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Abstract

We investigate an abstract wave equation with a time-dependent propagation speed, and we consider 
both the non-dissipative case, and the case with a strong damping that depends on a power of the elastic 
operator. Previous results show that, depending on the values of the parameters and on the time regularity 
of the propagation speed, this equation exhibits either well-posedness in Sobolev spaces, or well-posedness 
in Gevrey spaces, or ill-posedness with severe derivative loss.

In this paper we examine some critical cases that were left open by the previous literature, and we show 
that they fall into the pathological regime. The construction of the counterexamples requires a redesign 
from scratch of the basic ingredients, and a suitable application of Baire category theorem in place of the 
usual iteration scheme.
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1. Introduction

Let H be a Hilbert space, and let A be a linear nonnegative self-adjoint operator on H. We 
consider the evolution equation

u′′(t) + 2δAσ u′(t) + c(t)Au(t) = 0, (1.1)

with initial data

u(0) = u0, u′(0) = u1. (1.2)

Here δ ≥ 0 and σ ≥ 0 are real numbers, and c : [0, +∞) → [0, +∞) is a given function 
that we call “propagation speed” in analogy with the wave equation. We always assume that the 
propagation speed satisfies the strict hyperbolicity condition

0 < μ1 ≤ c(t) ≤ μ2 ∀t ≥ 0, (1.3)

and the Hölder continuity condition

|c(t) − c(s)| ≤ H |t − s|α ∀(t, s) ∈ [0,+∞)2, (1.4)

for suitable real constants μ1, μ2, H , and α ∈ (0, 1). Many papers have been devoted to 
equations of this type (see for example the classical references [4,7] or the more recent 
ones [1–3,5,6,8–10,12,13,15,16]). Let us briefly discuss the previous results that are more rel-
evant to our presentation.

The non-dissipative case The case δ = 0 was addressed in the seminal paper [4]. The general 
philosophy is that higher space regularity of initial data compensates lower regularity of the 
propagation speed. We refer to section 2 for precise definitions and statements, but the situation 
can be roughly described as follows (see also the figures in section 3).

• If c(t) is Lipschitz continuous, or more generally has locally bounded variation, then prob-
lem (1.1)–(1.2) is well-posed in D(A1/2) × H , or more generally in Sobolev spaces of the 
form D(Aβ+1/2) × D(Aβ).

• If c(t) is Hölder continuous of order α, then problem (1.1)–(1.2) is
– globally well-posed in Gevrey spaces of order s < (1 − α)−1,
– locally well-posed in Gevrey spaces of order s = (1 − α)−1,
– ill-posed in Gevrey spaces of order s > (1 − α)−1. More precisely, there exist a prop-

agation speed c(t) that is Hölder continuous of order α, and a pair of initial conditions 
(u0, u1) that are in the Gevrey class of order s for every s > (1 − α)−1, such that the cor-
responding solution to (1.1)–(1.2) (which always exists in a very weak sense) is not even a 
distribution for all positive times. We call (DGCS)-phenomenon this instantaneous severe 
derivative loss.

We stress that in the critical case s = (1 − α)−1 the well-posedness result of [4] is just local-
in-time, meaning that the solution is guaranteed to remain regular only in a finite time interval 
[0, t0].
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A first result of this paper addresses this critical case. Indeed, we show an example (and 
actually a residual set of examples) where the solution exhibits the (DGCS)-phenomenon after a 
finite time interval, thus proving the optimality of the local result in [4].

The dissipative case The case δ > 0 was addressed in [12]. The general philosophy is that there 
is a competition between the strong damping and the potential low regularity of the propagation 
speed. If σ ≥ 1/2 the dissipation always wins, even if c(t) is just continuous (independently 
of the continuity modulus). In this regime the equation behaves as in the case of a constant 
propagation speed, which means well-posedness in several classes of Sobolev spaces (see [14,
12]). So the competition is more interesting when σ < 1/2, where we have three possibilities.

• If c(t) is Hölder continuous of order α > 1 − 2σ , then the dissipation prevails, and again the 
problem behaves as in the case of a constant propagation speed, namely it is well-posed in 
Sobolev spaces such as D(A1/2) × H or D(Aβ+1/2) × D(Aβ).

• If c(t) is Hölder continuous of order α < 1 − 2σ , then the dissipation can be neglected, and 
the behavior is the same as in the non-dissipative case, meaning
– global well-posedness in Gevrey spaces of order s < (1 − α)−1,
– local well-posedness in Gevrey spaces of order s = (1 − α)−1,
– possibility of (DGCS)-phenomenon in Gevrey spaces of order s > (1 − α)−1.

• If c(t) is Hölder continuous of order α = 1 − 2σ , and δ is large enough, then again the 
damping prevails, and one obtains well-posedness in Sobolev spaces.

Two cases were left open.

(1) The case where α < 1 − 2σ and s = (1 − α)−1. In this paper (see Theorem 3.2) we show 
that solutions can exhibit the (DGCS)-phenomenon after a finite time, meaning that the local 
well-posedness result is optimal and can not be improved to global well-posedness. Our 
examples cover also to the non-dissipative case δ = 0.

(2) The case where α = 1 − 2σ and δ is small enough. Also in this case we show (see Theo-
rem 3.3) that the (DGCS)-phenomenon is possible, exactly as in the non-dissipative case.

Overview of the technique From the technical point of view, the spectral theorem reduces the 
problem to estimating the growth of solutions to the family of ordinary differential equations

u′′
λ(t) + 2δλ2σ u′

λ(t) + λ2c(t)uλ(t) = 0, (1.5)

with initial data

uλ(0) = u0,λ, u′
λ(0) = u1,λ.

Now we give a brief heuristic presentation of the main ideas behind the previous and present 
results. For the sake of clarity, at the risk of cheating a little bit from time to time, we do not 
quote the exact estimates with all technical details, for which the interested reader is referred to 
the original papers.

Let us consider the usual energy

Eλ(t) := |u′ (t)|2 + λ2|uλ(t)|2.
λ
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If c(t) is Hölder continuous of order α, the approximated energy estimates introduced in [4], 
and then extended in [12] to the dissipative case, yield inequalities of the form

Eλ(t) ≤ c1Eλ(0) exp
(
c2λ

1−αt − c3δλ
2σ t

)
∀t ≥ 0,

where c1, c2, c3 are positive constants that depend on μ1, μ2, and on the Hölder constant of 
c(t), but are independent of δ and λ. Estimates of this kind are the core of all the well-posedness 
results quoted above. They also explain the competition between 1 −α and 2σ , and why the size 
of δ becomes relevant if and only if 1 − α = 2σ .

On the contrary, the (DGCS)-phenomenon originates from estimates on the opposite side. 
More precisely, it was shown (in [4] in the case δ = 0, and in [12] when δ > 0) that for every λ
there exists a propagation speed cλ(t), Hölder continuous of order α with a constant that does not 
depend on λ, such that equation (1.5) with c(t) := cλ(t) admits a nontrivial solution that satisfies

Eλ(t) ≥ c4Eλ(0) exp
(
c5λ

1−αt − c6δλ
2σ t

)
∀t ≥ 0,

where again the constants c4, c5, c6 are positive and do not depend on δ and λ. In this case we say 
that cλ(t) “activates” the frequency λ. Roughly speaking, this is possible because of a resonance 
effect between the oscillations of cλ(t), and the “natural” oscillations of solutions to the same 
equation with constant propagation speed. The big problem is that in this construction cλ(t) does 
depend on λ.

