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Abstract

In this paper we study the geometry of certain functionals associated to quasilinear elliptic boundary 
value problems with a degenerate nonlocal term of Kirchhoff type.

Due to the degeneration of the nonlocal term it is not possible to directly use classical results such as 
uniform a-priori estimates and “Sobolev versus Hölder local minimizers” type of results. We prove that 
results similar to these hold true or not, depending on how degenerate the problem is.

We apply our findings in order to show existence and multiplicity of solutions for the associated quasi-
linear equations, considering several different interactions between the nonlocal term and the nonlinearity.
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1. Introduction

The main purpose of this paper is to study the geometry of certain functionals that arise in the 
study of elliptic equations with a nonlocal term of Kirchhoff type.

Consider for instance the equation{−M(‖u‖p
W )�pu = f (x,u) in �,

u = 0 on ∂�,
(1.1)

where � ⊂ RN is a bounded and smooth domain, M is some function, ‖·‖W is the norm in 
W

1,p
0 (�), p > 1, and f is a suitable nonlinearity. This problem can be studied variationally, by 

considering the associated functional

J (u) = 1

p
M̂(‖u‖p

W ) −
∫
�

F(x,u) , u ∈ W
1,p
0 (�) , (1.2)

where M̂(t) = ∫ t

0 M(s) ds and F(x, v) = ∫ v

0 f (x, s) ds.
One interesting question that arises in this study is related to the well known results by Brézis 

and Nirenberg [1], later extended to the quasilinear case in [2–4], which state that a minimum in 
the C1 topology for a functional in a suitable form, in particular whose principal term is 1

p
‖u‖p

W , 

is also a minimum in the W 1,p

0 topology. When the principal term of the functional takes the 
form in (1.2), that is, when considering non local problems as (1.1), these results may not apply 
any more.

In [5], a generalization of this kind of results to certain Kirchhoff type problems is obtained 
for the p(x)-Laplacian, however, the function M is assumed to be bounded away from zero in 
compact sets, which rules out the possibility of some degeneracy which might change the picture. 
Our aim is to avoid such nondegeneracy condition, in order to be able to treat a wider class of 
nonlocal terms M . We will focus on the case where the degeneracy happens at the origin, that is, 
when M is continuous with M(0) = 0. As a model one can take M to be a power (see equation 
(1.5)).

Our main theoretical results are contained in the Theorems 2.1 and 3.1. They show that in 
some cases, namely when the degeneration of M at the origin is stronger, no result similar to 
those in [1–4] can hold true for J . In fact, we provide a situation where the origin is a local 
minimum when compared to functions that are small in L∞ or in C1, but there exists a sequence 
of functions whose Sobolev norm goes to zero while J stays below its level at the origin. On 
the other hand, for less degenerate M , the above cannot happen, and it is instead possible to 
prove that a minimum with respect to the L∞ norm is eventually a minimum with respect to the 
Sobolev norm. Under further conditions, in Theorem 3.6, we also obtain the full classical result 
that even a minimum with respect to the C1 norm is a minimum with respect to the Sobolev norm.

The need for the above distinction between minima with respect to the L∞ or C1 norm is 
due to the observation that, when dealing with the Kirchhoff operator with degenerate nonlocal 
term, regularity estimates like those in [6] might not hold uniformly, as we show in an example 
in Section 6 (see Proposition 6.1). This means that a crucial step of the classical proof of the 
“W 1,p versus C1” type results, that is, when one bootstraps from L∞ estimates to C1,α estimates 
in order to apply Ascoli-Arzela theorem, will be more delicate and not always possible in this 
context (see Theorem 3.6). However, in many application, the full strength of the “W 1,p versus 
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C1” result is not required, and the formulation in terms of the L∞ norm is satisfactory: see for 
example [7,8].

As an application, in Section 5, we exploit the two results mentioned above to show existence 
and multiplicity of solutions for certain nonlocal equations like (1.1). It will turn out that the 
geometry of the associated functional changes when the degeneracy of the nonlocal term is such 
that either Theorem 3.1 or Theorem 2.1 holds true, producing different results in terms of exis-
tence and multiplicity of the solutions, even if the interaction with the nonlinearity is unchanged: 
see in particular Theorem 5.1 and Theorem 5.7. See also the remarks in Section 5.4.

As model examples for the functional (1.2) we will consider

J (u) = 1

r
‖u‖r

W + 1

q
‖u‖q

q − λ

�
‖u‖�

� , (1.3)

J +(u) = 1

r
‖u‖r

W + 1

q

∥∥u+∥∥q

q
− λ

�

∥∥u+∥∥�

�
, (1.4)

whose critical points correspond to solutions of the nonlocal equation{−‖u‖r−p
W �pu = −|u|q−2u + λ|u|�−2u in �,

u = 0 on ∂� .
(1.5)

This problem corresponds to taking, in (1.2),{
M̂(sp) = p

r
sr ,

F (x, v) = λ
�

|v|� − 1
q
|v|q or F(x, v) = λ

�
(v+)� − 1

q
(v+)q .

(1.6)

For 1 < q < � <
pN

N−p
and r > 0, the origin is a local minimum with respect to the L∞ norm 

for the functionals J and J +, but a consequence of Theorem 2.1 and Theorem 3.1 will be that 
such minimum is also a minimum in W 1,p

0 if r <
pN

N−p
, but it is not if r >

pN
N−p

.

1.1. Some background

The main feature of problem (1.1) is the presence of the term M(‖u‖p
W ), which is said to be 

nonlocal, since it depends not only on the point in � where the equation is evaluated, but on the 
norm of the whole solution. Such problems are usually called of Kirchhoff type, as they are gen-
eralizations of the (stationary) Kirchhoff equation, originally proposed in [9] as an improvement 
of the vibrating string equation, in order to take into account the variation in the tension of the 
string due to the variation of its length with respect to the unstrained position. In the Kirchhoff 
case, the proposed function M takes the form M(t) = a + bt with a, b > 0, but one can also 
consider the case a = 0, which makes the nonlocal term M become degenerate, and models a 
string with zero tension when undeformed.

Many other physical phenomena can be modeled through nonlocal equations similar to (1.1)
(see examples in [10,11]), and interesting mathematical questions also arise. For more recent 
literature about such Kirchhoff type problems we cite the works [12–24], which deal with the 
existence of solutions with various types of nonlinearities f and use mainly variational methods. 
Among them, we refer to [15,19,21,22,24] for considering also the case where the nonlocal term 
M is degenerate.
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We remand to Section 5.4 for a further discussion of the existing literature concerning the 
applications considered in Section 5.

This paper is structured as follows: in the sections 2 and 3 we state and prove the main theo-
rems. In Section 4, we prove a compactness condition for the functional (1.2) in a rather general 
form, that will be then used in the following Section 5 to obtain existence of solutions for some 
nonlocal problem as (1.1). Section 6 is instead devoted to the mentioned counterexample con-
cerning regularity and a-priori estimates for degenerate Kirchhoff type problems as (1.1). Finally, 
in the Appendix we summarize some estimates, which are used in the proof of Theorem 2.1, in-
volving suitable compact support approximations of the instanton functions which realize the 

best constant for the Sobolev embedding W 1,p

0 ⊆ L
pN

N−p .

1.2. Notation and first remarks

Throughout the paper we will denote by ‖·‖W = (∫
�

|∇u|p)1/p the norm in W 1,p
0 (�) and 

by ‖·‖s the Ls -norm. As usual, p∗ = pN
N−p

will denote the critical exponent of the embedding 

W
1,p

0 (�) ↪→ Ls(�), when N > s. We will also use the letters C, c to denote generic positive 
constants which may vary from line to line.

