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Abstract

Based on the notion of paracontrolled distributions, we provide existence and uniqueness results for 
rough Volterra equations of convolution type with potentially singular kernels and driven by the newly 
introduced class of convolutional rough paths. The existence of such rough paths above a wide class of 
stochastic processes including the fractional Brownian motion is shown. As applications we consider var-
ious types of rough and stochastic (partial) differential equations such as rough differential equations with 
delay, stochastic Volterra equations driven by Gaussian processes and moving average equations driven by 
Lévy processes.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Stochastic Volterra equations serve as mathematical models for numerous random phenomena 
appearing in various areas such as biology, physics and mathematical finance. In the present work 
we consider Volterra equations of convolution type, which in their simplest form are given by

* Corresponding author.
E-mail addresses: proemel@uni-mannheim.de (D.J. Prömel), mathias.trabs@uni-hamburg.de (M. Trabs).
https://doi.org/10.1016/j.jde.2021.08.031
0022-0396/© 2021 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2021.08.031&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2021.08.031
http://www.elsevier.com/locate/jde
mailto:proemel@uni-mannheim.de
mailto:mathias.trabs@uni-hamburg.de
https://doi.org/10.1016/j.jde.2021.08.031


D.J. Prömel and M. Trabs Journal of Differential Equations 302 (2021) 222–272
u(t) = u0 +
t∫

−∞
ϕ(t − s)σ (u(s))dϑ(s), t ∈ R, (1.1)

where ϑ : R → Rm is a (random) input signal, e.g., an m-dimensional (fractional) Brownian 
motion, u0 ∈ Rn, ϕ : R → R is the so-called kernel and σ : Rn → L(Rm, Rn) is a vector field. 
Since the pioneering works of Berger and Mizel [8,9], stochastic Volterra equations have been 
studied in different settings and generality by a vast number of authors, see e.g. [42,40,13,48].

This wide class of equations covers many stochastic differential and integral equations as 
special cases such as ordinary stochastic differential equations, classical stochastic Volterra inte-
gral equations, stochastic equations involving fractional derivatives (noting that singular kernels 
correspond to Fourier multipliers) and moving average equations driven by Lévy processes. 
Recently, Volterra equations attracted additional attention from the mathematical finance com-
munity because stochastic Volterra equations with singular kernels ϕ constitute very suitable 
models for the unpredictable and rough behaviour of volatility in financial markets, cf. [1,32,18].

Rough path theory initiated by Lyons [35] provides an innovative approach to the theory of 
stochastic differential equations leading to many novel insights. One of the fundamental results of 
rough path theory is the continuity of the solution map ϑ �→ u, known as the Itô-Lyons map, for 
controlled differential equations driven by rough paths. This continuity statement had significant 
impact over the past decades and found many applications, see [36,22].

The main goal of this article is to develop a pathwise approach to and a solution theory for 
Volterra equations driven by rough paths, which allow for regular as well as singular kernels. In 
particular, we prove the local Lipschitz continuity of the Itô-Lyons map for Volterra equations 
generalising (in some directions) the above mentioned fundamental result. Many implications of 
the rough path theory seem thus to be feasible for Volterra equations.

For this purpose we first establish the existence of a unique solution to the Volterra equa-
tion (1.1) driven by signals ϑ with sufficient regularity, based on Littlewood-Paley theory and 
Bony’s paraproduct. In order to extend the existence and uniqueness results to a rough path set-
ting, we rely on the notion of paracontrolled distributions, which was introduced by Gubinelli 
et al. [25]. The paracontrolled distribution approach is particularly suitable for the pathwise anal-
ysis of Volterra equations of convolution type because of the following two key observations: 
Firstly, the convolution operator appearing in (1.1) fits nicely together with the underlying Fourier 
and Littlewood-Paley analysis since the convolution operator is, for instance, a local operation 
in the Fourier domain. The second advantage of paracontrolled distributions is that the driving 
rough path ϑ (or the underlying model using the language of regularity structures [28]) can be 
chosen adapted to the specific equation which turns out to be essential for the solution theory 
involving singular kernels.

Volterra equations driven by rough paths have so far only been studied by Deya and Tin-
del [15,16]. They have demonstrated that classical rough path theory can be utilised to handle 
Volterra equations driven by rough paths. The approach in [15,16] requires a deep and heavy anal-
ysis leading to strong regularity assumptions on the kernel ϕ, namely ϕ ∈ C3, and thus excluding 
singular kernels. This is mainly caused by relying on the classical space of (geometric) rough 
paths, which have been designed to treat ordinary rough differential equations. Adapting the clas-
sical notion of rough paths, Gubinelli and Tindel [27] dealt with the mild formulation of rough 
evolution equations associated to analytic semigroups, which corresponds to infinite dimensional 
Volterra equations with kernels given by the semigroups. More recently, Bayer et al. [7] showed 
the existence of a solution to a specific rough Volterra equation modelling the ‘rough’ volatility 
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appearing on financial markets, using Hairer’s theory of regularity structures [28]. After the com-
pletion of the present work, Harang, Tindel and Wang (2019, 2021) [30,31] developed a novel 
rough path based approach to Volterra equations also allowing for singular kernels.

Using the flexibility of the paracontrolled distribution approach, we introduce the notion of 
convolutional rough paths by including the convolution kernel ϕ in the definition of the so-
called resonant term. The later notion can be seen as the analogue to geometric rough paths 
in the paracontrolled distribution setting. We prove that the Itô-Lyons map has a locally Lips-
chitz continuous extension from the space of smooth paths to the space of convolutional rough 
paths. Hence, the Volterra equation (1.1) driven by a level-2 convolutional rough path possesses a 
unique solution. This ansatz leads to rather weak regularity assumptions on the kernel ϕ requiring 
less than Lipschitz continuity and thus allowing especially for singular kernels.

In addition to the above mentioned modelling, there is a particular interest in singular kernels, 
e.g. [13,14,47], because of their links to stochastic differential equations with fractional deriva-
tives [34] and to a large class of semilinear stochastic partial differential equations [48]. The here 
developed paracontrolled distribution approach to Volterra equations can thus also be viewed as 
a step towards these applications. However, exploiting these directions more comprehensively 
would require extensions based on higher order paracontrolled calculus, see [4], or to infinite 
dimensional spaces, cf. [37], which is beyond the scope of the present article.

While it is necessary for singular kernels to be included in the definition of the rough path, in 
the case of regular kernels, say ϕ is at least Lipschitz continuous, the existence of the convolu-
tional rough path can be reduced to the existence of a generic rough path, i.e., independent of the 
specific kernel. Moreover, considering the regularity of the driving signal in Besov spaces, our 
analysis builds on [41] and interestingly the continuity results hold for some Volterra equations 
driven by convolutional rough paths with jumps, contributing to the recent extension of rough 
path theory to càdlàg paths, cf. [12,23].

In order to apply the pathwise solution theory for Volterra equations driven by convolutional 
rough paths to stochastic Volterra equations, we construct convolutional rough paths for a large 
class of stochastic processes satisfying a hypercontractivity property. Examples include many 
Gaussian processes such as fractional Brownian motion with Hurst index H > 1/3. As a conse-
quence, we obtain unique solutions to stochastic Volterra equations driven by Gaussian processes, 
extending most literature which focuses on driving signals given by semi-martingales. Further-
more, the approach developed here based on paracontrolled distributions constitutes a solution 
theory of stochastic differential equations in the sense of Stratonovich integration. This comple-
ments the related literature about stochastic Volterra equations, which focuses on (generalisation
of) Itô integration, except, of course, the works [15,16,27] relying on rough path theory. An-
other advantage of the pathwise approach is that it can immediately deal with stochastic Volterra 
equations with anticipating coefficients, cf. the seminal work of [40].

Plan of the paper: In Section 2 the functional analytic foundation is provided. Section 3
establishes the existence and uniqueness results for Volterra equations. The connection to the 
classical rough path theory and the probabilistic construction of the resonant term for suitable 
stochastic processes can be found in Section 4. Applications of the pathwise results to various 
types of stochastic Volterra equations are presented in Section 5. Appendix A collects several 
auxiliary lemmas concerning Besov spaces.
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1.1. Setting up the Volterra equation

In the rest of the paper, we study the following class of Volterra equations of convolution type

u(t) = u0(t) + (
ϕ1 ∗ (σ1(u)ξ1)

)
(t) + (

ϕ2 ∗ (σ2(u)ξ2)
)
(t), t ∈ R, (1.2)

where

• the convolution operator ∗ is defined by

(f ∗ g)(y) :=
∫
R

f (y − x)g(x)dx, y ∈R,

with the usual generalisation for distributions f and g,
• u0 : R → Rn is the initial condition,
• ϕj : R → R are the kernels (or kernel functions) for j = 1, 2,
• σj : Rn → L(Rm, Rn) are vector fields for j = 1, 2,
• ξ1 : R → Rm and ξ2 : R → Rm is a possibly rough and smoother signal, respectively.