In order to overcome this difficulty, a very clever iterative procedure was devised in [4], and 
then exploited so far in the literature. In a nutshell, one chooses a sequence of frequencies {λk}
that grows fast enough, and a decreasing sequence {tk} of positive times that goes to 0 fast 
enough. Then one defines a propagation speed c(t) that coincides in [tk+1, tk] with the propaga-
tion speed cλk

(t) that activates the frequency λk . If all the parameters are chosen in a clever way, 
the resulting propagation speed is Hölder continuous of order α, and for every positive integer k
equation (1.5) with λ := λk admits a nontrivial solution such that

Eλk
(t) ≥ c7Eλk

(0) exp

(
c8

λ1−α
k

log(1 + λk)
t − c9δλ

2σ
k t

)
∀t ≥ 0,

where again the constants do not depend on δ and λk .
In other words, now c(t) does not depend on the frequency λk , but we had to pay a little in 

the growth rate (actually the log(1 + λk) can be replaced by any given unbounded function). The 
payment comes from the fact that c(t) has to activate infinitely many frequencies, and it activates 
them one-by-one in time intervals of (necessarily) vanishing lengths.

This construction opens the door to all the instances of the (DGCS)-phenomenon that we 
mentioned above. On the other hand, it is clear that it can not help for critical values of the 
parameters. In order to address these cases, we need a propagation speed c(t), independent of λ, 
such that equation (1.5) with λ := λk admits a nontrivial solution such that

Eλk
(t) ≥ c10Eλk

(0) exp
(
c11λ

1−α
k t − c12δλ

2σ
k t

)
∀t ≥ 0.

This is the main technical contribution of this paper, namely a propagation speed c(t) that 
activates an unbounded set of frequencies in the same time.
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Our construction has two main steps.

• In the first step (see section 4.2) we show that any propagation speed c0(t) that is smooth 
enough can be modified in order to obtain a propagation speed cλ(t) that activates a large 
enough frequency λ. We can also assume that cλ − c0 is as small as we want in the uniform 
norm, and that the Hölder constant of cλ is as close as we want to the Hölder constant of 
c0. Note that the Hölder constant of cλ − c0 is not necessarily small, and actually it is of the 
same order as the Hölder constant of c0. In other words, in this example the Hölder constant 
of the sum of two functions is the maximum, and not the sum, of the Hölder constants of the 
two terms. This sounds somewhat counterintuitive, and it is possible because the two terms 
“oscillate at different frequencies” (see Lemma 4.1).

• In the second step (see section 4.3) we apply Baire category theorem in order to show that the 
set of propagation speeds that activate countably many frequences in the same time is resid-
ual in the set of all admissible propagation speeds. In this way we avoid the technicalities of 
the iteration scheme, and we leave all the dirty work to the abstract result.

The conclusion is not the construction of a single counterexample, resulting from a sum of 
lucky circumstances and clever choices, but a proof that the (DGCS)-phenomenon is the typical 
behavior when the assumptions of the classical well-posedness results are not satisfied. In [11]
we observed the same issue in the non-critical cases, and in different examples from geometric 
measure theory and transport equations.

In this paper we focused on Hölder continuous propagation speeds, but we are confident that 
these techniques could be useful in the construction of counterexamples also when the propaga-
tion speed satisfies different regularity conditions (see for example [1,2,6,15]).

Structure of the paper In section 2 we introduce the functional setting, and we review the pre-
vious results that are relevant to this paper. In section 3 we state our two main contributions, and 
we show how they complete the picture of regularity results for solutions to (1.1). In section 4
we show the existence of a residual set of “universal activators”, namely admissible propaga-
tion speeds that activate countably many frequencies, and we use these propagation speeds in 
order to prove our main results. Finally, in the appendix we present a heuristic motivation of the 
(otherwise somewhat mysterious) construction that we made.

2. Notations and previous work

Functional spaces Let H be a Hilbert space, and let A be a linear nonnegative self-adjoint 
operator on H. Just for simplicity, we always make the following assumption.

Definition 2.1 (Nonnegative discrete multiplication operator). Let A be a linear continuous op-
erator on a Hilbert space H. We say that A is a nonnegative discrete multiplication operator if 
there exist an orthonormal basis {ei} of H, and a nondecreasing sequence {λi} of nonnegative 
real numbers such that

Aei = λ2
i ei ∀i ∈N.

In addition, we say that the operator is unbounded if λi → +∞ as i → +∞.
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As explained in [12,13], there is almost no loss of generality in this assumption, because the 
spectral theorem in its general form states that every self-adjoint continuous operator in a Hilbert 
space behaves as a multiplication operator in some L2 space with respect to some (not necessarily 
discrete) metric space.

Thanks to the orthonormal basis, we can identify every element u ∈ H with the sequence 
{ui} ∈ �2 of its “Fourier” components. This identification can be extended in order to define 
Sobolev spaces, Gevrey spaces and (hyper)distributions. Several choices are possible (see [12,
13]). Here we recall the definitions that are needed in the sequel.

Definition 2.2. Let u be a sequence {ui} of real numbers.

• Sobolev spaces and distributions. Let β be a real number. We say that u ∈ D(Aβ) if

‖u‖2
D(Aβ)

:=
∞∑
i=0

u2
i (1 + λi)

4β < +∞.

• Gevrey spaces. Let β be a real number, and let s and r be positive real numbers. We say that 
u ∈ Gs,r,β(A) if

‖u‖2
Gs,r,β (A) :=

∞∑
i=0

u2
i (1 + λi)

4β exp
(

2rλ
1/s
i

)
< +∞.

• Gevrey ultradistributions. Let β be a real number, and let S and R be positive real numbers. 
We say that u ∈ G−S,R,β(A) if

‖u‖2
G−S,R,β (A) :=

∞∑
i=0

u2
i (1 + λi)

4β exp
(
−2Rλ

1/S
i

)
< +∞.

We refer to [12, Remark 2.2 and Remark 2.3] for further comments on these spaces, and for 
consistency with the classical setting. In the case of Gevrey spaces and ultradistributions, we refer 
to s and S as “the order”, and we refer to r and R as “the radius”. The parameter β represents 
some sort of further Sobolev regularity.

Admissible propagation speeds In this paper we restrict to the following class of admissible 
propagation speeds.

Definition 2.3 (Admissible propagation speeds). Let μ1, μ2, α, H be real numbers such that

0 < μ1 < μ2, α ∈ (0,1), H > 0. (2.1)

The set of admissible propagations speeds is the set PS(μ1, μ2, α, H) of all functions c :
[0, +∞) → [0, +∞) satisfying the strict hyperbolicity condition (1.3) and the Hölder continuity 
condition (1.4).

We observe that PS(μ1, μ2, α, H) is a complete metric space with respect to the distance 
induced by the uniform norm.
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Very weak solutions When A is a nonnegative multiplication operator, one can reduce problem 
(1.1)–(1.2) to the following (uncoupled) infinite system of ordinary differential equations

u′′
i (t) + 2δλ2σ

i u′
i (t) + c(t)λ2

i ui(t) = 0 ∀i ∈N, ∀t ≥ 0,

with initial data

ui(0) = u0,i , u′
i (0) = u1,i .