In order to have the functional (1.2) well defined in W 1,p

0 we will always assume that M is 
integrable at 0 and continuous on (0, ∞) and that, for some positive constant C0,

(H0) F(x, v) ≤ C0(1 + |v|p∗
), for every x ∈ �, v ∈R.

Observe that a solution of the nonlocal problem (1.1) is also a solution of the local problem{−�pu = γf (x,u) in �,

u = 0 on ∂�,
(1.7)

with γ = 1/M(‖u‖p
W ): this observation will be used several times in order to translate known 

properties of the p-Laplacian to the nonlocal case.

2. Hölder minimizers which are not Sobolev minimizers

In this section we show that for certain nonlocal degenerate problems no result similar to 
[1–4] may hold true: in fact, we show that it is possible to have a minimum with respect to the 
L∞ norm (which then is also a minimum with respect to the C1 norm) which is not a minimum 
in W 1,p

0 .
Our result is contained in the following theorem.

Theorem 2.1. Let � be a bounded domain in RN with N > p and consider the functional J as 
in (1.2), where F satisfies hypothesis (H0). Let

r > p∗ ≥ � > q ≥ 1 (2.1)

and assume that for suitable constants C1, C2, C3 > 0,
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(P <
M ) 1

p
M̂(sp) ≤ C1s

r , for s small,

(PF ) F(x, v) ≥ C2v
� − C3v

q , for x ∈ �, v ≥ 0.

Then there exists a sequence un in W 1,p

0 (�) with ‖un‖W → 0, such that J (un) < 0.
In particular, if also

(P 0
M ) M̂(t) ≥ 0, for t small,

(P 0
F ) F(x, v) ≤ 0, for x ∈ � and |v| small,

then the origin is a local minimum for J with respect to the C1 norm, but not with respect to the 
W

1,p

0 norm.
Finally, if

(P ∗
M ) M̂(t) ≥ 0, for every t ≥ 0,

then the origin is a local minimum for J with respect to the C1 and L∞ norms, but not with 
respect to the W 1,p

0 norm.

Remark 2.2. Observe that for hypotheses (P <
M ) and (P 0

M ) to hold it is sufficient (but not neces-
sary) that 0 ≤ M(sp) ≤ Csr−p for small s. �

In our model examples (1.3) - (1.4), it is straightforward to verify that if (2.1) holds true and 
λ > 0, then the hypotheses (H0), (P <

M ), (PF ), (P ∗
M ) and (P 0

F ) are satisfied and then we have the 
following result.

Corollary 2.3. If (2.1) holds true and λ > 0, then the origin is a local minimum for the functionals 
(1.3) - (1.4) with respect to the L∞ norm (and to the C1 norm), but not with respect to the W 1,p

0
norm.

Proof of Theorem 2.1. By (2.1), the following inequalities hold:

0 ≤ N − p

p

p∗ − �

r − �
<

N − p

p
,

as a consequence, we can define the constants σ, α, whose role will be clarified later, as below:

N − p

p
> σ >

N − p

p

p∗ − �

r − �
≥ 0,

0 < α < (� − q)

(
N − p

p
− σ

)
.

Now let {ψε, ε > 0} be the compact support approximations of the instanton functions as 
defined in (7.2), where the parameter β is chosen in such a way that, as ε → 0, we have, from 
equations (7.3) and (7.5) in Corollary 7.2,
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‖ψε‖r
W ≤ C(1 + o(1)) ≤ 2C, (2.2)

‖ψε‖q
q ≤ Cε

(N− N−p
p

q−α)
, (2.3)

‖ψε‖�
� ≥ cε

(N− N−p
p

�)
, (2.4)

(here the constants C, c > 0 and β ∈ (0, 1) depend on N, p, q, � , which are fixed along this 
proof). Observe that (2.4) becomes ‖ψε‖�

� ≥ c when � = p∗, which is also true by (7.4).
By hypotheses (P <

M ) and (PF ) (observe that ψε ≥ 0) we have

1

p
M̂(‖u‖p

W ) ≤ C1 ‖u‖r
W , for small ‖u‖W ,

∫
�

F(x,u) ≥ C2 ‖u‖�
� − C3 ‖u‖q

q ,

then for t > 0 small enough we get

J (tψε) ≤ C1 ‖tψε‖r
W + C3 ‖tψε‖q

q − C2 ‖tψε‖�
�

= C1t
r ‖ψε‖r

W + C3t
q ‖ψε‖q

q − C2t
� ‖ψε‖�

�

≤ C(tr + tqε
N−q

N−p
p

−α
) − ct� ε

N−�
N−p

p . (2.5)

Now we let t depend on ε by the relation t = εσ , so that

J (εσ ψε) ≤ C

(
εrσ + ε

N+q
(
σ− N−p

p

)
−α
)

− cε
N+�

(
σ− N−p

p

)
. (2.6)

Since σ >
N−p

p
p∗−�
r−�

≥ 0, the first exponent in (2.6) is larger than the last one, moreover, since 

σ <
N−p

p
and α < (� − q) 

(
N−p

p
− σ
)

, the second exponent is also larger than the last one.

We conclude that ‖εσ ψε‖W → 0 as ε → 0, but for ε small enough, J (εσψε) < 0 = J (0)

because the dominant term in (2.6) is the last one. A sequence as in the claim would be for 
instance un = (1/n)σ ψ1/n.

Finally, if u ∈ C1(�) with ‖u‖C1 small, then also the W 1,p

0 norm is small and by (P 0
M - P 0

F ) 
we obtain J (u) ≥ 0, that is, the origin is a local minimum with respect to the C1 norm. If also 
(P ∗

M ) holds then J (u) ≥ 0 also for u ∈ L∞(�) ∩ W
1,p
0 (�) with ‖u‖L∞ small, that is, the origin 

is a local minimum also with respect to the L∞ norm. �
Remark 2.4. Of course, εσψε is not bounded in L∞ as ε → 0, in fact, by (7.1) we get εσψε(0) �
εσ+(p−N)/p → ∞. However, when (P 0

M - P 0
F ) hold true, along the segment from the origin to 

εσ ψε , J is initially positive, before reaching its negative value at εσψε . �



L. Iturriaga, E. Massa / J. Differential Equations 269 (2020) 4381–4405 4387
3. Hölder minimizers which are also Sobolev minimizers

Our purpose in this section is to show that when the degeneration of the function M̂ in the 
functional (1.2) is weaker than in Theorem 2.1, it is instead possible to prove that minima with 
respect to the L∞ norm are also minima with respect to the W 1,p

0 norm. Under more restrictive 
conditions, we can also obtain the stronger result that minima with respect to the C1 norm are 
also minima with respect to the W 1,p

0 norm, as in the classical results.
The first result is the following.

Theorem 3.1. Let � be a bounded and smooth domain in RN with N > p and consider the 
functional J as in (1.2), associated to the nonlocal equation (1.1). Suppose the function f :
� ×R → R in (1.1) is a continuous function such that (H0) holds true and

(Qf ) there exist constants D > 0 and � ∈ [p, p∗) such that

f (x, v)sgn(v) ≤ D|v|�−1, ∀ (x, v) ∈ � ×R.

Assume further that

(Q>
M ) M(t) ≥ 0 for every t ≥ 0 and there exist constants a1, δ > 0 and r ∈ (p, p∗) such that

M(sp) ≥ r a1

p
sr−p, for 0 ≤ sp < δ.