Comparing (1.1) and (1.2), the signal ξ1 corresponds to the (distributional) derivative of ϑ and 
the integral boundaries (−∞, t] are included via kernel functions of the form ϕ1 = 1[0,∞)ϕ. 
Throughout the paper we refer to ϕ1 ∗ (σ1(u)ξ1) as the rough term and to ϕ2 ∗ (σ2(u)ξ2) as 
the drift term, making for simplicity the assumption that also ϕ1, ξ1 are less regular than ϕ2, ξ2, 
respectively. Let us remark that distinguishing between a rough and a drift term allows for sharper 
regularity conditions on the respective vector fields σ1 and σ2, cf. the notion of (p, q)-rough 
paths [33]. Our main existence and uniqueness result for Volterra equations (1.2) can be found in 
Theorem 3.10, see also Proposition 3.1 dealing with the case of regular driving signals.

2. Bony’s paraproduct and Besov spaces

Let us briefly set up the functional analytic framework. We begin by recalling the notion of 
Besov spaces in terms of the Littlewood-Paley decomposition. For a more general introduction 
we refer to Bahouri et al. [2], Sawano [45] and Triebel [46].

For the sake of clarification let us mention that Lp(Rd , Rm×n) denotes the space of Lebesgue 
p-integrable functions with norm ‖ · ‖Lp for p ∈ [1, ∞) and L∞(Rd , Rm×n) denotes the space 
of bounded functions with corresponding norm ‖ · ‖∞. The space of Schwartz functions on Rd

is denoted by S(Rd) := S(Rd, Rm×n) and its dual by S ′(Rd) := S ′(Rd , Rm×n), which is the 
space of tempered distributions.

For a function f ∈ L1(Rd , Rm×n) the Fourier transform and its inverse are defined by

Ff (z) :=
∫
Rd

e−i〈z,x〉f (x)dx and F−1f (z) := (2π)−dFf (−z).

If f ∈ S ′(Rd), then the usual generalisation of the Fourier transform is considered.
The Littlewood-Paley theory is based on a localisation in the frequency domain by a dyadic 

partition of unity (χ, ρ), that is, χ and ρ are non-negative infinitely differentiable radial functions 
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on Rd such that suppχ ⊆ B and suppρ ⊆ A for a ball B ⊆ Rd and an annulus A ⊆ Rd , χ(z) +∑
j≥0 ρ(2−j z) = 1 for all z ∈ Rd , supp(χ) ∩ supp(ρ(2−j ·)) = ∅ for j ≥ 1, and supp(ρ(2−i ·)) ∩

supp(ρ(2−j ·)) = ∅ for |i − j | > 1. We set throughout

ρ−1 := χ and ρj := ρ(2−j ·) for j � 0.

Given a dyadic partition of unity (χ, ρ), the Littlewood-Paley blocks are defined by

	−1f := F−1(ρ−1Ff ) and 	jf := F−1(ρjFf ) for j ≥ 0.

Note that 	jf is a smooth function for every j ≥ −1 and for every f ∈ S ′(Rd) one has f =∑
j≥−1 	jf . For α ∈ R and p, q ∈ [1, ∞] the Besov space Bα

p,q(Rd , Rm×n) is given by

Bα
p,q(Rd ,Rm×n) := {

f ∈ S ′(Rd ,Rm×n) : ‖f ‖α,p,q < ∞}
with ‖f ‖α,p,q :=

∥∥∥(
2jα‖	jf ‖Lp

)
j�−1

∥∥∥
�q

.

Although the norm ‖ · ‖α,p,q depends on the dyadic partition (χ, ρ), different dyadic parti-
tions of unity lead to equivalent norms (see [2, Corollary 2.70]). Whenever the dimension of 
the image space is clear from the context, we write Bα

p,q(R
d) := Bα

p,q(Rd , Rm×n) and Bα
p,q :=

Bα
p,q(R, Rm×n) and analogous abbreviations for Lp(Rd , Rm×n). The special case of Hölder-

Zygmund spaces is denoted by Cα := Bα∞,∞ with corresponding norms ‖ · ‖Cα := ‖ · ‖α,∞,∞ for 
α > 0. In the following we will frequently apply embedding results for Besov spaces, which can 
be found for example in [46, Proposition 2.5.7 and Theorem 2.7.1].

Let us fix the notation Aϑ � Bϑ , for a generic parameter ϑ , meaning that Aϑ � CBϑ for some 
constant C > 0 independent of ϑ . We write Aϑ ∼ Bϑ if Aϑ � Bϑ and Bϑ � Aϑ . For integers 
jϑ , kϑ ∈ Z we write jϑ � kϑ if there is some N ∈ N such that jϑ � kϑ + N , and jϑ ∼ kϑ if 
jϑ � kϑ and kϑ � jϑ .

Given f ∈ Bα
p1,q1

(Rd) and g ∈ Bβ
p2,q2(R

d), we can formally decompose the product fg in 
terms of Littlewood-Paley blocks as

fg =
∑

j≥−1

∑
i≥−1

	if 	jg = Tf g + Tgf + π(f,g) (2.1)

where

Tf g :=
∑

j≥−1

( ∑
i≤j−2

	if

)
	jg and π(f,g) :=

∑
|i−j |≤1

	if 	jg.

This decomposition was originally introduced by Bony [10] and π(f, g) is usually called reso-
nant term. The following paraproduct estimates verify the importance of Bony’s decomposition. 
For the proof of this lemma, we refer to [2, Theorem 2.82 and 2.85] and [41, Lemma 2.1].

Lemma 2.1 (Bony’s paraproduct estimates). Let α, β ∈ R and p1, p2, q1, q2 ∈ [1, ∞] and sup-
pose that
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1

p
:= 1

p1
+ 1

p2
� 1 and

1

q
:= 1

q1
+ 1

q2
� 1.

(i) If (f, g) ∈ Lp1(Rd) × B
β
p2,q (Rd), then ‖Tf g‖β,p,q � ‖f ‖Lp1 ‖g‖β,p2,q .

(ii) If α < 0 and (f, g) ∈ Bα
p1,q1

(Rd) ×B
β
p2,q2(R

d), then ‖Tf g‖α+β,p,q � ‖f ‖α,p1,q1‖g‖β,p2,q2 .

(iii) If α + β > 0 and (f, g) ∈ Bα
p1,q1

(Rd) × B
β
p2,q2(R

d), then ‖π(f, g)‖α+β,p,q �
‖f ‖α,p1,q1‖g‖β,p2,q2 .

In order to analyse the smoothing property of the convolution operator ∗ appearing in the 
Volterra equation (1.2), we provide the following Young inequality and its proof since the authors 
are not aware of a reference for this result in the stated generality.

Lemma 2.2 (Generalised Young’s inequality). Let α, β ∈ R, d ∈ N and p1, p2, q1, q2 ∈ [1, ∞]
satisfying

0 � 1

p
:= 1

p1
+ 1

p2
− 1 � 1 and 0 � 1

q
:= 1

q1
+ 1

q2
� 1.

Then, for any f ∈ Bα
p1,q1

(Rd) and g ∈ Bβ
p2,q2(R

d) we have f ∗ g ∈ Bα+β
p,q (Rd) with

‖f ∗ g‖α+β,p,q � ‖f ‖α,p1,q1‖g‖β,p2,q2 .

Proof. The Littlewood-Paley blocks of the convolution satisfy

	j(f ∗ g) = F−1[ρjFfFg
] = F−1[ρ1/2

j Ff ] ∗F−1[ρ1/2
j Fg], j � −1.

Using Young’s inequality for Lp-spaces, we bound

2j (α+β)‖	j(f ∗ g)‖Lp �
(
2jα‖F−1[ρ1/2

j Ff ]‖Lp1

)(
2jβ‖F−1[ρ1/2

j Fg]‖Lp2

)
.

Hence, by the Cauchy-Schwarz inequality it suffices to show∥∥(
2jα‖F−1[ρ1/2

j Ff ]‖Lp1

)
j�−1

∥∥
�q1 � ‖f ‖α,p1,q1 (2.2)

(and consequently the analogous estimate holds true for g). To verify (2.2), we decompose f =∑
j 	jf . Due to the compact support of ρj and the classical Young inequality, we obtain

2jα‖F−1[ρ1/2
j Ff ]‖Lp1 �2jα

∑
j ′

∥∥F−1[ρ1/2
j F[	j ′f ]]∥∥

Lp1

�2jα
∑

|j−j ′|�1

‖F−1[ρ1/2
j ]‖L1‖	jf ‖Lp1

�
∑
j ′

(
2−(j ′−j)α1[−1,1](j ′ − j)

)(
2j ′α‖	j ′f ‖Lp1

)
.