A very weak solution to (1.1)–(1.2) is a sequence {ui(t)} of solutions to this system, and for 
trivial reasons it exists and is unique for every choice of the sequences of initial data {u0,i} and 
{u1,i}. The main point is understanding the regularity of the sequence {ui(t)} in terms of the 
regularity of initial data.

Previous results The first result concerns “regularity” in a huge space of hyperdistributions, 
both for the dissipative and for the non-dissipative equation. From the point of view of coun-
terexamples, this represents some sort of “bound from below”, namely a minimal regularity that 
cannot be lost during the evolution.

Theorem A (Well-posedness in Gevrey hyperdistributions, see [4, Theorem 3]). Let us consider 
problem (1.1)–(1.2) under the following assumptions:

• A is a nonnegative discrete multiplication operator on a Hilbert space H,
• c ∈ PS(μ1, μ2, α, H) for suitable values of the parameters satisfying (2.1),
• δ ≥ 0 and σ ≥ 0 are real numbers,
• there exist real numbers R0 > 0 and 0 < S ≤ (1 − α)−1 such that

(u0, u1) ∈ G−S,R0,1/2(A) × G−S,R0,0(A).

Then there exists R > 0 such that the unique solution u satisfies

u ∈ C0 ([0,+∞),G−S,R0+Rt,1/2(A)
) ∩ C1 ([0,+∞),G−S,R0+Rt,0(A)

)
. (2.2)

Condition (2.2), with the range space increasing with time, simply means that

u ∈ C0 ([0, τ ],G−S,R0+Rτ,1/2(A)
) ∩ C1 ([0, τ ],G−S,R0+Rτ,0(A)

) ∀τ > 0.

The second result concerns well-posedness in Gevrey spaces of suitable order, both for the 
dissipative and for the non-dissipative equation.

Theorem B (Well-posedness in Gevrey spaces, see [4, Theorem 2]). Let us consider problem 
(1.1)–(1.2) under the following assumptions:

• A is a nonnegative discrete multiplication operator on a Hilbert space H,
• c ∈ PS(μ1, μ2, α, H) for suitable values of the parameters satisfying (2.1),
• δ ≥ 0 and σ ≥ 0 are real numbers,
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• there exist real numbers r0 > 0 and 0 < s ≤ (1 − α)−1 such that

(u0, u1) ∈ Gs,r0,1/2(A) × Gs,r0,0(A).

Then the following statements hold true.

(1) (Global-in-time regularity) In the case 0 < s < (1 − α)−1, the unique solution u to the prob-
lem satisfies

u ∈ C0 ([0, T ],Gs,r1,1/2(A)
) ∩ C1 ([0, T ],Gs,r1,0(A)

) ∀T > 0, ∀r1 < r0.

(2) (Local-in-time regularity) In the case s = (1 − α)−1, there exist real numbers t0 > 0 and 
r > 0, with r independent of r0, such that rt0 < r0 and the unique solution u to the problem 
satisfies

u ∈ C0 ([0, t0],Gs,r0−rt,1/2(A)
) ∩ C1 ([0, t0],Gs,r0−rt,0(A)

)
. (2.3)

We observe that also in Theorem B above the range space in (2.3) is increasing with time. 
More important, in the critical case s = (1 − α)−1, this is a local well-posedness result because 
after a finite time the solution might have lost all its initial radius r0 (and this actually happens, 
as we are going to show in this paper).

In the next result the strong damping comes into play for the first time, providing well-
posedness in Sobolev spaces if the propagation speed in “enough Hölder continuous”.

Theorem C (Well-posedness in Sobolev spaces, see [12, Theorem 3.2]). Let us consider problem 
(1.1)–(1.2) under the following assumptions:

• A is a nonnegative discrete multiplication operator on a Hilbert space H,
• c ∈ PS(μ1, μ2, α, H) for suitable values of the parameters satisfying (2.1),
• δ and σ are real numbers such that either 2σ > 1 − α and δ > 0, or 2σ = 1 − α and δ is 

large enough.
• (u0, u1) ∈ D(A1/2) × H .

Then the unique solution u to the problem satisfies

u ∈ C0
(
[0,+∞),D(A1/2)

)
∩ C1 ([0,+∞),H

)
.

Finally, the last result is the counterpart of Theorem C. It shows that the (DGCS)-phenomenon 
can happen, despite the strong damping, if the propagation speed is not “enough Hölder contin-
uous”. We point out that the derivative loss is as severe as allowed by Theorem A.

Theorem D (Severe derivative loss, see [12]). Let H be a Hilbert space, and let A be a nonneg-
ative discrete multiplication operator that we assume to be unbounded. Let μ1, μ2, α, H be real 
numbers satisfying (2.1). Let δ and σ be real numbers such that

δ ≥ 0 2σ < 1 − α.
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Then there exist a propagation speed c ∈ PS(μ1, μ2, α, H), and a very weak solution u to 
equation (1.1), such that

(u(0), u′(0)) ∈ Gs,r,1/2(A) × Gs,r,0(A) ∀s >
1

1 − α
, ∀r > 0,

but

(u(t), u′(t)) /∈ G−S,R,1/2(A) × G−S,R,0(A) ∀S >
1

1 − α
, ∀R > 0, ∀t > 0.

3. Statement of our results

In order to state our results in a more compact way, we introduce two variants of Gevrey 
spaces and hyperdistributions.

Definition 3.1. Let u be a sequence {ui} of real numbers.

• Let β and s be real numbers, with s > 0. We say that u ∈ Gs,log,β(A) if

‖u‖2
Gs,log,β (A) :=

∞∑
i=0

u2
i (1 + λi)

4β exp

(
2λ

1/s
i

log(2 + λi)

)
< +∞.

• Let β and S be real numbers, with S > 0. We say that u ∈ G−S,log,β(A) if

‖u‖2
G−S,log,β (A) :=

∞∑
i=0

u2
i (1 + λi)

4β exp

(
− 2λ

1/S
i

log(2 + λi)

)
< +∞.

The following two implications are the key property of these spaces:

u ∈ Gs,log,β(A) =⇒ ∀s′ > s, ∀r > 0, ∀γ ∈ R u ∈ Gs′,r,γ (A), (3.1)

u /∈ G−S,log,β(A) =⇒ ∀S′ > S, ∀R > 0, ∀γ ∈R u /∈ G−S′,R,γ (A). (3.2)

We note that the same properties hold true if the logarithm is replaced by any function that 
tends to +∞ as λi → +∞.

Our first result concerns the local nature of Theorem B, both in the non-dissipative and in the 
dissipative case. We show that an initial condition, with finite radius in a Gevrey space of critical 
order, can undergo, during the evolution, a degradation of its radius and become a hyperdistribu-
tion (and nothing more) after a finite time.

Theorem 3.2 (Severe derivative loss for large times for critical Gevrey index). Let H be a Hilbert 
space, and let A be a nonnegative discrete multiplication operator that we assume to be un-
bounded. Let μ1, μ2, α, H be real numbers satisfying (2.1). Let δ, σ , s, S, r0 be real numbers 
such that

δ ≥ 0, 2σ < 1 − α, s = S = 1
, r0 > 0.
1 − α
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Let us set

t0 := 32μ
(1+α)/2
2

H
· r0.

