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Abstract

We consider the initial-boundary value problem of a system of reaction-diffusion equations with density-
dependent motility ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = �(γ (v)u) + αuF(w) − θu, x ∈ �, t > 0,

vt = D�v + u − v, x ∈ �, t > 0,

wt = �w − uF(w), x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂�, t > 0,

(u, v,w)(x,0) = (u0, v0,w0)(x), x ∈ �,

(∗)

in a bounded domain � ⊂R2 with smooth boundary, α and θ are non-negative constants and ν denotes the 
outward normal vector of ∂�. The random motility function γ (v) and functional response function F(w)

satisfy the following assumptions:

• γ (v) ∈ C3([0, ∞)), 0 < γ1 ≤ γ (v) ≤ γ2, |γ ′(v)| ≤ η for all v ≥ 0;
• F(w) ∈ C1([0, ∞)), F(0) = 0, F(w) > 0 in (0, ∞) and F ′(w) > 0 on [0, ∞)

for some positive constants γ1, γ2 and η. Based on the method of energy estimates and Moser iteration, we 
prove that the problem (∗) has a unique classical global solution uniformly bounded in time. Furthermore 
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we show that if θ > 0, the solution (u, v, w) will converge to (0, 0, w∗) in L∞ with some w∗ > 0 as time 
tends to infinity, while if θ = 0, the solution (u, v, w) will asymptotically converge to (u∗, u∗, 0) in L∞
with u∗ = 1

|�| (‖u0‖L1 + α‖w0‖L1 ) if D > 0 is suitably large.
© 2020 Elsevier Inc. All rights reserved.

MSC: 35A01; 35B40; 35B44; 35K57; 35Q92; 92C17

Keywords: Density-dependent Motility; Global existence; Asymptotic stability

1. Introduction and main results

The reaction-diffusion models can generate a wide variety of exquisite spatio-temporal pat-
terns arising in embryogenesis and development due to the diffusion-driven (Turing) instability 
[16,21]. In addition, colonies of bacteria and eukaryotes can also generate rich and complex 
patterns driven by chemotaxis, which typically result from coordinated cell movement, growth 
and differentiation that often involve the detection and processing of extracellular signals [5,6]. 
Many of these models invoke nonlinear diffusion which is enhanced by the local environment 
condition because of population pressure (cf. [20]), volume exclusion (cf. [8,22]) or avoidance 
of danger (cf. [21]) and so on. By employing a synthetic biology approach, the authors of 
[17] introduced the so-called “self-trapping” mechanism into programmed bacterial Eeshcrichia 
coli cells which excrete signalling molecules acyl-homoserine lactone (AHL) such that at low 
AHL level, the bacteria undergo run-and-tumble random motion and are motile, while at high 
AHL levels, the bacteria tumble incessantly and become immotile due to the vanishing macro-
scopic motility. As a result, Eeshcrichia coli cells formed the outward expanding stripe (wave) 
patterns in the petri dish. To gain a quantitative understanding of the patterning process in 
the experiment, the following three-component reaction-diffusion system has been proposed in 
[17]: ⎧⎪⎨⎪⎩

ut = �(γ (v)u) + αw2u
w2+λ

, x ∈ �, t > 0,

vt = D�v + u − v, x ∈ �, t > 0,

wt = �w − w2u
w2+λ

, x ∈ �, t > 0,

(1.1)

where u(x, t), v(x, t), w(x, t) denote the bacterial cell density, concentration of acyl-homoserine 
lactone (AHL) and nutrient density, respectively; α, λ, D > 0 are constants and � is bounded do-
main in Rn(n ≥ 2). The first equation of (1.1) describes the random motion of bacterial cells with 
an AHL-dependent motility coefficient γ (v), and a cell growth due to the nutrient intake. The 
second equation of (1.1) describes the diffusion, production and turnover of AHL, while the third 
equation provides the dynamics of diffusion and consumption for the nutrient. The prominent 
feature of the system (1.1) is that the cell diffusion rate depends on a motility function γ (v)

satisfying γ ′(v) < 0, which takes into account the repressive effect of AHL concentration on the 
cell motility (cf. [17]).

Though the system (1.1) may numerically reproduce some key features of experimental 
observations as illustrated in [17], the mathematical analysis remains open. Later an alterna-
tive simplified two-component so-called “density-suppressed motility” model was proposed in 
[9]:
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{
ut = �(γ (v)u) + μu(1 − u), x ∈ �, t > 0,

vt = D�v + u − v, x ∈ �, t > 0,
(1.2)

where the reduced growth rate of cells at high density was used to approximate the nutrient deple-
tion effect in the system (1.1). One can expand the Laplacian term in the first equation of (1.2) to 
obtain a chemotaxis model with signal-dependent motility. Hence the system (1.2) shares some 
features similar to the Keller-Segel type chemotaxis model. However due to the cross-diffusion 
and the density-suppressed motility (i.e., γ ′(v) < 0), even for the simplified system (1.2), there 
are only few results obtained recently when the Neumann boundary conditions are imposed, as 
summarized below.

(1) μ > 0: In this case, the first result on the global existence and large time behavior of so-
lutions was established in [12]. More precisely, it is shown in [12] that the system (1.2)
has a unique global classical solution in two dimensional spaces for the motility function 
γ (v) satisfying the assumptions: γ (v) ∈ C3([0, ∞)), γ (v) > 0 and γ ′(v) < 0 on [0, ∞), 
lim

v→∞γ (v) = 0 and lim
v→∞

γ ′(v)
γ (v)

exists. Moreover, the constant steady state (1, 1) of (1.2) is 

proved to be globally asymptotically stable if μ > K0
16 where K0 = max

0≤v≤∞
|γ ′(v)|2
γ (v)

. Recently, 

the global existence result has been extended to the higher dimensions (n ≥ 3) for large μ > 0
in [31]. On the other hand, for small μ > 0, the existence/nonexistence of nonconstant steady 
states of (1.2) was rigorously established under some constraints on the parameters in [19]
and the periodic pulsating wave is analytically obtained by the multi-scale analysis. When 
γ (v) is a constant step-wise function, the dynamics of discontinuity interface was studied 
in [25].

(2) μ = 0: The existence of global classical solutions of (1.2) in any dimensions has been 
established in [37] in the case of γ (v) = c0/v

k(k > 0) for small c0 > 0. The smallness 
assumption on c0 is removed lately for the parabolic-elliptic case with 0 < k < 2

n−2 in 
[1]. Moreover, the global classical solution in two dimensions and global weak solution 
in three dimensions of (1.2) with μ = 0 are obtained in [30] under the following assump-
tions:
(H1) γ (v) ∈ C3([0, ∞)), and there exist γ1, γ2, η > 0 such that 0 < γ1 ≤ γ (v) ≤ γ2, 

|γ ′(v)| ≤ η for all v ≥ 0.
Without the lower-upper bound hypotheses for γ (v) as assumed in (H1), if γ (v) decays 
algebraically and 1 ≤ n ≤ 3, the global existence of weak solutions with large initial data 
was established in [7]. Moreover, if γ (v) decays to zero fastly like exponential decay, the 
solution of (1.2) with μ = 0 may blow up. For example, if γ (v) = e−χv , by constructing a 
Lyapunov functional, it is proved in [15] that there exists a critical mass m∗ = 4π

χ
such that 

the solution of (1.2) with μ = 0 exists globally with uniform-in-time bound if 
∫
�

u0dx <

m∗ while blows up if 
∫
�

u0dx > m∗ in two dimensions, where u0 denotes the initial value 
of u.

Except the above mentioned results on the simplified model (1.2), to our knowledge, there 
are not any results available for the original three-component system (1.1) proposed in [17]. The 
purpose of this paper is to develop some analytical results on the system (1.1). More generally 
we shall consider the following initial-boundary value problem
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = �(γ (v)u) + αuF(w) − θu, x ∈ �, t > 0,

vt = D�v + u − v, x ∈ �, t > 0,

wt = �w − uF(w), x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂�, t > 0,

(u, v,w)(x,0) = (u0, v0,w0)(x), x ∈ �,

(1.3)

where θ ≥ 0 accounts for the natural death rate. We assume that the motility function γ (v)

satisfies the assumption (H1) as used in [30] and the intake rate function F(w) satisfies the 
following conditions

(H2) F(w) ∈ C1([0, ∞)), F(0) = 0, F(w) > 0 in (0, ∞) and F ′(w) > 0 on [0, ∞).

The conditions in (H2) can be satisfied by a wide class of functions such as

F(w) = w, F(w) = w

λ + w
, F(w) = wm

λ + wm
,

with constants λ > 0 and m > 1, which are called the Holling type functional response functions 
in the predator-prey system (cf. [13,14,35,36]). Therefore the system (1.1) is a special case of 
the equations in (1.3) with θ = 0 and F(w) = w2

λ+w2 . In the sequel, for brevity we shall drop 
the differential element in the integrals without confusion, namely abbreviating 

∫
�

f dx as 
∫
�

f

and 
∫ t

0

∫
�

f dxdτ as 
∫ t

0

∫
�

f . With the assumptions (H1)-(H2), we first prove the existence of 
globally bounded solutions to the system (1.3) in two dimensions as follows.

Theorem 1.1 (Global boundedness). Let � ⊂ R2 be a bounded domain with smooth boundary, 
and the assumptions (H1)-(H2) hold. Assume (u0, v0, w0) ∈ [W 1,∞(�)]3 with u0, v0, w0 � 0. 
Then for any θ ≥ 0, the problem (1.3) has a unique global classical solution (u, v, w) ∈ [C(�̄ ×
[0, ∞)) ∩ C2,1(�̄ × (0, ∞))]3 satisfying u, v, w � 0 for all t > 0 and

‖u(·, t)‖L∞ ≤ M,

where M > 0 is s constant such that

M := C1(1 + α)13(1 + 1

D
)12eC2(1+α)6(1+ 1

D
)4

, (1.4)

with some constants C1, C2 > 0 independent of D, α and t .

