ aN ... λ + μN

⎞
⎟⎟⎟⎟⎠ ,

and

χ(λ) = (λ + μ1) · ... · (λ + μN) − a1 · ... · aNe−λτ . (2.4)

Further, if λ is a simple zero for χ then �(λ) has the left eigenvector (with the eigenvalue zero)
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v = [(λ + μ2) · ... · (λ + μN), a1(λ + μ3) · ... · (λ + μN), a1a2(λ + μ4) · ... · (λ + μN),

..., (λ + μN)a1a2...aN−2, a1a2...aN−1], i.e. ,

vk =
k−1∏
j=1

aj

N∏
j=k+1

(λ + μj ), k = 1, ...,N,

where empty products are to be read as 1. Finally, for the linear part in the equation from Corol-
lary 2.4 one has

v · Kλ,L(ϕ) =
N∑

k=1

[ k−1∏
j=1

aj

N∏
j=k+1

(λ + μj )
]
ϕk(0) +

N∏
j=1

aj

0∫
−τ

e−λ(s+τ)ϕ1(s) ds.

Proof. 1. The formulas for Kλ,L(ϕ) and �(λ) follow directly from Corollary 2.5 by inserting 
the special form of A and B .

2. Expanding the determinant of �(λ) along the first column, one gets

χ(λ) = (λ + μ1) · ... · (λ + μN) + (−1)N+1(−e−λτ aN) · (−1)N−1a1 · ... · aN−1

= (λ + μ1) · ... · (λ + μN) − a1 · ... · aNe−λτ .

3. If now λ is a simple zero for χ then v as above multiplied by the first column of �(λ) gives 
(λ + μ1) · ... · (λ + μN) − a1 · ... · aNe−λ = χ(λ) = 0. For k ∈ {2, ..., N}, multiplying v by the 
k-th column of �(λ) results in

−ak−1vk−1 + (λ + μk)vk = −ak−1

k−2∏
j=1

aj

N∏
j=k

(λ + μj ) + (λ + μk)

k−1∏
j=1

aj

N∏
j=k+1

(λ + μj )

= −
k−1∏
j=1

aj

N∏
j=k

(λ + μj ) +
k−1∏
j=1

aj

N∏
j=k

(λ + μj ) = 0.

The formula for v · Kλ,L(ϕ) follows immediately, noting that vN =∏N−1
j=1 aj . �

With the characteristic function from (2.4), we turn now to the analysis of the characteristic 
equation χ(λ) = 0. Let pj denote the coefficients of the polynomial part p(λ) of the character-
istic function, i.e., p(λ) := (λ + μ1) · ... · (λ + μN) = ∑N

j=0 pjλ
j (the pj are the elementary 

symmetric functions of (−μ1, ..., −μN)).

Lemma 2.7. (Solutions of the characteristic equation). Consider the cyclic feedback system (S), 

its linearization (L), and the characteristic function χ , as in Corollary 2.6. Set Z :=
{
λ ∈

C
∣∣ χ(λ) = 0

}
, and (as in the introduction) a := |a1....aN |.

(i) For fixed delay τ > 0, there exists A0 > 0 (dependent on τ ) such that if a > A0 then the 
corresponding function χ has no real zero. The number A0 can be chosen uniformly for all 
τ ≥ 1; a possible choice is A0 := max |pj |j !.
j=0,...,N
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(ii) If λ = ρ + iω ∈Z and ω �= 0 then χ ′(λ) �= 0.
(iii) For every ρ ∈R there is at most one ω ∈ [0, ∞) such that ρ ± iω ∈Z .
(iv) For fixed delay τ > 0, there exists A1 > 0 such that for a ≥ A1 there exists a leading eigen-

value λ∗ = ρ + iω ∈ Z (i.e., an eigenvalue with maximal real part), with ρ = ρ(a) > 0 and 
ω = ω(a) ∈ (0, π/τ). ρ and ω are both strictly increasing as functions of the parameter a
on the interval [A1, ∞), and ρ(a) → ∞ and ω(a) → π/τ as a → ∞. A possible choice 

for A1 is A1 :=
√√√√ N∏

j=1

(μ2
j + π2

τ 2 ).

Proof. Most of these results are proved in Section 2 of [4], namely: (ii) in Lemma 2, (iv) in 
Lemma 3, and (iii) in Claim 1 within the proof of Lemma 3. In the proof of Lemma 3 from 
[4] (in the passage preceding formula (11)) it is shown that the value α1 of the parameter a
where the first eigenvalue pair crosses the imaginary axis at ±ω1, with ω1 ∈ (0, π/τ), is given by 

α1 =
√√√√ N∏

j=1

(μ2
j + ω2

1). For all larger a, the assertions of part (iv) of the present lemma are true. 

This value satisfies α1 <

√√√√ N∏
j=1

(μ2
j + π2

τ 2 ).

Assertion (i) is proved in Lemma 1 of [4], except for the statement that A0 can be chosen 
uniformly for all τ ≥ 1, which we prove now: Note that nonnegative real solutions of the charac-
teristic equation

χ(λ) = (λ + μ1) · ... · (λ + μN) + ae−λτ = 0

do not exist. For τ > 0, define A0(τ ) := max
j=0,...,N

|pj |j !
τ j

. For negative real λ and a ≥ A0(τ ) one 

then has

|
N∑

j=0

pjλ
j | ≤

N∑
j=0

|pj |j !
τ j

(|λ|τ)j

j ! ≤ A0(τ )

N∑
j=0

(|λ|τ)j

j ! < ae|λ|τ = ae−λτ ,

and hence χ(λ) �= 0 for all negative λ, if a ≥ A0(τ ). Now for τ ≥ 1 one has

A0(τ ) ≤ A0(1) = max
j=0,...,N

|pj |j !,

which shows that the assertion of (i) is true for all τ ≥ 1 if a ≥ A0(1). �
Remark: In several previous papers, e.g. [33], [16], [1], [20], calculations using the Laplace 

transform (not always mentioning that) were carried out until one arrived at an equation analo-
gous to the one in Corollary 2.4, and for the case h(t) = g(xt ) with g(ψ) = o(||ψ ||) in the sense 
that |g(ψ)| ≤ c||ψ || with a constant c > 0 that can be made arbitrarily small (either by taking 
||ψ || small enough, or, as in [33] (proof of Lemma 2.2, p. 367), by taking ||ψ || large enough. 
(In dimensions larger than one, the norm || · || here usually involved the max-norm of the one 
component appearing with delay in the equation, such as the first component in system (S), and 
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only the evaluation at zero of the remaining components.) Further, initial values ϕ from a cone 
K were considered, with the property that for some c1 > 0 one has

∀ϕ ∈ K : |v · Kλ,L(ϕ)| ≥ c1||ϕ||. (2.5)

(The previous papers worked with concrete representations of v and Kλ,L for the case of specific 
equations.) In view of formula (2.1), it is obvious that the last lower estimate is equivalent to the 
existence of a lower bound for the spectral projection of the type

∀ϕ ∈ K : ||πλ(ϕ)|| ≥ c||ϕ||. (2.6)

Then, using the concrete instance of the equation from Corollary 2.4, one could conclude 
that for sufficiently small δ > 0 there exists no nonzero solution x starting with x0 = ϕ ∈ K

and ||ϕ|| = δ such that, for example, ||xt || ≤ 2δ for all t ≥ 0; the argument is based on the 
non-balance between the O(δ) linear and the O(δ2) quadratic term in that equation. This result 
was essential in proving ejectivity of the fixed point 0 ∈ K under a return map defined by the 
oscillatory character of solutions. Note that an analogue of condition (2.5) is an assumption of 
the ejectivity criterion stated in Theorem 3.1 of [7]. A similar estimate along the whole trajectory, 
until it returns to the cone K, and not only on K itself, is provided, e.g., in Lemma 5.15 of [3]. In 
[26] (for general dimension N , but with a nonlinearity in only one equation), a lower bound of 
the type (2.5) was proved working with the Hale bilinear form and using the structure of solutions 
of the adjoint equation (compare (2.1)), in the spirit of the proof of Lemma 5.6, p. 266 from [15].

Lower estimates of the type (2.5) (for ϕ in some cone) were obtained in several papers by 
splitting the functional on the left-hand side into real and imaginary part, possibly splitting these 
into sub-parts, and then distinguishing cases where one or the other part is dominant. Our next 
goal is to give a unified and general view of such arguments that extends to any dimension N . 
The following simple general result is helpful for this purpose. The functionals h1, h2 below are 
not necessarily linear or continuous, although that is the case in typical applications. Note that 
in the case when h2 is continuous the upper bound in condition (ii) is not a consequence of the 
continuity of h2.

Proposition 2.8. Let (Y, || ||Y ) and (Z, || ||Z) be normed spaces over R, and let X be defined as

X := Y × Z with the norm ||(y, z)|| := max{||y||Y , ||z||Z}.

Let K be a subset of X. Assume that the real valued functional h1 : X → R and the 
complex-valued functional h2 : X → C satisfy the following conditions with some constants 
a1, a2, b2 > 0:

∀ (y, z) ∈ K:

(i) a1||y||Y ≤ |h1(y, z)|;
(ii) |h2(y, z)| ≤ b2||z||;

(iii) a2||z||Z ≤ | Im h2(y, z)|.

Then, defining the functional h : X → C by h(y, z) := h1(y, z) + h2(y, z), there exists c > 0
such that
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∀x = (y, z) ∈K : |h(x)| ≥ c||x||.

Proof. In the proof, we write || · || for all appearing norms.
1. If (y, z) ∈ K and ||y|| ≥ 2b2

a1
||z|| then ||h2(y, z)|| ≤ b2||z|| ≤ a1

2 ||y|| and

|h(y, z)| ≥ |h1(y, z)| − |h2(y, z)| ≥ a1||y|| − a1

2
||y|| = a1

2
||y|| ≥ b2||z||,

so

|h(y, z)| ≥ min{a1

2
, b2} · max{||y||, ||z||}. (2.7)

2. If (y, z) ∈ K and ||y|| ≤ 2b2
a1

||z|| then, using the fact that h1 is real-valued and condition 
(iii), we see that

|h(y, z)| ≥ | Im h(y, z)| = | Im h2(y, z)| ≥ a2||z|| ≥ a2a1

2b2
||y||,

so

|h(y, z)| ≥ min{a2,
a2a1

2b2
} · max{||y||, ||z||}. (2.8)

3. Since for x = (y, z) we have ||x|| = max{||y||, ||z||}, the assertion now follows from (2.7)
and (2.8), setting c := min

{
min{ a1

2 , b2}, min{a2, 
a2a1
2b2

}}. �
Consider now again the situation of Lemma 2.7, with a > A1. Let λ = λ∗(a) = ρ + iω be the 

leading eigenvalue of system (L), so ρ > 0 and ω ∈ (0, π/τ). Recall the functional v · Kλ,L as in 
Corollary 2.6, which corresponds to the spectral projection onto the eigenspace of λ, as described 
in Proposition 2.2. As mentioned, a lower estimate for this functional as in Proposition 2.8 was 
essential in several previous papers (for the proof of ejectivity) and is also an essential assumption 
of our theorem on periodic orbits (Theorem 3.4) in Section 3. Next we provide a criterion in terms 
of the parameters of system (L) for such a lower estimate to hold.

It is now convenient to use the state space X = C0([−τ, 0], R) × RN−1 (compare the intro-
duction), as opposed to the space C0([−τ, 0], RN) which was used for the more general consid-
erations at the beginning of this section. The norm on X is given by ||(ϕ, x2(0), . . . , xN(0)||X :=
max{|ϕ|∞, |x2(0)|, ..., |xN(0)|}.

For X0 = (ϕ, x2(0), . . . , xN(0)) ∈ X, the general expression v ·Kλ,L(ϕ) in the sense of Corol-
lary 2.6 and condition (2.5) has to be replaced by the functional

h(X0) :=
N∑

k=1

⎧⎨
⎩(

k−1∏
j=1

aj ) · xk(0) ·
N∏

j=k+1

(λ + μj )

⎫⎬
⎭+

N∏
j=1

aj

0∫
−τ

e−λ(s+τ)ϕ(s) ds, (2.9)

see Corollary 2.6. (Here an empty product is to be read as 1, and x1(0) = ϕ(0).)
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We define the cone

K := {X0 = (ϕ, x2(0), . . . , xN(0)) ∈ X|ϕ(−τ) = 0, (2.10)

[−τ,0] 
 s �→ ϕ(s) exp{μ1s} is increasing, and xk(0) ≥ 0,2 ≤ k ≤ N}.

From this definition, for X0 = (ϕ, x2(0), . . . , xN(0)) ∈ K one has

∀ s ∈ [−τ,0] : ϕ(s) ≤ e−μ1sϕ(0) ≤ eμ1τ ϕ(0),

so that

0 ≤ ϕ(0) ≤ ||ϕ||∞ ≤ eμ1τ ϕ(0). (2.11)

Lemma 2.9. If

∀ k ∈ {1, ...,N − 3} : Im
N∏

j=k+1

(λ + μj ) > 0 (2.12)

then the functional h from (2.9) satisfies a lower estimate of the form

∀X0 ∈ K : |h(X0)| ≥ c||X0||X
(with some c > 0), which corresponds to an estimate of type (2.5) and (2.6).