Then the set of propagation speeds c ∈ PS(μ1, μ2, α, H) for which equation (1.1) admits a 
solution satisfying

(u(0), u′(0)) ∈ Gs,r0,1/2(A) × Gs,r0,0(A)

and

(u(t), u′(t)) /∈ G−S,log,1/2(A) × G−S,log,0(A) ∀t > t0 (3.3)

is residual in PS(μ1, μ2, α, H) (with respect to the L∞ distance).

We point out that, due to (3.2), a derivative loss of the form (3.3) implies a derivative loss of 
the form

(u(t), u′(t)) /∈ G−S′,R,1/2(A) × G−S′,R,0(A) ∀S′ > 1

1 − α
, ∀R > 0, ∀t > t0,

which is the largest possible derivative loss compatible with Theorem A.
Our second result concerns the dissipative equation, and addresses the critical case where 

α = 1 − 2σ and δ is small enough. In this regime, if initial data are “not enough Gevrey regular”, 
solutions can undergo an instantaneous derivative loss, as severe as allowed by Theorem A. 
We recall that, with the same values of α and σ , but large enough δ, Theorem C shows well-
posedness in Sobolev spaces.

Theorem 3.3 (Instantaneous severe derivative loss for small critical damping). Let H be a 
Hilbert space, and let A be a nonnegative discrete multiplication operator that we assume to 
be unbounded. Let μ1, μ2, α, H be real numbers satisfying (2.1). Let δ, σ , s, S be real numbers 
such that

0 ≤ δ <
H

32μ
(1+α)/2
2

, 2σ = 1 − α, s = S = 1

1 − α
.

Then the set of propagation speeds c ∈ PS(μ1, μ2, α, H) for which equation (1.1) admits a 
solution satisfying

(u(0), u′(0)) ∈ Gs,log,1/2(A) × Gs,log,0(A) (3.4)

and

(u(t), u′(t)) /∈ G−S,log,1/2(A) × G−S,log,0(A) ∀t > 0 (3.5)

is residual in PS(μ1, μ2, α, H) (with respect to the L∞ distance).
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We point out that, due to (3.1), condition (3.4) implies that initial data are as close as possible 
to the Gevrey space that would guarantee regularity of solutions according to Theorem B.

Remark 3.4. When (1.1) has a solution with some derivative loss, then there is actually a resid-
ual set of solutions with the same derivative loss. More precisely, let us assume that, for some 
propagation speed c(t), equation (1.1) admits a solution satisfying (3.4) and (3.5). Then the set 
of initial data for which the solutions satisfy (3.5) is residual in the space that appears in (3.4). 
This is again an application of the Baire category theorem (see section 4.5). An analogous remark 
applies to Theorem 3.2.

Remark 3.5. In the statements of all our results concerning derivative loss, we have always 
assumed that δ ≥ 0. This is just because we are focusing on equations either without dissipation, 
or with a “true” dissipation. On the other hand, those results hold true a fortiori if δ < 0, namely 
when the “dissipation” has the wrong sign.

The results of this paper should cover all the cases that were left open in previous literature, 
at least in the strictly hyperbolic case with Hölder continuous propagation speed. The following 
pictures summarize the final state of the art. In the horizontal axis we represent the time-regularity 
of c(t). With some abuse of notation, values α ∈ (0, 1) mean that c(t) is α-Hölder continuous, 
α = 1 means that it is Lipschitz continuous, α > 1 means further regularity. In the vertical axis 
we represent the space-regularity of initial data, where the value s stands for Gevrey spaces of 
order s (so that higher values of s mean lower regularity). The curve is s = (1 − α)−1.

α1

s

1

�

δ = 0

Well-posedness in Gevrey spaces

Well-posedness is Sobolev spaces

(DGCS)-phenomenon

α1 − 2σ

�

s

1

δ > 0

In the non-dissipative case δ = 0 we have well-posedness in Sobolev spaces if α ≥ 1 (this is a 
classical result), while for α ∈ (0, 1) Theorem B provides global well-posedness in Gevrey spaces 
of order s < (1 − α)−1 and local well-posedness if s = (1 − α)−1, and Theorem D provides the 
(DGCS)-phenomenon for s > (1 − α)−1. Finally, Theorem 3.2 of this paper shows that in the 
critical case s = (1 − α)−1 the solution can lose as many derivatives as possible after a finite 
time.
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In the dissipative case δ > 0, the strong damping moves to the left the vertical line that rep-
resents the boundary of the region with Sobolev well-posedness. More precisely, Theorem C
provides well-posedness in Sobolev spaces if α > 1 − 2σ , while for α < 1 − 2σ we have the 
same picture as in the non-dissipative case, again provided by Theorems A, B, D, and by Theo-
rem 3.2 of this paper. Finally, in the critical case α = 1 −2σ , Theorem C provides well-posedness 
in Sobolev spaces if δ is large enough, while for δ small enough Theorem 3.3 shows that the 
(DGCS)-phenomenon is again possible, with instantaneous loss of as many derivatives as possi-
ble.

4. Proofs

4.1. Asymptotic behavior of Hölder constants

In this subsection we prove a simple, but somewhat counterintuitive, result. The idea is that, 
under suitable assumptions, the Hölder constant of the sum of two functions is not the sum of the 
Hölder constants, but the maximum. The result holds true for functions between metric spaces, 
but we state it just in the setting of propagation speeds. In the sequel,

Holdα(c) := sup

{ |c(t) − c(s)|
|t − s|α : (t, s) ∈ [0,+∞)2, t 
= s

}

denotes the Hölder constant of a propagation speed c(t).

Lemma 4.1 (Asymptotic Hölder constant of a sum). Let fn : [0, +∞) → R and gn : [0, +∞) →
R be two sequences of functions, and let α ∈ (0, 1) be a real number.

Let us assume that

• fn and gn are Hölder continuous of order α for every n ∈N ,
• gn → 0 uniformly in [0, +∞),
• there exists a real number L such that

|fn(t1) − fn(t2)| ≤ L|t1 − t2| ∀n ∈N, ∀(t1, t2) ∈ [0,+∞)2. (4.1)

Then it turns out that

lim sup
n→+∞

Holdα(fn + gn) ≤ max

{
lim sup
n→+∞

Holdα(fn), lim sup
n→+∞

Holdα(gn)

}
.

Proof. For every real number ε > 0, let us choose real numbers � > 0 and η > 0 such that

L�1−α ≤ ε, 2η ≤ ε�α, (4.2)

and let n0 ∈N be such that

|gn(t)| ≤ η ∀t ≥ 0, ∀n ≥ n0. (4.3)
11446



M. Ghisi and M. Gobbino Journal of Differential Equations 269 (2020) 11435–11460
We claim that

|(fn + gn)(t1) − (fn + gn)(t2)| ≤
(
max

{
Holdα(fn),Holdα(gn)

} + ε
) |t1 − t2|α (4.4)

for every n ≥ n0, and every pair (t1, t2) of nonnegative real numbers. To this end, we distinguish 
two cases according to the size of t1 − t2.