We remark that we precise the dependence of constant M on α in (1.4) so that the results 
of Theorem 1.1 can be applied to the case α = 0. The explicit dependence of M on D will be 
used later to derive the asymptotic stability of solutions when imposing some conditions on D as 
shown in the next theorem.

Theorem 1.2 (Asymptotic stability of solutions). Let the assumptions in Theorem 1.1 hold and 
(u, v, w) be the classical solution of (1.3) obtained in Theorem 1.1. Then the following asymp-
totic stability results hold.
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(1) If θ > 0, then it holds that

lim
t→∞(‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ + ‖w(·, t) − w∗‖L∞) = 0,

where w∗ > 0 is a constant determined by w∗ = 1
|�| ‖w0‖L1 − 1

|�|
∫ ∞

0

∫
�

uF(w).
(2) If θ = 0, there exists a constant D0 > 0 such that if D ≥ D0, then

lim
t→∞(‖u(·, t) − u∗‖L∞ + ‖v(·, t) − u∗‖L∞ + ‖w(·, t)‖L∞) = 0,

where u∗ = 1
|�| (‖u0‖L1 + α‖w0‖L1).

Remark 1.1. The results of Theorem 1.2 hold for any α ≥ 0. In the case θ = 0 and α = 0, the 
system (1.3) reduces to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = �(γ (v)u), x ∈ �, t > 0,

vt = D�v + u − v, x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂�, t > 0,

(u, v)(x,0) = (u0, v0)(x), x ∈ �.

(1.5)

The global existence of classical solutions of (1.5) in two dimensions has been established in 
[30], whereas the large time behavior of solution is left open. The result of Theorem 1.2(2) 
solves this open question for large D > 0.

Sketch the proof. With the special structure of the first equation of (1.3), we shall use some 
ideas in [12,30] to show the boundedness of solutions. More precisely, let A be a self-adjoint 
realization of −� (see more details in [24]) defined on D(A) := {φ ∈ W 2,2(�) ∩ L2(�)| ∫

�
φ =

0 and ∂φ
∂ν

= 0 on ∂�}. Let B denote the self-adjoint realization of −� + δ under homogeneous 
Neumann boundary conditions in L2(�) for some δ > 0. We can use the first and third equations 
of (1.3) to obtain

(u + αw − ū − αw̄)t +A(γ (v)u + αw − γ (v)u − αw̄) = 0, if θ = 0,

and

(u + αw)t +B(γ (v)u + αw) = (δγ (v) − θ)u + δαw, if θ > 0,

which enable us to find a constant c1 > 0 independent of D and α such that 
∫ t+τ

t

∫
�

u2 ≤
c1(1 +α)2 for some appropriately small τ ∈ (0, 1]. Using the smoothing properties of the second 
equation of (1.3) we can obtain the boundedness of 

∫
�

|∇v|2 and 
∫ t+τ

t

∫
�

|�v|2. Then we use 
the direct L2 estimate of u as developed in [12] to find two positive constants c2, c3 independent 
of D and α such that

‖u(·, t)‖L2 ≤ c2(1 + α)ec3(1+α)6(1+ 1
D

)4
for all t ∈ (0, Tmax),
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see Lemma 3.3 for details. Then using the routine bootstrap argument and Moser-iteration 
method, we derive that ‖u(·, t)‖L∞ ≤ M with M satisfying (1.4).

To study the asymptotic behavior, we divide our proofs into two cases: θ > 0 and θ = 0. 
When θ > 0, we can obtain from the first equation of (1.3) that 

∫ ∞
0

∫
�

u < ∞, which combined 
with the relative compactness of (u(·, t))t>1 in C(�) (see Lemma 4.1) gives ‖u(·, t)‖L∞ →
0 and hence ‖v(·, t)‖L∞ → 0 as t → ∞ from the second equation of (1.3). Then using the 
semigroup estimates and the decay property of u, from the third equation we can show that 
‖w(·, t) − w∗‖L∞ → 0 as t → ∞ for some w∗ > 0, where w∗ > 0 is proved by showing∫

�

lnw(x, t) ≥ −c4, for all t ≥ 1

for some constant c4 > 0, see Lemma 4.3 for details.
When θ = 0, from the third equation of (1.3) we have

∞∫
0

∫
�

uF(w) +
∞∫

0

∫
�

|∇w|2 < ∞,

which, combined with ‖u0‖L1 ≤ ‖u(·, t)‖L1 , entails us that

‖w(·, t)‖L∞ → 0 as t → ∞.

On the other hand, using the relations between M and D in (1.4), we can construct a L2 energy 
functional of (u, v) which along with suitable regularity of (u, v) finally leads to the convergence 
of (u, v) as claimed. �
2. Local existence and Preliminaries

The existence and uniqueness of local solutions of (1.3) can be readily proved by the Amann’s 
theorem [3,4] (cf. also [32, Lemma 2.6]) or the fixed point theorem along with the parabolic 
regularity theory [12,29]. We omit the details of the proof for brevity.

Lemma 2.1 (Local existence). Let � ⊂R2 be a bounded domain with smooth boundary and the 
assumptions (H1) and (H2) hold. Assume (u0, v0, w0) ∈ [W 1,∞(�)]3 with u0, v0, w0 � 0. Then 
there exists Tmax ∈ (0, ∞] such that the problem (1.3) has a unique classical solution (u, v, w) ∈
[C(�̄ × [0, Tmax)) ∩ C2,1(�̄ × (0, Tmax))]3 satisfying u, v, w > 0 for all t > 0. Moreover,

if Tmax < ∞, then ‖u(·, t)‖L∞ → ∞ as t ↗ Tmax.

Lemma 2.2. The solution (u, v, w) of (1.3) satisfies

‖u(·, t)‖L1 + α‖w(·, t)‖L1 + θ

t∫
0

‖u(·, s)‖L1 = ‖u0‖L1 + α‖w0‖L1, t ∈ (0, Tmax), (2.1)

and
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‖w(·, t)‖L∞ is decreasing in t. (2.2)

Moreover, for all (x, t) ∈ � × (0, Tmax), it follows that

F(w(x, t)) ≤ CF = F(‖w0‖L∞). (2.3)

Proof. We first multiply the third equation of (1.3) by α and add the resulting equation to the 
first equation of (1.3). Then integrating the result over � × (0, t), we have (2.1) directly. The 
application of the maximum principle to the third equation of (1.3) gives (2.2). Furthermore, 
since F ′(w) > 0 for all w ≥ 0, one has (2.3) by using (2.2). �

Next, we list some well-known estimates for the Neumann heat semigroup for later use.

Lemma 2.3 ([33]). Let (et�)t≥0 be the Neumann heat semigroup in �, and let λ1 > 0 denote the 
first nonzero eigenvalue of −� in � under Neumann boundary conditions. Then for all t > 0, 
there exist some constants ki(i = 1, 2, 3) depending only on � such that

(i) If 1 ≤ q ≤ p ≤ ∞, then

‖et�z‖Lp ≤ k1

(
1 + t

− n
2 ( 1

q
− 1

p
)
)

e−λ1t‖z‖Lq (2.4)

for all z ∈ Lq(�) satisfying 
∫
�

z = 0.
(ii) If 1 ≤ q ≤ p ≤ ∞, then

‖∇et�z‖Lp ≤ k2

(
1 + t

− 1
2 − n

2 ( 1
q
− 1

p
)
)

e−λ1t‖z‖Lq (2.5)

for all z ∈ Lq(�).
(iii) If 2 ≤ q ≤ p < ∞, then

‖∇et�z‖Lp ≤ k3

(
1 + t

− n
2 ( 1

q
− 1

p
)
)

e−λ1t‖∇z‖Lq (2.6)

for all z ∈ W 1,p(�).

The following lemma will be used to show the boundedness of solution, one can see [18, 
Lemma 3.3] or [26, Lemma 3.4] for details.

Lemma 2.4. Let T > 0, τ ∈ (0, T ), a > 0 and b > 0. Suppose that y : [0, T ) → [0, ∞) is abso-
lutely continuous and fulfils

y′(t) + ay(t) ≤ h(t), for all t ∈ (0, T ),

with some nonnegative function h ∈ L1
loc([0, T )) satisfying

t+τ∫
h(s)ds ≤ b, for all t ∈ [0, T − τ).
t
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Then

y(t) ≤ max

{
y(0) + b,

b

aτ
+ 2b

}
, for all t ∈ (0, T ).

3. Boundedness of solutions (Proof of Theorem 1.1)

In this section, we shall establish the boundedness of solution in two dimensions.

Lemma 3.1. Suppose the assumptions in Theorem 1.1 hold. For all θ ≥ 0, there exists a constant 
K1 > 0 independent of D and α such that the solution to (1.3) satisfies

t+τ∫
t

∫
�

u2 ≤ K1(1 + α)2, for all t ∈ (0, T̃max), (3.1)

where

τ := min
{

1,
1

2
Tmax

}
and T̃max := Tmax − τ.