Then, if the origin is a local minimum for J with respect to the L∞ norm, then it is also a 
local minimum with respect to the W 1,p

0 norm.

Remark 3.2. The hypothesis (Q>
M ) in Theorem 3.1 implies that M̂(sp) ≥ a1s

r for s small, then 
it is analogous (but with reversed inequality) to hypothesis (P <

M ) in Theorem 2.1. The condition 
here, however, is given on M instead of its primitive, then it is slightly stronger. �

For the model functionals (1.3)-(1.4) the hypotheses of Theorem 3.1 are satisfied provided

0 < r < p∗ and p∗ > � > q ≥ 1, (3.1)

moreover, the origin is a local minimum with respect to the L∞ norm since (P ∗
M - P 0

F ) hold true. 
Then we have the following result.

Corollary 3.3. Let � be a bounded and smooth domain in RN with N > p. If (3.1) holds true, 
then the origin is a local minimum for (1.3) and (1.4) with respect to the L∞ norm, and also with 
respect to the W 1,p

0 norm.

In order to prove Theorem 3.1 we will need the a-priori estimate contained in the following 
lemma, which is obtained through the application of Moser’s iterations.

Lemma 3.4. Let � be a bounded and smooth domain in RN with N > p and f : � ×R → R be 
a continuous function which satisfies hypothesis (H0) and
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f (x, v)sgn(v) ≤ L|v|�−1 ∀ (x, v) ∈ � ×R, (3.2)

for some numbers L > 0 and � ∈ [p, p∗).
Then there exists C1(�, p, �) such that

‖u‖∞ ≤ C1(�,p,�)L
1

p∗−� ‖u‖
p∗−p

p∗−�

p∗ , (3.3)

for every weak solution u ∈ W
1,p
0 (�) of the problem{−�pu = f (x,u) in �,

u = 0 on ∂� .
(3.4)

Proof. The proof is the same as in [25, Lemma 2.2], one only has to observe that f can depend 
on x and (3.2) - (H0) can substitute the stronger condition |f (v)| ≤ L|v|�−1. Moreover, observe 
that (H0) is used only to guarantee that the solutions are C1,α(�), so that the final estimate 
depends on � and L but not on C0. �
Remark 3.5. Lemma 3.4, and then Theorem 3.1, can be extended to the case N = p by replacing 
p∗ with any large number. If instead N < p then Theorem 3.1 holds true trivially, since W 1,p

0 ⊆
L∞. �

Proof of Theorem 3.1. Our proof is based on the proof of [4, Lemma 2.2]. In order to be able 
to exploit Lemma 3.4, we will compare the problem (1.1) with its local versions (1.7) with 
γ = 1/M(‖u‖p

W ). Observe that (Q>
M ) implies that M̂ is nondecreasing and{

M̂(t) ≥ a1t
r/p for 0 ≤ t ≤ δ,

M̂(t) ≥ a1δ
r/p for t ≥ δ.

(3.5)

For sake of contradiction, we assume from now on that the origin is not a local minimum for 
J in the W 1,p

0 topology, and we aim to prove that then it cannot be a minimum with respect to 
the L∞ norm.

We start by defining

Q(u) := 1

�

∫
�

|u(x)|�, for u ∈ W
1,p
0 (�)

and, for ε > 0,

BQ
ε := {u ∈ W

1,p
0 (�) : Q(u) ≤ ε} .

First we claim that for every ε > 0 small enough there exists vε ∈ B
Q
ε such that J (vε) =

min
u∈B

Q
ε

J (u) < 0. Actually, since J (0) = 0 and BQ
ε contains a small ball in the W 1,p

0 norm, 
we get that inf

u∈B
Q
ε

J (u) < 0 by our contradiction assumption. Then, given a minimizing se-

quence wn for J in BQ
ε , one may assume 1 M̂(‖wn‖p

) ≤ ∫ F(x, wn); by (Qf ), this can be 

p W
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controlled by ε so, for ε > 0 small enough, we may assume M̂(‖wn‖p
W ) < a1δ

r/p and then, 
using (3.5), ‖wn‖W ≤ δ1/p . As a consequence, we may assume that wn converges weakly in 
W

1,p

0 and strongly in L� to some vε ∈ B
Q
ε with J (vε) = min

B
Q
ε

J < 0 (observe that since M̂ is 
nondecreasing J is weakly lower semicontinuous).

Now since, as ε → 0, vε → 0 in L� and J (vε) < 0, reasoning as above we deduce that 
M̂(‖vε‖p

W ) → 0 and then vε → 0 in W 1,p

0 . We consider two cases.

Case 1: Q(vε) = ε. Then there exists a Lagrange multiplier με ∈R such that J ′(vε) = μεQ
′(vε), 

i.e., vε is a weak solution of{−M(‖vε‖p
W )�pvε = f (x, vε) + με|vε|�−2vε in �,

u = 0 on ∂�,
(3.6)

and a weak solution of{−�pvε = γε

[
f (x, vε) + με|vε|�−2vε

]
in �,

u = 0 on ∂�,
(3.7)

with γε = M(‖vε‖p
W )−1. By testing equation (3.6) with vε one gets

J ′(vε)[vε] = μεQ
′(vε)[vε] = με

∫
|vε|� = με�ε .

If με > 0 then J ′(vε)[vε] > 0 which implies that J decreases in the direction −vε, contradicting 
that vε is a global minimizer for J in BQ

ε . It follows that με ≤ 0.
As a consequence, in view of hypotheses (Qf - H0) the right hand side of (3.7) satisfies the 

hypotheses of Lemma 3.4 with L = Dγε , which gives us

‖vε‖∞ ≤ C1(�,p,�) (Dγε)
1/(p∗−�) ‖vε‖(p∗−p)/(p∗−�)

p∗ ,

where since γε = M(‖vε‖p
W )−1 ≤ p

ra1
‖vε‖p−r

W we get

‖vε‖∞ ≤ C1(�,p,�)

(
p

ra1
D

)1/(p∗−�)

‖vε‖(p−r)/(p∗−�)
W ‖vε‖(p∗−p)/(p∗−�)

p∗

≤ C(�,p,�)‖vε‖
p∗−r

p∗−�

W . (3.8)

Since r < p∗, we conclude that the L∞ norm goes to zero as ε → 0.
We have thus proved that the origin is not a local minimum with respect to the L∞ norm.

Case 2: Q(vε) < ε. Then, since there exists a small ball centered at vε and contained in BQ
ε , vε

is actually a local minimizer of J in W 1,p
0 (�), which means that the equations (3.6) and (3.7)

hold true with με = 0 and then the conclusion follows by the same argument. �
The second result in this section aims to provide a version of the more classical result that 

relates minima with respect to the C1 norm with those in the Sobolev norm.
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Theorem 3.6. In the hypotheses of Theorem 3.1, if moreover

(� − 1) > (r − p)
p∗ − 1

p∗ − p
(3.9)

and there exist further constants D̃, ̃� > 0 such that⎧⎨⎩|f (x, v)| ≤ D̃|v|�̃−1, for x ∈ �, |v| small,

�̃ − 1 > (r − p)
(p∗ − �)

(p∗ − r)
,

(3.10)

then, if the origin is a local minimum for J with respect to the C1 norm, then it is also a local 
minimum with respect to the W 1,p

0 norm.