• If |t1 − t2| ≤ �, then from (4.1) and the first relation in (4.2) we obtain that

|(fn + gn)(t1) − (fn + gn)(t2)| ≤ |fn(t1) − fn(t2)| + |gn(t1) − gn(t2)|
≤ L|t1 − t2| + Holdα(gn)|t1 − t2|α

=
(
L|t1 − t2|1−α + Holdα(gn)

)
|t1 − t2|α

≤ (ε + Holdα(gn)) |t1 − t2|α,

which implies (4.4) in this first case.
• If |t1 − t2| ≥ �, then from (4.3) and the second relation in (4.2) we obtain that

|(fn + gn)(t1) − (fn + gn)(t2)| ≤ |fn(t1) − fn(t2)| + |gn(t1)| + |gn(t2)|
≤ Holdα(fn)|t1 − t2|α + 2η

≤ (Holdα(fn) + ε) |t1 − t2|α,

which implies (4.4) also in this second case.

Since ε is arbitrary, the conclusion follows from (4.4). �
4.2. The basic ingredient

This subsection is the technical core of the paper. We show that every given smooth propaga-
tion speed can be slightly modified, with a negligible effect on its upper/lower bounds and on its 
Hölder constant, in order to produce a resonance effect with a large enough frequency λ.

Let c0 : [0, +∞) → (0, +∞) be a positive function of class C2. Let δ ≥ 0 and σ ∈ (0, 1/2)

be two real numbers. For every (ε, λ, t) ∈ (0, +∞) × (0, +∞) × [0, +∞), let us consider the 
functions

a(λ, t) := λ

t∫
0

c0(s)
1/2 ds, (4.5)

b(ε,λ, t) := ελ

2

t∫
0

sin2(a(λ, s))

c0(s)1/2 ds − 1

4
log

c0(t)

c0(0)
− δλ2σ t, (4.6)

γ (ε,λ, t) := c0(t) − ε sin(2a(λ, t)) − ε2 sin4(a(λ, t)) − 5 1
2

[
c′

0(t)
]2
4 c0(t) 16 λ c0(t)
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+ ε

2λ

c′
0(t)

c0(t)3/2 sin2(a(λ, t)) + 1

4λ2

c′′
0(t)

c0(t)
+ δ2

λ2−4σ
. (4.7)

We observe that, in the special case where c0(t) ≡ m2 is a positive constant, we obtain the 
same functions that were used in [13, section 6]. If in addition m = 1 and δ = 0, we obtain the 
functions that were originally introduced in [4].

With a long but elementary computation, one can check that the function

w(ε,λ, t) := sin(a(λ, t)) exp(b(ε,λ, t)) (4.8)

satisfies

∂2w

∂t2 (ε, λ, t) + 2δλ2σ ∂w

∂t
(ε, λ, t) + λ2γ (ε,λ, t)w(ε,λ, t) = 0

for every admissible value of the variables.
Admittedly, at a first glance it might be not so intuitive why this should be true and therefore, 

for the convenience of the reader, in appendix A we show a heuristic argument that leads to these 
definitions.

Our goal is showing that, for suitable values of ε and λ, the energy of the solution w grows 
exponentially with time. To this end, we start by estimating from below the growth of b(ε, λ, t).

Lemma 4.2. Let c0 : [0, +∞) → (0, +∞) be a function that satisfies the strict hyperbolicity 
assumption (1.3). Let us assume in addition that c0 is of class C1, and there exists a constant L0
such that |c′

0(t)| ≤ L0 for every t ≥ 0. Let b(ε, λ, t) be the function defined in (4.6).
Then it turns out that

b(ε,λ, t) ≥ ελ

4μ
1/2
2

(
1 − L0

4μ
3/2
1

1

λ

)
t − δλ2σ t − ε

8(μ1μ2)1/2 − 1

4
log

μ2

μ1
(4.9)

for every (ε, λ, t) ∈ (0, +∞) × (0, +∞) × [0, +∞).

Proof. From the strict hyperbolicity assumption (1.3) we deduce that

b(ε,λ, t) ≥ ελ

2μ
1/2
2

t∫
0

sin2(a(λ, s)) ds − 1

4
log

μ2

μ1
− δλ2σ t.

Moreover, by elementary trigonometry we know that

t∫
sin2(a(λ, s)) ds = t

2
− 1

2

t∫
cos(2a(λ, s)) ds.
0 0

11448



M. Ghisi and M. Gobbino Journal of Differential Equations 269 (2020) 11435–11460
Therefore, it remains to show that

∣∣∣∣∣∣
t∫

0

cos(2a(λ, s)) ds

∣∣∣∣∣∣ ≤ 1

2μ
1/2
1

· 1

λ
+ L0

4μ
3/2
1

· t

λ
. (4.10)

In order to estimate this oscillating integral, we integrate by parts in the usual way, and we 
obtain that (here primes denote derivatives with respect to the variable s)

t∫
0

cos(2a(λ, s)) ds =
t∫

0

2a′(λ, s) cos(2a(λ, s)) · 1

2a′(λ, s)
ds

=
[

sin(2a(λ, s))

2a′(λ, s)

]s=t

s=0
+ 1

2

t∫
0

sin(2a(λ, s)) · a′′(λ, s)

a′(λ, s)2 ds.

Now we recall that a(λ, s) is defined by (4.5), and therefore

t∫
0

cos(2a(λ, s)) ds = sin(2a(λ, t))

2λc0(t)1/2 + 1

4

t∫
0

sin(2a(λ, s)) · c′
0(s)

λc0(s)3/2 ds.

Exploiting again the strict hyperbolicity (1.3), and the uniform bound on c′
0(t), we obtain 

(4.10). �
Let {λn} and {εn} be two sequences of positive real numbers such that λn → +∞ and εn → 0

as n → +∞. For every positive integer n, let us define

cn(t) := γ (εn,λn, t) ∀t ≥ 0. (4.11)

Let wn(t) denote the solution to the problem

w′′
n(t) + 2δλ2σ

n w′
n(t) + λ2

ncn(t)wn(t) = 0,

with initial data

wn(0) = 0, w′
n(0) = 1.

The key properties of cn(t) and wn(t) are stated in the following result.

Proposition 4.3 (Activation of large enough frequencies). Let δ ≥ 0 and σ ∈ (0, 1/2) be two 
real numbers. Let c0 : [0, +∞) → (0, +∞) be a function that satisfies the strict hyperbolicity 
assumption (1.3). Let us assume in addition that c0 is of class C3 with

sup
{|c′ (t)| + |c′′(t)| + |c′′′(t)| : t ≥ 0

}
< +∞. (4.12)
0 0 0

11449



M. Ghisi and M. Gobbino Journal of Differential Equations 269 (2020) 11435–11460
Let {λn} and {εn} be two sequences of positive real numbers such that λn → +∞ and εn → 0
as n → +∞, and

lim sup
n→+∞

(εnλ
α
n) < +∞. (4.13)

Let us define cn(t) and wn(t) as above, and let us set

μ3 := μ1 min{1,μ1}
2μ2

2

, μ4 := 1

4μ
1/2
2

. (4.14)

Then the following statements hold true.