Proof. We divide the proof into two cases: θ = 0 and θ > 0.
Case 1: θ = 0. In this case, multiplying the third equation of (1.3) by α and adding the result to 
the first equation of (1.3), one has

(u + αw)t = �(γ (v)u + αw). (3.2)

Then integrating (3.2) with respect to x with the homogeneous Neumann boundary conditions, 
one has

ū + αw̄ = 1

|�|
∫
�

u0 + α
1

|�|
∫
�

w0 = ū0 + αw̄0, (3.3)

where f̄ denotes the mean of f , namely f̄ = 1
|�|

∫
�

f dx. Let A be a self-adjoint realization of 

−� defined on D(A) := {φ ∈ W 2,2(�) ∩L2(�)| ∫
�

φ = 0 and ∂φ
∂ν

= 0 on ∂�}. Then using (3.3), 
we can rewrite (3.2) as

(u + αw − ū − αw̄)t = −A(γ (v)u + αw − γ (v)u − αw̄). (3.4)

Multiplying (3.4) by A−1 (u + αw − ū − αw̄) and integrating the result by parts, we obtain
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1

2

d

dt

∫
�

|A− 1
2 (u + αw − ū − αw̄)|2

= −
∫
�

A
(
γ (v)u + αw − γ (v)u − αw̄

)
·A−1 (u + αw − ū − αw̄)

= −
∫
�

(u + αw − ū − αw̄) ·
(
γ (v)u + αw − γ (v)u − αw̄

)

= −
∫
�

γ (v)(u − ū)2 − α2
∫
�

(w − w̄)2 − α

∫
�

(
1 + γ (v)

)
(u − ū)(w − w̄)

− ū

∫
�

γ (v)(u − ū) − αu

∫
�

γ (v)(w − w̄),

which together with the facts 0 < γ1 ≤ γ (v) ≤ γ2 and the nonnegativity of u, w, gives

1

2

d

dt

∫
�

|A− 1
2 (u + αw − ū − αw̄)|2 + γ1

∫
�

(u − ū)2 + α2
∫
�

(w − w̄)2

= −α

∫
�

(
1 + γ (v)

)
(u − ū)(w − w̄) − ū

∫
�

γ (v)(u − ū) − αu

∫
�

γ (v)(w − w̄)

≤ αw̄

∫
�

(
1 + γ (v)

)
u + αū

∫
�

(
1 + γ (v)

)
w + (ū2 + αūw̄)

∫
�

γ (v)

≤ 2α + 3αγ2

|�| ‖u‖L1‖w‖L1 + γ2

|�| ‖u‖2
L1,

(3.5)

in which we have used the fact 
∫
�
(ϕ − ϕ̄)2 ≤ ∫

�
ϕ2 for all ϕ ∈ L2(�). We know from Lemma 2.2

that ‖u‖L1 ≤ ‖u0‖L1 + α‖w0‖L1 ≤ |�|(‖u0‖L∞ + α‖w0‖L∞) and ‖w‖L1 ≤ |�|‖w‖L∞ ≤
|�|‖w0‖L∞ . Therefore, (3.5) shows

d

dt

∫
�

|A− 1
2 (u + αw − ū − αw̄)|2 + 2γ1

∫
�

(u − ū)2 + 2α2
∫
�

(w − w̄)2

≤ c1(1 + α)2, (3.6)

where c1 = 4(1 + 2γ2)|�|(‖u0‖L∞ + ‖w0‖L∞)2. Because of 
∫
�
A− 1

2 (u + αw − ū − αw̄) = 0, 
we can apply the Poincaré inequality with a positive constant c2 and the fact ‖w‖L∞ ≤ ‖w0‖L∞
to obtain
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∫
�

|A− 1
2 (u + αw − ū − αw̄)|2

≤ c2

∫
�

|∇A− 1
2 (u + αw − ū − αw̄)|2

= c2

∫
�

|u + αw − ū − αw̄|2

≤ 2c2

∫
�

(u − ū)2 + 2c2α
2
∫
�

(w − w̄)2

≤ 2c2

∫
�

(u − ū)2 + 2c2α
2|�|‖w0‖2

L∞ .

(3.7)

Substituting (3.7) into (3.6), and letting X(t) := ∫
�

|A− 1
2 (u + αw − ū − αw̄)|2, one yields

X′(t) + γ1

2c2
X(t) + γ1

∫
�

(u − ū)2 ≤ c3(1 + α)2, (3.8)

where c3 = c1 + γ1|�|‖w0‖2
L∞ . Then applying the Grönwall’s inequality to (3.8), we first obtain

X(t) =
∫
�

|A− 1
2 (u + αw − ū − αw̄)|2 ≤ c4(1 + α)2, (3.9)

where c4 = 2c2c3
γ1

+ 2c2|�|(‖u0‖L∞ + ‖w0‖L∞)2. Then integrating (3.8) over (t, t + τ) with 

τ := min
{

1, 12Tmax

}
and using (3.9), one has

t+τ∫
t

∫
�

(u − ū)2 ≤ c3τ + c4

γ1
(1 + α)2 ≤ c3 + c4

γ1
(1 + α)2. (3.10)

By the fact 
∫
�
(u − ū)2 = ∫

�
u2 − ∫

�
ū2, it follows from (3.10) that

t+τ∫
t

∫
�

u2 =
t+τ∫
t

∫
�

(u − ū)2 +
t+τ∫
t

∫
�

ū2 ≤ c3 + c4

γ1
(1 + α)2 + ū2|�|τ,

which yields (3.1) by using the fact ū ≤ ‖u0‖L∞ + α‖w0‖L∞ .
Case 2: θ > 0. In this case, we let B denote the self-adjoint realization of −� + δ under 

homogeneous Neumann boundary conditions in L2(�), where 0 < δ < θ
γ2

. Then there exists a 
constant c5 > 0 such that

‖B−1ψ‖L2 ≤ c5‖ψ‖L2 for all ψ ∈ L2(�) (3.11)
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and

‖B− 1
2 ψ‖2

L2 =
∫
�

ψ ·B−1ψ ≤ c5‖ψ‖2
L2 for all ψ ∈ L2(�), (3.12)

one can see the details in [18]. From the system (1.3), we have

(u + αw)t = �(γ (v)u + αw) − θu,

which can be rewritten as

(u + αw)t +B(γ (v)u + αw) = δ(γ (v)u + αw) − θu = (δγ (v) − θ)u + δαw. (3.13)

With the fact 0 < δ < θ
γ2

and the boundedness of w, we derive

(δγ (v) − θ)u + δαw ≤ (δγ2 − θ)u + δα‖w0‖L∞ ≤ c6α, (3.14)

where c6 = θ‖w0‖L∞
γ2

. Hence, multiplying (3.13) by B−1(u + αw) ≥ 0, and using (3.14), one has

1

2

d

dt

∫
�

|B− 1
2 (u + αw)|2 +

∫
�

(γ (v)u + αw)(u + αw) ≤ c6α

∫
�

B−1(u + αw),

and hence

d

dt

∫
�

|B− 1
2 (u + αw)|2 + 2c7

∫
�

(u + αw)2 ≤ 2c6α

∫
�

B−1(u + αw), (3.15)

with c7 := min{γ1, 1}. Using (3.11) and (3.12), we can derive that

c7

2c5

∫
�

|B− 1
2 (u + αw)|2 + 2c6α

∫
�

B−1(u + αw)

≤ c7

2

∫
�

(u + αw)2 + 2c5c6α|�| 1
2 ‖u + αw‖L2

≤ c7

∫
�

(u + αw)2 + 2c2
5c

2
6|�|

c7
α2.

(3.16)

Substituting (3.16) into (3.15), and defining Y(t) := ∫
�

|B− 1
2 (u + αw)|2, one has

Y ′(t) + c7

2c5
Y(t) + c7

∫
�

(u + αw)2 ≤ 2c2
5c

2
6|�|

c7
α2,

which combined with the Grönwall’s inequality gives
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Y(t) ≤ c5|�|
(

(‖u0‖L∞ + ‖w0‖L∞)2 + 4c2
5c

2
6

c2
7

)
(1 + α)2 := c8(1 + α)2

and thus

t+τ∫
t

∫
�

u2 ≤
t+τ∫
t

∫
�

(u + αw)2 ≤ Y(t)

c7
+ 2c2

5c
2
6|�|τ
c2

7

α2 ≤ c9(1 + α)2,

where c9 = c8
c7

+ 2c2
5c2

6|�|τ
c2

7
, which gives (3.1). Then we complete the proof of this lemma. �

Lemma 3.2. Let the conditions in Theorem 1.1 hold. Then there exist two positive constants 
K2, K3 independent of D, α and t such that

∫
�

|∇v|2 ≤ K2(1 + α)2
(

1 + 1

D

)
for all t ∈ (0, Tmax), (3.17)

and

t+τ∫
t

∫
�

|�v|2 ≤ K3(1 + α)2
(

1 + 1

D

)2

for all t ∈ (0, T̃max). (3.18)

Proof. We multiply the second equation of (1.3) by −�v and integrate the result with Cauchy-
Schwarz inequality to get for all t ∈ (0, Tmax)

1

2

d

dt

∫
�

|∇v|2 = − D

∫
�

|�v|2 −
∫
�

u�v +
∫
�

v�v

≤ − D

2

∫
�

|�v|2 + 1

2D

∫
�

u2 −
∫
�

|∇v|2,

which leads to

d

dt

∫
�

|∇v|2 + D

∫
�

|�v|2 + 2
∫
�

|∇v|2 ≤ 1

D

∫
�

u2. (3.19)

Letting y(t) = ∫
�

|∇v|2 and h(t) = 1
D

∫
�

u2, we have from (3.19) that

y′(t) + 2y(t) ≤ h(t) for all t ∈ (0, Tmax). (3.20)