Again by Young’s inequality (applied to �q1) we conclude
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∥∥(
2jα‖F−1[ρ1/2

j Ff ]‖Lp1

)
j�−1

∥∥
�q1 �

∥∥(
2−jα1[−1,1](j)

)
j�−1

∥∥
�1‖f ‖α,p1,q1

� (2|α| + 2)‖f ‖α,p1,q1 . �
In order to quantify the regularity of the vector fields appearing in the Volterra equation (1.2)

we follow the convention by Stein (cf. [20, Definition 3.1]): For operator-valued functions 
F : Rm → L(Rn, Rm) we write F ∈ Ck for k ∈ N , if F is bounded, continuous and k-times 
differentiable with bounded and continuous derivatives. The first and second derivative are de-
noted by F ′ and F ′′, respectively, and higher derivatives by F (k). The space Ck is equipped with 
the norms

‖F‖∞ := sup
x∈Rm

‖F(x)‖ and ‖F‖Ck := ‖F‖∞ +
k∑

j=1

‖F (k)‖∞,

where ‖ · ‖ denotes the corresponding operator norms.

3. Existence and uniqueness results for Volterra equations

Let us briefly recall the Volterra equation (1.2), which was given by

u(t) = u0(t) + (
ϕ1 ∗ (σ1(u)ξ1)

)
(t) + (

ϕ2 ∗ (σ2(u)ξ2)
)
(t), t ∈ R,

for an initial condition u0 : R → Rn, vector fields σj : Rn → L(Rm, Rn), kernel functions 
ϕj : R → R and driving signals ξj : R → Rm, for j = 1, 2. While the convolution is always well-
defined for any function or distribution in a Besov space (cf. Lemma 2.2), the product σj (u)ξj

requires sufficient Besov regularity of the involved functions (cf. Lemma 2.1). This statement 
will be made precise in the next subsection.

3.1. Regular driving signals

To analyse the product σj (u)ξj more carefully, we suppose that the driving signals satisfy 

ξj ∈ Bβj −1
p,∞ with βj > 0 and p ≥ 2, for j = 1, 2. We further assume that the corresponding 

solution u of the Volterra equation (1.2) fulfills u ∈ Bα
p,∞ for some regularity α � 1

p
. In this case 

Bony’s decomposition (2.1), the paraproduct estimates (Lemma 2.1) and the Besov embedding 
B

α+βj −1
p/2,∞ ⊆ B

βj −1
p,∞ applied to the problematic product yields

σj (u)ξj = Tσj (u)ξj︸ ︷︷ ︸
∈Bβj −1

p,∞

+π(σj (u), ξj )︸ ︷︷ ︸
∈Bα+βj −1

p/2,∞

+Tξj
σj (u)︸ ︷︷ ︸

B
α+βj −1

p/2,∞

∈ Bβj −1
p,∞ if α + βj > 1, p � 2. (3.1)

Notice that the Young type condition α + βj > 1 is crucial for the regularity estimate of the 
resonant term π(σj (u), ξj ). If ϕj ∈ Bγj

1,∞ for some γj � 0, then Young’s inequality (Lemma 2.2) 
combined with (3.1) yields

ϕj ∗ (σj (u)ξj ) ∈ Bβj +γj −1
p,∞ .
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In view of the Volterra equation (1.2) we obtain the relationship

α = min{β1 + γ1 − 1, β2 + γ2 − 1}.

In the following we associate the “rougher” signal with the first convolution term and thus assume 
β1 � β2 and γ1 � γ2. The Young type condition α + βj > 1 is then equivalent to 2β1 + γ1 > 2.

Applying a fixed point argument, we first prove the existence of a unique solution to the 
Volterra equation (1.2) in this Young setting. Afterwards we will relax the regularity assumptions 
allowing for a more irregular driving signal ξ1 in (1.2), see Subsection 3.2.

Proposition 3.1. Let p � 2, 0 < β1 � β2 and 0 < γ1 � γ2 such that

α := β1 + γ1 − 1 ∈ (1/p,1] and 2β1 + γ1 > 2.

Suppose u0 ∈ Bα
p,∞, ξj ∈ Bβj −1

p,∞ , ϕj ∈ Bγj

1,∞ and σj ∈ C2. If maxj=1,2 ‖σj‖C2 is sufficiently small 
depending on maxj=1,2 ‖ϕj‖γj ,1,∞, maxj=1,2 ‖ξj‖βj −1,p,∞ and ‖u0‖α,p,∞, then the Volterra 
equation (1.2) has a unique solution u ∈ Bα

p,∞.

Let us remark that the assumption α > 1
p

in Proposition 3.1 is only used for the embedding 
Bα

p,∞ ⊆ L∞. If we separately control the norms ‖ · ‖α,p.∞ and ‖ · ‖∞ of the solution u, we may 

allow for u ∈ B1/p
p,∞. This implies that the solution u of the Volterra equation (1.2) may have 

jumps but these jumps can only come from the initial condition u0. This observation leads to the 
next proposition.

Proposition 3.2. Let p � 2, 0 < β1 � β2, 0 < γ1 � γ2 such that

β1 + γ1 − 1 ∈ (1/p,1] and β1 + 1/p > 1.

Suppose u0 ∈ B1/p
p,∞ ∩ L∞, ξj ∈ Bβj −1

p,∞ , ϕj ∈ Bγj

1,∞ and σj ∈ C2, for j = 1, 2. Denote σ 0
j (·) :=

σj (·) − σj (0), j = 1, 2. If maxj=1,2 ‖σ 0
j ‖C2 is sufficiently small depending on ‖u0‖ 1

p
,p,∞ +

‖u0‖∞, maxj=1,2 ‖ϕj‖γj ,1,∞ and maxj=1,2 ‖ξj‖βj −1,p,∞, then the Volterra equation (1.2) has 

a unique solution u ∈ B1/p
p,∞ ∩ L∞.

Let us remark that Proposition 3.1 is not a corollary of Proposition 3.2. However, since the 
corresponding proofs work analogously, we present here only the proof of Proposition 3.2 in 
order to avoid redundancy.

Proof of Proposition 3.2. We study the solution map

� : B
1
p
p,∞ ∩ L∞ → B

1
p
p,∞ ∩ L∞, v �→ u := u0 + ϕ1 ∗ (

σ1(v)ξ1
) + ϕ2 ∗ (

σ2(v)ξ2
)
.

If � is a well-defined map and a contraction, then the assertion follows from Banach’s fixed point 
theorem. Without loss of generality we may assume that σ1(0) = σ2(0) = 0 since
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u := u0 + ϕ1 ∗ (
σ1(v)ξ1

) + ϕ2 ∗ (
σ2(v)ξ2

)
= u0 + ϕ1 ∗ (

σ1(0)ξ1
) + ϕ2 ∗ (

σ2(0)ξ2
) + ϕ1 ∗ (

(σ1(v) − σ1(0)ξ1
) + ϕ2 ∗ (

(σ2(v) − σ2(0))ξ2
)

= ũ0 + ϕ1 ∗ (
(σ1(v) − σ1(0)ξ1

) + ϕ2 ∗ (
(σ2(v) − σ2(0))ξ2

)
with

ũ0 := u0 + ϕ1 ∗ (
σ1(0)ξ1

) + ϕ2 ∗ (
σ2(0)ξ2

) ∈ B1/p
p,∞ ∩ L∞.

Step 1: The map � is well-defined. Indeed, by Young’s inequality (Lemma 2.2), the Besov em-

beddings B
1/p+βj −1
p/2,∞ ⊆ B

βj −1
p,∞ , B

γj +βj −1
p,∞ ⊆ B

1/p
p,∞ and B

βj +γj −1
p,∞ ⊆ L∞ for j = 1, 2 and Bony’s 

decomposition we have

‖�(v)‖ 1
p

,p,∞ + ‖�(v)‖∞

� ‖u0‖ 1
p

,p,∞ + ‖u0‖∞ +
∑

j=1,2

‖ϕj‖γj ,1,∞‖σj (v)ξj‖βj −1,p,∞

� ‖u0‖ 1
p

,p,∞ + ‖u0‖∞ +
∑

j=1,2

(‖Tσj (v)ξj‖βj −1,p,∞ + ‖π(σj (v), ξj )‖ 1
p

+βj −1,p/2,∞

+ ‖Tξj
σj (v)‖ 1

p
+βj −1,p/2,∞

)‖ϕj‖γj ,1,∞.

The paraproduct estimates (Lemma 2.1) and Lemma A.3 yield

‖�(v)‖ 1
p
,p,∞ + ‖�(v)‖∞

� ‖u0‖ 1
p

,p,∞ + ‖u0‖∞ +
∑

j=1,2

‖ϕj‖γj ,1,∞
(‖σj (v)‖ 1

p
,p,∞ + ‖σj (v)‖∞

)‖ξj‖βj −1,p,∞

� ‖u0‖ 1
p

,p,∞ + ‖u0‖∞ + (‖v‖ 1
p

,p,∞ + ‖v‖∞
) ∑

j=1,2

‖ϕj‖γj ,1,∞‖σj‖C1‖ξj‖βj −1,p,∞.