• (Uniform convergence) It turns out that

cn → c0 uniformly in [0,+∞), (4.15)

• (Asymptotic behavior of Hölder constant) It turns out that

lim sup
n→+∞

Holdα(cn) ≤ max

{
Holdα(c0),2μ

α/2
2 lim sup

n→+∞
(
εnλ

α
n

)}
. (4.16)

• (Exponential growth of the solution) For every n large enough it turns out that

|w′
n(t)|2 + λ2

n|wn(t)|2 ≥ μ3 exp
(
μ4εnλn t − 2δλ2σ

n t
)

∀t ≥ 0. (4.17)

Proof. Since λn → +∞ and εn → 0 as n → +∞, and since 2 − 4σ > 0, the uniform conver-
gence follows from the strict hyperbolicity (1.3), and from the uniform bounds on c0(t) in the 
C2 norm.

In the sequel we set for simplicity

an(t) := a(λn, t), bn(t) := b(εn,λn, t),

Asymptotic behavior of Hölder constants The idea is to apply Lemma 4.1 with

fn(t) := c0(t) − 5

16

1

λ2
n

[
c′

0(t)

c0(t)

]2

+ 1

4λ2
n

c′′
0(t)

c0(t)
,

and

gn(t) := −εn sin(2an(t)) − ε2
n

4

sin4(an(t))

c0(t)
+ εn

2λn

c′
0(t)

c0(t)3/2 sin2(an(t)).

To begin with, we observe that a function that is bounded and Lipschitz continuous is also 
Hölder continuous. Due to the strict hyperbolicity (1.3), and to the bound (4.12) on the derivatives 
of c0 up to order three, this implies that the four functions
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[
c′

0(t)

c0(t)

]2

,
c′′

0(t)

c0(t)
,

1

c0(t)
,

c′
0(t)

c0(t)3/2

are both Lipschitz continuous and Hölder continuous of order α, and their Lipschitz and Hölder 
constants can be estimated in terms of α, μ1, μ2, and the supremum in (4.12). Recalling that 
λn → 0 as n → +∞, this is enough to conclude that the sequence {fn} satisfies the equi-
Lipschitz assumption (4.1) of Lemma 4.1, and

lim sup
n→+∞

Holdα(fn) = Hold(c0). (4.18)

Now let g1,n(t), g2,n(t), g3,n(t) denote the three terms in the definition of gn(t). In order to 
estimate g1,n(t), from (4.5) we deduce that

|a(λ, t1) − a(λ, t2)| ≤ λμ
1/2
2 |t1 − t2| ∀(t1, t2) ∈ [0,+∞)2. (4.19)

Then we observe that

| sin(2y) − sin(2x)| ≤ 2|y − x|α ∀(x, y) ∈R2. (4.20)

Indeed, if |y − x| ≤ 1 this inequality follows from the Lipschitz continuity (with constant 2) 
of the function sin(2x), because

| sin(2y) − sin(2x)| ≤ 2|y − x| ≤ 2|y − x|α,

while if |y − x| ≥ 1 the same inequality follows from the boundedness, because

| sin(2y) − sin(2x)| ≤ 2 ≤ 2|y − x|α.

From (4.19) and (4.20) it follows that

| sin(2an(t1)) − sin(2an(t2))| ≤ 2|an(t1) − an(t2)|α ≤ 2μ
α/2
2 λα

n |t1 − t2|α,

which implies that

Holdα(g1,n) ≤ 2μ
α/2
2 εnλ

α
n ∀n ∈ N.

An analogous argument shows that

| sin4(an(t1)) − sin4(an(t2))| ≤ H1μ
α/2
2 λα

n |t1 − t2|α,

where H1 is the Hölder constant of the function sin4 x. Now we recall that the product of two 
functions that are bounded and Hölder continuous of order α is again Hölder continuous of order 
α, with a constant that depends on the two bounds and on the two Hölder constants. It follows 
that

Holdα(g2,n) ≤ H2ε
2
n(λ

α
n + 1) ∀n ∈N, (4.21)
11451



M. Ghisi and M. Gobbino Journal of Differential Equations 269 (2020) 11435–11460
where H2 depends only on H1, α, μ1, μ2, and the supremum in (4.12). In an analogous way, we 
deduce also that

Holdα(g3,n) ≤ H3
εn

λn

(λα
n + 1) ∀n ∈N (4.22)

for a suitable constant H3.
Due to (4.13), the right-hand sides of (4.21) and (4.22) tend to 0 as n → +∞, and therefore

lim sup
n→+∞

Holdα(gn) = lim sup
n→+∞

Holdα(g1,n) ≤ 2μ
α/2
2 lim sup

n→+∞
(
εnλ

α
n

)
. (4.23)

At this point, the conclusion follows from (4.18), (4.23), and Lemma 4.1.

Exponential growth of wn(t) To begin with, we observe that we have an explicit formula for 
wn(t), namely

wn(t) = 1

λnc0(0)1/2 w(εn,λn, t) ∀t ≥ 0,

where w(ε, λ, t) is the function defined in (4.8). This implies that

w′
n(t) = 1

λnc0(0)1/2

{
a′
n(t) cos(an(t)) + b′

n(t) sin(an(t))
}

exp(bn(t)),

and therefore

|w′
n(t)|2 + λ2

n|wn(t)|2 = Rn(t) exp(2bn(t)) ∀t ≥ 0, (4.24)

where (for the sake of shortness we do not write explicitly the dependence on t in the terms of 
the right-hand side)

Rn(t) := 1

λ2
nc0(0)

{
(a′

n)
2 cos2 an + (b′

n)
2 sin2 an + λ2

n sin2 an + 2a′
nb

′
n cosan sinan

}
.

Now we recall that a′
n(t) = λnc0(t)

1/2, and therefore

Rn(t) ≥ c0(t)

c0(0)
cos2(an(t)) + 1

c0(0)
sin2(an(t)) − 2c0(t)

1/2

c0(0)

1

λn

|b′
n(t)|

≥ min {1,μ1}
μ2

− 2μ
1/2
2

μ1

1

λn

|b′
n(t)|.

Now we recall that

b′
n(t) = λn

{
εn

2

sin2(an(t))

c0(t)1/2 − 1

4λn

c′
0(t)

c0(t)
− δ

λ1−2σ

}
.

n
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Since λn → +∞ and εn → 0 as n → +∞, and since 1 −2σ > 0, from the strict hyperbolicity 
condition (1.3) and the bounds on c0(t) in the C1 norm, it follows that |b′

n(t)|/λn → 0 uniformly 
in [0, +∞), and therefore

Rn(t) ≥ min {1,μ1}
2μ2

∀t ≥ 0, (4.25)

provided that n is sufficiently large.
Moreover, from (4.9) it follows that

2bn(t) ≥ εnλn

4μ
1/2
2

t − 2δλ2σ
n t − log

μ2

μ1
∀t ≥ 0, (4.26)

again when n is sufficiently large (because we absorbed the third term in the right-hand side of 
(4.9) by changing the coefficient of the logarithm).

Plugging (4.25) and (4.26) into (4.24), we obtain (4.17). �
4.3. Universal activators

In this subsection the Baire category theorem discloses all its power. In Proposition 4.3 we 
used the basic ingredients in order to cook up a propagation speed that activates a large enough 
frequency. As far as we know, that propagation speed might activate just that special frequency. 
Now we produce, or better we let the Baire category theorem produce, a residual set of propa-
gation speeds that activate infinitely many frequencies in the same time. We call them universal 
activators. The formal definition is the following.

Definition 4.4 (Universal activators). Let {λi} be a sequence of positive real numbers, and let μ3
and μ5 be two positive real numbers.