Remark 3.7. The conditions (3.9) - (3.10) state a balance between the growth of the nonlocal 
term near zero and the behavior of the nonlinearity f . In fact, a higher degeneration of the 
nonlocal term needs to be compensated with a higher exponent in (Qf ) and in (3.10), if one aims 
to control the C1 norm.

In the case of the model functionals (1.3)-(1.4) satisfying (3.1), the exponents � and �̃ corre-
spond, respectively, to � and q . Observe that, since r < p∗, there always exists � < p∗ satisfying 
(3.9). If � is close to p∗, then condition (3.10) is not very restrictive, allowing the nonlinearity to 
have a lousier estimate from below near zero. �

Proof of Theorem 3.6. As in the proof of Theorem 3.1, we assume for sake of contradiction 
that the origin is not a local minimum for J in the W 1,p

0 topology, and we aim to prove now that 
it cannot be a minimum with respect to the C1 norm.

Carrying on from the proof of Theorem 3.1, the first step will be to prove that if (3.9) - (3.10)
hold true, then it is possible to obtain a uniform bound, as ε → 0, for ‖vε‖C1,α , for some α > 0. 
We already proved that (3.8) holds true and then ‖vε‖W , ‖vε‖∞ → 0.

In case 1), since vε satisfies (1.7) with γε = M(‖vε‖p
W )−1, it also satisfies{−�pu = γεfε(x,u) in �,

u = 0 on ∂�,
(3.11)

where fε(x, u) is truncated such that fε(x, t) = f (x, sgn(t) ‖vε‖∞) for |t | > ‖vε‖∞, implying 
that, for ε small, |fε(x, t)| ≤ D̃ ‖vε‖�̃−1∞ , by (3.10). Then the right hand side of (3.11) can be 
estimated as

|γεfε(x,u)| ≤ C ‖vε‖
(p∗−r)

(p∗−�)
(�̃−1)−r+p

W . (3.12)

The exponent in (3.12) is positive by (3.10), providing a uniform bound as ε → 0. We can thus 
apply the results in [6, Theorem 1] to obtain the uniform bound for ‖vε‖C1,α and some α > 0.

In case 2), we already proved that vε satisfies (3.7) with με ≤ 0; by testing this equation with 
vε we have

0 ≤
∫

|∇vε|p = γε

∫ [
f (x, vε)vε + μεv

�
ε

]
,
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which implies, using (Qf ), that

−με

∫
v�
ε ≤
∫

f (x, vε)vε ≤ D

∫
v�
ε ,

so that με ∈ [−D, 0]. With this information we may proceed as in case 1), truncating both f and 
the additional term με|vε|�−2vε in (3.7), whose right hand side is then estimated as

∣∣∣γε

[
f (x, vε) + με|vε|�−2vε

]∣∣∣≤ C

(
‖vε‖

(p∗−r)

(p∗−�)
(�̃−1)−r+p

W + ‖vε‖
(p∗−r)

(p∗−�)
(�−1)−r+p

W

)
. (3.13)

Using again (3.10) and now also (3.9), which is equivalent to (p∗−r)
(p∗−�)

(� − 1) − r + p > 0, we 
obtain again the uniform bound on ‖vε‖C1,α , via [6].

Finally, with this uniform bound, we can apply Ascoli-Arzela’s theorem to obtain a sequence 
εn → 0 such that vεn → 0 in C1. We have thus proved that the origin cannot be a minimum with 
respect to the C1 norm. �
4. Compactness condition

In this section we will provide conditions under which the functional (1.2) satisfies the com-
pactness conditions required in order to apply classical variational methods.

Proposition 4.1. Let � be a bounded domain and consider the functional (1.2), associated to 
problem (1.1). Suppose

(H̃1) f is a Carathéodory function and there exist �̃ ∈ (1, p∗) and C̃0 > 0 such that

|f (x, v)| ≤ C̃0(1 + |v|�̃−1) for every x ∈ �, v ∈ R ,

and one of the following two conditions:

(KAR) there exist ̃r, C, β > 0 such that

(i) r̃F (x, v) − f (x, v)v ≤ C for every x ∈ �, v ∈R,

(ii)
r̃

p
M̂(sp) − M(sp)sp ≥ βs − C for every s ≥ 0,

(KC ) there exist ̃r > �̃ , C > 0 such that

M̂(sp) ≥ sr̃ − C for every s ≥ 0.

Then any PS sequence for the functional (1.2) is bounded.
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If (KAR-ii) is replaced by the weaker condition

(KAR-iii) there exists h > 0 such that

r̃

p
M̂(sp) − M(sp)sp ≥ βsh − C for every s ≥ 0,

then any Cerami sequences for the functional (1.2) is bounded.
The PS (resp Cerami) condition is satisfied provided we assume also

(KM ) M(t) > 0 and is continuous, for t > 0.

Remark 4.2. The conditions assumed in Proposition 4.1 are similar to those used in [24] and, 
for p = 2, also in [20,21].

Condition (KAR) is a generalization of the classical Ambrosetti-Rabinowitz superlinearity 
condition. Actually, in the local case M ≡ 1, condition (KAR-ii) reads(

r̃

p
− 1

)
sp ≥ βs − C

and then reduces to the usual requirement that ̃r > p in (KAR-i). More in general, (KAR) estab-
lishes that “f grows more than M” at infinity, while (KC) establishes the opposite. �

Proof of Proposition 4.1. If un is a PS sequence for J then one has, for some sequence εn → 0,

|J (un)| =
∣∣∣∣∣∣ 1pM̂

(‖un‖p
W

)− ∫
�

F(x,un)

∣∣∣∣∣∣≤ C,

∣∣J ′(un)[un]
∣∣=
∣∣∣∣∣∣M (‖un‖p

W

)‖un‖p
W −

∫
�

f (x,un)un

∣∣∣∣∣∣≤ εn ‖un‖W .

If condition (KAR) holds, then one can estimate 
∣∣̃rJ (un) − J ′(un)[un]

∣∣, obtaining

∣∣∣∣∣∣
(

r̃

p
M̂
(‖un‖p

W

)− M
(‖un‖p

W

)‖un‖p
W

)
−
⎛⎝∫

�

r̃F (x,un) − f (x,un)un

⎞⎠∣∣∣∣∣∣≤ C + εn ‖un‖W ,

so that

β ‖un‖W ≤ C′ + εn ‖un‖W , (4.1)

which implies that ‖un‖W is bounded.
If instead condition (KC ) is assumed then ‖un‖W is bounded since, in view of (H̃1), the 

functional becomes coercive.
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Finally, if condition (KAR-iii) substitutes (KAR-ii) and un is a Cerami sequence, that is, if we 
assume the stronger condition (1 + ‖un‖W)J ′(un) → 0, then we obtain

β ‖un‖h
W ≤ C′ + εn

instead of (4.1), and then again ‖un‖W is bounded.
Now by standard arguments it follows that, up to a subsequence, un converges weakly in W 1,p

0
to some u and from |J ′(un)[un − u]| → 0 and (H̃1), one obtains

M(‖un‖p
W )

∫
|∇un|p−2∇un∇(un − u) → 0 .

By (KM ) we may assume that either un → 0 or M
(‖un‖p

W

)→ c > 0. In the latter case we have ∫ |∇un|p−2∇un∇(un − u) → 0 from which, by the S+ property of the p-Laplacian, we obtain 
that un → u strongly in W 1,p

0 . �
For the model functionals (1.3) - (1.4) we have the following.