(3.2)

Hence, �(v) ∈ B
1
p
p,∞ ∩ L∞ for every v ∈ B

1
p
p,∞ ∩ L∞.

Step 2: Invariance of a ball by �. We now verify that � maps the ball

BK :=
{
v ∈ B

1
p
p,∞ ∩ L∞ : ‖v‖ 1

p
,p,∞ + ‖v‖∞ ≤ 2K2

}
⊆ B

1
p
p,∞ ∩ L∞

into itself for some suitable constant K ∈ R. Due to (3.2), there exists some K � 1 such that 
‖u0‖ 1

p
,p,∞ + ‖u0‖∞ � K and

‖�(v)‖ 1
p

,p,∞ + ‖�(v)‖∞

� K

(
‖u0‖ 1

p
,p,∞ + ‖u0‖∞ + (‖v‖ 1

p
,p,∞ + ‖v‖∞

) ∑
j=1,2

‖ϕj‖γj ,1,∞‖σj‖C1‖ξj‖βj −1,p,∞
)

.
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If maxj=1,2 ‖σj‖C1 is sufficiently small such that

max
j=1,2

‖ϕj‖γj ,1,∞‖σj‖C1‖ξj‖βj −1,p,∞ ≤ 1

4K
,

then for any v ∈ BK we obtain ‖�(v)‖ 1
p

,p,∞ + ‖�(v)‖∞ ≤ K2 + K2 ≤ 2K2.

Step 3: � is a contraction. To deduce the Lipschitz continuity of � on BK , let v1, v2 ∈ BK . 
By Young’s inequality (Lemma 2.2) and the auxiliary Lemmas A.2 and A.3 we deduce

‖�(v1) − �(v2)‖ 1
p

,p,∞ + ‖�(v1) − �(v2)‖∞

�
∑

j=1,2

‖ϕj‖γj ,1,∞
(‖σj (v1) − σj (v2)‖ 1

p
,p,∞ + ‖σj (v1) − σj (v2)‖∞

)‖ξj‖βj −1,p,∞

�
( ∑

j=1,2

‖σj‖C2‖ϕj‖γj ,1,∞‖ξj‖βj −1,p,∞
)(

1 + ‖v1‖ 1
p

,p,∞ + ‖v1‖∞ + ‖v2‖ 1
p

,p,∞ + ‖v2‖∞
)

× (‖v1 − v2‖ 1
p

,p,∞ + ‖v1 − v2‖∞
)

� max
j=1,2

‖σj‖C2

( ∑
j=1,2

‖ϕj‖γj ,1,∞‖ξj‖βj −1,p,∞
)
(1 + 4K2)

(‖v1 − v2‖ 1
p

,p,∞ + ‖v1 − v2‖∞
)
.

In conclusion, � : BK → BK is Lipschitz continuous and it is a contraction for suffi-
ciently small maxj=1,2 ‖σj‖C2 depending on ‖u0‖ 1

p
,p,∞ + ‖u0‖∞, maxj=1,2 ‖ϕj‖γj ,1,∞ and 

maxj=1,2 ‖ξj‖βj −1,p,∞. �
Remark 3.3. One can bypass the flatness condition on the vector fields σ1 and σ2, that is, 
maxj=1,2 ‖σj‖C2 was assumed to be sufficiently small, by assuming that the kernel functions 
ϕ1, ϕ2 as well as the driving signals ξ1, ξ2 are supported on the positive real line, cf. Subsec-
tion 3.4.

3.2. Rough driving signals

The regularity assumptions on the driving signals proposed in Proposition 3.1, for obtaining 
a unique solution to the Volterra equation (1.2), are usually too strong for applications in prob-
ability theory. Namely, we have imposed the smoothness condition α + β1 > 1, which means 
β1 >

2−γ1
2 . For instance, for ordinary differential equations we have γ1 = 1 and thus β1 > 1

2
excluding stochastic differential equations driven by the Brownian motion. In the sequel we will 
generalise this condition for the first convolution term in (1.2) to 2α +β1 > 1 being equivalent to 
β1 >

3−2γ1
3 . In the case γ1 = 1 we then require β1 > 1

3 which is in line with the classical rough 
path theory with one iterated integral. This paves the way for a wide range of applications of our 
results to, e.g., fractional Brownian motion, martingales and Lévy processes, see Section 5.

As discussed before, under the weaker regularity condition β1 >
3−2γ1

3 one main difficulty is 
to give a rigorous meaning to the product σ1(u)ξ1, cf. (3.1). To overcome this issue, we adapt the 
paracontrolled approach introduced by Gubinelli et al. [25]. In order to profit from the smoothing 
effect of the convolution with ϕ1, we choose a paracontrolled ansatz that reflects the convolution 
structure of equation (1.2).
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Abbreviating the regular terms by u0,2 := u0 + ϕ2 ∗ (σ2(u)ξ2) and using Bony’s decomposi-
tion (2.1), we may write

u = u0,2 + ϕ1 ∗ (
Tσ1(u)ξ1 + π(σ1(u), ξ1) + Tξ1σ1(u)

)
.

Since the term ϕ1 ∗ Tσ1(u)ξ1 is the least regular one, we choose the ansatz:

u = u0,2 + ϕ1 ∗ Tσ1(u)ξ1 + u∗

with remainder

u∗ := ϕ1 ∗ (
π(σ1(u), ξ1) + Tξ1σ1(u)

)
, (3.3)

which is of regularity α + β1 − 1 + γ1 = 2α assuming everything is well-defined. However, 
this is a priori not true due to the resonant term π(σ1(u), ξ1). To analyse this term, we use a 
linearisation of σ1(u) (see [41, Proposition 4.1]) and again the ansatz for u to decompose the 
critical term π(σ1(u), ξ1) into

π(σ1(u), ξ1) = σ ′
1(u)π(u, ξ1) + �σ1(u, ξ1)

= σ ′
1(u)

(
π(u0,2, ξ1) + π(ϕ1 ∗ Tσ1(u)ξ1, ξ1) + π(u∗, ξ1)

) + �σ1(u, ξ1),
(3.4)

where

�σ1(u, ξ1) := π(σ1(u), ξ1) − σ ′
1(u)π(u, ξ1) ∈ B2α+β1−1

p/3,∞ . (3.5)

At this point the resonant term π(ϕ1 ∗ Tσ1(u)ξ1, ξ1) is not yet well-defined. In order to continue 
our analysis, we need to compare

π(ϕ1 ∗ Tσ1(u)ξ1, ξ1) and π(ϕ1 ∗ ξ1, ξ1),

which is indeed possible thanks to the following lemma.

Lemma 3.4. Suppose there exists a constant r ∈R such that for some γ � 0

ϕ ∈ Bγ

1,∞ and (· − r)ϕ ∈ Bγ+1
1,∞ .

If f ∈ Bα
p1,∞ and g ∈ Bβ

p2,∞ with α ∈ (0, 1), β ∈ R and p1, p2 ∈ [1, ∞] such that 1
p

:= 1
p1

+
1
p2

� 1, then

Rϕ(f,g) := ϕ ∗ Tf g − Tf (·−r)(ϕ ∗ g) ∈ Bα+β+γ
p,∞

with ∥∥Rϕ(f,g)
∥∥ �

(‖ϕ‖γ,1,∞ + ‖(· + r)ϕ‖γ+1,1,∞
)‖f ‖α,p ,∞‖g‖β,p ,∞.
α+β+γ,p,∞ 1 2
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Applying Lemma 3.4, we can write the “undefined” resonant term π(ϕ1 ∗Tσ1(u)ξ1, ξ1) in (3.4)
as

π(ϕ1 ∗ Tσ1(u)ξ1, ξ1)

= π(Tσ1(u(·−r1))(ϕ1 ∗ ξ1), ξ1) + π(Rϕ1(σ1(u), ξ1), ξ1)

= σ1(u(· − r1))π(ϕ1 ∗ ξ1, ξ1) + C(σ1(u(· − r1)), ϕ1 ∗ ξ1, ξ1) + π(Rϕ1(σ1(u), ξ1), ξ1),

(3.6)

for some r1 ∈ R and where we used the commutator

C(f,g,h) := π(Tf g,h) − f π(g,h), f, g,h ∈ S ′(R),

satisfying

‖C(f,g,h)‖a+b+c,p/3,q � ‖f ‖a,p,∞‖g‖b,p,∞‖h‖c,p,∞, (3.7)

for p � 3, a ∈ (0, 1) and b, c ∈R with a +b+c > 0 and b+c < 0, see the so-called commutator 
lemma [41, Lemma 4.4]. We thus have reduced the critical term π(σ1(u), ξ1) to the resonant term 
π(ϕ1 ∗ ξ1, ξ1). The latter one does not depend on the particular equation (1.2) in the sense that it 
neither depends on u nor on σ1, but only on the signal ξ1 and the convolution kernel ϕ1.