A continuous function c : [0, +∞) → R is called a universal activator for the sequence {λn}
with order (μ3, μ5) if the sequence {wi(t)} of solutions to equation

w′′
i (t) + 2δλ2σ

i w′
i (t) + λ2

i c(t)wi(t) = 0 (4.27)

with initial data

wi(0) = 0, w′
i (0) = 1 (4.28)

satisfies the exponential growth condition

lim sup
i→+∞

(
|w′

i (t)|2 + λ2
i |wi(t)|2

)
exp

(
−μ5λ

1−α
i t + 2δλ2σ

i t
)

≥ μ3 ∀t ≥ 0. (4.29)

The following result is the key tool in the proof of our main results, but it could also provide 
alternative and shorter proofs of Theorem D.

Theorem 4.5 (Existence of universal activators). Let μ1, μ2, α, H be real numbers satisfying 
(2.1). Let us define μ3 and μ4 as in (4.14), and let us set
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μ5 := Hμ4

4μ
α/2
2

= H

16μ
(1+α)/2
2

.

Let {λi} be a sequence of positive real numbers such that λi → +∞ as i → +∞.
Then the set of all propagation speeds c ∈PS(μ1, μ2, α, H) that are universal activators for 

the sequence {λn} with order (μ3, μ5) is residual.

Proof. Let us consider the set C of “non universal activators”, namely the set of all propagation 
speeds c ∈ PS(μ1, μ2, α, H) for which (4.29) is false, and therefore

∃t ≥ 0 lim sup
i→+∞

(
|w′

i (t)|2 + λ2
i |wi(t)|2

)
exp

(
−μ5λ

1−α
i t + 2δλ2σ

i t
)

< μ3,

or equivalently

∃t ≥ 0 ∃η > 0 ∃j ∈N ∀i ≥ j

|w′
i (t)|2 + λ2

i |wi(t)|2 ≤ (μ3 − η) exp
(
μ5λ

1−α
i t − 2δλ2σ

i t
)

. (4.30)

Quantitative non-activators In order to make the previous statement more quantitative, we in-
troduce the set Ck of all admissible propagation speeds such that

∃t ∈ [0, k] ∀i ≥ k |w′
i (t)|2 + λ2

i |wi(t)|2 ≤
(

μ3 − 1

k

)
exp

(
μ5λ

1−α
i t − 2δλ2σ

i t
)

.

In words, now t is confined in the compact interval [0, k], and we have chosen η = 1/k and 
j = k in (4.30). It turns out that the set C is the union of all Ck’s. Indeed, if some propagation 
speed satisfies (4.30), then the same propagation speed belongs to Ck provided that k satisfies

k ≥ t,
1

k
≤ η, k ≥ j.

The proof is complete if we show that Ck is a closed set with empty interior for every positive 
integer k.

The set Ck is closed Let k be a fixed positive integer. Let {cn} ⊆ Ck be any sequence, and let us 
assume that cn(t) → c∞(t) uniformly in [0, +∞). We claim that c∞ ∈ Ck .

For every positive integer i, let wi,n(t) denote the solution to (4.27)–(4.28) with c := cn, and 
let wi,∞ denote the solution with c := c∞. From the definition of Ck we know that, for every 
n ∈N , there exists tn ∈ [0, k] such that

|w′
i,n(tn)|2 + λ2

i |wi,n(tn)|2 ≤
(

μ3 − 1

k

)
exp

(
μ5λ

1−α
i tn − 2δλ2σ

i tn

)
∀i ≥ k. (4.31)

Up to subsequences (not relabeled), we can always assume that tn → t∞ ∈ [0, k]. Moreover, 
we know that solutions to (4.27)–(4.28) depend is a continuous way on the propagation speed, in 
the sense that
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cn → c∞ uniformly in [0, T ] =⇒ wi,n → wi,∞ in C1([0, T ])
for every T > 0. This implies in particular that

|w′
i,n(t)|2 + λ2

i |wi,n(t)|2 → |w′
i,∞(t)|2 + λ2

i |wi,∞(t)|2 uniformly in [0, k],
which in turn implies that we can pass to the limit in (4.31) and deduce that

|w′
i,∞(t∞)|2 + λ2

i |wi,∞(t∞)|2 ≤
(

μ3 − 1

k

)
exp

(
μ5λ

1−α
i t∞ − 2δλ2σ

i t∞
)

∀i ≥ k,

which proves that c∞ ∈ Ck .

The set Ck has empty interior Let us assume by contradiction that there exist an integer k0 ≥ 1, 
an admissible propagation speed c0, and a real number ε0 > 0 such that BPS(c0, ε0) ⊆ Ck0 , 
where BPS(c0, ε0) denotes the open ball in PS(μ1, μ2, α, H) with center in c0 and radius ε0.

Regularization of the center Up to a small modification of c0, and a small reduction of the 
radius ε0, we can assume that c0 has the following further properties.

• It is of class C3 and satisfies (4.12).
• It does not saturate the inequalities in (1.3) and (1.4), namely there exists ε1 > 0 such that

μ1 + ε1 ≤ c0(t) ≤ μ2 − ε1 ∀t ≥ 0, (4.32)

and

|c0(t) − c0(s)| ≤ (1 − ε1)H |t − s|α ∀(t, s) ∈ [0,+∞)2. (4.33)

Use of rescaled basic ingredient For every positive integer n, let us set

εn := H

4μ
α/2
2

· 1

λα
n

, (4.34)

and let us consider the corresponding sequence of propagation speeds cn(t) defined as in (4.11)
starting from the modified version of c0. We claim that, for n sufficiently large, cn ∈ BPS(c0, ε0)

but cn /∈ Ck0 . This would give a contradiction.

Final contradiction: cn ∈ BPS(c0, ε0) for n large enough Since λn → +∞ and εn → 0, 
from (4.15) it follows that cn → c0 uniformly in [0, +∞). Due to (4.32), this implies that cn(t)

satisfies the strict hyperbolicity condition (1.3) when n is large enough. Finally, from (4.16), 
(4.33) and (4.34) it follows that

lim sup
n→+∞

Holdα(cn) ≤ max

{
Holdα(c0),

H

2

}
≤ max

{
(1 − ε1)H,

H

2

}
.

Since the latter is strictly less than H , the propagation speed cn satisfies (1.4) for n large 
enough.
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In conclusion, we have proved that cn ∈ PS(μ1, μ2, α, H) when n is sufficiently large, and 
cn → c0 uniformly in [0, +∞), and this implies that cn ∈ BPS(c0, ε0) when n is large enough.

Final contradiction: cn /∈ Ck0 for n large enough Let us consider the solution wn,n to 
(4.27)–(4.28) with i := n and c := cn. From (4.17) we know that, for every n large enough, 
it turns out that

|w′
n,n(t)|2 + λ2

n|wn,n(t)|2 ≥ μ3 exp
(
μ4εnλnt − 2δλ2σ

n t
)

= μ3 exp
(
μ5λ

1−α
n t − 2δλ2σ

n t
)

for every t ≥ 0, which contradicts the definition of Ck0 as soon as n ≥ k0. �
4.4. Proof of Theorem 3.2 and Theorem 3.3

Let {λi} be the sequence of (the square roots of) the eigenvalues of A, and let {ei} be the 
corresponding orthonormal basis of H. Up to extracting a subsequence, we can also assume that

∞∑
i=0

1

λ2
i

< +∞. (4.35)

Let c ∈ PS(μ1, μ2, α, H) be a universal activator for the sequence {λi} with some order 
(μ3, μ5) according to Definition 4.4. Given a sequence {ai} of real numbers, we consider the 
solution to (1.1) with initial data

u(0) = 0, u′(0) =
∞∑
i=0

aiei .