Corollary 4.3. Let 1 < q < � < p∗.
If 1 ≤ r �= � , then the functionals (1.3) - (1.4) satisfy the PS condition.
If r ∈ (0, 1) then they satisfy the Cerami Condition.

Proof. We only have to check the hypotheses of Proposition 4.1. Condition (KM ) always hold 
true. Condition (H̃1) is a consequence of the condition 1 < q < � < p∗.

Condition (KAR) is satisfied when 1 ≤ r < � , by taking ̃r ∈ (r, �). When r < 1, condition 
(KAR-iii) holds with h = r , actually (see (1.6)),

r̃

p
M̂(sp) − M(sp)sp =

(
r̃

r
− 1

)
sr .

On the other hand, conditions (KC ) is satisfied when r > � , by taking �̃ = � and r̃ ∈
(�, r). �
Remark 4.4. Observe that the term 1

q
‖u‖q

q has no influence on Corollary 4.3: it can be re-
moved or substituted with a more general term whose growth at infinity is smaller than the term 
1
�

‖u‖�
� . �

5. Applications

As an application of our main results, we will consider the problem of finding nonnegative 
solutions for problem (1.1), in several different situations.

Nonnegative and nontrivial solutions u can be found as critical points of the modified func-
tional

J+(u) = 1

p
M̂(‖u‖p

W ) −
∫

F(x,u+) , u ∈ W
1,p

0 (�) , (5.1)
�
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as can be easily seen by using u− as a test function. In some cases it will be possible to guarantee 
that such nonnegative and nontrivial solutions are in fact strictly positive, using the maximum 
principle in [26, Theorem 5] (see Section 5.4).

5.1. Coercive problems

We first consider the model problem (1.5), when the functional associated is coercive, that is, 
when r > � . We have the following result.

Theorem 5.1. Let 1 < q < � < p∗, r > � and λ > 0.

1. If r ∈ (�, p∗), then there exist �2 ≥ �1 > 0 such that problem (1.5) has no solution (even 
sign changing) for λ ∈ (0, �1) and at least two nonnegative nontrivial solutions for λ > �2.

2. If r = p∗, then there exist �̂2 ≥ �̂1 > 0 such that problem (1.5) has no solution (even sign 
changing) for λ ∈ (0, ̂�1) and at least one nonnegative nontrivial solutions for λ > �̂2.

3. If r > p∗, then there exists at least one nonnegative nontrivial solution for every λ > 0.

Proof of Theorem 5.1. In the given hypotheses the functional J+ in (1.4) satisfies the PS con-
dition by Corollary 4.3 and is coercive, then there exists a global minimizer.

When r > p∗ we are in the conditions of Theorem 2.1 (see Corollary 2.3) and then J +(u) < 0
for some u ∈ W

1,p
0 . Then the global minimum lies at a negative level and then it corresponds to 

a nontrivial nonnegative solution.
If r ∈ (�, p∗), on the other hand, we know from Theorem 3.1 (see Corollary 3.3) that the 

origin is a local minimum. In order to prove the existence of two solutions for λ large we proceed 
in the following way: for a fixed positive φ ∈ W

1,p
0 , one has J +(φ) → −∞ as λ → ∞, as 

a consequence, there exists �2 > 0 such that for λ > �2, i := inf
u∈W

1,p
0

J +(u) < 0. We can 

therefore obtain a solution as a global minimizer for J+ and a second solution by applying the 
Mountain Pass theorem (considering paths that connect the origin with the global minimizer).

In the case r = p∗ we obtain, by the same argument, that inf
u∈W

1,p
0

J +(u) < 0 for λ large 

enough, and then we are able to obtain a solution as a global minimizer for J+.

The nonexistence result is more difficult to prove. We will follow some ideas from [27]. First 
observe that if u ∈ W

1,p
0 is a solution of (1.5) then the functional J in (1.3) satisfies

J ′(u)[u] = ‖u‖r
W + ‖u‖q

q − λ‖u‖�
� = 0 .

Moreover, by using Hölder inequality and then Sobolev inequality, for r ≤ p∗,

‖u‖�
� =

∫
|u|q r−�

r−q |u|r �−q
r−q ≤ ‖u‖q r−�

r−q
q ‖u‖r

�−q
r−q

r ≤ ‖u‖q r−�
r−q

q (C ‖u‖W)
r

�−q
r−q ,

from which, by Young inequality, we obtain

‖u‖�
� ≤ r − �

r − q
‖u‖q

q + � − q

r − q
(C ‖u‖W)r .

As a consequence,
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0 = ‖u‖r
W + ‖u‖q

q − λ‖u‖�
� ≥

(
1 − λ

� − q

r − q
Cr

)
‖u‖r

W +
(

1 − λ
r − �

r − q

)
‖u‖q

q .

This shows that u ≡ 0 is the unique solution, when λ is so small that both terms in parentheses 
are positive. �

A more general version of the third point in Theorem 5.1 is contained in the following theo-
rem.

Theorem 5.2. Problem (1.1) possesses at least one nonnegative nontrivial solution provided

• (H̃1), (KC ) and (KM ) hold true,
• (P <

M ) and (PF ) hold true with r > p∗ and 1 < q < � < p∗.

Proof. The functional J+ in (5.1) satisfies the PS condition by (H̃1 - KC - KM ): see Proposi-
tion 4.1.

Moreover, it is coercive by (H̃1 - KC ), however the origin is not a local minimum in view of 
Theorem 2.1, where we use (P <

M ) and (PF ) with r > p∗ and 1 < q < � < p∗.
Then as in the proof of Theorem 5.1 we have a nonnegative nontrivial solution corresponding 

to a global minimum at a negative level. �
5.2. Non coercive problems

If r < � in problem (1.5), then the functional is not coercive anymore, and it is easily seen that 
a solution exists for every λ > 0, actually, even dropping the term −|u|q−2u, the functional has a 
minimum at the origin and then a mountain pass structure. It turns out to be more interesting then 
to consider an additional term of intermediate order between q and � : we consider the problem{−‖u‖r−p

W �pu = −|u|q−2u + μ|u|σ−2u + λ|u|�−2u in �,

u = 0 on ∂� .
(5.2)

In our first result we show that adding this new term, existence is maintained.

Theorem 5.3. Suppose 1 < q < r < � < p∗ and σ ∈ (q, �). Then problem (5.2) has at least 
one nonnegative nontrivial solution for all λ > 0 and μ ∈R.

Proof. Nonnegative solutions will be critical points of the functional

I+(u) = 1

r
‖u‖r

W + 1

q

∥∥u+∥∥q

q
− μ

σ

∥∥u+∥∥σ

σ
− λ

�

∥∥u+∥∥�

�
. (5.3)

Proceeding as in the proof of Corollary 4.3 (see also Remark 4.4), one can see that conditions 
(H̃1), (KM ) and (KAR) (with ̃r ∈ (r, �)) are satisfied and then I+ satisfies the PS condition.

Moreover, the origin is a local minimum for I+, since r < p∗, q < σ < � and we can apply 
Theorem 3.1 as in the case of the functional (1.4).

Finally, since � is the largest power in I+, there exists e ∈ W
1,p
0 such that I+(e) < 0.

We can thus apply the Mountain Pass theorem to obtain a nontrivial critical point of I+. �
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If the additional term’s exponent σ lies below r , then we have also the following multiplicity 
result.

Theorem 5.4. In the conditions of Theorem 5.3, if moreover σ ∈ (q, r), then for suitably large 
μ > 0 there exists �μ > 0 such that for λ ∈ (0, �μ) there exist three nonnegative nontrivial 
solutions of problem (5.2).