Proof of Lemma 3.4. We will assume that f ∈ Bα+1/p1+1
p1,∞ . Since Bα+1/p1+1

p1,∞ is a dense subset 
of Bα

p1,∞, the result follows by continuity. We will use the notation Sjf := ∑
k<j−1 	jf for 

f ∈ S ′(R). Noting that

	j(ϕ ∗ g) = F−1ρj ∗ ϕ ∗ g = ϕ ∗ (	jg), (3.8)

and since 
∑

j 	j (ϕ ∗ g) converges if 
∑

j 	jg converges by Lemma 2.2, we have

ϕ ∗ Tf g(x) − Tf (·−r)(ϕ ∗ g)(x) =
∑

j≥−1

Rj (x)

with

Rj (x) :=ϕ ∗ (
Sj−1f 	jg

)
(x) − Sj−1f (x − r)(ϕ ∗ 	jg)(x)

=
∫
R

ϕ(x − z)
(
Sj−1f (z) − Sj−1f (x − r)

)
	jg(z)dz

=
1∫

0

∫
R

(z − x + r)ϕ(x − z)Sj−1f
′(x − r + t (z − x + r))	jg(z)dzdt

(3.9)

where we apply Fubini’s theorem in the last line using that f ′ is bounded. Since (y − r)ϕ(y) ∈
L1(R) ⊆ B1 , the Fourier transform of Rj is well-defined and we have
1,∞
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FRj (ξ) =
1∫

0

∫
R2

eiξ(x−z)(z − x + r)ϕ(x − z)eiξzSj−1f
′(x − r + t (z − x + r))	jg(z)dzdx dt

= −
1∫

0

∫
R2

eiξx(x − r)ϕ(x)eiξzSj−1f
′(x + z − r − tx + tr))	jg(z)dzdx dt

= −
1∫

0

∫
R

eiξx(x − r)ϕ(x)F
[
Sj−1

(
f ′(· + (1 − t)(x − r))

)
	jg

]
(ξ)dx dt.

Since F
[
	jgSj−1

(
f ′(· + (1 − t)(x − r))

)]
is supported on an annulus with radius of order 2j

(uniformly in t and x), we conclude that 	kRj = 0 if |k − j | � 1. Consequently,

‖ϕ ∗ Tf g(x) − Tf (·−r)(ϕ ∗ g)(x)‖α+β+γ,p,∞ � sup
k≥−1

2k(α+β+γ )
∑
j∼k

‖	kRj‖Lp . (3.10)

Let us introduce ϕk := F−1ρk ∗ϕ and recall the operator [	k, f ]g := 	k(fg) −f 	kg. We have

	kRj = ϕk ∗ (
Sj−1f 	jg

) − 	k

(
Sj−1f (· − r)(ϕ ∗ 	jg)

)
= ϕk ∗ (

Sj−1f 	jg
) − Sj−1f (· − r)(ϕk ∗ 	jg) − [	k,Sj−1f (· − r)](ϕ ∗ 	jg).

(3.11)

For the third term in the above display [41, Lemma 4.3], (3.8) and Lemma 2.2 yield

∑
j∼k

∥∥[	k,Sj−1f (· − r)](ϕ ∗ 	jg)
∥∥

Lp

≤
∑
j∼k

2−kα‖Sj−1f ‖α,p1,∞‖	j(ϕ ∗ g)‖Lp2

�
∑
j∼k

2−kα‖f ‖α,p1,∞2−j (β+γ )‖ϕ ∗ g‖β+γ,p2,∞

� 2−k(α+β+γ )‖ϕ‖γ,1,∞‖f ‖α,p1,∞‖g‖β,p2,∞.

(3.12)

Exactly as in (3.9) the first two terms in (3.11) can be written as

ϕk ∗ (
Sj−1f 	jg

)
(x) − Sj−1f (x − r)(ϕk ∗ 	jg)(x)

=
1∫

0

∫
R

(z − x + r)ϕk(x − z)	jg(z)Sj−1f
′(x + t (z − x) + (t − 1)r)dzdt.

Abbreviating ϕ̃k(x) = (x − r)ϕk(x), Hölder’s inequality gives
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∣∣ϕk ∗ (
Sj−1f 	jg

)
(x) − Sj−1f (x − r)(ϕk ∗ 	jg)(x)

∣∣
�

1∫
0

∫
R

|ϕ̃k(x − z)|1−1/p|ϕ̃k(x − z)|1/p
∣∣Sj−1f

′(x + t (z − x) + (t − 1)r
)
	jg(z)

∣∣dzdt

� ‖ϕ̃k‖1−1/p

L1

1∫
0

(∫
R

|ϕ̃k(x − z)|∣∣Sj−1f
′(x + t (z − x) + (t − 1)r

)
	jg(z)

∣∣p dz
)1/p

dt.

Using that α − 1 < 0 and [2, Proposition 2.79], we obtain by∥∥ϕk ∗ (
Sj−1f 	jg

) − Sj−1f (ϕk ∗ 	jg)
∥∥

Lp

� ‖ϕ̃k‖1−1/p

L1

( 1∫
0

∫
R2

|ϕ̃k(x)|∣∣	jg(z)Sj−1f
′(x + z − tx + (t − 1)r)

∣∣p dx dzdt
)1/p

� ‖ϕ̃k‖1−1/p

L1

( 1∫
0

∫
R

|ϕ̃k(x)|‖	jg‖p

Lp2 ‖Sj−1f
′‖p

Lp1 dx dt
)1/p

� 2−j (α+β+γ )‖g‖β,p2,∞‖f ′‖α−1,p1,∞2j (γ+1)‖ϕ̃k(x)‖L1 .

(3.13)

Since ‖f ′‖α−1,p1,∞ � ‖f ‖α,p1,∞, it suffices to show ‖ϕ̃k‖L1 = ‖(x − r)ϕk(x)‖L1 � 2−k(γ+1). 
Note that

(x − r)ϕk(x) =
∫
R

(x − z + z − r)F−1ρk(x − z)ϕ(z)dz

=
∫
R

(x − z)F−1ρk(x − z)ϕ(z)dz +
∫
R

F−1ρk(x − z)(z − r)ϕ(z)dz

= (
(yF−1ρk(y)) ∗ ϕ

)
(x) + (

F−1ρk ∗ ((y − r)ϕ(y)
)
(x)

= −i
(
F−1[ρ′

k] ∗ ϕ
)
(x) + 	k

(
(y − r)ϕ(y)

)
(x)

= −i
∑
j∼k

F−1[ρ′
k] ∗ 	jϕ(x) + 	k

(
(y − r)ϕ(y)

)
(x),

which by Young’s inequality implies

‖(x − r)ϕk(x)‖L1 �
∑
j∼k

‖F−1[ρ′
k]‖L1‖	jϕ‖L1 + ‖	k

(
(y − r)ϕ(y)

)‖L1

=
∑
j∼k

‖F−1[ρ′](2k·)‖L1‖	jϕ‖L1 + ‖	k

(
(y − r)ϕ(y)

)‖L1

= 2−k(γ+1)‖F−1[ρ′]‖L1‖ϕ‖γ,1,∞ + 2−k(γ+1)‖(· − r)ϕ‖γ+1,1,∞.

(3.14)

Finally, we combine the estimates (3.12), (3.13) and (3.14) to get
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∑
j∼k

‖	kRj‖Lp � 2−k(α+β+γ )
(‖ϕ‖γ,1,∞ + ‖(· − r)ϕ‖γ+1,1,∞

)‖f ‖α,p1,∞‖g‖β,p2,∞.

In view of (3.10) we have proven the asserted bound for 
∥∥Rϕ(f, g)

∥∥
α+β+γ,p,∞ and in particular 

Rϕ(f, g) ∈ Bα+β+γ
p,∞ . �

Remark 3.5. Lemma 3.4 can be seen as a counterpart to the integration by parts formula as 
used in the context of classical rough differential equations of the form Du = F(u)ξ with the 
differential operator D and a signal ξ ∈ Bβ−1

p,∞, see for example [25,41]. Defining the integration 
operator I := D−1 to be the inverse of D and denoting by ϑ the solution of Dϑ = ξ , one has

TF(u)ϑ = I (DTF(u)ϑ) = ITF(u)ξ + ITDF(u)ϑ,

where the second term is of regularity 2α. Heuristically speaking, for Volterra equations we 
replace the integration operator I : f �→ I (f ) by the convolution operator f �→ ϕ ∗ f and set 
ϑ := ϕ ∗ ξ .