Remark. 1) Condition (2.12) is to be read as automatically satisfied if N ∈ {1, 2, 3}. It is 
equivalent to the seemingly stronger condition

∀ k ∈ {1, ...,N − 1} : Im
N∏

j=k+1

(λ + μj ) > 0, (2.13)

since for k = N − 2 the product to consider equals (ρ + μN−1 + iω)(ρ + μN + iω), which has 
imaginary part ω[2ρ + μN−1 + μN ] > 0, and for k = N − 1 the product equals ρ + μn + iω.

2) The numbers λ + μj = ρ + μj + iω are all of the form rj exp(iϕj ) with ϕj :=
arctan[ω/(ρ + μj )] ∈ (0, π/2). Hence conditions (2.12) and (2.13) are both equivalent to

∀ k ∈ {1, ...,N − 1} :
N∑

j=k+1

arctan

[
ω

ρ + μj

]
< π.

Note that the difference between two of the above sums for different k lies in (0, π/2), and for 
k = N − 1 the sum equals arctan[ω/(ρ + μN)] ∈ (0, π/2), so all such sums have to be in (0, π)

(and cannot reach, for instance, the interval (2π, 3π)), if all the imaginary parts in (2.13) are 
positive.
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The last condition again is equivalent to

N∑
j=2

arctan

[
ω

ρ + μj

]
< π. (2.14)

Proof of Lemma 2.9. We have h(X0) = h1(X0) + h2(X0), where

h1(X0) :=
⎛
⎝N−1∏

j=1

aj

⎞
⎠ · xN(0)

is real-valued, and (of course)

h2(X0) = h(X0) − h1(X0)

=
N−1∑
k=1

⎧⎨
⎩
⎛
⎝k−1∏

j=1

aj

⎞
⎠ · xk(0) ·

N∏
j=k+1

(λ + μj )

⎫⎬
⎭+

N∏
j=1

aj

0∫
−τ

e−λ(s+τ)ϕ(s) ds.

In the sense of the notation of Proposition 2.8, we use the splitting

X0 = [ϕ,x2(0), . . . , xN−1(0)︸ ︷︷ ︸
=z

, xN(0)︸ ︷︷ ︸
=y

],

which corresponds to the choice of Y and Z as

Y := (R, | |) and Z := (C0([−τ,0),R), || ||∞) ×RN−2

with the norm ||(ϕ, x2(0), . . . , xN−1(0))||Z := max{||ϕ||∞, max{|x2(0)|, ..., |xN−1(0)|}}. Obvi-
ously h1 satisfies the estimate

|h1(X0)| ≥
⎛
⎝N−1∏

j=1

aj

⎞
⎠ · |xN(0)|,

corresponding to condition (i) of Proposition 2.8.
Further, using e−λ(s+τ) ≤ 1 for s ∈ [−τ, 0] we get the estimate

|h2(X0)| ≤
⎧⎨
⎩

N−1∑
k=1

⎛
⎝k−1∏

j=1

aj

⎞
⎠ N∏

j=k+1

|λ + μj |
⎫⎬
⎭ max

k=1,...,N−1
|xk(0)| + |

N∏
j=1

aj |τ · ||ϕ||∞.

Since x1(0) = ϕ(0), we obtain (with the meaning of ‘z’ and ‘Z’ indicated above:
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|h2(X0)| ≤
⎡
⎣{N−1∑

k=1

...

}
+ |

N∏
j=1

aj |τ
⎤
⎦ · max{|x1(0)|,max{ max

k=2,....,N−1
|xk(0)|, ||ϕ||∞}}

≤ [
...
]︸︷︷︸

=:b2

max{||ϕ||∞, max
k=2,....,N−1

|xk(0)|} = b2||z||Z,

and hence condition (ii) of Proposition 2.8 is also satisfied. We provide a lower estimate for 
| Im h2| now (assuming that X0 ∈ K, which was not necessary so far). Assumption (2.12) in the 
form (2.13) shows that

ν := min
k∈1,...,N−1

Im
N∏

j=k+1

(λ + μj ) > 0.

Further, ω ∈ (0, π/τ) implies that sin(−ω(s + τ)) ≤ 0 for s ∈ [−τ, 0], so for the integral term in 
h2 one has

Im

⎡
⎣ 0∫
−τ

e−λ(s+τ)ϕ(s) ds

⎤
⎦=

0∫
−τ

e−ρ(s+τ) sin(−ω(s + τ))ϕ(s) ds ≤ 0.

Since 
∏N

j=1 aj < 0, we conclude that

Im h2(X0) ≥
N−1∑
k=1

⎧⎨
⎩
⎛
⎝k−1∏

j=1

aj

⎞
⎠ · xk(0) · Im

N∏
j=k+1

(λ + μj )

⎫⎬
⎭≥

N−1∑
k=1

⎛
⎝k−1∏

j=1

aj

⎞
⎠ · ν · xk(0)

≥ min
k=1,...,N−1

⎛
⎝k−1∏

j=1

aj

⎞
⎠ · ν

︸ ︷︷ ︸
=:ν̃

· max
k=1,...,N−1

xk(0).

Using (2.11) we obtain with the indicated definition of ν̃:

Im h2(X0) ≥ ν̃ max{e−μ1τ ||ϕ||∞, max
k=2,...,N−1

xk(0)} ≥ ν̃e−μ1τ max{||ϕ||∞,

max
k=2,...,N−1

xk(0)} = ν̃e−μ1τ ||z||Z.

We see that condition (iii) of Proposition 2.8 also holds, and the assertion of the present lemma 
follows now from that proposition. �

We show now how the calculations from some earlier results, providing lower bounds of type
(2.5) or (2.6), fit into the framework of Lemma 2.9.

1) Hadeler and Tomiuk [16] considered the scalar equation ẋ(t) = −νx(t) −f (x(t − 1)) with 
continuous f satisfying x · f (x) > 0 for x �= 0, ν > 0 and f ′(0) =: α > 0. The characteristic 
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function χ and, for a zero λ of χ , the functional Kλ,L are in this one-dimensional case given by 
χ(λ) = λ + ν + αe−λ (compare formula (9) in [16]), and by

Kλ,L(ϕ) = ϕ(0) − α

0∫
−1

e−λ(s+1)ϕ(s) ds = ϕ(0) + (λ + ν)

0∫
−1

e−λsϕ(s) ds.

(Note that the eigenvector v in this case can just be replaced by the number 1.) The cone 

considered in [16] is K :=
{
ϕ ∈ C

∣∣ ϕ(−1) = 0, t �→ eνtϕ(t) is increasing
}

, which for N = 1

corresponds to the cone K as in (2.10). For α large enough relative to ν, χ has a zero λ = μ + iγ

with γ ∈ (0, π) and μ > 0 (see Corollary to Lemma 3 in [16]).
With such α and λ, the existence of a lower bound for Kλ,L as in Lemma 2.9 is clear from 

that lemma (see the remark after it). The reader may compare this to the lower bound derived by 
a different argument on p. 93 of [16], after formula (21).

In the earlier paper [33], Nussbaum considered the scalar delay equation

y′(t) = −f (y(t − 1))

under the assumption that f (x) = βx + f̃ (x) with β > π/2 and f asymptotically linear in the 
sense that |f̃ (x)|/|x| → 0 for |x| → ∞. Thus the equation can be written as

y′(t) = −βy(t − 1) − f̃ (y(t − 1)).

Apart from the different notation in [33] compared to [16] (β instead of α, and λ = μ + iν instead 
of μ + iγ for the leading eigenvalue), and the asymptotics for ‘large’ instead of small solutions, 
the considerations involving Laplace transform and comparison of linear and nonlinear part are 
similar to the ones from [16], for the special case ν = 0. The lower bound can in this case also 
be obtained from Lemma 2.9 for the case N = 1. It corresponds to the lower bounds derived on 
p. 369 of [33] in equations (2.5) and (2.8).

2) An der Heiden [1] considered (with x, y instead of x1, x2)) the two-dimensional system

ẋ1(t) = −ax1(t) + x2(t), ẋ2(t) = −bx2(t) − f (x1(t − 1)).

As in the above examples, there was a leading eigenvalue λ = μ + iν with μ > 0 and ν ∈ (0, π), 
and negative feedback was assumed for the cyclic coupling. As mentioned in the remark follow-
ing Lemma 2.9, the existence of the lower bound is again automatically guaranteed in this case, 
where N = 2. The lower bound for the estimate | Im h2| in Proposition 2.8 corresponds to the 
fact that in paper [1], after application of the Laplace transform, also only the imaginary part was 
considered (compare formula (23) on p. 607 of [1], and the last estimate on the same page).

3) In [20], cyclic systems of the form as in Corollary 2.6 were considered in the case N =
3, τ = 1, and the cone K was defined as in (2.10). As noted in the remark after Lemma 2.9, 
condition (2.12) is also automatically satisfied in this case. The expression ω[2ρ + μ3 + μ2]
from part 1) of that remark appeared in the definition of the constant m1 preceding Proposition 
4.3 in [20], and the proof of that proposition in [20] can be seen as a special case of the proof of 
Lemma 2.9.
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We now proceed towards proving that an estimate of the type (2.6) holds on the cone K, if the 
number a as in Lemma 2.7 (a measure of the total feedback strength at zero) or the delay τ are 
sufficiently large. The characteristic equation for λ = ρ + iω with ρ ≥ 0, ω ≥ 0 is equivalent to 
the following two equations (with a = |a1....aN |), see [4], equation (14) in Section 2):

eρτ

N∏
j=1

[
(ρ + μj )

2 + ω2
]1/2 = a, (2.15)

�(ω,ρ) :=
N∑

j=1

arctan

[
ω

ρ + μj

]
= (2m − 1)π − ωτ for some m ∈N. (2.16)

Proposition 2.10. With A1 as in Lemma 2.7, there exists A2 ≥ A1 such that if a ≥ A2 then the 
lower bound condition (2.6) is satisfied with K from (2.10) for the leading eigenvalue λ = ρ + iω

of system (L).

A possible choice for A2 is as follows: Set K := max{ max
j=1,...,N

μj , 
max{π,N − 1}

τ
}, define 

α(x) := eτx · [√5x]N for x > 0, and set A2 := max{α(K), A1}.

Proof. Define the constant K , the function α and A2 := max{α(K), A1} as in the statement of 
the proposition, with A1 as in Lemma 2.7. Then for a ≥ A2 there is a unique leading eigenvalue 
λ = ρ + iω (depending on a), with ρ > 0 and ω ∈ (0, π/τ). For such a, one has necessarily ρ ≥
K , since ρ < K and equation (2.15) would imply that with g(ρ) := eρτ

∏N
j=1[(ρ+μj )

2 +ω2]1/2

a = g(ρ) < eKτ
N∏

j=1

[(K + K)2 + (π/τ)2]1/2 ≤ eKτ
N∏

j=1

[5K2]1/2

= eKτ [√5K]N = α(K) ≤ A2 ≤ a,

a contradiction. Thus, for a ≥ A2 we have (from the choice of K) that ρ ≥ N−1
τ

, and hence

N∑
j=2

arctan

[
ω

ρ + μj

]
<

N∑
j=2

ω

ρ + μj

<

N∑
j=2

(π/τ)

ρ
= (N − 1)π

τρ
≤ π.

We see that condition (2.14) is satisfied if a ≥ A2, and the result follows from Lemma 2.9. �
We want to prove an analogue of Proposition 2.10 for the case of large delay τ rather than 

large a, and for this purpose we need the following analogue of Lemma 2.7. The analysis is 
similar to the one given in [4], where most of Lemma 2.7 is proved, but slightly different.

Lemma 2.11. Assume that a = |a1....aN | and the parameters μ1, ..., μN satisfy

N∏
μj < a. (2.17)
j=1
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Then for τ > 0 so large that

a)

√√√√ N∏
j=1

(μ2
j + π

τ

2
) ≤ a, b) τ >

N∑
j=2

1

μj

, (2.18)

the characteristic function χ has a unique zero λ = ρ + iω with the properties ρ > 0, ω ∈
(0, π/τ), and this λ is the leading eigenvalue (i.e., has maximal real part). Further, the lower 
bound condition (2.6) for the spectral projection on the cone K is then satisfied.

Proof. Equation (2.16) for m = 1, namely, �(ω, ρ) = π − ωτ has a unique solution ω∗(ρ, τ) ∈
(0, π/τ) for every τ > 0 and ρ ≥ 0, since the difference between the left hand and the right hand 
side equals −π for ω = 0 and equals �(π/τ, ρ) > 0 for ω = π/τ , and since this difference is 
strictly increasing with ω. Note that ω∗(ρ, τ) is strictly increasing with ρ. Further, since all μj

are positive, we have ω∗(ρ, τ) → 0 (τ → ∞), uniformly w.r. to ρ ≥ 0. Inserting ω∗(ρ, τ) into 
equation (2.15) we obtain

eρτ

N∏
j=1

[
(ρ + μj )

2 + ω∗(ρ, τ )2
]1/2 = a. (2.19)

For τ large enough so that (2.18), a) holds (condition (2.17) ensures that such τ exist), there 
exists a unique number ρ∗(τ ) > 0 such that (2.19) holds with ρ = ρ∗(τ ), since (2.18), a) and 
ω∗(ρ, τ) < π/τ show that the left-hand side of (2.19) is then less than a for ρ = 0. This left 
hand side is strictly increasing in ρ, and goes to infinity as ρ → ∞. It follows that λ∗(τ ) :=
ρ∗(τ ) + iω∗(ρ∗(τ ), τ) is a zero of the characteristic function.