Then applying Lemma 2.4 with the fact 
∫ t+τ

h(s)ds ≤ K1(1+α)2
for t ∈ (0, ̃Tmax) to (3.20) gives
t D
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∫
�

|∇v|2 ≤ max
{
‖∇v0‖2

L2 + K1(1 + α)2

D
,
K1(1 + α)2

2Dτ
+ 2K1(1 + α)2

D

}

≤ ‖∇v0‖2
L2 + 2K1(1 + α)2

D
+ K1(1 + α)2

2Dτ

≤
(

‖∇v0‖2
L2 + 2K1 + K1

2τ

)(
1 + 1

D

)
(1 + α)2 for all t ∈ (0, Tmax),

which yields (3.17) with K2 = ‖∇v0‖2
L2 + 2K1 + K1

2τ
. On the other hand, integrating (3.19) over 

(t, t + τ) for t ∈ (0, ̃Tmax) and using (3.17), we can derive that

D

t+τ∫
t

∫
�

|�v|2 ≤ 1

D

t+τ∫
t

∫
�

u2 +
∫
�

|∇v|2

≤ K1

D
(1 + α)2 + K2

(
1 + 1

D

)
(1 + α)2,

which implies (3.18) with K3 = K1 + K2. �
Lemma 3.3. Let the assumptions in Theorem 1.1 hold. Then there exist two positive constants 
K4 and K5, which are independent of D and α, such that

‖u(·, t)‖L2 ≤ K4(1 + α)eK5(1+α)6(1+ 1
D

)4
for all t ∈ (0, Tmax). (3.21)

Proof. Multiplying the first equation of (1.3) by u and integrating the result with assumptions 
(H1) and (2.3) gives

1

2

d

dt

∫
�

u2 = −
∫
�

∇u · ∇(γ (v)u) + α

∫
�

F(w)u2 − θ

∫
�

u2

≤ −
∫
�

γ (v)|∇u|2 −
∫
�

γ ′(v)u∇u · ∇v + αCF

∫
�

u2

≤ − γ1

∫
�

|∇u|2 + η

∫
�

u|∇u||∇v| + αCF

∫
�

u2

≤ − γ1

2

∫
�

|∇u|2 + η2

2γ1

∫
�

u2|∇v|2 + αCF

∫
�

u2,

which yields

d

dt

∫
u2 + γ1

∫
|∇u|2 ≤ η2

γ1

∫
u2|∇v|2 + 2αCF

∫
u2. (3.22)
� � � �
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Moreover, applying Gagliardo-Nirenberg inequality and Young inequality to the first term on the 
right hand side of (3.22), we obtain a constant c1 > 0 such that

η2

γ1

∫
�

u2|∇v|2 ≤η2

γ1
‖u‖2

L4‖∇v‖2
L4

≤c1η
2

γ1

(
‖∇u‖L2‖u‖L2 + ‖u‖2

L2

)(
‖�v‖L2‖∇v‖L2 + ‖∇v‖2

L2

)
≤c1η

2

γ1
‖∇u‖L2‖u‖L2‖�v‖L2‖∇v‖L2 + c1η

2

γ1
‖∇u‖L2‖u‖L2‖∇v‖2

L2

+ c1η
2

γ1
‖u‖2

L2‖�v‖L2‖∇v‖L2 + c1η
2

γ1
‖u‖2

L2‖∇v‖2
L2

≤γ1‖∇u‖2
L2 + c1η

2

γ1

(
2 + c1η

2

2γ 2
1

‖∇v‖2
L2

)
‖u‖2

L2‖∇v‖2
L2

+ c1η
2

γ1

(
1

4
+ c1η

2

2γ 2
1

‖∇v‖2
L2

)
‖u‖2

L2‖�v‖2
L2 .

(3.23)

Substituting (3.23) into (3.22), and using (3.17), we conclude

d

dt
‖u‖2

L2 ≤ c2(1 + α)4
(

1 + 1

D

)2

(1 + ‖�v‖2
L2)‖u‖2

L2, (3.24)

where c2 = c1η
2

γ1

(
2K2 + 1

4 + c1η
2K2(1+K2)

2γ 2
1

)
+ 2CF . On the other hand, using the facts (3.1)

and (3.18), then for any t ∈ (0, Tmax), we can find a t0 ≥ 0 satisfying t0 ∈ (0, T̃max) and t0 ∈
((t − τ)+, t) such that

‖u(·, t0)‖2
L2 ≤ c3(1 + α)2, (3.25)

and

t0+τ∫
t0

∫
�

|�v|2 ≤ K3(1 + α)2
(

1 + 1

D

)2

, (3.26)

with c3 = ‖u0‖2
L2 + K1

τ
. Then we integrate (3.24) over (t0, t), and use the facts (3.25), (3.26) and 

t ≤ t0 + τ ≤ t0 + 1 to obtain

‖u(·, t)‖2
L2 ≤ ‖u(·, t0)‖2

L2e
c2(1+α)4

(
1+ 1

D

)2 ∫ t
t0

(1+‖�v(·,s)‖2
L2 )ds

≤ ‖u(·, t0)‖2
L2e

c2(1+α)4
(

1+ 1
D

)2 ∫ t
t0

ds+c2(1+α)4
(

1+ 1
D

)2 ∫ t
t0

‖�v(·,s)‖2
L2 ds

≤ c (1 + α)2e
c2(1+α)4

(
1+ 1

D

)2+c2K3(1+α)6
(

1+ 1
D

)4

,
3
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which yields (3.21) with K4 = c3 and K5 = c2(1 + K3). Then we finish the proof of this 
lemma. �
Lemma 3.4. Suppose the conditions in Theorem 1.1 hold. Let (u, v, w) be the solution of the 
system (1.3). Then it holds that

‖u(·, t)‖L4 ≤ K6(1 + α)3
(

1 + 1

D

)2

e3K5(1+α)6(1+ 1
D

)4
, for all t ∈ (0, Tmax), (3.27)

where K6 > 0 is a constant independent of α, D and t .

Proof. With the fact that 0 ≤ F(w) ≤ CF from (2.3) and the assumptions (H1), we multiply the 
first equation of (1.3) with u3 and integrate the result to have

1

4

d

dt

∫
�

u4 = − 3
∫
�

u2∇u · ∇(γ (v)u) + α

∫
�

F(w)u4 − θ

∫
�

u4

≤ − 3
∫
�

γ (v)u2|∇u|2 − 3
∫
�

γ ′(v)u3∇u · ∇v + αCF

∫
�

u4

≤ − 3γ1

∫
�

u2|∇u|2 + 3η

∫
�

u3|∇u||∇v| + αCF

∫
�

u4

≤ − 3γ1

2

∫
�

u2|∇u|2 + 3η2

2γ1

∫
�

u4|∇v|2 + αCF

∫
�

u4,

which yields that

d

dt

∫
�

u4 + 3γ1

2

∫
�

|∇u2|2 ≤ 6η2

γ1

∫
�

u4|∇v|2 + 4αCF

∫
�

u4. (3.28)

Using Gagliardo-Nirenberg inequality and Young’s inequality, along with the facts (3.33) and 
‖u2‖L1 = ‖u‖2

L2 , we can find a constant c1 > 0 independent of α and D, such that

6η2

γ1

∫
�

u4|∇v|2 ≤ 6η2

γ1

⎛⎝∫
�

u8

⎞⎠
1
2
⎛⎝∫

�

|∇v|4
⎞⎠

1
2

= 6η2

γ1
‖u2‖2

L4‖∇v‖2
L4

≤ 6η2c1

γ1

(
‖∇u2‖

3
2
L2‖u2‖

1
2
L1 + ‖u2‖2

L1

)
‖∇v‖2

L4

≤ 6η2c1 ‖∇u2‖
3
2
L2‖u‖L2‖∇v‖2

L4 + 6η2c1 ‖u‖4
L2‖∇v‖2

L4

γ1 γ1
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≤ γ1‖∇u2‖2
L2 + c2‖∇v‖2

L4‖u‖4
L2(‖∇v‖6

L4 + 1), (3.29)

where

c2 := 1

4

(
3

4γ1

)3 (
6η2c1

γ1

)4

+ 6η2c1

γ1
.

Furthermore, using the Gagliardo-Nirenberg inequality and Young’s inequality again, we can 
find a constant c3 > 0 independent of D and α, such that

(1 + 4αCF )

∫
�

u4 = (1 + 4αCF )‖u2‖2
L2

≤ c3(1 + 4αCF )

(
‖∇u2‖

3
2
L2‖u2‖

1
2

L
1
2

+ ‖u2‖2

L
1
2

)
≤ c3(1 + 4αCF )

(
‖∇u2‖

3
2
L2‖u‖L1 + ‖u‖4

L1

)
≤ γ1

2
‖∇u2‖2

L2 + c4(1 + α)8,

(3.30)

where c4 =
(

c4
3
4 (4CF + 1)4

(
3

2γ1

)3 + c3(4CF + 1)

)
(‖u0‖L1 + ‖w0‖L1)4. Substituting (3.29)

and (3.30) into (3.28), one has

d

dt

∫
�

u4 +
∫
�

u4 ≤ c2‖∇v‖2
L4‖u‖4

L2(‖∇v‖6
L4 + 1) + c4(1 + α)8

(3.31)

By the scaling t̃ = Dt , and applying the variation-of-constants formula to the second equation of 
(1.3), one has

v(·, t̃) = e(�− 1
D

)t̃ v0 + 1

D

t̃∫
0

e(�− 1
D

)(t̃−s)u(·, s)ds. (3.32)

Then using the semigroup estimates (2.5) and (2.6), we derive from (3.32)

‖∇v(·, t̃)‖L4 ≤ ‖∇e(�− 1
D

)t̃ v0‖L4 + 1

D

t̃∫
0

‖∇e(�− 1
D

)(t̃−s)u(·, s)‖L4ds

≤ k1e
−λ1 t̃‖∇v0‖L4 + k2

D

t̃∫
0

(
1 + (t̃ − s)−

3
4

)
e−λ1(t̃−s)‖u(·, s)‖L2ds

≤ k1‖∇v0‖L4 + k2K4
(

1 + �(1/4)λ
3
4
1

)
(1 + α)eK5(1+α)6(1+ 1

D
)4

,

Dλ1
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which gives

‖∇v(·, t)‖L4 ≤ c5(1 + α)

(
1 + 1

D

)
eK5(1+α)6(1+ 1

D
)4

, (3.33)

with c5 = k1‖∇v0‖L4 + k2K4
λ1

(
1 + �(1/4)λ

3
4
1

)
. Then substituting (3.33) into (3.31), one can find 

a constant c6 := c2K
4
4 c2

5(c
6
5 + 1) + c4 to obtain

d

dt

∫
�

u4 +
∫
�

u4 ≤ c6(1 + α)12
(

1 + 1

D

)8

e12K5(1+α)6(1+ 1
D

)4
.