The resonant term π(ϕ1 ∗ ξ1, ξ1) appearing in (3.6) turns out to be the necessary “additional 
information” one needs to postulate in order to give a meaning to the Volterra equation (1.2)
with rough driving signals ξ1. It corresponds to the iterated integrals in rough path theory (cf. 
[35,36,22]) or the models in Hairer’s theory of regularity structures (cf. [28,29]). For a detailed 
discussion of the relation to classical rough path theory and the construction of π(ϕ1 ∗ ξ1, ξ1) for 
certain stochastic processes we refer to Section 4.

In the present context we introduce the notion of convolutional rough paths.

Definition 3.6. Let β, γ > 0, p ∈ [2, ∞] and set α := β + γ − 1. The space of smooth functions 
ξ : R → Rn with compact support is denoted by C∞

c . Given a function ϕ ∈ Bγ

1,∞, the closure of 
the set {(

ξ,π(ϕ ∗ ξ, ξ)
) : ξ ∈ C∞

c

} ⊆ Bβ−1
p,∞ ×Bα+β−1

p/2,∞

with respect to the norm ‖ξ‖β−1,p,∞ + ‖π(ϕ ∗ ξ, ξ)‖α+β−1,p/2,∞ is denoted by Bβ,γ
p (ϕ) and 

(ξ, μ) ∈ Bβ,γ
p (ϕ) is called convolutional rough path.

Assuming π(ϕ1 ∗ ξ1, ξ1) is well-defined, by the previous analysis we know that u∗ from (3.3)
is also well-defined. Hence, Bony’s decomposition and Lemma 3.4 allow to rewrite the rough 
term ϕ1 ∗ (σ1(u)ξ1) as

ϕ1 ∗ (σ1(u)ξ1) = ϕ1 ∗ (
Tσ1(u)ξ1 + π(σ1(u), ξ1) + Tξ1σ1(u)

)
= Tσ1(u(·−r1))(ϕ1 ∗ ξ1) + u∗ + Rϕ1(σ1(u), ξ1)︸ ︷︷ ︸

∈B2α
p/2,∞

.

For the more regular drift term ϕ2 ∗ (σ2(u)ξ2) we observe (using similar calculations as in the 
Young setting and Lemma 3.4) a control structure with respect to ϕ2 ∗ ξ2:
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ϕ2 ∗ (σ2(u)ξ2) = ϕ2 ∗ Tσ2(u)ξ2 + ϕ2 ∗ (
π(σ2(u), ξ2) + Tξ2(σ2(u))︸ ︷︷ ︸

∈Bα+β2−1
p/2,∞

)

= Tσ2(u(·−r2))(ϕ2 ∗ ξ2) + ϕ2 ∗ (
π(σ2(u), ξ2) + Tξ2(σ2(u))

) + Rϕ2(σ2(u), ξ2)︸ ︷︷ ︸
∈B2α

p/2,∞

,

for some r2 ∈ R. Therefore, the ansatz for a solution u to the Volterra equation (1.2) leads to the 
following “paracontrolled” structure:

Definition 3.7. Let p � 1 and α > 1/p. A function v ∈ Bα
p,∞ is called paracontrolled by 

w1, w2 ∈ Bα
p,∞ if there are v(1), v(2) ∈ Bα

p,∞ such that v# := v − Tv(1)w1 − Tv(2)w2 ∈ B2α
p/2,∞. 

The space of all such triples (v, v(1), v(2)) ∈ (Bα
p,∞)3 where v paracontrolled by w1, w2 ∈ Bα

p,∞
is denoted by Dα

p(w1, w2) equipped with the norm

‖v(1)‖α,p,∞ + ‖v(2)‖α,p,∞ + ‖v − Tv(1)w1 − Tv(2)w2‖2α,p/2,∞.

Remark 3.8. Note that for any v(1), v(2), w1, w2 ∈ Bα
p,∞ and v# ∈ B2α

p,∞ the function v :=
Tv(1)w1 − Tv(2)w2 + v# is paracontrolled by w1, w2 and, in particular, v is an element of Bα

p,∞. 
Indeed, Lemma 2.1 and the embeddings B2α

p/2,∞ ⊆ Bα
p,∞ ⊆ L∞ imply

‖v‖α,p,∞ �
∑

j=1,2

‖Tv(j)wj‖α,p,∞ + ‖v#‖α,p,∞ �
∑

j=1,2

‖v(j)‖α,p,∞‖wj‖α,p,∞ + ‖v#‖2α,p/2,∞.

It is natural to require the same paracontrolled structure for the initial condition u0 as for the 
solution for u. In other words, u0 is assumed to be of the form

u0 = T
u

(1)
0

(ϕ1 ∗ ξ1) + T
u

(2)
0

(ϕ2 ∗ ξ2) + u#
0 for some u

(1)
0 , u

(2)
0 ∈ Bα

p,∞, u#
0 ∈ B2α

p/2,∞.

Remark 3.9. A similar requirement for initial conditions u0 appears in the context of delay 
differential equations driven by rough paths where u0 is usually a path and not only a constant, 
cf. Neuenkirch et al. [39, Theorem 1.1]. Hence, in order to ensure that the rough path integral is 
well-defined, Neuenkirch et al. [39] suppose the initial condition to be a controlled path in the 
sense of Gubinelli [24].

To sum up, the ansatz reads as

u = T
u

(1)
0 +σ1(u(·−r1))

(ϕ1 ∗ ξ1) + T
u

(2)
0 +σ2(u(·−r2))

(ϕ2 ∗ ξ2) + u# (3.15)

with

u# := u#
0 +

∑ (
ϕj ∗ (

π(σj (u), ξj ) + Tξj
σj (u)

) + Rϕj
(σj (u), ξj )

) ∈ B2α
p/2,∞. (3.16)
j=1,2
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Note that, imposing the Young type condition α + β2 > 1 on the regularity of the drift term 
ϕ2 ∗ (σ2(u)ξ2) ensures especially that the cross terms π(ϕ1 ∗ ξ1, ξ2) and π(ϕ2 ∗ ξ2, ξ1) are well-
defined.

Postulating the paracontrolled structure for the initial condition, we show in the following that 
the Itô-Lyons map Ŝ := Ŝϕ1,ϕ2 given by

Ŝ : (Bα
p,∞)2 ×B2α

p/2,∞ ×Bβ1,γ1
p (ϕ1) ×Bβ2

p,∞ → Bα
p,∞,(

u
(1)
0 , u

(2)
0 , u#

0, (ξ1,μ), ξ2
) �→ u,

(3.17)

where u is the solution to the Volterra equation (1.2) given the initial condition u0 := T
u

(1)
0

(ϕ1 ∗
ξ1) +T

u
(2)
0

(ϕ2 ∗ ξ2) +u#
0 and the inputs (ξ1, μ), ξ2, has indeed a unique locally Lipschitz continu-

ous extension from smooth driving signals (ξ1, π(ϕ1 ∗ξ1, ξ1)) to the space of convolutional rough 
paths (ξ1, μ). For fixed signals ((ξ1, μ), ξ2) the ansatz from above and the proof of the following 
theorem reveals that the Itô-Lyons maps, more precisely, Dα

p(ϕ1 ∗ ξ1, ϕ2 ∗ ξ2) into itself.

Theorem 3.10. Let p ∈ [3, ∞], 0 < β1 � β2 � 1 and 0 < γ1 � γ2 satisfy α := β1 + γ1 − 1 ∈
( 1

3 , 1), 2α + β1 > 1 and α + β2 > 1. For

(i) σ1 ∈ C3, σ2 ∈ C2 and σ 0
j (·) := σj (·) − σj (0),

(ii) ϕj ∈ Bγj

1,∞ such that there exists rj ∈ R with ‖(· − rj )ϕj‖γj +1,1,∞ < ∞, for j = 1, 2,

(iii) (ξ1, μ) ∈ Bβ1−1,γ1
p (ϕ1) and ξ2 ∈ Bβ2−1

p,∞ ,

(iv) (u
(1)
0 , u(2)

0 , u#
0) ∈ (Bα

p,∞)2 ×B2α
p/2,∞,

the Volterra equation (1.2) with initial condition u0 = T
u

(1)
0

(ϕ1 ∗ ξ1) + T
u

(2)
0

(ϕ2 ∗ ξ2) + u#
0 has a 

unique solution if 	 := ‖σ 0
1 ‖C3‖ϕ1‖γ1,1,∞ + ‖σ 0

2 ‖C2‖ϕ2‖γ2,1,∞ is sufficiently small depending 

on ((u(1)
0 , u(2)

0 , u#
0), (ξ1, μ), ξ2) and ϕ1, ϕ2. Moreover, the Itô-Lyons map Ŝ from (3.17) is locally 

Lipschitz continuous around ((u(1)
0 , u(2)

0 , u#
0), (ξ1, μ), ξ2).