We prove that ρ∗(τ ) is the maximal real part of all eigenvalues: Equation (2.15) shows that 
the real part of all eigenvalues is bounded above, so there is a maximal real part.

Claim: If τ satisfies (2.18), b) above then for ρ ≥ 0 there is no second solution of equation
(2.16) in (0, π/τ) besides ω∗(ρ, τ).

Proof. Any other solution ω would have to correspond to a number m ∈ N, m ≥ 2 (since 
ω∗(ρ, τ) is unique for m = 1), but for ω ∈ (0, π/τ) the right hand side of equation (2.16) is 
larger than (4 − 1)π − π = 2π if m ≥ 2, while the left hand side satisfies

�(ω,ρ) ≤ �(ω,0) =
N∑

j=1

arctan

[
ω

μj

]
≤ π/2 +

N∑
j=2

ω

μj

≤ π/2 + π

τ

N∑
j=2

1

μj

, (2.20)

and the last expression is less than π/2 + π = 3π/2 if τ satisfies (2.18), b).

The above claim shows that if τ satisfies both (2.18) a) and b) then any eigenvalue ρ + iω

with ρ, ω ≥ 0 different from λ∗(τ ) has to satisfy ω > π
τ

> ω∗(ρ∗(τ ), τ) (note that positive real 
eigenvalues are impossible). Now ω > ω∗(ρ∗(τ ), τ) and equation (2.15) show that necessarily 
ρ < ρ∗(τ ), so ρ∗(τ ) is maximal.

Finally, with an estimate analogous to (2.20), applied to ρ := ρ∗(τ ) and ω := ω∗(ρ∗(τ ), τ), 
we see from part b) of assumption (2.18) that for such values of τ one has
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N∑
j=2

arctan[ω/(ρ + μj )] <

N∑
j=2

π

τμj

< π.

Hence condition (2.14) holds, and the assertion on the lower bound condition follows from 
Lemma 2.9. �
3. A fixed point theorem and periodic orbits for semiflows

The approach of deriving periodic solutions from fixed points of a return map P , which is 
defined by zeroes of one component of the system, is well known. The difficulty is always that 
zero is a trivial fixed point of P , so one needs to find a nontrivial one. In many papers this 
was achieved by applications of some version of the ejective fixed point theorem of Browder, 
which means that one has to show ejectivity of the trivial fixed point zero. Alternatively, one 
can ‘cut out’ a neighborhood of zero from the domain of P and then get periodic solutions from 
Schauder’s fixed point theorem – this was done in [20], but there only a fixed point of an iterate 
of P was obtained (i.e., a periodic solution with possibly a larger number of zeroes in the relevant 
component within one period, while one application of P corresponds to the second zero). The 
approach of using the Schauder fixed point theorem to derive periodic solutions of differential 
delay equations was also used in papers [35,41].

In this section we provide a fixed point theorem which possibly does not have maximal gen-
erality from the topological point of view, but is tailored to be easily applicable to the equations 
that we have in mind, and also gives a fixed point for the first iterate of P . Our result is based on 
the following theorem (Satz 8.2.4, p. 174 in [10]). Among a number of related results elsewhere, 
this statement appears to be most convenient for our purposes.

Theorem 3.1. Let E be a Banach space, � ⊂ E open, and f : � → E compact. Further assume 
that C ⊂ E is closed and convex, �1 is open in E with C ⊂ �1 ⊂ �, m ∈N , that the iterate f m

is defined on �1, and the following conditions hold:

(i)
m⋃

j=0

f j (C) ⊂ �1 (ii) f m(�1) ⊂ C.

Then f has a fixed point in C.

The above theorem is very close to Theorem 2 on p. 298 of [5] except that �1 is not assumed 
to be convex. The proof of this theorem, as well as the proof of related results such as Browder’s 
ejective fixed point theorem ([6], p. 575), or Lemma 1 in [5], p. 292, or Theorem 1 by Nussbaum 
in [32], p. 187), uses ultimately the relation of the Lefschetz number �(f m) of the m-th iterate 
of some map f to the Lefschetz number of f itself, as explained in the proof of Lemma 1 in [5]. 
This relation is such that �(f m) �= 0 implies �(f ) �= 0 if the underlying space is topologically 
simple, in the sense that it has the same homology (cohomology) as a one-point space. This is, in 
particular, the case for convex subsets of a Banach space. These ideas go back to work of Leray 
[23] and Deleanu [8]. The statement given in formula (4.2) on p. 449 of [21] is very similar to 
Theorem 3.1, with slightly more restrictive assumptions.

On the basis of the above theorem we want to prove a theorem that directly links to the 
semiflows generated by the equations that we have in mind. We first obtain the following result, 
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which can be seen as a version of the ejective fixed point theorem from [6]. We include the proof 
for completeness.

Theorem 3.2. Let B be a compact convex subset of the Banach space E with 0 ∈ B, and B �=
{0}. Assume that P : B → B and η : B → R are continuous, and that the following conditions 
hold:

(i) η(0) = 0, η(x) > 0 for x ∈B \ {0}.
(ii) for every δ > 0, the set Bδ :=

{
x ∈ B

∣∣ η(x) ≥ δ
}

is convex.

(iii) ∃δ0 > 0 : ∀ x ∈B \ {0} ∃j (x) ∈ N : η[P j(x)(x)] > δ0.

Then P has a fixed point in Bδ0 (which, in particular, is not zero).

Proof. Bδ0 is compact (and not empty). For δ > 0 we define the set B+
δ :=

{
x ∈B

∣∣ η(x) > δ
}

. 

For every x ∈Bδ0 there exists a neighborhood Ux of x in B with P j(x)Ux ⊂B
+
δ0

. Taking a finite 
subcovering Ux1, ..., Uxn and setting N0 := max{j (x1), ..., j (xn)}, we obtain

∀x ∈Bδ0 ∃j (x) ∈ {0, ...,N0} : P j(x)(x) ∈B
+
δ0

.

(Note that this does not imply P N0(Bδ0) ⊂Bδ0 ). Set O :=
N0⋃
j=0

P j (Bδ0). The set O is compact.

Claim: P(O) ⊂ O.
Proof. For x ∈O there exist y ∈Bδ0 and k ∈ {0, ..., N0} with x = P k(y). Then

P(x) = P k+1(y) ∈
N0⋃
j=1

P j (Bδ0) ∪ {P N0+1(y)} ⊂ O ∪ {P N0+1(y)},

and j (y) ∈ {1, ..., N0} implies

P N0+1(y) = P N0+1−j (y)P j (y)(y) ∈ P N0+1−j (y)(B+
δ0

) ⊂
N0⋃
j=1

P j (B+
δ0

) ⊂O,

so P(x) ∈ O.
It follows that

O =
∞⋃

j=0

P j (Bδ0).

Since P maps only zero to zero, we have 0 /∈ O, and the compactness of O, the continuity of η
and property (i) give that

δ1 := 1

2
min
x∈O

η(x) > 0. Obviously then that the inclusion holds

O ⊂B
+ . (3.1)
δ1
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The set Bδ1 is compact, convex, and as in the analogous argument for Bδ0 above, there exists 
N1 ∈ N such that

∀x ∈Bδ1∃k(x) ∈ {1, ...,N1} : P k(x)(x) ∈Bδ+
0
.

For x ∈ Bδ1 and j ≥ N1 we have P j (x) = P j−k(x)P k(x)(x) ∈ P j−k(x)(Bδ+
0
) ⊂ O, and hence 

we get from (3.1)

∀ j ≥ N1 : P j (Bδ1) ⊂O ⊂B
+
δ1

. (3.2)

The set O1 :=
N1⋃
j=0

P j (Bδ1) is compact, and using (3.2) we obtain

P N1(O1) ⊂
N1⋃
j=0

P j (P N1(Bδ1)) ⊂B
+
δ1

. (3.3)

The Tietze-Dugundji theorem ([9], Theorem 6.1, p. 188) shows that there exists a continuous 
extension P̄ of P to E with P̄ (E) ⊂ conv(P (B)), and from P(B) ⊂ B and convexity of B we 
conclude

P̄ (E) ⊂B.

The continuity of P̄ , P̄ (E) ⊂ B, the fact that B+
δ1

is open in B, and inclusion (3.3) imply that 
there exists an open neighborhood �1 of O1 in E such that

P̄ N1(�1) ⊂B
+
δ1

⊂Bδ1 . (3.4)

We want to apply Theorem 3.1 above with � := E, f := P̄ , C := Bδ1 , N1 in place of m, and 
with the above set �1. We see from (3.4) that condition (ii) of Theorem 3.1 holds, and from

N1⋃
j=0

P̄ j (Bδ1) =
N1⋃
j=0

P j (Bδ1) =O1 ⊂ �1

we see that condition (i) holds as well. From Theorem 3.1 we obtain a fixed point of P̄ in Bδ1 , 
which obviously is a nonzero fixed point of P . �

Remarks: 1) Condition (ii) above is satisfied if η is given by a linear functional. Condition 
(iii) is closely related to the notion of ejectivity from [6], p. 575.

2) The construction of the set Bδ1 in the above proof, which is invariant under all iterates 
P j , j ≥ N1, is analogous to the construction of the corresponding set in the proof of Theorem 
1.1, p. 691 of our earlier paper [20]. As mentioned there, the method is inspired by the proof of 
Lemma 1 in the paper of Browder [6], p. 576.
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3) Theorem 3.2 is stated with a view on convenient application. A number of similar, more 
general results, together with a wealth of historical remarks on related work, can be found in 
Kapitel 8 of the book of Eisenack and Fenske [10].

In the remainder of this section we link the above results for maps to a general semiflow, 
without reference to a particular equation, under the following assumptions:

(A1) (E, | |E) is a Banach space, and � : R+
0 × E → E is a continuous semiflow, �(t, 0) = 0

for all t , D2� exists on R+
0 × E, and D2�(t, x) → D2�(t, 0) as x → 0, uniformly for t

in compact intervals.
(A2) The operators T (t) := D2�(t, 0) ∈ Lc(E, E) form a C0-semigroup of linear operators. 

There exist real numbers α < β with β > 0 and a decomposition E = U ⊕ S into 
T (t)-invariant closed subspaces, where U �= {0}, and a constant K > 0 such that

∀ t ≥ 0 : |T (t)u|E ≥ K−1eβt |u|E (u ∈ U), |T (t)s|E ≤ Keαt |s|E (s ∈ S).

Under these assumptions, there is an adapted equivalent norm || · || on E with ||u + s|| =
max{||u||, ||s||} for u ∈ U, s ∈ S and such that with respect to this norm, the constant K can be 
chosen equal to one, i.e.:

∀ t ≥ 0 : ||T (t)u|| ≥ eβt ||u|| (u ∈ U), ||T (t)s|| ≤ eαt ||s|| (s ∈ S). (3.5)

(see, e.g., Lemma 2.1, p. 10 in [2]; note that there the resulting norm on the space E was defined 
by ||x|| := ||πUx|| + ||πSx||). Let πU , πS ∈ Lc(E, E) denote the projections onto U and S, 
respectively, defined by E = U ⊕ S. With regard to the norm induced by the adapted norm one 
has ||πU || = 1, and ||πS || = 1 if S �= {0}. For c ∈ (0, 1] we now define the cone

Kc :=
{
x ∈ E

∣∣ ||πUx|| ≥ c||x||
}

(note that c ≤ 1 is necessary to have Kc �= {0}). With these assumptions and notations, we have 
the following lemma. The methods here are very much inspired by the paper by Bates and 
Jones [2].

Lemma 3.3 (Local cone invariance and expansion). Let c ∈ (0, 1] and t1, T1 ∈ R be given, 0 <

t1 < T1. Set q := eβt1 + 1

2
(then q > 1, since β > 0). There exists δ > 0 such that

τ ∈ [t1, T1], x ∈ Kc, ||x|| < δ =⇒ �(τ, x) ∈ Kc, ||πU�(τ, x)|| ≥ q||πUx||.

Proof. We have �(τ, x) = T (τ)x + r(τ, x), with

r(t, x) := �(t, x) − T (t)x =
⎡
⎣ 1∫

(D2�(t, sx) − D2�(t,0)) ds

⎤
⎦ x (t ≥ 0, x ∈ E).
0
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Set λ := min{c(eβt1 −1)/2, c(eβt1 −eαt1)/(c + 1)}. From assumption (A1), we can choose δ > 0
such that || ∫ 1

0 (D2�(t, sx) − D2�(t, 0)) ds ||Lc(E,E) ≤ λ, if ||x|| < δ and t ∈ [t1, T1]. It follows 
that

||r(τ, x)|| ≤ λ||x|| if ||x|| < δ, τ ∈ [t1, T1].