Proof. From the proof of Theorem 5.3 we know that the origin is always a local minimum and 
the PS condition holds true for I+.

Now consider K(u) := 1
r
‖u‖r

W + 1
q

∥∥u+∥∥q

q
− μ

σ

∥∥u+∥∥σ

σ
. Let φ ∈ W

1,p

0 be a positive function 
with ‖φ‖W = 1 and take S, μ > 0 (with μ large enough) such that

K(φ) < 0 and K(τφ) < S for τ ∈ [0,1]. (5.4)

This is possible since K(φ) → −∞ as μ → ∞ and K is bounded in bounded sets.
Having fixed μ as above, we can find R > ‖φ‖W and �μ > 0 (both depending on μ) such 

that, for every λ ∈ (0, �μ),

I+(u) ≥ 2S for ‖u‖W = R, (5.5)

I+(φ) < 0 and I+(τφ) < S for τ ∈ [0,1]. (5.6)

Actually (5.5) is possible because

I+(u) ≥ 1

r
‖u‖r

W − C
μ

σ

∥∥u+∥∥σ

W
− C

λ

�
‖u‖�

W

and the sum of the first two terms goes to infinity as ‖u‖W → ∞ (since σ < r), while (5.6) is a 
consequence of (5.4).

Finally, since � is the largest power in the functional, we can also find T > R (depending on 
λ) such that I+(T φ) < 0.

With this geometry it is possible to obtain three distinct nontrivial critical points for I+: a local 
minimum at a negative level inside the ball ‖u‖W ≤ R, a mountain pass critical point obtained 
by considering paths that join the local minimum at the origin with φ, whose level is positive but 
not more than S by (5.6), and a second mountain pass point obtained by considering paths that 
join the origin with T φ, whose level is at least 2S by (5.6). �

As in the previous section we give here a more general version of the existence result of 
Theorem 5.3.

Theorem 5.5. Problem (1.1) possesses a nonnegative nontrivial solution provided f is a contin-
uous function and

• (H̃1), (KAR) and (KM ) hold true,
• (Q> ) holds with r < p∗,
M
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(Hf ) f (x, v)sgn(v) ≤ 0 for small v,
(HB ) there exists a ball B ⊆ � such that

lim
v→+∞

F(x, v)

vr̃
= +∞ uniformly in B,

where ̃r is the same as in condition (KAR).

Proof. By the conditions (H̃1), (KM ) and (KAR) the functional J+ in (5.1) satisfies the PS 
condition.

Since M ≥ 0 and using (Hf ), the origin is a local minimum for J+ with respect to the L∞
norm. Moreover, conditions (Hf ) and (H̃1) imply that (Qf ) holds true and then by (Q>

M ) we can 
also apply Theorem 3.1 to obtain that the origin is a local minimum.

Finally, consider a nontrivial function ψ ≥ 0, with support in B and ‖ψ‖W = 1. We will use 
some estimates that are proved in Lemma 5.6 below: let D be the constant in estimate (5.7) and 
take A = 2D

p‖ψ ‖̃r
r̃

. By estimate (5.9) we obtain that

∫
�

F(x, tψ) ≥ A‖tψ ‖̃r
r̃ − EA|B| ,

then, using (5.7),

J+(tψ) ≤ 1

p
M̂(tp) − A‖tψ ‖̃r

r̃ + EA|B| ≤ D − 2D

p
tr̃ + EA|B| ;

this proves that J (tψ) < 0 for t large enough.
As in the proof of Theorem 5.3 we can thus apply the Mountain Pass theorem to obtain a 

nontrivial critical point of J+. �
The estimates used in the proof above are contained in the following Lemma.

Lemma 5.6. Conditions (KM ) and (KAR-ii) imply that there exists D > 0 such that

M̂(sp) ≤ Dsr̃ , for s large enough, (5.7)

lim
t→∞ M̂(t) = ∞ . (5.8)

Conditions (H̃1) and (HB ) imply that, given A > 0, there exists EA > 0 such that

F(x, v) ≥ Avr̃ − EA for every x ∈ B and v ≥ 0. (5.9)

Proof. Condition (KAR-ii) implies that r̃
p
M̂(sp) − M(sp)sp ≥ 0 for s ≥ s0 > 0. Then rearrang-

ing (since everything is positive by (KM )) we obtain M(t)

M̂(t)
≤ r̃

p
1
t

and integrating from t0 = s
1/p
0

to t > t0 we get M̂(t) ≤ M̂(t0)

t
r̃/p
0

t r̃/p , which gives (5.7). We also have r̃
p
M̂(sp) ≥ δs − C, which 

gives (5.8).
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By (HB ), there exists H > 0 such that F(x, v) − Avr̃ ≥ 0 for v > H , x ∈ B , while (H̃1) 
implies that F(x, v) − Avr̃ ≥ −C̃0(H + H�̃ /�̃ ) − AHr̃ if v ∈ [0, H ].

Then F(x, v) ≥ Avr̃ − C̃0(H + H�̃ /�̃ ) − AHr̃ for v ≥ 0, x ∈ B . �
5.3. Problems where M is not a pure power

We consider now a problem with the same right hand side of problem (1.5), but where M is 
not a pure power any more, which means that it interacts with the nonlinearity in different ways 
near zero and at infinity. We prove the following result.

Theorem 5.7. Let 1 < q < � < p∗ and suppose M satisfies (KM ) and (KAR-ii) with ̃r < � . 
Then the problem {−M(‖u‖p

W )�pu = −|u|q−2u + λ|u|�−2u in �,

u = 0 on ∂�,
(5.10)

has at least one nonnegative nontrivial solution for λ > 0 small enough. Moreover,

1. if (Q>
M ) holds with r < p∗, then the nonnegative nontrivial solution exists for every λ > 0,

2. if (P <
M ) holds with r > p∗, then a further nonnegative nontrivial solution exists for λ > 0

small enough.

A model example for the nonlocal term M could be

M(sp) = min
{
sr1−p, sr2−p

}
, s ≥ 0,

with r2 ∈ (0, �), which guarantees (KAR-ii). Case 1. and case 2. in Theorem 5.7 would corre-
spond, respectively, to r1 < p∗ and to r1 > p∗.

Proof. We will find critical points of the functional J+ in (5.1) with F(x, v) = − 1
q
|v|q + λ

�
|v|� . 

The PS condition is satisfied by Proposition 4.1, since (H̃1 - KAR - KM ) hold true. Moreover, we 
can use the estimates in Lemma 5.6. Since J+(u) ≥ 1

p
M̂(‖u‖p

W ) −λC ‖u‖�
W , by (5.8) there exist 

�, S, ρ > 0 such that

J+(u) ≥ S for ‖u‖W = ρ and λ ∈ [0,�). (5.11)

Having fixed λ ∈ (0, �), let φ ∈ W
1,p

0 be a positive function with ‖φ‖W = 1, then J+(T φ) < 0
for some T > ρ large enough, since λ > 0, ̃r < � and then by (5.7) the behavior of J+(tφ) for 
large t is given by the term with the exponent � .

It is then possible, for λ ∈ (0, �), to apply the Mountain Pass theorem to obtain a nontrivial 
nonnegative solution, at level at least S.

When (Q>
M ) holds with r < p∗, we can argue as for Corollary 3.3 to conclude that the origin is 

a local minimum, this means that we can apply the Mountain Pass theorem even without the need 
for estimate (5.11), then we obtain a nonnegative nontrivial solution for every λ > 0 (actually, 
this case is also a consequence of Theorem 5.5).