This along with the Grönwall’s inequality yields a constant c7 = c6 + ‖u0‖4
L4 independent of D

and α so that

‖u(·, t)‖4
L4 ≤ ‖u0‖4

L4 + c6(1 + α)12
(

1 + 1

D

)8

e12K5(1+α)6(1+ 1
D

)4

≤ c7(1 + α)12
(

1 + 1

D

)8

e12K5(1+α)6(1+ 1
D

)4
,

which yields (3.27). �
Lemma 3.5. Let the conditions in Lemma 3.4 hold. Suppose (u, v, w) is a solution of (1.3). Then 
it follows that

‖u(·, t)‖L∞ ≤ K7(1 + α)13
(

1 + 1

D

)12

e12K5(1+α)6(1+ 1
D

)4
for all t ∈ (0, Tmax), (3.34)

where the constant K7 > 0 is independent of D and α.

Proof. Using (2.5), (3.27) and the estimate ‖∇et̃�v0‖L∞ ≤ c1‖v0‖W 1,∞ for all t̃ > 0 (see [10]), 
from (3.32) we have

‖∇v(·, t̃)‖L∞ ≤ ‖∇e(�− 1
D

)t̃ v0‖L∞ + 1

D

t̃∫
0

‖∇e(�− 1
D

)(t̃−s)u(·, s)‖L∞ds

≤ c1‖v0‖W 1,∞ + k2

D

t̃∫
0

(
1 + (t̃ − s)−

3
4

)
e−λ1(t̃−s)‖u(·, s)‖L4ds

≤ c1‖v0‖W 1,∞ + k2K6

Dλ1

(
1 + �(1/4)λ

3
4
1

)
(1 + α)3

(
1 + 1

D

)2

e3K5(1+α)6(1+ 1
D

)4

which implies
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‖∇v(·, t)‖L∞ ≤ c2(1 + α)3
(

1 + 1

D

)3

e3K5(1+α)6(1+ 1
D

)4
, (3.35)

where c2 := c1‖v0‖W 1,∞ + k2K6
λ1

(
1 + �(1/4)λ

3
4
1

)
. With (2.3) and (3.35), we multiply the first 

equation of (1.3) by up−1(p ≥ 2) and integrate the result to obtain

1

p

d

dt

∫
�

up = −(p − 1)

∫
�

up−2∇u · ∇(γ (v)u) + α

∫
�

F(w)up − θ

∫
�

up

≤ −(p − 1)

∫
�

γ (v)up−2|∇u|2 − (p − 1)

∫
�

γ ′(v)up−1∇u · ∇v + αCF

∫
�

up

≤ −γ1(p − 1)

∫
�

up−2|∇u|2 + η(p − 1)

∫
�

up−1|∇u||∇v| + αCF

∫
�

up

≤ −γ1(p − 1)

2

∫
�

up−2|∇u|2 + η2

2γ1
(p − 1)

∫
�

up|∇v|2 + αCF (p − 1)

∫
�

up

≤ −γ1(p − 1)

2

∫
�

up−2|∇u|2 +KD(p − 1)

∫
�

up, (3.36)

where KD is independent of p and defined by

KD :=
(

η2c2
2

2γ1
+ CF

)
(1 + α)6

(
1 + 1

D

)6

e6K5(1+α)6(1+ 1
D

)4
.

Then using the identity 
∫
�

up−2|∇u| = 4
p2

∫
�

|∇u
p
2 |, from (3.36) one has

d

dt

∫
�

up + p(p − 1)

∫
�

up ≤ − 2γ1(p − 1)

p

∫
�

|∇u
p
2 |2 + (KD + 1)p(p − 1)

∫
�

up. (3.37)

Using the interpolation inequality and Young’s inequality with ε, then for all f ∈ W 1,2(�), one 
has

‖f ‖2
L2 ≤ ε‖∇f ‖2

L2 + c3(1 + ε−1)‖f ‖2
L1 (3.38)

for any ε > 0, where c3 > 0 only depends on �. Then letting f = u
p
2 and ε = 2γ1

p2(KD+1)
in (3.38), 

we can derive that

(KD + 1)p(p − 1)

∫
up ≤ 2γ1(p − 1)

p

∫
|∇u

p
2 |2 + K̃Dp(p − 1)(1 + p2)

⎛⎝∫
u

p
2

⎞⎠2

, (3.39)
� � �
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where

K̃D =c3(1 + 2γ1)

2γ1
(KD + 1)2

=c3(1 + 2γ1)

2γ1

(
η2c2

2

2γ1
+ CF + 1

)2

(1 + α)12
(

1 + 1

D

)12

e12K5(1+α)6(1+ 1
D

)4
.

Substituting (3.39) into (3.37) and using the fact 1 + p2 ≤ (1 + p)2, one has

d

dt

∫
�

up + p(p − 1)

∫
�

up ≤ K̃Dp(p − 1)(1 + p)2

⎛⎝∫
�

u
p
2

⎞⎠2

,

which gives

∫
�

up(x, t) ≤
∫
�

u
p

0 (x) + K̃D(1 + p)2 sup
0≤t≤Tmax

⎛⎝∫
�

u
p
2 (x, t)

⎞⎠2

. (3.40)

Then using the Moser iteration [2] (see also the similar argument as in [27,28]), from (3.40) one 
has

‖u(·, t)‖L∞ ≤ 26K̃D(1 + |�|)(1 + α)(‖u0‖L∞ + ‖w0‖L∞),

which gives (3.34). �
Proof of Theorem 1.1. For any fixed D > 0 and α ≥ 0, from Lemma 3.5, we can find a constant 
C > 0 independent of t such that

‖u(·, t)‖L∞ ≤ C(1 + α)13
(

1 + 1

D

)12

e12K5(1+α)6(1+ 1
D

)4
,

which combined with the local existence results in Lemma 2.1 proves Theorem 1.1. �
4. Asymptotic behavior (Proof of Theorem 1.2)

In this section, we will derive the asymptotic behavior of solutions as shown in Theorem 1.2. 
Before embarking on these details, we first use the standard parabolic property to improve the 
regularity of u, v and w as follows.

Lemma 4.1. Let (u, v, w) be the nonnegative global classical solution of (1.3) obtained in The-
orem 1.1. Then there exist σ ∈ (0, 1) and C > 0 such that

‖u(·, t)‖
C

σ, σ
2 (�̄×[t,t+1]) ≤ C for all t > 1 (4.1)

and
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‖v(·, t)‖
C

2+σ,1+ σ
2 (�̄×[t,t+1]) + ‖w‖

C
2+σ,1+ σ

2 (�̄×[t,t+1]) ≤ C for all t > 1. (4.2)

Proof. Let A(x, t, u, ∇u) = γ (v)∇u + γ ′(v)u∇v and B(x, t, u) = αF(w)u − θu. Then we can 
rewrite the first equation of (1.3) as follows

ut = ∇ · A(x, t, u,∇u) + B(x, t, u).

Noting that Theorem 1.1 gives two positive constants c1 and c2 satisfying ‖u‖L∞ ≤ c1 and 
‖v‖W 1,∞ + ‖w‖W 1,∞ ≤ c2, we end up with

A(x, t, u,∇u) · ∇u = (
γ (v)∇u + uγ ′(v)∇v

) · ∇u

≤ γ (v)|∇u|2 + γ ′(v)u∇u · ∇v

≤ γ (v)

2
|∇u|2 + (γ ′(v))2

2γ (v)
u2|∇v|2

≤ γ2

2
|∇u|2 + c2

1c
2
2η

2

2γ1

(4.3)

and

|A(x, t, u,∇u)| = |γ (v)∇u + γ ′(v)u∇v|
≤ |γ (v)||∇u| + |γ ′(v)|‖u‖L∞‖∇v‖L∞

≤ γ2|∇u| + c1c2η.

(4.4)

Moreover, since (2.3) guarantees F(w) ≤ CF and hence

|B(x, t, u)| = |αF(w)u − θu|
≤ α|F(w)|‖u‖L∞ + θ‖u‖L∞

≤ c1(αCF + θ).

(4.5)

With (4.3)–(4.5) in hand, we obtain (4.1) by applying [23, Theorem 1.3]. Furthermore, the stan-
dard parabolic regularity combined with (4.1) infers (4.2) directly. �
4.1. Case of θ > 0

In this subsection, we are devoted to studying the large time behavior of solutions for the 
case θ > 0. Notice that 

∫ ∞
0

∫
�

u < ∞ and the relative compactness of (u(·, t))t>1 in C(�) (see 
Lemma 4.1) indicate some decay information for u and hence the decay properties of v from the 
second equation of (1.3). Precisely, we have the following results.