Assume now τ ∈ [t1, T1], x ∈ Kc, ||x|| < δ. Then ||x|| ≤ 1

c
||πUx||. Using (3.5) and ||πU || = 1

we obtain

||πU�(τ, x)|| = ||πUT (τ)x + πUr(τ, x)|| = ||T (τ)πUx + πUr(τ, x)|| (3.6)

≥ eβt1 ||πUx|| − λ||x|| ≥ (eβt1c − λ)||x||,

and, analogously,

||πS�(τ, x)|| ≤ eαt1 ||πSx|| + λ||x|| ≤ (eαt1 + λ)||x||.

We have

||�(τ, x)|| = max{||πS�(τ, x)||, ||πU�(τ, x)||} ≤ max{(eαt1 + λ)||x||, ||πU�(τ, x)||}.

If the last max equals ||πU�(τ, x)|| then c ≤ 1 shows ||πU�(τ, x)|| ≥ ||�(τ, x)|| ≥ c||�(τ, x)||, 
so �(τ, x) ∈ Kc . Otherwise, the choice of λ and the above estimate for ||πU�(τ, x)|| give

c||�(τ, x)|| ≤ c(eαt1 + λ)||x|| = (ceαt1 + (c + 1)λ)||x|| − λ||x|| ≤ ceβt1 ||x|| − λ||x||
≤ ||πU�(τ, x)||,

so again �(τ, x) ∈ Kc .
In addition, the choice of λ, the property x ∈ Kc , and (3.6) show that

||πU�(τ, x)|| ≥ (eβt1 − λ

c
)||πUx|| ≥ [eβt1 − (eβt1 − 1)/2] · ||πUx|| = eβt1 + 1

2
||πUx||

= q||πUx||. �
Remark. Note that the lower bound t1 for the times τ in the above proof allows to conclude 

the invariance of Kc without use of Gronwall’s Lemma, and therefore also without an underlying 
differential equation for the semiflow and without a variation-of-constants-formula.

We can now prove the main result of this section. The approach of using a lower bound 
condition on the projection to the unstable direction (assumption 3) below) is familiar from, e.g., 
the periodicity results Theorem 2.1 on p. 93 of [13], Theorem 28.1 on p. 152 of [14], or Theorem 
3.1 on p. 497 of [7]. Our version below does not use the notion of ejectivity, or any connection 
to a particular type of equation behind.
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Theorem 3.4. Assume that the semiflow � :R+
0 ×E → E on the Banach space (E, | |E) satisfies 

assumptions (A1) and (A2) above. Let {0} �= K ⊂ E be closed and convex with 0 ∈ K. Assume 
that 0 < t1 < T1, that map τ : K \ {0} → [t1, T1] is continuous, and �(τ(ψ), ψ) ∈ K for ψ ∈
K \ {0}. Define P : K → K by

P(0) := 0, P (ψ) := �(τ(ψ),ψ) for ψ �= 0.

We further assume:

1) P is compact;
2) P(ψ) �= 0 if ψ �= 0;
3) ∃c > 0 : K ⊂ Kc (i.e., ∀ ϕ ∈ K : ||πUϕ|| ≥ c||ϕ||);
4) There exist a continuous linear functional η : E →R and c1 > 0 such that

∀ϕ ∈ K : c1|ϕ|E ≤ η(ϕ).

Then P has a fixed point ϕ∗ in K \ {0}, corresponding to a periodic trajectory �(·, ϕ∗) of the 
semiflow with period τ(ϕ∗).

Proof. 1. Uniform continuity of � on the compact set [t1, T1] × {0} and �(t, 0) = 0 for t ≥ 0
together with τ(K \ {0}) ⊂ [t1, T1] imply P(ϕ) → 0 as ϕ → 0, so P is continuous.

2. Let || · || be the adapted, equivalent norm on E, as described before Lemma 3.3 above. 
We can assume that the functional η satisfies the estimate from condition 4) with respect to this 
norm. Let q > 1 and δ > 0 be as in Lemma 3.3. It follows from K ⊂ Kc , from the fact that τ
takes values in [t1, T1], the definition of P and from Lemma 3.3 that

∀ϕ ∈ K, ||ϕ|| < δ : ||πUP (ϕ)|| ≥ q||πUϕ||.

Inductively (by using P(K) ⊂ K) one obtains ||πUP n(ϕ)|| ≥ qn||πUϕ||, as long as ||P j (ϕ)|| < δ

for all j ∈ {0, ..., n − 1}. Using condition 2) we see that

∀ϕ ∈ K \ {0} ∃j (ϕ) ∈N : ||πUP j(ϕ)(ϕ)|| ≥ δ. (3.7)

(Note that condition 2) is used to obtain j (ϕ) ≥ 1 in case when ||πUϕ|| ≥ δ is already satisfied.)
3. Set B := conv(P (K)), where conv denotes the closure of the convex hull (note B is con-

vex). Since P(K) ⊂ K and K is closed and convex, we have B ⊂ K. Further, the compactness 
of P and the Mazur theorem ([27]) imply that B is compact. Clearly P(K) ⊂ B, in particular, 
P(B) ⊂ B, as required in Theorem 3.2. It follows from assumption 4) and linearity of η that η
satisfies conditions (i) and (ii) of that theorem.

4. With c1 from assumption 4) (for the new norm), choose δ0 ∈ (0, 
c1δ

c1 + 1
). For ϕ ∈ B \ {0}

and j (ϕ) ∈ N as in (3.7), one has ||πUP j(ϕ)(ϕ)|| > δ

c1 + 1
, and hence

η(P j(ϕ)(ϕ)) ≥ c1||P j(ϕ)(ϕ)|| ≥ c1||πUP j(ϕ)(ϕ)|| > c1δ
> δ0,
(c1 + 1)
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so condition (iii) of Theorem 3.2 is also satisfied with this δ0, and the assertion follows from 
Theorem 3.2. �
4. The method of projection to a single eigenvalue

Condition 3) of Theorem 3.4 requires a lower estimate for the values ||πUϕ|| for ϕ in the set 
K. In the papers dealing with lower dimensions 1, 2 and 3 [34,1,20], the set K was an appropriate 
cone, and the method to provide such a lower estimate was always to consider only the projection 
πλ to the eigenspace associated with the single leading eigenvalue λ. Of course, if this projection 
already satisfies an estimate of the required form, this is even more true for the projection πU to 
the whole unstable space U of the equilibrium zero, which may be of much higher dimension.

On the other hand, if the unstable space U is of higher dimension, and if there exists more 
than one conjugate pair of eigenvalues with positive real part and imaginary part in (0, π/τ), 
then it is well feasible that K may contain an eigenfunction ϕ associated to some eigenvalue μ
(not from the leading pair), in which case one would have πλϕ = 0 and ϕ ∈ K, so that πλ would 
not be bounded below on K.

In such a situation, the ‘classical’ method used in papers [34,1,20], which employs only 
one eigenvalue (and the corresponding Laplace transform) would not work. Consider an eigen-
value μ = ρ + iω with ω ∈ (0, π/τ). Then a corresponding function of the form ϕ : t �→
eρ(t+τ) sin(ω(t +τ)), which is non-negative on [−τ, 0] and zero at −τ , has no more than one zero 
in every interval of length τ . Recall the state space X and the cone K from Section 2 (see (2.10)), 
and consider an initial state X0 = (ϕ, x2(0), ..., xN(0)) ∈ X which has ϕ in the first component. 
Then X0 ∈ K if and only if the function [−τ, 0] 
 t �→ eμ1t ϕ(t) = e(μ1+ρ)(t+τ) sin(ω(t + τ)) is 
non-decreasing. Although the exponential factor is increasing, it is not clear that the full function 
will be non-decreasing. However, when ω satisfies ω ∈ (0, π/2τ ] then it is obviously increasing, 
since then both the exponential factor and the sin-term are increasing on [−τ, 0].

We did a numerical evaluation of the zeroes of the characteristic function (eigenvalues), using 
a Newton procedure. We observed, for example, the following: for dimension N = 6 and all 
μj equal to 0.1 (j = 1,..., 6), delay τ = 1 and a = |a1 · . . . · a6| = 8.0, there exist two different 
eigenvalues λ1 = ρ1 + iω1, λ2 = ρ2 + iω2 with 0 < ρ1 < ρ2, and with ω1, ω2 both contained in 
(0, π/2), and λ2 has maximal real part among all eigenvalues. The particular approximate values 
are λ1 = 0.20 + 1.33i, λ2 = 0.99 + 0.51i.

In this case both functions ϕj : t �→ e(μ1+ρj )(t+τ) sin(ωj (t + τ)), j = 1, 2, define elements 
Xj := (ϕj , 0, ..., 0) of the cone K, and πλ1X2 = πλ2X1 = 0. In particular, the projection πλ2 is 
zero on X1, so not bounded below on the cone K. Thus, the functional v · Kλ2,L(·) (compare 
Proposition 2.2 and Corollary 2.4) which arises (also) through the Laplace transform and the 
analogue of which was employed in papers [34,1,20], is not bounded below on K here, so that 
the method from these papers would not be directly applicable.

In such a situation, there may still exist a lower bound for the ‘whole’ projection πU onto the 
unstable space, or (even better), to some proper subspace of U larger than the one corresponding 
to λ2. Of course, one could also consider working with a different cone than the one which was 
used so far.

Shortly after we made our numerical observations in the example with N = 6 described above, 
it was proved in [4] (Proposition 6) by a thorough analysis of the characteristic equation that when 
N ≤ 4 there cannot be more than one pair of complex conjugate eigenvalues with imaginary part 
in (−π/τ, π/τ); however, when N ≥ 5 a case with at least two such pairs of eigenvalues can 
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Fig. 1. The feedback structure of system (S).

always occur (for suitable values of a and the μj ). It is also shown in [4] that this phenomenon 
of multiple pairs disappears when a becomes sufficiently large.

5. The return map

Recall the nonlinear system (S), the linearized system (L), and the real values aj := g′
j (0), j =

1, ..., N with aj > 0, j = 1, ..., N − 1, and aN < 0 from the introduction.
For the purposes of this section, we use the phase space X = C0([−τ, 0], R) × RN−1 for 

system (S) (which is possible because only component x1 contains the delay). The norm on X is 
given by ||(ϕ, x0

2 , . . . , x0
N)||X := max{|ϕ|∞, |x0

2 |, ..., |x0
N |}.

By a solution x = (x1, ..., xN) of system (S) on [t0, ∞) for some t0 ∈ R, we mean that x1 is 
defined on [t0 − τ, ∞) and x2, ..., xn are defined on [t0, ∞). System (S) induces a continuous 
semiflow � : [0, ∞) ×X → X.

The feedback structure is visualized in Fig. 1. We shall often use it in arguments combined 
with the variation of constants formula, e.g., of the following form: if u(t0) ≥ 0, the function g
has positive feedback, v ≥ 0 on [t0, t1] and u̇(t) = −μu(t) + g(v(t)) on [t0, t1], then u ≥ 0 on 
[t0, t1]. This follows from the solution’s representation as

u(t) = exp[−μ(t − t0)]u(t0)︸ ︷︷ ︸
≥0

+
t∫

t0

exp[−μ(t − s)]g(v(s))︸ ︷︷ ︸
≥0

ds.

A solution (x1, ..., xN) of system (S) is also a solution of the system

(S̃)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1ẋ1(t) =−x1(t) + G1(x2(t))

ε2ẋ2(t) =−x2(t) + G2(x3(t))

. . . . . .

εN−1ẋN−1(t) = −xN−1(t) + GN−1(xN(t))

εN ẋN (t) = −xN(t) + GN(x1(t − τ)),

where εj = 1/μj and Gj(·) = (1/μj )gj (·), 1 ≤ j ≤ N . We say that a function u : [0, ∞) → R
has a property eventually (e.g., ‘u ≥ 0 ev.’, or ‘u ∈ J ev.’ with some set J) if there exists T ≥ 0
such that the property holds for all u(t) with t ≥ T .

We assume that all nonlinearities gj are C1, and that gN (and hence also GN ) is bounded 
either from above or from below. We shall use the convention τj := 0 for j ∈ {1, ..., N − 1} and 
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τN := τ . Our first aim is to construct an invariant, bounded and attracting set for the semiflow 
induced by system (S). Define the composite function G as G = G1 ◦ G2 ◦ · · · ◦ GN .

Proposition 5.1. Assume that (x1, ..., xn) is a solution of system (S̃) (then also of (S)), and that 
A ⊂R is a (not necessarily bounded) closed interval with 0 ∈ int(A).

a) For j ∈ {1, ..., N} and t ≥ 0 one has the following implications:
(i) x(j+1)mod N ∈ A ev. =⇒ xj ∈ Gj(A) ev.
(ii) x(j+1) mod N([t − τj , ∞)) ⊂ A, xj (t) ∈ Gj(A) =⇒ xj ([t, ∞)) ⊂ Gj(A).
b) If x1 ∈ A ev. then also x1 ∈ G(A) ev.