On the other hand, when (P <
M ) holds with r > p∗, we are in the conditions of Theorem 2.1

and then J+(w) < 0 for some w ∈ W
1,p small in norm. As a consequence, for λ ∈ (0, �), there 
0
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exists a further nontrivial nonnegative solution which is a local minimum at a negative level in 
the ball 

{‖u‖W ≤ ρ
}
. �

5.4. Some remarks about the applications

• As mentioned before, in some cases it is possible to guarantee that the nonnegative nontrivial 
solutions encountered are in fact strictly positive, using the maximum principle in [26, The-
orem 5], which we can apply to the local problem (1.7), also satisfied by the solutions. This 
is the case in the Theorems 5.1, 5.3, 5.4 and 5.7, if we take q ≥ p, while in the Theorems 5.2
and 5.5 one needs to assume f (x, v) ≥ −vq−1 for v positive and small, with q ≥ p.

• It is interesting to observe the behavior of the problem (1.5) with q < p < � in function 
of the nonlocal term, controlled by the parameter r : in the local case r = p there exists a 
solution for every λ > 0 (see Theorem 5.3 with μ = 0), however, as r becomes larger than 
� , existence is lost for λ large, but it is recovered if r > p∗ (see Theorem 5.1).
The reverse happens if we consider problem (1.5) with q < � < p: in the local case r = p

there exist no solution for λ large (see Theorem 5.1), but when q < r < � a solution exists 
for every λ > 0 by Theorem 5.3.

• If one considers the local problem r = p in Theorem 5.1, since � < r , the nonlinearity is 
p-sublinear. Such problem was considered in [27] and the availability of the sub and super-
solutions method allowed the author to obtain the analogous of the first point of Theorem 5.1, 
but with a better description of the set of parameters for which either two, one, or zero solu-
tions exist. Our result for the nonlocal problem turns out to be less precise in view of the fact 
that the sup and supersolutions method cannot be used as in the local case (see [28,29,23]).
On the other hand, our result shows that for the nonlocal problem, a new behavior arises as 
r goes over the threshold p∗, even if the interaction with the nonlinearity seems unchanged, 
since the geometry of the functional changes near the origin, which is not a local minimum 
any more. The same phenomenon can be see in Theorem 5.7.

• If r = p in problem (5.2), one obtains, after a rescaling to match the different parametrization 
used there, the problem considered in [30], where a three solutions result similar to our 
Theorem 5.4 is obtained. Also, Theorem 5.3 in the case r = p = σ = 2 was already proved 
in [8].

• Our results are also related with those in [20,21], where problems similar to (5.10) were 
considered for p = 2 and with various hypotheses on the nonlocal term M , including the pos-
sibility of being degenerate. In particular, the nonlinearity did not include the term −|u|q−2u, 
but it was also considered an additional forcing term h ∈ L2.

6. A remark about a-priori estimates

In this section we present an example that shows that the nonlocal term may make it impossi-
ble to obtain certain uniform estimates that hold true for the local version of equation (1.1).

In [31] it was observed that, in the nondegenerate case where M ≥ m0 > 0, standard regularity 
results may be used since, as we noted in Section 1.2, if u is a solution of (1.1) then it is also a 
solution of problem (1.7) with γ = 1/M(‖u‖p

W ), and in this case γ is bounded by 1/m0. In the 
degenerate case it is still possible to use this argument in order to guarantee, using for instance the 
results in [32], that solutions u are always of class C1,α , for some α > 0, provided M(‖u‖p

W ) �= 0. 
However, it is not clear if one can obtain a uniform estimate for the C1,α norm of the solutions, 
as in [6], due to the fact that the multiplier γ can be arbitrarily large. Because of the lack of 
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this uniform estimate, in Theorem 3.1, we had to assume our minimum to be with respect to the 
L∞ norm, while in Theorem 3.6, for the stronger result that only assumes the minimum to be 
in the C1 norm, we needed the more restrictive assumptions (3.9) - (3.10), which in fact give a 
restriction on how fast the multiplier γ = 1/M(‖u‖p

W ) in (1.7) can become large, in comparison 
with the behavior of the nonlinearity.

Below we actually show a situation where there is not such a bound as the one that is obtained, 
in the local case, by the results in [6]. The example considers the Laplacian case (p = 2) and a 
power behavior for the nonlocal term M , but it shows that one should not expect, also in more 
general settings, to be able to obtain such uniform bounds in the presence of a degenerate term of 
Kirchhoff type. In fact, for p = 2 one would even expect to obtain better regularity results than 
for the quasilinear case.

Consider the nonlocal problem (Pa){
−M(‖u‖2

W)�u = ga(u) = −auq−1 + u�−1 in �,

u = 0 on ∂�,
(Pa)

with parameter a ∈ (0, A] and suitable 1 < q < � < 2, where again � ⊂ RN is a bounded and 
smooth domain. In the case where M is constant it is possible to apply the results in [6]: in fact, 
given D, A > 0, for a suitable constant �, the right hand side satisfies |ga(s)| ≤ � for every 
s ∈ [−D, D], a ∈ (0, A]. Then by [6, Theorem 1] there exist β ∈ (0, 1) depending on �, N , and 
C > 0 depending on �, D, N, �, such that

‖u‖C1,β ≤ C

for any weak solution satisfying ‖u‖∞ < D.
The result in the following proposition shows that this uniform estimate is false for every 

β ∈ (0, 1), and even in C1, for suitable degenerate nonlocal terms M .

Proposition 6.1. If M(s2) = sr−2 with r ∈ (2 + 2
N

, 2∗), N ≥ 3, then there exists a family of 
functions, satisfying problem (Pa) with a ∈ (0, 1], which is bounded in L∞ but unbounded in C1.

In the limiting case r = 2∗, a family as above exists, satisfying problem (Pa) with a fixed 
a > 0.

Proof. Let B be an open ball compactly contained in �. Without loss of generality we suppose 
B is centered at the origin and has radius 1.

In [33] it was proved that for � > q > 1 small enough and b0 > 0 large enough, there exists 
a nonnegative solution � ∈ C1,β , β > 0, of the problem{

−�u = −uq−1 + b0u
�−1 in B,

u = 0 on ∂B,

which has compact support, and then can be continued by zero to a solution on the whole of �. 
We consider now, for λ ≥ 1, μ ∈ (0, 1], the family of functions defined in � as

�λ,μ(x) :=
{

μ�(λx) in B1/λ ,

0 in � \ B1/λ ,
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where B1/λ is the ball centered at the origin with radius 1/λ. Then �λ,μ satisfies the problem

⎧⎨⎩− �u

μ2−� λ2b0
= −μ�−q

b0
uq−1 + u�−1 in �,

u = 0 on ∂� .