Remark 3.11. Theorem 3.10 provides the local Lipschitz continuity of the Itô-Lyons map Ŝ
on the rough path space Bβ1,γ1

p (ϕ1), which contains (convolutional) geometric rough paths with 
jumps. Indeed, considering γ1 > 1 and p = 3, the parameter assumptions in Theorem 3.10 only 
require

β1 > 1 − 2

3
γ1 and β1 >

1

3
+ 1 − γ1.

Hence, we can choose β1 < 1/p, which implies that Bβ1,γ1
p (ϕ1) contains discontinuous paths, 

and Theorem 3.10 is still applicable.
The existence of a continuous extension of the Itô-Lyons map from the space of smooth 

paths to a space of geometric rough paths containing discontinuous paths seems to be due to 
the smoothing property of the kernel function ϕ1 ∈ Bγ1

1,∞ for γ1 > 1, cf. [41, Remark 5.11]. Note 
that even if the driving rough path may possess jumps, the solution of the Volterra equation is still 
a continuous functions as we require α > 1/3. In order to obtain a continuous extension of the 
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Itô-Lyons map acting on smooth paths to discontinuous rough paths in the case of classical rough 
differential equations (corresponding to γ1 = 1) requires to consider the rough paths enhanced 
with an additional information given by the so-called path functionals, see the work of Chevyrev 
and Friz [12].

3.3. Proof of Theorem 3.10

Most objects appearing the paracontrolled approach to the Volterra equation (1.2) come only 
with local Lipschitz estimates of their Besov norms. Therefore, as a first step towards a proof of 
Theorem 3.10 we provide the a priori bounds for solutions of the Volterra equation (1.2). Recall 
that the implicit constant in � is independent of the functions σj , ϕj , ξj , u0, u, j = 1, 2.

Proposition 3.12. Let p ∈ [3, ∞], 0 < β1 � β2 � 1 and 0 < γ1 � γ2 satisfy α := β1 + γ1 − 1 ∈
( 1

3 , 1), 2α + β1 > 1 and α + β2 > 1. Suppose that

(i) σ1 ∈ C2 and σ2 ∈ C1 with σ1(0) = σ2(0) = 0,
(ii) ϕj ∈ Bγj

1,∞ such that there exists rj ∈ R with ‖(· − rj )ϕj‖γj +1,1,∞ < ∞, for j = 1, 2,

(iii) ξ1 ∈ C∞
c and ξ2 ∈ Bβ2−1

p,∞ ,

(iv) (u
(1)
0 , u(2)

0 , u#
0) ∈ (Bα

p,∞)2 ×B2α
p/2,∞.

Let u0 := u#
0 + T

u
(1)
0

(ϕ1 ∗ ξ1) + T
u

(2)
0

(ϕ2 ∗ ξ2) be the paracontrolled initial condition. Setting

	 := ‖σ1‖C2‖ϕ1‖γ1,1,∞ + ‖σ2‖C1‖ϕ2‖γ2,1,∞, Cσ := ‖σ1‖C1 + ‖σ2‖C1 + 1,

Cϕ :=
∑

j=1,2

(‖ϕj‖γj ,1,∞ + ‖(· − rj )ϕj‖γj +1,1,∞
) + 1, Cu0 := ‖u(1)

0 ‖α,p,∞ + ‖u(2)
0 ‖α,p,∞ + 1

and

Cξ := ‖π(ϕ1 ∗ ξ1, ξ1)‖α+β1−1,p/2,∞ +
∑

j=1,2

(
1 +

∑
k=1,2

‖ϕk‖γk,1,∞‖ξk‖βk−1,p,∞
)

‖ξj‖βj −1,p,∞,

there is a constant c > 0 depending only on α and p such that, if 	CσCϕCξCu0 � c, then

‖u‖α,p,∞ �2‖u0‖α,p,∞ + ‖u#
0‖2α,p/2,∞ + 1

�
∑

j=1,2

‖ϕj‖γj ,1,∞‖ξj‖βj −1,p,∞‖u(j)

0 ‖α,p,∞ + ‖u#
0‖2α,p/2,∞ + 1.

Proof. Using

u = u0 +
∑

j=1,2

ϕj ∗ (
Tσj (u)ξj + π(σj (u), ξj ) + Tξj

σj (u)
)
,

α � βj + γj − 1, the generalised Young inequality (Lemma 2.2) and Besov embeddings (as 
α > 1/p), we have
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‖u‖α,p,∞ � ‖u0‖α,p,∞ +
∑

j=1,2

‖ϕj‖γj ,1,∞
(‖Tσj (u)ξj‖βj −1,p,∞

+ ‖π(σj (u), ξj )‖α+βj −1,p/2,∞ + ‖Tξj
σj (u)‖βj −1,p,∞

)
.

By the paraproduct estimates (Lemma 2.1) and Lemma A.3 we obtain for j = 1, 2

‖Tσj (u)ξj‖βj −1,p,∞ � ‖σj (u)‖∞‖ξj‖βj −1,p,∞ � ‖σj‖∞‖ξj‖βj −1,p,∞

and

‖Tξj
σj (u)‖βj −1,p,∞ � ‖ξj‖βj −1,p,∞‖σj (u)‖α,p,∞ � ‖ξj‖βj −1,p,∞‖σj‖C1‖u‖α,p,∞.

(3.18)

We now need to bound the resonant terms ‖π(σj(u), ξj )‖α+βj −1,p/2,∞ for j = 1, 2. For j = 2
we apply again the paraproduct estimates (Lemma 2.1) and Lemma A.3 to get

‖π(σ2(u), ξ2)‖α+β2−1,p/2,∞ � ‖σ2(u)‖α,p,∞‖ξ2‖β2−1,p,∞ � ‖σ2‖C1‖u‖α,p,∞‖ξ2‖β2−1,p,∞

using the assumption α + β2 − 1 > 0.
For j = 1, in order to avoid a quadratic bound of �σ(u, ξ) (cf. (3.5) and [41, Proposition 4.1]), 

we apply the linearisation from Lemma A.4, which provides a function Sσ1(u) ∈ B2α
p/2,∞ such 

that

π(σ1(u), ξ1) = π(Tσ ′
1(u)u, ξ1) + π(Sσ1(u), ξ1).

Writing the ansatz (3.15) as

u =
∑

k=1,2

Tũk
(ϕk ∗ ξk) + u# with ũk := u

(k)
0 + σk(u(· − rk)), k = 1,2, (3.19)

and in combination with the commutator estimate (3.7), we find that

π(σ1(u), ξ1) =
∑

k=1,2

π
(
Tσ ′

1(u)

(
Tũk

(ϕk ∗ ξk)
)
, ξ1

) + π(Tσ ′
1(u)u

#, ξ1) + π(Sσ1(u), ξj )

=
∑

k=1,2

(
σ ′

1(u)π(Tũk
(ϕk ∗ ξk), ξ1) + C(σ ′

1(u), Tũk
(ϕk ∗ ξk), ξ1)

)
+ π(Tσ ′

1(u)u
#, ξ1) + π(Sσ1(u), ξ1)

=
∑

k=1,2

(
σ ′

1(u)̃ukπ(ϕk ∗ ξk, ξ1) + σ ′
1(u)C(̃uk,ϕk ∗ ξk, ξ1)

+ C(σ ′
1(u), Tũk

(ϕk ∗ ξk), ξ1)
)

+ π(Tσ ′
1(u)u

#, ξ1) + π(Sσ1(u), ξ1).

In the following we estimate these five terms, with k = 1, 2, frequently using Besov embed-
dings (α > 1/p), the paraproduct estimates (Lemma 2.1) and the auxiliary Besov estimates 
(Lemma A.1, A.2 and A.3).
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Owing to 2α + β1 > 1, we have

‖σ ′
1(u)̃ukπ(ϕk ∗ ξk, ξ1)‖α+β1−1,p/2,∞
� ‖σ ′

1(u)̃uk‖α,p,∞‖π(ϕk ∗ ξk, ξ1)‖α+β1−1,p/2,∞
�

(‖σ ′
1(u)‖α,p,∞‖u(k)

0 ‖α,p,∞ + ‖σ ′
1(u)σk(u(· − rk))‖α,p,∞

)‖π(ϕk ∗ ξk, ξ1)‖α+β1−1,p/2,∞
�

(‖σ ′
1‖C1‖u‖α,p,∞‖u(k)

0 ‖α,p,∞ + ‖σk‖C1‖σ1‖C2(‖u‖α,p,∞ + ‖u(· − rk))‖α,p,∞)
)

× ‖π(ϕk ∗ ξk, ξ1)‖α+β1−1,p/2,∞
� ‖σ1‖C2

(‖u(k)
0 ‖α,p,∞ + ‖σk‖C1

)‖π(ϕk ∗ ξk, ξ1)‖α+β1−1,p/2,∞‖u‖α,p,∞.