Proof. Assertion (i) of part a) is contained in [4] as claim (18) within the proof of Lemma 6 
there, but note that the property 0 ∈ int(A) is implicitly assumed in [4], in order to have that 
a limit x∗ of xj is nonzero, if xj does not enter the set Gj(A) eventually. Also, the proof in 
[4] actually is given for the case of a compact interval (uses ‘endpoints’), but also works for 
unbounded closed intervals. Assertion (ii) of part a) follows from Proposition 1 of [4].

Proof of b): Assume x1 ∈ A ev. Applying part a) with j := N we see that xN ∈ GN(A)

ev., then applying part a) again with j := N − 1 we obtain xN−1 ∈ GN−1(GN(A)) ev., and 
proceeding inductively we see that x1 ∈ G1(G2(...GN(A)))...) = G(A) ev. �

The following result is closely related to Lemma 5, the passage after Proposition 1, and 
Lemma 6 in [4].

Theorem 5.2. 1) Assume that a compact interval I1 contains 0 in its interior and is in-
variant under G (i.e., G(I1) ⊂ I1), and set IN = GN(I1), Ij = Gj(Ij+1), j = 2, ..., N − 1, 
�I := (I1, ..., IN) and

X �I :=
{
(ϕ, x0

2 , . . . , x0
N) ∈ X

∣∣ ϕ(t) ∈ I1 (t ∈ [−τ,0]), x0
j ∈ Ij , j = 2, ...,N

}
.

Then for every initial state in the set X �I the corresponding solution (x1, ..., xN) satisfies ∀t ≥ 0 :
xj (t) ∈ Ij , j = 1, ..., N , so that X �I is forward invariant under the semiflow �.

2) I1 := G2(R) is a possible choice for I1 as in 1), and with this choice the set X �I also 
is attracting within finite time in the following sense: For every X0 ∈ X there exists a finite 
T (X0) ≥ 0 such that ∀ t ≥ T (X0) : �(t, X0) ∈ X �I .

Proof. Part 1) is proved in Lemma 5 of [4].
Proof of 2): Assume that GN is bounded from above (the case when it is bounded from below 

is analogous), so 0 < supx∈R GN(x) < ∞. Then positive feedback of G1, ..., GN−1 implies that 
G = G1 ◦ ... ◦ GN is bounded from above. Negative feedback of G then shows that the second 
iterate G2 is bounded below by G(supx∈R G(x)), and (of course) G2 is also bounded from above, 
since G is. It follows that I1 := G2(R) is a compact interval, and negative feedback of G implies 
0 ∈ int(I1). Now the continuity of G implies

G(I1) = G(G2(R)) ⊂ G(G2(R)) = G3(R) ⊂ G2(R) = I1,

which shows the invariance of I1 required in 1). It remains to prove the attractivity property 
of the set X � corresponding to I1. Applying Proposition 5.1 b) with A := R first, we see that 
I
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for every solution one has x1 ∈ G(R) ev. Applying Proposition 5.1 b) again, with A := G(R)

we see that x1 ∈ G(G(R)) ⊂ G2(R) = I1 ev. From Proposition 5.1 a), (i) with j := N we then 
obtain recursively xN ∈ GN(I1) = IN ev., xN−1 ∈ GN−1(IN) = IN−1 ev., etc., so xj ∈ Ij ev., 
j = 2, ..., N . Hence we have �(t, X0) ∈ X �I ev. for every initial state X0 ∈ X. �

Under an additional assumption on α-Hölder-continuity of the derivatives g′
j in a neighbor-

hood of zero, it is also proved in [4] (see Theorem 1 there) that if the characteristic equation 
associated to system (L) has no real roots, then every non-zero solution of system (S) oscillates 
(in the sense that all components xj do not satisfy xj ≥ 0 or xj ≤ 0 on any interval of the form 
[T , ∞)).

Our approach in this section is to provide a criterion for oscillation of all solutions starting 
in a suitable subset of X. This criterion can be stated in an explicit form more transparent than 
conditions for the absence of real eigenvalues; also, it does not require the smoothness higher 
than C1. From the oscillation properties we then construct a return map.

We introduce the cone segment

K �I = {� = (ϕ, x0
2 , . . . , x0

N) ∈X �I | ϕ(−τ) = 0, s �→ ϕ(s) exp{μ1s} is increasing on [−τ,0],
and x0

k ≥ 0,2 ≤ k ≤ N},
and the sets

X+
�I := {

X0 = (ϕ, x0
2 , . . . , x0

N) ∈X �I
∣∣ ϕ ≥ 0, x0

k ≥ 0,2 ≤ k ≤ N,

and max{ϕ(0), x0
2 , ...x0

N } > 0
}
,

X−
�I := {

X0 = (ϕ, x0
2 , . . . , x0

N) ∈X �I
∣∣ ϕ ≤ 0, x0

j ≤ 0,2 ≤ j ≤ N,

and min{ϕ(0), x0
2 , ...x0

N } < 0
}
,

O �I := {
X0 = (ϕ, x0

2 , . . . , x0
N) ∈X �I

∣∣ ϕ ≥ 0, and ∃k ∈ {1, ...,N} : x0
k > 0, x0

j ≥ 0 (j = 1, ..., k),

and x0
j ≤ 0 (j = k + 1, ...,N) (if k < N)

}
.

Note that then K �I \ {0} ⊂ X+
�I , since for (ϕ, x0

2 , . . . , x0
N) ∈ K �I , the property ϕ(0) = 0 implies 

ϕ = 0. Further, X+
�I ⊂O �I , so that we have

K �I \ {0} ⊂ X+
�I ⊂ O �I .

The essential property of initial states X0 from O �I is that they may have positive and negative 
components, but in an ordered way, as described in the above definition.

Notation: For a solution x = (x1, ..., xn) of (S) and t ≥ 0, (x1)t denotes the segment of x1 at 
time t : (x1)t (θ) := x1(t + θ), −τ ≤ θ ≤ 0. By xj (t+) > 0 (< 0) we mean that there exists δ > 0
such that xj > 0 (< 0) on (t, t + δ].

Proposition 5.3. Assume Y = (ψ, y2, ..., yN) ∈ O �I \ (O �I ∪{0}), and consider the corresponding 
solution t �→ (y1(t), ..., yN(t)) of system (S). There exists δ ∈ (0, τ) with y1(δ) < 0.
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Proof. Y is limit of a sequence (Y (n)) of elements of O �I , and for every n there exists k(n) ∈
{1, ..., N} corresponding to Y (n) as in the definition of O �I . Choosing a subsequence (and calling 
it (Y (n)) again) we can assume that k(n) = k ∈ {1, ..., N} for all n ∈ N . Passing to the limit in 
the definition of O �I and using that Y /∈ O �I then shows

ψ ≥ 0, yj = 0 (j = 1, ..., k), yj ≤ 0, j ∈ {k + 1, ...,N} (if k < N). (5.1)

Case a): yj < 0 for some j ∈ {k + 1, ..., N}. Then one sees from system (S) and (5.1) that 
yl(0+) < 0, l = 1, ..., j , in particular, y1(0+) < 0, so there exists δ > 0 as asserted.

Case b): yj = 0 for all j ∈ {k + 1, ..., N}, which means yj = 0, j ∈ {1, ..., N}. The con-
dition Y �= 0 then implies ψ �= 0 (but we have ψ(0) = y1 = 0). Set t0 := 0 if ψ(−τ) > 0, 

and t0 := max
{
t ∈ [0, τ ] ∣∣ ψ = 0 on [−τ,−τ + t]

}
otherwise. Then ψ �= 0 implies t0 < τ , and ∫ t

0 e−μN(t−r)gN(y1(r − τ)) dr = ∫ t

0 e−μN(t−r)gN(ψ(r − τ)) dr < 0 for every t in (t0, τ ]. The 
differential equation for yN now gives that yN = 0 on [0, t0] and yN(t0+) < 0. Similar to case 
a), system (S) shows that the same is true with yl, l = 1, ..., N − 1 instead of yN . In particular, 
y1(t0+) < 0, and the assertion follows. �

We now study the behavior of solutions starting in X+
�I and with the property that the x1

component has a first positive zero: Define

Z �I := {
X0 ∈O �I

∣∣ With the corresponding solution (x1, ..., xN),

x1 has a first zero z
(1)
1 in (0,∞)

}
.

We will later provide a condition under which Z �I = O �I . Defining −�I := (−I1, ..., −IN), we 
have sets K−�I , X

±
−�I and O−�I corresponding to the intervals −I1, ..., −IN analogous to the ones 

defined with �I above. Then

−X−
�I =X+

−�I , −X+
�I =X−

−�I .

Lemma 5.4. Let X0 = (ϕ, x0
2 , . . . , x0

N) ∈ O �I be given, and let x = (x1, x2, ..., xN) be the corre-
sponding solution of system (S). For this X0, let k be as in the definition of O �I .

1) Then

xj (0+) > 0 for j ∈ {1, ..., k}, (5.2)

xj (0+) < 0 for j ∈ {k + 1, ...,N}, if k < N. (5.3)

2) If X0 ∈ Z �I then the numbers z(j)

1 := min
{
t > 0

∣∣ xj (t) = 0
}

for j = 1, ..., k are well-

defined. We set z(j)
1 := 0 for j = k + 1, ..., N , if k < N . Then

xj < 0 on (z
(j)

1 , z
(1)
1 + τ ], j = 1, ...,N, and (5.4)

z
(k)

< z
(k−1)

< ... < z
(1)

. (5.5)
1 1 1
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(Note that for j ∈ {1, ..., k}, the number z(j)

1 is the first zero of xj in (0, ∞), even if possibly 
xj (0) = 0 for some j ∈ 1, ..., k − 1.)

3) If X0 ∈Z �I and z(1)
1 > τ then Y := �(τ, X0) satisfies Y ∈O �I .

4) If X0 ∈ Z �I then ẋ1(z
(1)
1 ) < 0, and z(1)

1 is continuous as a function of the initial value 
X0 ∈ Z �I , and the map

Q : Z �I 
 X0 = (ϕ, x0
2 , ..., x0

N) �→ [(x1)z(1)
1 +τ

, x2(z
(1)
1 + τ), ..., xN(z

(1)
1 + τ)]

= �(z
(1)
1 + τ,X0) ∈X−

�I

is well-defined and continuous, and takes values in −K−�I \ {0}.

Proof. From the definition of O �I we have X0 �= 0, and

xj (0) ≤ 0 for j ∈ {k + 1, ...,N}, if k < N. (5.6)

Property (5.2) follows from the continuity for j = k, since xk(0) > 0, and then (recursively) from 
xj (0) ≥ 0 for j ∈ {1, ..., k}, using the positive feedback from xk to xk−1 etc.

In case k < N , the negative feedback from x1 to xN , property (5.2) for j = 1, xN(0) ≤ 0 and 
the variation of constants formula show that xN(0+) < 0, and the positive feedback from xN to 
xN−1 etc. together with (5.6) shows that (5.3) is true. Part 1) is proved.

Now pick δ > 0 such that xj > 0 on (0, δ] for j = 1, ..., k. The positive feedback from xj to 
xj−1 shows the following implications for j ∈ {2, ..., k} (in case k ≥ 2):

T ≥ δ and xj ≥ 0 on [δ, T ] =⇒ xj−1 > 0 on [δ, T ]. (5.7)

Since from the definition of Z �I we know that x1 has a first zero z(1)
1 in (0, ∞), it follows from

(5.7) that all components xj , 2 ≤ j ≤ k must have a first zero z(j)
1 in (0, ∞), which lies in (δ, ∞). 

The inequalities in (5.5) follow from (5.7).

Proof of (5.4): From (5.2) for j = 1, we have x1 > 0 on (0, z(1)
1 ).

(i) In case k < N , it follows from xN(0) ≤ 0, the variation of constants formula, and the 
negative delayed feedback from x1 to xN that xN < 0 on (0, z(1)

1 + τ ]. With the positive feedback 
from xN to xN−1 etc. and xj (0) ≤ 0 for j ∈ {k + 1, .., N}, this implies

xj < 0 on (0, z
(1)
1 + τ ] for j ∈ {k + 1, ...,N}, (5.8)

which coincides with (5.4) for j ∈ {k + 1, ..., N}, since z(j)

1 = 0 for these j . From system (S),
(5.5) and (5.8) we see (recursively) that

ẋj (z
(j)
1 ) < 0, xj < 0 on (z

(j)
1 , z

(1)
1 + τ ], j = 1, ..., k, (5.9)

since for these j one has xj+1 < 0 on [z(j)

1 , z(1)
1 + τ ]. In particular, property (5.4) holds also for 

j = 1, ..., k in case k < N .
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(ii) In case k = N we have from (5.2) that xj (0+) > 0, j = 1, ..., N , and (from the already 
proved statement (5.5) for k = N ) that 0 < z

(N)
1 < z

(N−1)
1 < ... < z

(1)
1 . The feedback properties 

show xN < 0 on (z(N)
1 , z(1)

1 + τ ], and we conclude

ẋj (z
(j)
1 ) = gj [x(j+1)modN(z

(j)
1 − τj )] < 0, xj < 0 on (z

(j)
1 , z

(1)
1 + τ ], j = 1, ...,N, (5.10)

with τN = τ and τj = 0, j = 1, ..., N −1. This proves (5.4) for j = 1, ..., k = N also in this case. 
Part 2) is proved.