Straightforward computations show that

⎧⎪⎪⎨⎪⎪⎩
‖�λ,μ‖∞ = μ‖�‖∞ ,

‖∇�λ,μ‖∞ = μλ‖∇�‖∞ ,

‖�λ,μ‖2
W = μ2λ2−N‖�‖2

W ,

(6.1)

moreover the functions �λ,μ are solutions of the nonlocal problem (Pa) provided

{
M(‖�λ,μ‖2

W) = (μ2λ2−N ‖�‖2
W

)(r−2)/2 = (μ2−� λ2b0)
−1 ,

a = μ�−q/b0 .
(6.2)

If we take μ(λ) = λ−α/E with α ∈ [0, 1), E > 0, then (6.1) shows that the family 
{
�λ,μ(λ)

}
λ≥1

is bounded in L∞ but unbounded in C1 and (6.2) becomes⎧⎨⎩
(
λ2(1−α)−N

)(r−2)/2
λ2+α(�−2)(b0 ‖�‖r−2

W /Er−� ) = 1 ,

a =
(

λ−α

E

)�−q

/b0 .
(6.3)

From (6.3) we see that we can choose

E =
(
‖�‖r−2

W b0

)1/(r−�)

and (r − 2)(1 − α − N/2) = −2 + α(2 − �),

that is

α = N + r − rN/2

r − �
= N

2∗
2∗ − r

r − �
.

Since we need α ∈ [0, 1), we obtain � < r ≤ 2∗ and r > 2∗ N+�
N+2∗ = 2 

(
1 + �

N

)
. Remembering 

that in [33] � > 1 could be taken as near to 1 as wanted, we get the condition in the claim that 
2 + 2

N
< r ≤ 2∗.

Observe that a < 1 for λ large, except for the case r = 2∗ where a is constant. We have thus 
proved our claim. �
Remark 6.2. It is interesting to compare the above proof with the conditions assumed in Theo-
rem 3.6, see also Remark 3.7. Actually, here we had to take � − 1 and q − 1 very small, which 
goes in the opposite direction with respect to the assumptions (3.9) - (3.10). �
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Remark 6.3. Other examples, involving nonlocal terms that are degenerate at infinity, can be eas-

ily obtained. For instance, let � = (0, π) and φi =
√

2
π

sin(ix) be the normalized eigenfunctions 

of the Laplacian associated to the eigenvalue i2:{−φ′′
i = i2φi in (0,π) ,

φi(0) = φi(π) = 0 .

Then they are a family of functions which is bounded in L∞ and unbounded in C1, which are 
solutions of the nonlocal problem, with weight M(s2) = s−2,{− 1

‖u‖2
W

u′′ = u in (0,π) ,

u(0) = u(π) = 0 . �

7. Appendix

In this Appendix we summarize some estimates, which were used in the proof of Theorem 2.1.
As is classical in the literature, we consider compact support approximations of the instanton 

functions (see [34])

�ε(x) =
⎛⎝CN,p

ε
1

p−1

ε
p

p−1 + |x| p
p−1

⎞⎠
N−p

p

with ε > 0, (7.1)

which realize the best constant S for the Sobolev embedding inequality S ‖U‖p

Lp∗
(RN)

≤
‖∇U‖p

Lp(RN)
, where the constant CN,p is chosen in such a way that 

∥∥∇�ε

∥∥p

Lp(RN)
=∥∥�ε

∥∥p∗
Lp∗

(RN)
= SN/p .

In order to obtain a better behavior of the estimates of certain norms, we use here a technique 
initially proposed in [35], see also [36]: it consists in using a further parameter that controls 
the size of the support of the cutoff function: we take ξm ∈ C∞

0 (RN) such that 0 ≤ ξm(x) ≤ 1, 
||∇ξm||∞ ≤ 4m and

ξm(x) =
{

1, if x ∈ B 1
2m

,

0, if x ∈RN \ B 1
m

,

where Br is the ball centered at the origin with radius r . We suppose 0 ∈ � and we define 
�ε,m(x) = ξm(x)�ε(x)|�, so that for m large enough, �ε,m ∈ W

1,p
0 (�). Then one obtains the 

estimates contained in the following lemma.

Lemma 7.1. Suppose that m → ∞ (or m is constant but large enough), ε → 0 and εm → 0. 
Then the following estimates hold for suitable constants D1, .., D4 > 0 having the indicated 
dependencies.

(a)
∣∣∣||�ε,m||p − S

N
p

∣∣∣≤ D1(N, p)(εm)
N−p
p−1
W
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(b)
∣∣∣||�ε,m||p∗

p∗ − S
N
p

∣∣∣≤ D2(N, p)(εm)
N

p−1

(c) D3(N, p, s)ηN,p,s(ε, m) ≤ ||�ε,m||ss ≤ D4(N, p, s)ηN,p,s(ε, m) where

ηN,p,s(ε,m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε
N− N−p

p
s
, if p∗ > s >

N(p−1)
N−p

,

ε
N− N−p

p
s | log(εm)|= εN/p| log(εm)|, if s = N(p−1)

N−p
,

ε
N− N−p

p
s
(εm)

s
N−p
p−1 −N = ε

N−p
p(p−1)

s
m

s
N−p
p−1 −N if 1 ≤ s <

N(p−1)
N−p

.

The additional parameter m can be used in order to improve some of the estimates. We will 
set m = ε−β with β ∈ (0, 1) suitably near to 1 and define

ψε = �ε,ε−β . (7.2)

Then one easily obtains the following estimates.

Corollary 7.2. For any α > 0, there exists β ∈ (0, 1) (depending on N, p, s) such that, when 
ε → 0, ∣∣∣||ψε||pW − S

N
p

∣∣∣≤ D1(N,p)(ε1−β)
N−p
p−1 → 0 , (7.3)∣∣∣||ψε||p

∗
p∗ − S

N
p

∣∣∣≤ D2(N,p)(ε1−β)
N

p−1 → 0 , (7.4)

D3(N,p, s)ε
N− N−p

p
s ≤ ||ψε||ss ≤ D4(N,p, s)

⎧⎨⎩ε
N− N−p

p
s for p∗ > s >

N(p−1)
N−p

,

ε
N− N−p

p
s−α for 1 ≤ s ≤ N(p−1)

N−p
.

(7.5)

Remark 7.3. The proof of the estimates in Lemma 7.1 can be obtained following the lines of the 
classical arguments used in [37], see also [38].

The estimates (a) and (b) appear in [35, Lemma 6] for the case p = 2 and can be easily 
generalized to the general case p > 1, where, for constant m, they reduce to those in [34, page 
947].

The lower estimate in (c), for a constant m, is analogous to the one obtained in [34, Lemma 
A5], while the proof of the upper estimate in (c) can be seen in [39, Lema 5.5] for the case p = 2, 
and we briefly sketch it below for sake of completeness. In fact, when m → ∞, a correcting term 
in m appears when (�ε)

s fails to be integrable in RN , that is, when −N−p
p−1 s + N − 1 ≥ −1, 

because the reduction in the support of �ε,m reduces the contribution of �s
ε away from the 

origin. �

Sketch of the proof of point (c) in Lemma 7.1. For m large enough one has∫
B 1

2m

|�ε(x)|sdx ≤||�ε,m||ss ≤
∫

B 1
m

|�ε(x)|sdx . (7.6)

By the change of variable x = εw, for k = 1, 2, we get
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∫
B 1

km

⎛⎝ ε
1

p−1

ε
p

p−1 + |x| p
p−1

⎞⎠
N−p

p
s

dx = ε
N− N−p

p
s

∫
B 1

kεm

1

(1 + |w| p
p−1 )

N−p
p

s
dw, (7.7)

where we already obtain the term εN− N−p
p

s , common to all the estimates in point (c). We need to 
estimate the last integral in (7.7). If it converges, as εm → 0, then it can be bounded between two 
constants. If it does not converge, then an additional factor appears, whose asymptotic behavior 
is {| log(εm)| if s = N(p−1)

N−p
,

(εm)
s

N−p
p−1 −N if 1 ≤ s <

N(p−1)
N−p

.
�
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