The solution is

u(t) =
∞∑
i=0

aiwi(t)ei,

where {wi(t)} is the sequence of solutions to (4.27)–(4.28). We observe that

(u(0), u′(0)) ∈ Gs,r0,1/2(A) × Gs,r0,0(A) ⇐⇒
∞∑
i=0

a2
i exp

(
2r0λ

1/s
i

)
< +∞, (4.36)

and similarly

(u(0), u′(0)) ∈ Gs,log,1/2(A) × Gs,log,0(A) ⇐⇒
∞∑
i=0

a2
i exp

(
2λ

1/s
i

log(2 + λi)

)
< +∞, (4.37)

while (u(t), u′(t)) /∈ G−S,log,1/2(A) × G−S,log,0(A) if and only if

∞∑
a2
i

(
|w′

i (t)|2 + λ2
i |wi(t)|2

)
exp

(
− 2λ

1/S
i

log(2 + λi)

)
= +∞. (4.38)
i=0

11456



M. Ghisi and M. Gobbino Journal of Differential Equations 269 (2020) 11435–11460
In the case of Theorem 3.2 we choose

ai := 1

λi

exp
(
−r0λ

1/s
i

)
∀i ∈ I.

In this case the convergence of the series in (4.36) reduces to (4.35). As for (4.38), we observe 
that the general term of the series can be rewritten as �i(t)�i(t), where

�i(t) :=
(
|w′

i (t)|2 + λ2
i |wi(t)|2

)
exp

(
−μ5λ

1−α
i t + 2δλ2σ

i t
)

, (4.39)

and

�i(t) := 1

λ2
i

exp

(
−2r0λ

1/s
i + μ5λ

1−α
i t − 2δλ2σ

i t − 2λ
1/S
i

log(2 + λi)

)
.

From the definition of universal activator it turns out that

lim sup
i→+∞

�i(t) ≥ μ3 > 0 ∀t > 0. (4.40)

Since 1 − α = 1/s = 1/S > 2σ , it turns out that

lim
i→+∞�i(t) = +∞ (4.41)

for every t > 2r0/μ5 =: t0. This proves that the series in (4.38) diverges for every t > t0.
In the case of Theorem 3.3 we choose

ai := 1

λi

exp

(
− λ

1/s
i

log(2 + λi)

)
.

As before the convergence of the series in (4.37) reduces to (4.35), while the general term of 
the series in (4.38) can be written as �i(t)�i(t), with �i(t) defined by (4.39), and

�i(t) := 1

λ2
i

exp

(
− 2λ

1/s
i

log(2 + λi)
+ μ5λ

1−α
i t − 2δλ2σ

i t − 2λ
1/S
i

log(2 + λi)

)
.

Again the definition of universal activator implies (4.40), while the fact that 1 − α = 1/s =
1/S = 2σ , and 2δ < μ5, implies (4.41) for every t > 0. This proves that the series in (4.38)
diverges for every t > 0 if 2δ < μ5.
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4.5. Proof of Remark 3.4

For the sake of shortness, let X denote the complete metric space Gs,log,1/2(A) × Gs,log,0(A). 
Let C denote the set of elements of X that are initial data of solutions to (1.1) that do not sat-
isfy (3.5), so that

∃t > 0 ‖u′(t)‖2
G−S,log,0(A) + ‖u(t)‖2

G−S,log,1/2(A) < +∞.

We make this statement more quantitative by introducing the set Ck of all initial data in X that 
originate solutions to (1.1) satisfying

∃t ∈ [1/k, k] ‖u′(t)‖2
G−S,log,0(A) + ‖u(t)‖2

G−S,log,1/2(A) ≤ k.

It is possible to show that C is the union of all Ck’s, and that Ck is a closed subset of X for every 
positive integer k (this requires only that Fourier components of solutions depend continuously 
on initial data, and that the norm in the spaces G−S,log,β(A) is lower semicontinuous with respect 
to component-wise convergence).

It remains to show that Ck has empty interior for every positive integer k. Let us assume by 
contradiction that some Ck0 contains the open ball in X with center in some (v0, v1) ∈ X and 
radius ε0 > 0. Up to a small reduction of the radius, we can assume that the center (v0, v1) has 
only a finite number of Fourier components different from zero, and therefore the corresponding 
solution v(t) satisfies

‖v′(t)‖2
G−S,log,0(A) + ‖v(t)‖2

G−S,log,1/2(A) ≤ M0 ∀t ∈ [0, k0]

for a suitable constant M0.
By assumption, we know that equation (1.1) has a solution u(t), with suitable initial data 

(u0, u1) ∈ X, that satisfies (3.5). Due to the linearity of the equation, the solution with initial data 
(v0 + εu0, v1 + εu1) is v(t) + εu(t), and therefore (v0 + εu0, v1 + εu1) /∈ Ck0 for every ε 
= 0.

On the other hand, (v0 + εu0, v1 + εu1) belongs to the ball if |ε| is small enough, and this 
provides the required contradiction.
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Appendix A. Heuristics for the basic ingredient

Let c0 ∈ PS(μ1, μ2, α, H) be a given smooth function. Suppose we want to find a function 
cλ, which is close enough to c0 in the uniform norm, and has Hölder constant close to the Hölder 
constant of c0, such that equation

w′′(t) + 2δλ2σ w′(t) + λ2cλ(t)w(t) = 0 (A.1)

has a solution that grows exponentially with time. To this end, it seems reasonable to look for a 
solution of the form
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w(t) = sin(a(t)) exp(b(t)), (A.2)

for suitable functions a(t) and b(t). Plugging (A.2) into (A.1), with some computations we find 
that (for the sake of shortness, we do not write explicitly the dependence on t){

−(a′)2 + b′′ + (b′)2 + 2δλ2σ b′ + λ2cλ

}
sina +

{
a′′ + 2a′b′ + 2δλ2σ a′} cosa = 0. (A.3)

In order to simplify the coefficient of cosa, it seems reasonable to consider functions b(t) of 
the form

b(t) = β(t) − δλ2σ t,

so that (A.3) reduces to{
−(a′)2 + β ′′ + (β ′)2 − δ2λ4σ + λ2cλ

}
sina + {

a′′ + 2a′β ′} cosa = 0. (A.4)

At this point it would be useful to factor out a sina from the coefficient of cosa. Thus we 
make the ansatz that

a′′ + 2a′β ′ = ελ2 sin2 a, (A.5)

where the square gives us some hope that β ′ could be positive, which means β increasing.
Now we recall that cλ(t) should hopefully be close to c0(t), and this leads us to a second 

ansatz that

a′(t) = λc0(t)
1/2.

If this is the case, then a(t) is given by (4.5). At this point from (A.5) we obtain that

β ′ = ελ2 sin2 a − a′′

2a′ ,

from which we compute β(t) and therefore also b(t). In this way we obtain (4.6). Finally, from 
(A.4) we can compute cλ(t), and we obtain exactly (4.7).
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