Proof of 3): Denote Y = �(τ, X0) by Y =: (ψ, y2, ..., yN). First, invariance of X �I under the 

semiflow implies that certainly Y ∈ X �I . Next, (5.2) and the assumption z(1)
1 > τ imply x1 > 0 on 

(0, τ ], so that one has

ψ ≥ 0, and ψ(0) > 0. (5.11)

First case: z
(j)

1 ≥ τ for all j ∈ {1, ..., N}. Then the definition of z
(j)

1 implies k = N (for 
the number k corresponding to X0 ∈ O �I ), and xj > 0 on (0, τ) (j = 1, ..., N), which shows 
y2, ..., yN ≥ 0, and thus Y ∈ O �I .

Second case: z(j)
1 < τ for some j ∈ {1, ..., N}. Then we can define

k̃ := min
{
j ∈ {1, ...,N} ∣∣ z(j)

1 < τ
}
,

and the assumption z(1)
1 > τ implies k̃ > 1. We see from (5.5) that z(j)

1 < τ for j ∈ {k̃, ..., N}, 
and from (5.4) we conclude

yj = xj (τ ) < 0 for j ∈ {k̃, ...,N}. (5.12)

For j ∈ {1, ..., k̃ − 1} we have z(j)

1 ≥ τ and thus xj > 0 on (0, τ). It follows that

yj ≥ 0, j = 2, ..., k̃ − 1 (in case k̃ ≥ 3). (5.13)

From (5.11), (5.12) and (5.13) we see that Y ∈O �I .

Proof of 4): It is clear from (5.9) and (5.10) that ẋ1(z
(1)
1 ) < 0, which implies (via the implicit 

function theorem) that z(1)
1 is continuous as a function of X0 ∈ Z �I (even can be extended con-

tinuously to a neighborhood of Z �I in X). Since Q(X0) = �(z
(1)
1 (X0) + τ, X0), it follows that 

Q is continuous on Z �I . One also sees from (5.9) and (5.10) and from invariance of X �I that Q
takes nonzero values in X−

�I = −X+
−�I . In order to prove that these values lie in −K−�I \ {0}, it 

remains to show that with ζ := x1(z
(1)
1 + τ + ·)∣∣[−τ,0], the function [−τ, 0] 
 s �→ eμ1sζ(s) is 

decreasing. Now for s ∈ [−τ, 0], one has
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d

dt
∣∣t = s

[eμ1t x1(z
(1)
1 + τ + t)] = eμ1s{μ1ζ(s) + ẋ1(z

(1)
1 + τ + s)}

= eμ1s{μ1ζ(s) − μ1ζ(s) + g1(x2(z
(1)
1 + τ + s))} ≤ 0,

since (from (5.4)) x2 < 0 on [z(1)
1 , z(1)

1 + τ ]. Part 4) is proved. �
So far we have the map Q not necessarily defined on all of K �I \ {0}, but on Z �I . Next, we give 

a condition which implies Z �I =O �I , so that then Q is defined on the subset K �I \ {0} of O �I .

Lemma 5.5. Recall the ‘total feedback strength’ a = |a1 · ... · aN | from Lemma 2.7, and define 

M∗ :=
(

N∏
k=1

μk

)
/min{μ1, ...,μN }. If

a τ > M∗ (5.14)

then for every solution (x1, ..., xN) of system (S) with an initial value X0 ∈ O �I , the component 

x1 has a first zero z(1)
1 (X0) in (0, ∞), so Z �I =O �I . Also, x1 > 0 on (0, z(1)

1 (X0)).

Proof. Assume that condition (5.14) is satisfied, consider X0 ∈O �I , and the corresponding solu-
tion (x1, ..., xN). Assume that x1 has no zero in (0, ∞). Recall that x1(0+) > 0 (from (5.2)), so 
that

x1 ≥ 0 on [−τ,0], x1 > 0 on (0,∞), (5.15)

and we can define l := max
{
j ∈ {1, ...,N} ∣∣ xj > 0 on (0,∞)

}
. Let the number k ∈ {1, .., N}

associated to X0 be as in the definition of O �I . Negative feedback from x1 to xN , positive feedback 
from xN to xN−1 etc., and xj (0) ≤ 0 for j ∈ {k + 1, ..., N} in case k < N imply

xj < 0 on (0,∞) for j ∈ {k + 1, ...,N} ( if k < N).

Obviously we have 1 ≤ l ≤ k. Positive feedback from xj to xj−1 for j ∈ {2, ..., l} and xj (0) ≥ 0
for these j show

∀ j ∈ {1, ..., l} : xj > 0 on (0,∞). (5.16)

From (5.2) we know that xj (0+) > 0 for j ∈ {1, ..., k}. Hence the definition of l implies in case 
l < k that for j ∈ {l + 1, ..., k}, the function xj has a first zero z(j)

1 in (0, ∞). Positive feedback 

from xj to xj−1 and xj > 0 on (0, z(j)
1 ) for these j imply

0 < z
(k)
1 ≤ z

(k−1)
1 ≤ ... ≤ zl+1

1 in case l < k.

If k < N we set z(j)
1 := 0 for j ∈ {k + 1, ..., N}. With this convention, the numbers z(j)

1 are 

defined for j ∈ {l + 1, ..., N} if l < N , satisfy xj (z
(j)
1 ) ≤ 0, and we have

z
(N) ≤ z

(N−1)
... ≤ ... ≤ z

(l+1)
(if l < N). (5.17)
1 1 1
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If l < N then xN(z
(N)
1 ) ≤ 0, and the negative delayed feedback from x1 to xN and (5.15) show 

that xN ≤ 0 on [z(N)
1 , ∞). Inductively we see from (5.17) and system (S) that in case l < N

xj ≤ 0 on [z(j)

1 ,∞) for j ∈ {l + 1, ...,N}. (5.18)

It is shown in [4], Cor. 3 and Cor. 4, that for a nonoscillatory solution as we consider now, one 
has

|ẋj (t)| > 0 for all large enough t, and xj (t) → 0 (t → ∞), j = 1, ...,N. (5.19)

(Note that this result does not depend on Hölder conditions which are assumed later in Theorem 
1 of [4].) In view of (5.19), we conclude from(5.16) and (5.18) that for all large enough t :

xj (t) > 0 > ẋj (t), j ∈ {1, ..., l},
ẋj (t) > 0 > xj (t), j ∈ {l + 1, ...,N} (if l < N). (5.20)

From system (S) we see that with Gj := 1
μj

gj (j = 1, ..., N) and τj := 0, j = 1, ..., N −
1, τN := τ one has for large enough t

xj (t) > Gj (x(j+1)modN(t − τj )) > 0, j ∈ {1, ..., l − 1} (if l > 1),

xj (t) < Gj (x(j+1)modN(t − τj )) < 0, j ∈ {l + 1, ...,N} (if l < N). (5.21)

Using (5.21) around ‘one loop’ of the cyclic feedback system, we conclude that for all large 
enough t (taking indices mod N )

|xl+1(t)| > |Gl+1(Gl+2(...GN(G1(...Gl−1(xl(t − τ ∗
l ))...)|, (5.22)

where τ ∗
l :=

∑
j=1,..,N

j �=l

τj =
{

0, l = N

τ, l < N.

Note that (5.22) is to be read as

x1(t) > |G1(G2(...GN−1(xN(t)))...)| if l = N, and

|x2(t)| > |G2(G3(...GN(x1(t − τ)))...)| if l = 1.

Condition (5.14) implies that with Ml := μ1 · . . . /μl . . .μN we have aτ > Ml , and thus permits 
to choose ε > 0 such that

(a − ε)τ > Ml.

We have

lim
x→0,x �=0

| [Gl+1(Gl+2(...GN(G1(...Gl−1(x)))...)]
x

| = 1

μ1 · . . . /μl . . .μN

N∏
|g′

j (0)|.

j=1,j �=l
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There exists a neighborhood U of zero in R such that (note the lower case letter in gl below)

∀x ∈ U : |gl[Gl+1(Gl+2(...GN(G1(...Gl−1(x)))...)]|

≥ 1

μ1 · . . . /μl . . .μN

· [
N∏

j=1

|g′
j (0)| − ε)] · |x|

= a − ε

Ml

· |x|. (5.23)

The monotonicity of gl in a neighborhood of zero, the convergence of xl to zero and (5.22),
(5.23) combined show that for all large enough t

|gl(xl+1(t))| ≥ a − ε

Ml

· |xl(t − τ ∗
l | (5.24)

(to be read as |gN(x1(t))| ≥ a − ε

MN

|xN(t)|, if l = N ). Now, from the l-th equation of system (S), 

we have for t ≥ τ

xl(t) − xl(t − τ) =
t∫

t−τ

[−μlxl(s) + gl(x(l+1)modN(s − τl)]ds. (5.25)

From (5.20) for j = l we get for all large enough t

t∫
t−τ

[−μlxl(s)]ds ≤ −μlτxl(t). (5.26)

From (5.18), x(l+1)modN converges to zero and is monotone for large times. Further, for large s
we see from (5.20) that x(l+1)modN(s) < 0 if l < N and x(l+1)modN(s) > 0 if l = N . In both cases, 
positive feedback of gl (if l < N ) and negative feedback of gN (if l = N ) give gl(x(l+1)modN(s −
τl)) < 0 for large enough s. Using (5.24), positivity and monotonicity of xl , and τ ∗

l + τl = τ , we 
see that

∀ s ∈ [t − τ, t] : gl(x(l+1)modN(s − τl)) ≤ −a − ε

Ml

· xl(s − τ ∗
l − τl) = −a − ε

Ml

· xl(s − τ)

≤ −a − ε

Ml

· xl(t − τ),

hence

t∫
gl(x(l+1)modN(s − τl)) ds ≤ − (a − ε)τ

Ml

· xl(t − τ). (5.27)
t−τ
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Combining (5.25), (5.26) and (5.27) yields (for large enough t )

xl(t) − xl(t − τ) ≤ −μlτxl(t) − (a − ε)τ

Ml

· xl(t − τ),

which implies (1 +μlτ)xl(t) ≤ [1 − (a − ε)τ

Ml︸ ︷︷ ︸
>1

]xl(t −τ) < 0, contradicting the positivity of xl(t). 

Thus the assumption that x1 has no zero in (0, ∞) is contradictory, so under condition (5.14) x1

has a first zero z(1)
1 (X0) in (0, ∞), when X0 ∈ O �I . It is clear from x1(0+) > 0 that x1 > 0 on 

(0, z(1)
1 (X0)). �

Remarks: 1) The special property of (hypothetical) solutions starting in O �I and such that 
the x1 component has no zero in (0, ∞) is that for such solutions (as opposed to general non-
oscillatory solutions) the eventually positive and negative components are ordered – in the sense 
that xj (t) > 0, j = 1, ..., l, and xj (t) < 0 for j ∈ {l + 1, ..., N} and all large t (see (5.20)). This 
property allowed us to derive the estimates (5.22) and (5.24), and the contradiction that xl should 
have a zero. It is the order of positive and negative components that makes the proof of oscillation 
for nonzero solutions starting in O �I possible under condition (5.14), although, in general, this 
condition does not exclude real (negative) eigenvalues of the linearized system. In fact, consider 
the cases N ∈ {1, 2}: Assuming μ2 ≥ μ1 in case N = 2, condition (5.14) reads as aτ > 1 in case 
N = 1 and as aτ > μ2 in case N = 2. The characteristic function χ satisfies χ > 0 on [−μ1, ∞), 
and condition (5.14) shows in both cases that χ ′(−μ1) < 0. It follows then from χ ′′ > 0 (even 
on all of R in both cases) that χ has no zero in (−∞, −μ1] and hence is positive on all of R.

For N = 3 (and larger N ), condition (5.14) does not exclude negative real eigenvalues. For 
example, setting μ1 = μ2 = μ3 := 1/4, τ := 1 and a := e−2 > 1/9, one has aτ > μ2

1, so (5.14)
holds. But with λ := −5/4, one has

χ(λ) = (λ + μ1)
3 + ae−λτ = −1 + e−2e5/4 < 0,

so χ has a zero in (−5/4, −1/4).
2) Lemma 5.5 can be seen as an extended version of Lemma 2.3 in the paper [34] of Nuss-

baum.
3) As Lemma 5.5 shows, under condition (5.14) the property X0 ∈ K �I is not necessary for x1

to have a first positive zero, but X0 ∈ O �I is sufficient.
However, in the derivation of the lower bound for the spectral projection (property (2.13) 

which is used in the proof of Lemma 2.9), it was important that for the initial function ϕ of the 
x1-component, ||ϕ||∞ can be estimated by ϕ(0). For this purpose, the properties that ϕ ≥ 0 and 
is increasing would also be sufficient – but the latter are not reproduced under the return map 
P , while the property defining K �I is reproduced. This is the reason why the return map will be 
defined on the cone section K �I in the present paper, and it was defined on analogous cones in 
earlier papers (e.g., [1,16,20,26]).