Lemma 4.2. Let the conditions in Theorem 1.2 hold, and suppose θ > 0 and (u, v, w) is the 
solution of the system (1.3). Then it follows that

‖u(·, t)‖L∞ → 0 as t → ∞, (4.6)
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and

‖v(·, t)‖L∞ → 0 as t → ∞. (4.7)

Proof. First, we claim that

u(·, t) → 0 in L1(�) as t → ∞. (4.8)

Indeed, defining A(t) := ∫
�

u > 0, we have 
∫ ∞

0 |A(t)| = ∫ ∞
0

∫
�

u < ∞ from (2.1). Furthermore, 
from the first equation of (1.3) and the fact w ∈ L∞(�) (see Lemma 2.2), we can derive that

∞∫
0

|A′(t)| =
∞∫

0

∣∣∣ ∫
�

(αF(w) − θ)u

∣∣∣ ≤ c1

∞∫
0

∫
�

u < ∞,

which together with the fact 
∫ ∞

0 |A(t)| = ∫ ∞
0

∫
�

u < ∞ gives A(t) → 0 as t → ∞. This verifies 
the claim (4.8).

With (4.8) in hand, we shall show (4.6) holds. In fact, if (4.6) is false, we can find a constant 
c2 > 0 and a time sequence (tk)k∈N ⊂ (1, ∞) satisfying tk → ∞ as k → ∞ such that

‖u(·, tk)‖L∞ ≥ c2 for all k ∈N. (4.9)

On the other hand, using (4.1) in Lemma 4.1 and the Arzelà-Ascoli theorem, we know that 
(u(·, t))t>1 is relatively compact in C(�). Hence, we can extract a subsequence, still denoted by 
(tk)k∈N ⊂ (1, ∞), such that

u(·, tk) → u∞ in L∞(�) as k → ∞,

which combined with (4.8) implies u∞ ≡ 0. This however contradicts (4.9) and hence (4.6) is 
proved.

Next, we show (4.7) holds. To this end, we consider the following system⎧⎪⎨⎪⎩
vt + v = D�v + u, x ∈ �, t > 0,
∂v
∂ν

= 0, x ∈ ∂�, t > 0,

v(x,0) = v0(x), x ∈ �.

(4.10)

Let v∗(t) be solutions of the ODE problem{
v∗
t (t) + v∗(t) = ‖u(·, t)‖L∞, t > 0,

v∗(0) = ‖v0‖L∞ .
(4.11)

By the comparison principle, we know that v∗(t) is a super-solution of (4.10) satisfying v(x, t) ≤
v∗(t) for all x ∈ �, t > 0. Similarly, we can prove that v(x, t) ≥ −v∗(t) for all x ∈ �, t > 0. 
Hence, one has

|v(x, t)| ≤ v∗(t) for all x ∈ �, t > 0. (4.12)
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On the other hand, from (4.11) and using the fact ‖u(·, t)‖L∞ → 0 as t → ∞ we have

v∗(t) → 0 as t → ∞,

which combined with (4.12) gives

‖v(·, t)‖L∞ ≤ v∗(t) → 0 as t → ∞.

This yields (4.7) and completes the proof of Lemma 4.2. �
Lemma 4.3. Suppose the conditions in Lemma 4.2 hold. Let (u, v, w) be the solution of the 
system (1.3). Then we have the following result

‖w(·, t) − w∗‖L∞ → 0 as t → ∞, (4.13)

where w∗ > 0 is a constant determined by w∗ = 1
|�| ‖w0‖L1 − 1

|�|
∫ ∞

0

∫
�

uF(w).

Proof. Let w̄(t) = 1
|�|

∫
�

w = 1
|�| ‖w‖L1 , then the third equation of (1.3) can be rewritten as

(w − w̄)t = �(w − w̄) − uF(w) + uF(w). (4.14)

Then applying the variation-of-constants formula to (4.14), we get

w(·, t) − w̄(t) = e
t
2 �

(
w(·, t/2) − w̄(t/2)

) −
t∫

t
2

e(t−s)�
(
uF(w) − uF(w)

)
ds,

which, together with the fact ‖w(·, t)‖L∞ ≤ c1 and (2.4), gives

‖w(·, t) − w̄(t)‖L∞

≤ ‖e t
2 �

(
w(·, t/2)) − w̄(t/2)

)‖L∞ +
t∫

t
2

‖e(t−s)�(uF(w) − uF(w))‖L∞ds

≤ k1e
− λ1 t

2 ‖w(·, t/2) − w̄(t/2)‖L∞ + k1CF

t∫
t
2

e−(t−s)λ1‖u(·, s)‖L∞ds

≤ 2k1c1e
− λ1 t

2 + k1CF

λ1
sup

t
2 ≤s≤t

‖u(·, s)‖L∞ .

(4.15)

Then using the decay property of u in (4.6), from (4.15) one has

lim ‖w(·, t) − w̄(t)‖L∞ = 0. (4.16)

t→∞
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Next we define a number w∗ by

w∗ = 1

|�| ‖w0‖L1 − 1

|�|
∞∫

0

∫
�

uF(w). (4.17)

Then integrating the third equation of (1.3) over � × (0, t), we see that

w̄(t) = w∗ + 1

|�|
∞∫
t

∫
�

uF(w),

which implies

‖w̄(t) − w∗‖L∞ ≤CF

|�|
∞∫
t

‖u(·, s)‖L1ds → 0 as t → ∞. (4.18)

Then combining (4.16) and (4.18), one has

‖w(·, t) − w∗‖L∞ ≤ ‖w(·, t) − w̄(t)‖L∞ + ‖w̄(t) − w∗‖L∞ → 0, as t → ∞,

which yields (4.13).
Next, we shall show w∗ > 0. Noting F(w) ∈ C1([0, ∞)) and F(0) = 0 and using the bound-

edness of u and w, we can find ξ ∈ (0, w) and K > 0 such that

uF(w)

w
= F(w) − F(0)

w
· u = F ′(ξ)u ≤ ‖F ′(ξ)‖L∞‖u‖L∞ := K.

Let w̃(x, t) be the solution of the following system⎧⎪⎨⎪⎩
w̃t − �w̃ = −Kw̃, x ∈ �, t > 0,
∂w̃
∂ν

= 0, x ∈ ∂�, t > 0,

w̃(x,0) = w0(x), x ∈ �.

Clearly, w̃(x, t) is a sub-solution of w(x, t) by the comparison principle, and hence

w(x, t) ≥ w̃(x, t). (4.19)

On the other hand, using [11, Lemma 3.1], we can find a constant �0 > 0 such that for all t ≥ 1

w̃(x, t) = e−Kt e�tw0 ≥ e−Kt�0

∫
�

w0,

which combined with (4.19) gives
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w(x, t) ≥ e−Kt�0

∫
�

w0, for all t ≥ 1. (4.20)

Multiplying the third equation of (1.3) by 1
w

, and integrating by parts with respect to x ∈ �, one 
has

d

dt

∫
�

lnw(x, t) =
∫
�

|∇w|2
w2 −

∫
�

F(w)

w
u≥ −

∫
�

F(w)

w
u,

which thus gives

∫
�

lnw(x, t) ≥
∫
�

lnw(x,1) −
t∫

1

∫
�

F(w)

w
u. (4.21)

Then using (4.20) and the fact 
∫ t

0

∫
�

u ≤ c7, from (4.21) we can find a constant c8 > 0 such that∫
�

lnw(x, t) ≥ −c8, for all t ≥ 1,

which combined with the fact (4.13) implies w∗ > 0. �
In summary, we have the asymptotic behavior of solutions for the system (1.3) with θ > 0.

Proposition 4.4. Let the conditions of Theorem 1.2 hold and θ > 0, the solution of system (1.3)
satisfies

lim
t→∞(‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ + ‖w(·, t) − w∗‖L∞) = 0,

where w∗ > 0 defined by (4.17).

4.2. Case of θ = 0

In this subsection, we shall study the large time behavior of the system (1.3) with θ = 0. We 
first show the decay of w based on some ideas in [34].

Lemma 4.5. Assume the conditions in Theorem 1.2 hold. Let (u, v, w) be the solution of the 
system (1.3) with θ = 0. Then we have

∞∫
0

∫
�

uF(w) < ∞ (4.22)

and



6782 H.-Y. Jin et al. / J. Differential Equations 269 (2020) 6758–6793
∞∫
0

∫
�

|∇w|2 < ∞. (4.23)

Proof. Integrating the third equation of (1.3) over � and using the homogeneous Neumann 
boundary condition, one has

d

dt

∫
�

w +
∫
�

uF(w) = 0,

which gives

t∫
0

∫
�

uF(w) ≤
∫
�

w0, for all t > 0, (4.24)

and (4.22) is a direct result of (4.24). We multiply the third equation of (1.3) by w to obtain

1

2

d

dt

∫
�

w2 = −
∫
�

|∇w|2 −
∫
�

uwF(w). (4.25)

Integrating (4.25) with respect to t and using the nonnegativity of u and w, one can derive

t∫
0

∫
�

|∇w|2 ≤ 1

2

∫
�

w2
0,

which gives (4.23). �
Lemma 4.6. Let the conditions in Lemma 4.5 hold. Then there exists a time sequence (tk)k∈N ⊂
(0, ∞) satisfying tk → ∞ as k → ∞ such that

tk+1∫
tk

∫
�

w → 0 as k → ∞. (4.26)

Proof. From (4.22), we have

j+1∫
j

∫
�

uF(w) → 0 as j → ∞. (4.27)

Defining F̄ (w) := 1 ∫
F(w), we have
|�| �
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j+1∫
j

∫
�

uF(w) =
j+1∫
j

∫
�

u(F (w) − F̄ (w)) +
j+1∫
j

∫
�

uF̄ (w) = I1(j) + I2(j). (4.28)

Using the Hölder inequality, Poincaŕe inequality and the boundedness of ‖u(·, t)‖L2 in (3.21), 
one has

∣∣I1(j)
∣∣ ≤

⎛⎜⎝ j+1∫
j

∫
�

u2

⎞⎟⎠
1
2

·
⎛⎜⎝ j+1∫

j

∫
�

|F(w) − F̄ (w)|2
⎞⎟⎠

1
2

≤ c1

⎛⎜⎝ j+1∫
j

∫
�

|F(w) − F̄ (w)|2
⎞⎟⎠

1
2

≤ c1

⎛⎜⎝c2

j+1∫
j

∫
�

|∇F(w)|2
⎞⎟⎠

1
2

≤ c3

⎛⎜⎝ j+1∫
j

∫
�

|∇w|2
⎞⎟⎠

1
2

→ 0, as j → ∞,

(4.29)

where we have used (4.23) to derive the convergence. Then combining (4.27), (4.28) and (4.29), 
one has I2(j) → 0 as j → ∞.