The following result will be used to show that the return times to K �I are bounded from above.

Proposition 5.6. There exists a constant γ > 0 with the following property: If (x1, ..., xN) is a 
solution of system (S) with initial state X0 = [x1

∣∣ , x2(0), ..., xN(0)] ∈ K �I , then
[−τ,0]
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||ẋ1
∣∣[0, τ ]||∞ ≤ γ · max{[||x1

∣∣[0, τ ]||∞, |x2(τ )|, ..., |xN(τ)|}
= γ · ||�(τ,X0)||X.

Proof. From the variation of constants formula and system (S) we have

∀ t ∈ [0, τ ] : xj (t) = e−μj (t−τ)xj (τ ) +
t∫

τ

e−μj (t−s)gj (xj+1(s − τj )) ds,

where xN+1 is to be read as x1, and τj = 0 for j = 1, ..., N −1, τN = τ . The Lipschitz continuity 
of gj on Ij+1 (with a Lipschitz constant γj ) shows that

||xj
∣∣[0, τ ]||∞ ≤ eμj τ |xj (τ )| + τeμj τ γj ||xj+1

∣∣[0, τ ] − τj
||∞.

Consequently, with cj := max{eμj τ , τeμj τ γj }, we have

⎧⎨
⎩

||xj
∣∣[0, τ ]||∞ ≤ cj [|xj (τ )| + ||xj+1

∣∣[0, τ ]||∞], j = 1, ...,N − 1,

||xN
∣∣[0, τ ]||∞ ≤ cN [|xN(τ)| + ||x1

∣∣[−τ,0]||∞]. (5.28)

We set ϕ := x1
∣∣[−τ,0]. Using (5.28) recursively, we obtain

||xN−1
∣∣[0, τ ]||∞ ≤ cN−1[|xN−1(τ )| + cN(|xN(τ)| + ||ϕ||∞)]

≤ max{cN−1, cN−1cN }[|xN−1(τ )| + |xN(τ)| + ||ϕ||∞],
||xN−2

∣∣[0, τ ]||∞ ≤ cN−2[|xN−2(τ )| + ||xN−1
∣∣[0, τ ]||∞]

≤ const · [|xN−2(τ )| + |xN−1(τ )| + |xN(τ)| + ||ϕ||∞],
and finally there exists a constant K2 > 0 such that

||x2
∣∣[0, τ ]||∞ ≤ K2[|x2(τ )| + ... + |xN(τ)| + ||ϕ||∞].

It follows that

||ẋ1
∣∣[0, τ ]||∞ ≤ μ1||x1

∣∣[0, τ ]||∞ + γ2||x2
∣∣[0, τ ]||∞

≤ μ1||x1
∣∣[0, τ ]||∞ + γ2K2[|x2(τ )| + ... + |xN(τ)| + ||ϕ||∞].

Now the definition of K �I implies

||ϕ||∞ ≤ eμ1τ |x1(0)| ≤ eμ1τ ||x1
∣∣[0, τ ]||∞,

and hence
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||ẋ1
∣∣[0, τ ]||∞ ≤ {γ2K2(N − 1) + (μ1 + γ2K2)e

μ1τ }︸ ︷︷ ︸
=: γ

max{||x1
∣∣[0, τ ]||∞, |x2(τ )|, ..., |xN(τ)|},

which proves the inequality in the proposition. The subsequent equality comes from the definition 
of || · ||X. �
Lemma 5.7. Assume condition (5.14), so that Z �I = O �I . (Then K �I \ {0} ⊂ X+

�I ⊂ O �I = Z �I , so 

the first zero z(1)
1 and the map Q are defined, in particular, on K �I \ {0}.)

1) There exists T1 > 0 such that for X0 ∈ K �I \ {0} one has z(1)
1 (X0) ≤ T1.

2) The extension of Q∣∣K �I \ {0} to K �I by Q(0) := 0 is continuous, compact, and takes values 

in −K−�I .

Proof. Proof of 1): Assume there exists a sequence of initial states

X
(n)
0 = [ϕ(n), x

(n)
2 (0), ..., x

(n)
N (0)] ∈ K �I \ {0}

and of corresponding solutions t �→ [x(n)
1 (t), x(n)

2 (t), ..., x(n)
N (t)] such that

z
(1)
1 (X

(n)
0 ) → ∞ as n → ∞. (5.29)

We can then assume

z
(1)
1 (X

(n)
0 ) > τ for all n ∈ N, (5.30)

and consider Y (n) := �(τ, X(n)
0 ) =: [ψ(n), y(n)

2 , ..., y(n)
N ]. Since X(n)

0 ∈ K �I \ {0} ⊂ O �I = Z �I , we 
know from part 3) of Lemma 5.4 that Y (n) ∈O �I (n ∈ N). Together with (5.30) we see that

ψ(n)(0) �= 0, and Y (n) ∈ O �I \ {0} for all n ∈ N.

ψ(n), ψ̇(n), and y(n)
2 , ..., y(n)

N are bounded uniformly with respect to n ∈ N , and the theorems 
of Arzelà-Ascoli and Bolzano-Weierstraß give a subsequence {Yα(n)} ⊂ {Y (n)} converging to 
Y ∗ = (ψ∗, y∗

2 , ..., y∗
N) ∈ X �I (in the norm on X). We can assume that the whole sequence (Y (n))

converges to Y ∗, and obviously Y ∗ ∈ O �I . Consider the solution (y1, ..., yN) of system (S) with 
initial value Y ∗. Convergence of Y (n) to Y ∗ implies the convergence

[x(n)
1 (t + τ), ..., x

(n)
N (t + τ)] → [y1(t), ..., yN(t)] (5.31)

uniformly on compact subintervals of [0, ∞).
Case 1: Y ∗ ∈ O �I . Then, due to O �I = Z �I , Lemma 5.4 (in particular, part 4)) shows that y1

has a first zero z(1)(Y ∗) in (0, ∞), with ẏ1(z
(1)(Y ∗)) < 0. In view of (5.31), this implies that for 

all large enough n, x(n)
1 has a first zero in (0, z(1)(Y ∗) + τ + 1), contradicting the assumption 

z
(1)
1 (X

(n)
0 ) → ∞.

Case 2: Y ∗ ∈ O �I \(O �I ∪{0}). Then Proposition 5.3 shows that there exists δ > 0 with y1(δ) <

0. From (5.31) we see that x(n)
(τ +δ) < 0 for large n, and a contradiction is obtained as in case 1.
1
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Case 3: Y ∗ = 0. (Since Y ∗ ∈O �I , this is the remaining case.) There exists r > 0 such that with 

the intervals Ij from Theorem 5.2 one has [−r, r] ⊂
N⋂

j=1
Ij . Then the rescaled sequence

Z(n) := r · Y (n)

||Y (n)||X
is contained in O �I and satisfies ||Z(n)||X = r for all n ∈ N . From Proposition 5.6 we obtain 

||ẋ(n)
1

∣∣[0, τ ]||∞ ≤ γ ||�(τ, X(n)
0 ||X, so the inequality ||ψ̇(n)||∞ ≤ γ ||Y (n)||X (n ∈ N) holds. If 

we write Z(n) = (ζ (n), w(n)
2 , ..., w(n)

N ), we conclude that for all n ∈N

||ζ (n)||∞ ≤ r, |w(n)
j | ≤ r, j = 2, ...,N, and ||ζ̇ (n)||∞ ≤ r · ||ψ̇(n)||∞

||Y (n)||X ≤ rγ.

Again, applying the theorems of Arzelà-Ascoli and Bolzano-Weierstraß and choosing a subse-
quence, we can assume that {Z(n)} converges to a limit Z∗ in O �I . Then ||Z∗||X = r , in particular, 
Z∗ �= 0. Now consider the solution t �→ [w1(t), ..., wN(t)] of the linearized system (L) with ini-
tial state Z∗, and the solutions [y(n)

1 , .., y(n)
N ] of the nonlinear system (S) with initial state Y (n). 

Setting

α
(n)
j (t) :=

1∫
0

g′
j (s · y(n)

j+1(t)) ds, j = 1, ...,N − 1, α
(n)
N (t) :=

1∫
0

g′
N(s · y(n)

1 (t − τ)) ds,

we have ⎧⎨
⎩ ẏ

(n)
j (t) = −μjyj (t) + α

(n)
j (t)y

(n)
j+1(t), j = 1, ...,N − 1,

ẏ
(n)
N (t) = −μNyN(t) + α

(n)
N (t)y

(n)
1 (t − τ).

(5.32)

(The technique here is similar to the proof of Lemma 3.10 in [20].) The convergence of Y (n) to 
Y ∗ = 0 implies that for j = 1, ..., N one has the convergence α(n)

j (t) → aj = g′
j (0) uniformly 

on every compact subinterval of [0, ∞), as n → ∞. The functions ỹ(n)
j (t) := r · y

(n)
j (t)

||Y (n)||X also 

satisfy the nonautonomous linear system (5.32), and, in addition, their initial states converge to 
Z∗. Thus we obtain

ỹ
(n)
j (t) → wj(t) (n → ∞), j = 1, ...,N, uniformly on compact subintervals of [0,∞).

(5.33)
If now Z∗ ∈ O �I then Lemma 5.5 shows that w1 has a first zero z(1)(Z∗) in (0, ∞), with 

ẇ1(z
(1)(Y ∗)) < 0. It follows from (5.33) that then for all large enough n, ỹ(n)

1 and therefore also 

y
(n)
1 has a first zero in (0, z(1)(Z∗) + 1). Hence x(n)

1 has a first zero in (0, z(1)(Z∗) + τ + 1), 
contradicting assumption (5.29) (similarly to case 1).
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If Z∗ /∈ O �I then Z∗ ∈ O �I \ (O �I ∪ {0}), and Proposition 5.3 shows that there exists δ > 0 with 

w1(δ) < 0. For large n, it follows that ỹ(n)
1 (δ) < 0 and y(n)

1 (δ) = x
(n)
1 (δ + τ) < 0, contradicting

(5.29).
We have seen in all cases that assumption (5.29) is contradictory, and hence z(1)

1 is bounded 
above by some T1 on the set K �I \ {0}.

Proof of 2): The continuity of the extended map Q follows from the fact that �(t, ψ) → 0 as 
ψ → 0 uniformly on [0, T1 + τ ] (since the semiflow � is uniformly continuous on the compact 
set [0, T1 + τ ] × {0}).

The image of Q is bounded (since it is contained in X �I ), and if (ϕ1, y2, ..., yN) =
Q((ϕ, x0

2 , ..., x0
N)) then ϕ1 is C1, and ϕ̇1 = ẋ1(z

(1)
1 +τ ·)∣∣[−τ,0] takes only values in the compact 

set g2(I2). The compactness of the closure of the image of Q now follows from the Arzelà-Ascoli 
theorem and the Bolzano-Weierstraß theorem. Finally, we see from part 4) of Lemma 5.4 that Q
maps into −K−�I . �

The subsequent construction of a return map P from the above map Q is analogous to the 
corresponding passage in [20]; see e.g. Remark 3.5 there. The system (S−) with the nonlinearities 
hj defined by hj (x) := −gj (−x) has the same feedback properties as system (S), and one sees 
from the construction of the intervals Ij in [4] that one can take the intervals −Ij for system (S−)

to obtain a corresponding invariant set X−�I for system (S−). Thus one obtains a semiflow �−

and a map Q− for system (S−) analogous to Q above, with a ‘time function’ z(1)
1,− analogous to 

z
(1)
1 above. Note that then for an initial state X0 ∈X and t ≥ 0 one has �−(t, −X0) = −�(t, X0). 

Further, the nonlinearities hj have the same derivatives at zero as the gj , so condition (5.14) is 
the same for system (S−) as for system (S).

Assume now that condition (5.14) is satisfied, and consider an initial state X0 ∈ X �I \ {0}. 
Then, in view of part 2) of Lemma 5.4, we have Q(X0) ∈ −K−�I . The solution (y1, ..., yN) of 
system (S) with initial state Y0 = Q(X0) (which is the time translate of the solution with initial 
state X0 by the time z(1)

1 (X0) + τ) satisfies that −(y1, ..., yN) is a solution of system (S−), with 
initial state −Q(X0) ∈ K−�I . It follows that

Q−(−Q(X0)) = Q−(−Y0) = �−(z
(1)
1,−(−Y0) + τ,−Y0) = −�(z

(1)
1,−(−Y0) + τ,Y0)

= −�[(z(1)
1,−(−Y0) + τ,�(z

(1)
1 (X0) + τ,X0)] = −�[(z(1)

1,−(−Y0) + z
(1)
1 (X0) + 2τ,X0].

(5.34)

Note that in case X0 �= 0 the time z(1)
1,−(−Y0) + z

(1)
1 (X0) + τ coincides with the second zero 

z
(1)
2 (X0) in (0, ∞) of the component x1 of the solution of system (S) with initial state X0. We 

obtain the following result:

Corollary 5.8. Assume condition (5.14).
1) The map P : K �I → K �I defined by P(X0) := −Q−[−Q(X0)] satisfies P(0) = 0 and is of 

the form P(X0) = �(θ(X0), X0) for X0 �= 0, where the return time θ is a continuous function 
on K �I \ {0} given by θ(X0) = z

(1)
2 (X0) + τ , and there exists T ∗∗ > 0 such that

∀X0 ∈ K � \ {0} : 2τ ≤ θ(X0) ≤ T ∗∗. (5.35)

I
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2) P is continuous and compact.
3) P(X0) �= 0 if X0 �= 0.

Proof. Ad 1): P(0) = 0 follows from Q(0) = Q−(0) = 0. It was shown above that P(X0) has 
the asserted form in case X0 �= 0. From part 2) of Lemma 5.7 we see that map Q− maps into 
−K−(−�I )

= −K �I , and hence P maps into K �I .
The time maps involved in the construction of Q and Q− are both bounded above, which 

implies the existence of T ∗∗ > 0 as in (5.35). One sees from (5.34) that θ ≥ 2τ .
Ad 2): The continuity and compactness of the map P extended to zero follow from part 2) of 

Lemma 5.7.
Finally, Assertion 3) follows from part 4 of Lemma 5.4. �

6. Periodic solutions

We can now put together the previous results on the linearized system (L), the return map for 
system (S), and Theorem 3.4 on periodic orbits, to prove our main result.

Remark 6.1. Assume that there exists a leading eigenvalue λ = ρ + iω, ρ > 0, ω > 0 of system 
(L), as described in part (iv) of Lemma 2.7 and Lemma 2.11. Then the semiflow induced by 
system (S) on the Banach space X satisfies assumptions (A1) and (A2) from Section 3.

Proof. For N -dimensional systems with more general coupling structure than considered here, 
the state space is usually taken as C := (C0([−τ, 0], CN), || · ||∞) instead of X. The space X can 
be isometrically embedded into C by constant extension of x2(0), ..., xn(0)) into the past:

ι : X 
 [ϕ,x2(0), ..., xN(0)] �→ [ϕ, x̂2(0), ..., x̂N (0)] ∈ C,

where the hats denote the corresponding constant functions on [−τ, 0]. With the semiflows �X
and �C induced on the indicated spaces, the maps ι and

π0 : C 
 [ϕ1, ..., ϕN ] �→ [ϕ1, ϕ2(0), ..., ϕN(0)],

one has for X0 ∈ X and t ≥ 0 : �X(t, X0) = π0[�C(t, ι(X0))]. Thus, results for X follow 
easily from those for C. We write � for �X from now on. With the semigroup T (t)t≥0 induced 
by system (L) on X, we have D2�(t, 0) = T (t) (t ≥ 0), since the derivative of D2�(t, ·) with 
respect to the initial state at zero is given by the solutions of the variational equation along the 
constant zero solution, i.e., by solutions of system (L). For R > 0, the uniform continuity of � on 
the compact set [0, R] × {0} implies that if ||X0||X → 0 then �(t, X0) → 0 uniformly on [0, T ]. 
We conclude that the coefficients g′

j (xj+1(t −τj )) in the variational equation of system (S) along 
a solution with initial state X0 converge to the coefficients aj = g′

j (0) of system (L) uniformly 
on compact intervals in [0, ∞), as X0 → 0. This implies that D2�(t, X0) → D2�(t, 0) = T (t)

as X0 → 0, uniformly on compact t -intervals, i.e., property (A1) holds.
With the (real) spectral subspaces U and S corresponding to the spectral set {λ, ̄λ} (and its 

complement in the spectrum), one has dimRU = 2 and X = U ⊕ S. The fact that Re (μ) <

ρ for all eigenvalues μ �= λ implies that max
{

Re (μ)
∣∣ μ eigenvalue of (L),μ �= λ

}
< ρ. The 

exponential estimates in (A2) then follow from Theorem 4.1, p. 181 in [15], or the analogous 
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Theorem 6.1 on p. 214 of [18] (one has to observe that the constant γ > 0 in these theorems can 
be chosen arbitrarily small). �

In the main theorem of this section, we consider the cyclic feedback system (S) with delay 
τ > 0, with decay rates μ1, . . . , μN > 0, and with C1 functions gj , where gN is bounded from 
above or from below. Recall the numbers aj = g′

j (0), which satisfy a1, ..., aN−1 > 0, aN < 0, 
and the number a = |a1 · ... · aN | > 0. For the statement of the theorem, we repeat the definitions 
of the following constants from Sections 2 and 5:

M∗ :=

N∏
k=1

μk

min{μ1, ...,μN } ; A1 :=
√√√√ N∏

j=1

(μ2
j + π2

τ 2 ); K := max{ max
j=1,...,N

μj ,
max{π,N − 1}

τ
}.

We define α(x) := eτx · [√5x]N for x > 0, and set A2 := max{α(K), A1}.
The theorem below gives two sufficient conditions for the existence of periodic solutions. The 

first one expresses the case of strong feedback (‘large a’), while the second one concerns the case 
of ‘large delay τ ’.

Theorem 6.2. Under the above assumptions on system (S) and with the constants defined above, 
consider the following conditions:

(1) a) a ≥ A2 and b) aτ > M∗;
(2) c) a ≥ A1 and d) τ ≥∑N

j=1
1

μj
.

If the inequalities a) and b) from (1) hold, or if the inequalities c) and d) from (2) hold, then 
system (S) has a non-constant periodic solution with initial value in the cone K. The minimal 
period is given by z(1)

2 + τ , where z(1)
2 is the second positive zero of the x1-component of the 

periodic solution.

Proof. We verify the hypotheses of Theorem 3.4 for the semiflow � on the Banach space X
induced by system (S).

Assume first that condition (1) holds (i.e., inequalities a) and b) are true). Then, since A2 ≥ A1, 
Lemma 2.7 shows the existence of a leading eigenvalue as required in Remark 6.1. Further, 
condition a) and Proposition 2.10 give that the lower estimate (2.6) holds. Finally, condition b) 
coincides with condition (5.14) of Lemma 5.5, so Corollary 5.8 gives a continuous and compact 
return map P , with a return time θ as required in Theorem 3.4, and satisfying conditions 1) and 
2) of that theorem.

Assume next that condition (2) is satisfied (i.e., c) and d) hold). Then we obtain the existence 
of a leading eigenvalue and the validity of the lower bound (2.6) from Lemma 2.11, since, in 
particular, inequality d) implies τ >

∑N
j=2

1
μj

. Note now that the definition of A1 together with 
inequalities c) and d) give

aτ ≥ A1

N∑
j=1

1

μj

>

N∏
k=1

μk ·
N∑

j=1

1

μj

=
N∑

j=1

Mj > max
j=1,...,N

Mj ,

i.e., condition b) holds also, and again Lemma 5.5 and Corollary 5.8 give the return map P as 
above.
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Remark 6.1 shows in both cases that assumptions (A1) and (A2) from Section 3 hold. We 
have seen that in both cases we obtain a compact continuous return map P with a return time 
θ as required in Theorem 3.4, and satisfying conditions 1) and 2) of that theorem, and that the 
lower bound property (2.6) (assumption 3) of Theorem 3.4 is true in both cases.

Finally, we define the continuous linear functional η on X by η(X0) := ϕ(0) + x2 +
.... + xN for X0 = (ϕ, x2, ..., xN) ∈ X. If X0 ∈ K then the definition of K implies ϕ(0) ≥
exp(−μ1τ)||ϕ||∞, and

η(X0) = ϕ(0)+|x2|+ ....+|xN | ≥ exp(−μ1τ)max{||ϕ||∞, |x2|, ..., |xN |} = exp(−μ1τ)||X0||X,

showing that assumption 4) of Theorem 3.4 holds. The statement about the minimal period is 
clear from Corollary 5.8. �
7. Global asymptotic stability of zero

Recall the functions Gj (j = 1, ..., N) and G = G1 ◦ .... ◦ GN from section 5. We show 
here how the invariance and attractivity results from that section can be employed to obtain the 
convergence of all solutions to the zero solution. This is a complementary result to those on the 
existence of periodic solutions in the previous section,

Proposition 7.1. Assume that G has a compact invariant interval I1 with 0 in its interior and 
such that Gn(x) → 0 as n → ∞ ∀x ∈ I1. Then 

⋂
n∈N

Gn(I1) = {0}.

Proof. Set [an, bn] := Gn(I1) for n ∈ N . Each function Gn has either positive or negative feed-
back (depending on the parity of n), which implies that an < 0 < bn for all n. Further it follows 
from Gn+1(I1) ⊂ Gn(I1) that

an ≤ an+1 < 0 = G(0) < bn+1 ≤ bn (n ∈N).

The monotone sequences (an) and (bn) have limits a∗ ≤ 0 and b∗ ≥ 0, and we have to show 
a∗ = b∗ = 0. We first prove

G([a∗, b∗]) = [a∗, b∗]. (7.1)

Since G([a∗, b∗]) ⊂ G([an, bn]) = [an+1, bn+1] for all n, we have G([a∗, b∗]) ⊂ [a∗, b∗]. If 
we had min

x∈[a∗,b∗]G(x) > a∗ then an → a∗, bn → b∗ and continuity of G would imply an+1 =
minx∈[an,bn] G(x) > a∗ for large n, a contradiction. Hence min

x∈[a∗,b∗]G(x) = a∗, and with the 

analogous argument for b∗ we obtain (7.1).
Assume now a∗ < 0. Since G2 has positive feedback, we see from G(0) = 0 and (7.1) that

G2([a∗,0]) = [a∗,0].
If G2(a∗) > a∗ then there exists x ∈ (a∗, 0) with G2(x) = a∗ < x, and hence we obtain from the 
intermediate value theorem an x∗ ∈ (a∗, x) with G2(x∗) = x∗. If G2(a∗) = a∗ then x∗ := a∗ is 
a non-zero fixed point of G2. Both cases contradict the property Gn(x∗) → 0 for n → ∞. Thus 
the assumption is contradictory and we have a∗ = 0; analogously one shows that b∗ = 0. �
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Theorem 7.2 (Global asymptotic stability).
a) Assume there exists a compact interval I1 with 0 ∈ int(I1), G(I1) ⊂ I1, and such that the 

fixed point 0 of G is globally attracting on I1, as in Proposition 7.1, i.e., limn→∞ Gn(x) = 0 for 
every x ∈ I1. Then the zero solution is globally asymptotically stable within the set X �I as defined 
in Theorem 5.2: for every initial state X0 ∈ X �I one has �(t, X0) → 0 as t → ∞.

b) If 0 is globally attractive for G within the G-invariant interval I1 := G2(R) from part 2) 
of Theorem 5.2, then 0 ∈X is the global attractor for the whole semiflow induced by system (S).

Proof. Proof of a): Let I1 be as in a), and consider an initial state X0 in the associated set 
X �I . Part 1) of Theorem 5.2 shows that the corresponding solution satisfies x1([−τ, ∞)) ⊂ I1. 
Applying part b) of Proposition 5.1 iteratively, we see that x1 ∈ Gn(I1) ev. for all n ∈N . In view 
of Proposition 7.1 this implies x1(t) → 0 as t → ∞. With Corollary 2 from [4], one sees that 
xN(t) → 0 as t → ∞, and using the same argument repeatedly, that all components xj converge 
to zero.

Proof of b): We know from Theorem 5.2 that I1 is as required in part a), and that every solution 
enters the corresponding set X �I in finite time. Part b) follows hence from part a). �
8. Final remarks

We mention three possible alternative approaches to obtain periodic solutions for our system 
(S), which are not yet realized:

1) The Morse decomposition result for scalar delay equations from [28] includes the statement 
that nonconstant periodic solutions exist in each level set of a zero-counting Liapunov functional. 
The corresponding result for systems of more than one equation would include the result on 
periodic solutions from the present paper, but is to our knowledge presently not proved.

2) In the spirit of the geometric description of subsets of the global attractor in [42] (for 
negative monotone feedback) and [22] (for positive monotone feedback), one might conjecture 
that if the linearization at zero has a conjugate pair of eigenvalues in the right half plane then the 
global continuation of the local unstable manifold at zero contains a nonconstant periodic orbit 
in its closure. Again, such a result would include ours, but does not exist presently.

3) An extensive theory of cyclic delay systems with monotone feedback was developed in 
[30] and [31]. Assuming that these results grant the existence of periodic solutions, it could be 
possible to define an index-preserving homotopy from a non-monotone system to one that falls 
in the class described in [31]. (This was noted by John Mallet-Paret, [29].)

As a final minor addition here we take the opportunity to correct some errata that occurred in 
our earlier paper [20]:

1) On page 668 in the introduction, preceding the system with only one delay, it should be 
‘Then, setting qj (t) := zj (τ t), ...’

2) In part a) of Definition 3.2 on p. 676, the last sentence should be ‘We say that z is oscillatory 
or oscillates, if z takes positive and negative values on every interval [T , ∞) if T > a.’

3) The definition of the cone K on p. 681 should come before Lemma 3.8 on p. 680, and in 
the assumptions of Lemma 3.8 it should be ‘... with initial value X0 = (ϕ, x0

2 , x0
3) ∈ K, and such 

that ...’
4) In part c) of Corollary 3.1 on p. 686 it should be z1(X0) instead of z2(X0).
2 1
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