On the other hand, using (2.1) and the fact ‖w(·, t)‖L1 ≤ ‖w0‖L1 , we have

‖u0‖L1 + α‖w0‖L1 = ‖u‖L1 + α‖w‖L1 ≤ ‖u‖L1 + α‖w0‖L1,

which implies

‖u0‖L1 ≤ ‖u‖L1 ≤ ‖u0‖L1 + α‖w0‖L1 . (4.30)

Hence, using (4.30) and the fact I2(j) → 0 as j → ∞, one has

ū0

j+1∫
j

∫
�

F(w) = ‖u0‖L1

j+1∫
j

F̄ (w) ≤ I2(j) =
j+1∫
j

∫
�

uF̄ (w) → 0, as j → ∞,

which implies

j+1∫ ∫
F(w) → 0, as j → ∞. (4.31)
j �
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Next, we will show that (4.31) implies (4.26). In fact, if we define wj(x, s) := w(x, j +
s), (x, s) ∈ � × (0, 1), j ∈ N , then (4.31) implies

1∫
0

∫
�

F(wj (x, s)) → 0, as j → ∞.

Hence we can extract a subsequence (jk)k∈N ⊂ N such that jk → ∞ and F(wjk
) → 0 almost 

everywhere in � × (0, 1) as k → ∞. Because the function F is positive on (0, ∞) and F(0) =
0, which requires that wjk

→ 0 almost everywhere in � × (0, 1) as k → ∞. Moreover, since 
‖w(·, t)‖L∞ ≤ c4 for all t > 0, then the sequence (wjk

)k∈N → 0 in L1(� × (0, 1)) as k → ∞. 
Choosing tk := jk , one has (4.26). Then the proof of this lemma is completed. �
Lemma 4.7. Suppose the conditions in Lemma 4.5 hold. Let (u, v, w) be the solution of the 
system (1.3) with θ = 0. Then it holds that

‖w(·, t)‖L∞ → 0 as t → ∞. (4.32)

Proof. Letting (tk)k∈N ⊂ (0, ∞) be the sequence chosen in Lemma 4.6. Using the Gagliardo-
Nirenberg inequality, one can find a constant c1 > 0 such that

‖w(·, t)‖L∞ ≤ c1‖∇w(·, t)‖
4
5
L4‖w(·, t)‖

1
5
L1 + c1‖w(·, t)‖L1

≤ μ‖∇w(·, t)‖L4 + c2‖w(·, t)‖L1,

(4.33)

where μ > 0 is an arbitrary constant, c2 > 0 is a constant depending on μ. Noting the uniform 
boundedness of ‖∇w(·, t)‖L4 and the arbitrary of μ, and using (4.26), from (4.33) we get

tk+1∫
tk

‖w(·, t)‖L∞ → 0, as k → ∞,

which implies

lim inf
t→∞ ‖w(·, t)‖L∞ = 0. (4.34)

The combination of (4.34) and the fact that t → ‖w(·, t)‖L∞ is monotone as shown in 
Lemma 2.2, one obtains (4.32) and completes the proof of Lemma 4.7. �
Lemma 4.8. Let (u, v, w) be the solution of the system (1.3) with θ = 0. Then it follows that

d

dt

∫
�

(u − u∗)2 + γ1

∫
�

|∇u|2 ≤
∫
�

|γ ′(v)|2
γ (v)

u2|∇v|2 + αM2
∫
�

F(w), (4.35)

where M > 0 is defined by (1.4) and u∗ = ū0 + αw̄0.
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Proof. We rewrite the first equation of the system (1.3) as

(u − u∗)t = �(γ (v)u) + αuF(w). (4.36)

Then multiplying (4.36) by u − u∗, and integrating it by parts, we end up with

1

2

d

dt

∫
�

(u − u∗)2 +
∫
�

γ (v)|∇u|2

= −
∫
�

γ ′(v)u∇u · ∇v + α

∫
�

uF(w)(u − u∗)

≤ 1

2

∫
�

γ (v)|∇u|2 + 1

2

∫
�

|γ ′(v)|2
γ (v)

u2|∇v|2 + α

∫
�

u2F(w),

which, together with the facts ‖u‖L∞ ≤ M and γ (v) ≥ γ1, gives

d

dt

∫
�

(u − u∗)2 + γ1

∫
�

|∇u|2 ≤
∫
�

|γ ′(v)|2
γ (v)

u2|∇v|2 + αM2
∫
�

F(w),

and hence (4.35) follows. �
Lemma 4.9. The solution (u, v, w) of the system (1.3) with θ = 0 satisfies

d

dt

∫
�

(v − u∗)2 + 2D

∫
�

|∇v|2 +
∫
�

(v − u∗)2 ≤
∫
�

(u − u∗)2. (4.37)

Proof. Multiplying the second equation of the system (1.3) by v − u∗, and integrating by parts, 
we end up with

1

2

d

dt

∫
�

(v − u∗)2 =
∫
�

(v − u∗)[D�v + (u − u∗) − (v − u∗)]

= −D

∫
�

|∇v|2 −
∫
�

(v − u∗)2 +
∫
�

(v − u∗)(u − u∗)

≤ −D

∫
�

|∇v|2 − 1

2

∫
�

(v − u∗)2 + 1

2

∫
�

(u − u∗)2,

which yields (4.37). �
Lemma 4.10. Let (u, v, w) be the solution of the system (1.3) with θ = 0. Then there exists a 
positive constant D1 such that if D ≥ D1, it holds that

lim (‖u(·, t) − u∗‖L∞ + ‖v(·, t) − u∗‖L∞) = 0. (4.38)

t→∞
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Proof. Applying the Poincaré inequality, we find a constant Cp > 0 such that∫
�

(u − ū)2 ≤ Cp

∫
�

|∇u|2. (4.39)

Then using the definition of u∗, we know from (2.1) that u∗ = ū + αw̄. Then it follows from 
(4.39) that ∫

�

(u − u∗)2 ≤ 2
∫
�

(u − ū)2 + 2α2
∫
�

w̄2

≤ 2Cp

∫
�

|∇u|2 + 2α2

|�|

⎛⎝∫
�

w

⎞⎠2

,

which implies

γ1

2Cp

∫
�

(u − u∗)2 ≤ γ1

∫
�

|∇u|2 + α2γ1

Cp|�|

⎛⎝∫
�

w

⎞⎠2

. (4.40)

Applying (4.40) into (4.35), and using the facts ‖u(·, t)‖L∞ ≤ M , 0 < γ1 ≤ γ (v) and |γ ′(v)| ≤ η, 
we can derive that

d

dt

∫
�

(u − u∗)2 + γ1

2Cp

∫
�

(u − u∗)2

≤
∫
�

|γ ′(v)|2
γ (v)

u2|∇v|2 + αM2
∫
�

F(w) + α2γ1

Cp|�|

⎛⎝∫
�

w

⎞⎠2

≤ η2M2

γ1

∫
�

|∇v|2 + αM2
∫
�

F(w) + α2γ1

Cp|�|

⎛⎝∫
�

w

⎞⎠2

.

(4.41)

On the other hand, we multiply (4.37) by γ1
4cP

, and use (4.41) to have

d

dt

⎛⎝∫
�

(u − u∗)2 + γ1

4Cp

∫
�

(v − u∗)2

⎞⎠ + γ1

4Cp

∫
�

(u − u∗)2 + γ1

4Cp

∫
�

(v − u∗)2

≤
(

η2M2

γ1
− Dγ1

2Cp

)∫
�

|∇v|2 + αM2
∫
�

F(w) + α2γ1

Cp|�|

⎛⎝∫
�

w

⎞⎠2

.

(4.42)

Using the definition of M in (1.4), one can find two constants C1, C2 > 0 independent of D such 
that
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M := C1(1 + α)13
(

1 + 1

D

)12

eC2(1+ 1
D

)4(1+α)6
.

Let D∗ be the positive constant uniquely determined by the following identity

D∗ = 2η2CpC2
1

γ 2
1

(1 + α)26
(

1 + 1

D∗

)24

e
2C2(1+ 1

D∗ )4(1+α)6
,

where Cp, γ1 and η are independent of D∗. Then if D ≥ D∗, one has η
2M2

γ1
− Dγ1

2Cp
≤ 0, and hence 

the estimate (4.42) becomes

d

dt

⎛⎝∫
�

(u − u∗)2 + γ1

4Cp

∫
�

(v − u∗)2

⎞⎠ + γ1

4Cp

∫
�

(u − u∗)2 + γ1

4Cp

∫
�

(v − u∗)2

≤ αM2
∫
�

F(w) + α2γ1

Cp|�|

⎛⎝∫
�

w

⎞⎠2

.

(4.43)

Define Z(t) := ∫
�
(u − u∗)2 + γ1

4Cp

∫
�
(v − u∗)2 and G(t) := αM2

∫
�

F(w) + α2γ1
Cp |�|

(∫
�

w
)2. 

Choosing c1 := min{1, γ1
4Cp

}, we have from (4.43)

Z′(t) + c1Z(t) ≤ G(t). (4.44)

Since ‖w(·, t)‖L∞ → 0 as t → ∞ (see Lemma 4.7), one has G(t) → 0 as t → ∞. Then from 
(4.44), we can derive that

Z(t) → 0 as t → ∞.

This implies

‖u(·, t) − u∗‖L2 + ‖v(·, t) − u∗‖L2 → 0 as t → ∞. (4.45)

Using the similar arguments as in Lemma 4.2 with (4.45), we obtain (4.38) directly. Then the 
proof of Lemma 4.10 is completed. �

In summary, we have the following asymptotic results for the case θ = 0.

Proposition 4.11. Suppose the conditions in Theorem 1.1 hold. Let (u, v, w) be the solution of 
the system (1.3) with θ = 0. Then there exists constant D1 > 0 such that if D ≥ D1, it has

lim
t→∞(‖u(·, t) − u∗‖L∞ + ‖v(·, t) − u∗‖L∞ + ‖w(·, t)‖L∞) = 0,

where u∗ = 1
|�| (‖u0‖L1 + α‖w0‖L1).

Proof of Theorem 1.2. The proof of Theorem 1.2 is a direct consequence of Proposition 4.4 and 
Proposition 4.11. �
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5. Simulations and discussions

5.1. Linear instability analysis

The results of Theorem 1.2 imply that the system (1.3) has no pattern formation if θ > 0 or θ =
0 and D is large. In this section, we will study the possible pattern arising from the system (1.3)
with θ = 0 and small D. To this end, we note that (1.3) with θ = 0 has three constant equilibria 
(0, 0, 0), (0, 0, u∗

α
) and (u∗, u∗, 0) for given initial value (u0, v0, w0), where u∗ = ū0 + αw̄0. We 

first consider the system (1.3) with θ = 0 in the absence of spatial components, that is⎧⎪⎨⎪⎩
ut = αuF(w),

vt = u − v,

wt = −uF(w).

The linear stability/instability of each equilibrium is determined by the sign of the eigenvalues 
(ρ1, ρ2, ρ3) defined by

(ρ1, ρ2, ρ3) =

⎧⎪⎨⎪⎩
(0,−1,0), at (0,0,0),

(0,−1, αF (u∗
α

)), at (0,0, u∗
α

),

(0,−1,−u∗F ′(0)), at (u∗, u∗,0).

Since F(u∗
α

) > 0 and F ′(0) > 0, we know the non-trivial steady state (0, 0, u∗
α

) is linearly un-
stable, while (0, 0, 0) and (u∗, u∗, 0) are linearly stable. Hence we study the possible patterns 
bifurcating from the constant equilibria (uc, uc, 0) where uc = 0 or uc = u∗. To this end, we 
linearize the system (1.3) at the equilibrium (uc, uc, 0) to obtain⎧⎪⎨⎪⎩

�t = A1�� + B1�, x ∈ �, t > 0,

(ν · ∇)� = 0, x ∈ ∂�, t > 0,

�(x,0) = (u0 − uc, v0 − uc,w0)
T , x ∈ �,

(5.1)

where T denotes the transpose and

� =
⎛⎝ u − uc

v − uc

w

⎞⎠ , A1 =
⎛⎝ γ (uc) γ ′(uc)uc 0

0 D 0
0 0 1

⎞⎠
as well as

B1 =
⎛⎝ 0 0 αucF

′(0)

1 −1 0
0 0 −ucF

′(0)

⎞⎠
Noting that the linear system (5.1) has the solution of the form

�(x, t) =
∑

cke
ρtWk(x), (5.2)
k≥0
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where Wk(x) denotes the eigenfunction of the following eigenvalue problem:

�Wk(x) + k2Wk(x) = 0,
∂Wk(x)

∂ν
= 0,

and the constants ck are determined by the Fourier expansion of the initial conditions in terms of 
Wk(x) and ρ is the temporal eigenvalue. After some calculations, we know ρ is the eigenvalue 
of the following matrix

Mk =
⎛⎝ −γ (uc)k

2 −ucγ
′(uc)k

2 αucF
′(0)

1 −Dk2 − 1 0
0 0 −k2 − ucF

′(0)

⎞⎠ .

Obviously, ρ(k2) = −k2 −uuF
′(0) is an eigenvalue, which is negative for all k �= 0. Hence to get 

the possible pattern formation, we only need to consider the other two eigenvalues of the matrix 
Mk , which satisfy

ρ2 + a1(k
2)ρ + a0(k

2) = 0,

where

⎧⎨⎩a1(k
2) = 1 + (D + γ (uc))k

2 > 0,

a0(k
2) = Dγ (uc)k

4 + (
γ (uc) + ucγ

′(uc)
)
k2.

One can check that if γ (uc) + ucγ
′(uc) ≥ 0 which is the case for uc = 0, then a0(k

2) > 0 for 
all k �= 0, which implies the real part of the eigenvalues ρ(k2) are negative, and hence the steady 
state (0, 0, 0) is linearly stable and no patterns will bifurcate from (0, 0, 0). Next we consider the 
equilibrium (u∗, u∗, 0). If γ (u∗) + u∗γ ′(u∗) < 0, the real part of the eigenvalues ρ(k2) can be 
positive and hence the pattern formation may occur provided that the admissible wavenumber k
satisfies

0 < k2 < −γ (u∗) + u∗γ ′(u∗)
Dγ (u∗)

=: k̄. (5.3)

Note the allowable wave numbers k are discrete in a bounded domain, for instance if � = (0, l)
then k = nπ

l
for n = 1, 2, · · · . Hence the condition (5.3) is only necessary because the interval 

(0, k̄) may not contain any desired discrete number k2, for instance when D > 0 is sufficiently 
large. Hence we have the following conclusion.

Lemma 5.1. Suppose γ (v) satisfies the assumptions (H1). Then the homogeneous steady state 
(u∗, u∗, 0) of the system (1.3) is linearly unstable if and only if γ (u∗) + u∗γ ′(u∗) < 0 and there 
is at least an allowable wavenumber k satisfying condition (5.3).
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5.2. Simulations and questions

In section 5.1, we identify the instability parameter regimes for the possible pattern formation. 
But this linear instability result is not sufficient to conclude that there are non-constant stationary 
(pattern) solutions. Now we want to numerically test in one dimension whether non-constant 
stationary patterns exist for γ (v) satisfying the conditions in Lemma 5.1. For definiteness in the 
simulation, we assume � = (0, l) and consider

γ (v) = γ1 + γ0e
−λv, F (w) = w2

1 + w2

where γ0, γ1 and λ are positive constants. Then the condition γ (u∗) + u∗γ ′(u∗) = γ1 +
γ0e

−λu∗(1 − λu∗) < 0 in Lemma 5.1 amounts to

u∗ >
1

λ
and

γ1

γ0
eλu∗ < λu∗ − 1. (5.4)

Since k = π
l

, then the condition (5.3) becomes

D < −γ (u∗) + u∗γ ′(u∗)
γ (u∗)

· l2

(nπ)2 = γ1 + γ0e
−λu∗(1 − λu∗)

γ1 + γ0e−λu∗ · l2

(nπ)2 . (5.5)

Therefore if we choose appropriate values of γ0, γ1, λ, u∗ and l so that the conditions (5.4)-(5.5)
hold for some positive integer n, the pattern formation is expected from the results of Lemma 
5.1. Note that u∗ = ū0 + αw̄0. Hence for numerical simulations, we choose the initial value 
(u0, v0, w0) as a small random perturbation of the equilibrium (u∗, v∗, 0), and fix λ = α = 1. 
The system (1.3) is numerically solved by the MATLAB PDEPE solver. We choose l =
20, (u∗, v∗, 0) = (4, 4, 0), γ0 = 10, γ1 = 0.1 and show the numerical simulations for D = 0.1
and D = 0.01 in Fig. 1 where we do observe the aggregated stationary patterns. This indicates 
for suitably small D > 0, the system (1.3) with appropriate motility function γ (v) admits the 
pattern formation, which complements the analytical results of Theorem 1.2. However the rig-
orous proof the existence of pattern (stationary) solutions leaves open in this paper and we shall 
investigate this question in the future. Note that the assumption (H1) rules out the possible de-
generacy of motility function γ (v), which plays a key role in proving the results of this paper. 
Therefore another interesting open question is the global dynamics of (1.3) without assuming 
that γ (v) has a positive lower bound such as γ (v) = (1 + v)−λ or γ (v) = e−λv with λ > 0. Such 
motility function γ (v) without positive lower bound has been used to study the global bounded-
ness/asymptotics of solutions and stationary solutions for the two-component density-suppressed 
motility model (1.2) in [12,19], where the quadratic decay −μu2 plays an essential role. How-
ever the three-component system (1.3) does not have such nice decay term and hence novel ideas 
are anticipated to solve the above-mentioned open question.
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