Applying the commutator estimate (3.7) and Young’s inequality (Lemma 2.2), we obtain

‖σ ′
1(u)C(̃uk,ϕk ∗ ξk, ξ1)‖α+β1−1,p/2,∞
� ‖σ ′

1(u)‖∞‖C(̃uk,ϕk ∗ ξk, ξ1)‖2α+β1−1,p/3,∞
� ‖σ ′

1‖∞‖u(k)
0 + σk(u(· − rk))‖α,p,∞‖ϕk ∗ ξk‖α,p,∞‖ξ1‖β1−1,p,∞

� ‖σ1‖C1

(‖u(k)
0 ‖α,p,∞ + ‖σk‖C1‖u‖α,p,∞

)‖ϕk‖γk,1,∞‖ξk‖βk−1,p,∞‖ξ1‖β1−1,p,∞

and similarly

‖C(σ ′
1(u), Tũk

(ϕk ∗ ξk), ξ1)‖α+β1−1,p/2,∞
� ‖σ ′

1(u)‖α,p,∞‖Tũk
(ϕk ∗ ξk)‖α,p,∞‖ξ1‖β1−1,p,∞

� ‖σ1‖C2‖u‖α,p,∞
(‖u(k)

0 ‖∞ + ‖σk(u(· − rk))‖∞
)‖ϕk ∗ ξk‖α,p,∞‖ξ1‖β1−1,p,∞

� ‖σ1‖C2

(‖u(k)
0 ‖α,p,∞ + ‖σk‖∞

)‖ϕk‖γk,1,∞‖u‖α,p,∞‖ξk‖βk−1,p,∞‖ξ1‖β1−1,p,∞.

From Bony’s estimates (Lemma 2.1) we deduce that

‖π(Tσ ′
1(u)u

#, ξ1)‖α+β1−1,p/2,∞

� ‖Tσ ′
1(u)u

#‖2α,p/2,∞‖ξ1‖β1−1,p,∞ � ‖σ ′
1‖∞‖u#‖2α,p/2,∞‖ξ1‖β1−1,p,∞.

Finally, Lemma A.4 shows

‖π(Sσ1(u), ξ1)‖α+β1−1,p/2,∞
� ‖Sσ1(u)‖2α,p/2,∞‖ξ1‖β1−1,p,∞

� ‖σ1‖C2‖ξ1‖β1−1,p,∞
(

1 +
∑

k=1,2

‖ũk‖∞‖ϕk ∗ ξk‖α,p,∞
)(‖u‖α,p,∞ + ‖u#‖2α,p/2,∞

)
� ‖σ1‖C2‖ξ1‖β1−1,p,∞

(
1 +

∑
k=1,2

(‖u(k)
0 ‖∞ + ‖σk(u(· − rk))‖∞

)‖ϕk‖γk,1,∞‖ξk‖βk−1,p,∞
)

× (‖u‖α,p,∞ + ‖u#‖2α,p/2,∞
)
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� ‖σ1‖C2‖ξ1‖β1−1,p,∞
(

1 +
∑

k=1,2

(‖u(k)
0 ‖∞ + ‖σk‖∞

)‖ϕk‖γk,1,∞‖ξk‖βk−1,p,∞
)

× (‖u‖α,p,∞ + ‖u#‖2α,p/2,∞
)
.

Summarising, we have

‖π(σ1(u), ξ1)‖α+β1−1,p/2,∞
� ‖σ1‖C2(‖σ1‖C1 + ‖σ2‖C1 + 1)

×
(
‖ξ1‖β1−1,p,∞ +

∑
k=1,2

(‖ϕk‖γk,1,∞‖ξk‖βk−1,p,∞‖ξ1‖β1−1,p,∞

+ ‖π(ϕk ∗ ξk, ξ1)‖α+β1−1,p/2,∞
))

× (‖u(1)
0 ‖α,p,∞ + ‖u(2)

0 ‖α,p,∞ + 1
)(‖u‖α,p,∞ + ‖u#‖2α,p/2,∞ + 1

)
.

Since γ2 + β2 + β1 − 2 � α + β2 − 1 > 0, we can estimate the resonant term for k = 2 by

‖π(ϕ2 ∗ ξ2, ξ1)‖α+β1−1,p/2,∞ � ‖π(ϕ2 ∗ ξ2, ξ1)‖β2+β1+γ2−2,p/2,∞
� ‖ϕ2 ∗ ξ2‖β2+γ2−1,p,∞‖ξ1‖β1−1,p,∞
� ‖ϕ2‖γ2,1,∞‖ξ2‖β2−1,p,∞‖ξ1‖β1−1,p,∞,

where we used Bony’s estimates (Lemma 2.1) and Young’s inequality (Lemma 2.2).
With the definitions from Proposition 3.12 we thus obtain

‖ϕ1 ∗ π(σ1(u), ξ1)‖2α,p/2,∞ + ‖ϕ2 ∗ π(σ2(u), ξ2)‖2α,p/2,∞
� 	Cσ CξCu0

(‖u‖α,p,∞ + ‖u#‖2α,p/2,∞ + 1
) (3.20)

and

‖u‖α,p,∞ � ‖u0‖α,p,∞ + 	Cσ CξCu0

(‖u‖α,p,∞ + ‖u#‖2α,p/2,∞ + 1
)
. (3.21)

Moreover, by the formula for u# as given in (3.16), by the estimates (3.18), (3.20) and Lemma 3.4
we see

‖u#‖2α,p,∞ � ‖u#
0‖2α,p/2,∞ +

∑
j=1,2

(‖ϕj ∗ π(σj (u), ξj )‖2α,p/2,∞

+ ‖ϕj ∗ (Tξj
σj (u))‖2α,p/2,∞ + ‖Rϕj

(σj (u), ξj )‖2α,p/2,∞
)

� ‖u#
0‖2α,p/2,∞ + C	Cσ CϕCξCu0

(‖u‖α,p,∞ + ‖u#‖2α,p/2,∞ + 1
)

for a constant C > 0. Assuming C	CσCϕCξCu0 � 1/2, one gets

‖u#‖2α,p/2,∞ � ‖u‖α,p,∞ + 2‖u#‖2α,p/2,∞ + 1.
0
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Combining this with (3.21), we have for another constant C′ > 0

‖u‖α,p,∞ � ‖u0‖α,p,∞ + C′	Cσ CξCu0

(‖u‖α,p,∞ + ‖u#
0‖2α,p/2,∞ + 1

)
.

Therefore, ‖u‖α,p,∞ � 2‖u0‖α,p,∞ + ‖u#
0‖2α,p/2,∞ + 1 provided C′	Cσ CξCu0 � 1/2. �

Finally, we can establish the existence of a unique local Lipschitz continuous extension of the 
Itô-Lyons map Ŝ from (3.17) and thus conclude the existence of unique solution of the Volterra 
equation (1.2) for the rough setting by approximating the convolutional rough paths with smooth 
functions. As the estimates work analogously to the proof of Proposition 3.12, we present only 
the key estimates without giving to many details.

Proof of Theorem 3.10. Without loss of generality we may assume that σ1(0) = σ2(0) = 0, as 
explained in the proof of Proposition 3.2.

For i = 1, 2 let (ξ i
1, ξ

i
2) ∈ C∞

c × Bβ2−1
p,∞ be two signals and (u(1),i

0 , u(2),i
0 , u#,i

0 ) ∈ (Bα
p,∞)2 ×

B2α
p/2,∞ be two initial conditions. Let M ≥ 1 be a constant such that

Cϕ,Cξi ,Cui
0
,‖u#,i

0 ‖2α,p/2,∞ ≤ M, for i = 1,2,

using the definitions from Proposition 3.12. Assuming that

Lσ := (‖σ1‖C3 + ‖σ2‖C2

)(
1 + ‖σ1‖C3 + ‖σ2‖C2

)
is sufficiently small depending on M , Proposition 3.1 implies the existence of corresponding 
unique solutions u1, u2 to the Volterra equation (1.2) and additionally Proposition 3.12 leads to 
the bound

‖ui‖α,p,∞ � M2, i = 1,2.

Based on the ansatz for u1, u2 (see (3.19)) and Young’s inequality (Lemma 2.2), we observe

‖u1 − u2‖α,p,∞
� ‖u1

0 − u2
0‖α,p,∞ +

∑
j=1,2

‖ϕj‖γj ,1,∞
(‖Tσj (u1)ξ

1
j − Tσj (u2)ξ

2
j ‖βj −1,p,∞

+ ‖π(σj (u
1), ξ1

j ) − π(σj (u
2), ξ2

j )‖α+βj −1,p/2,∞ + ‖Tξ1
j
σj (u

1) − Tξ2
j
σj (u

2)‖βj −1,p,∞
)
.

(3.22)

By the paraproduct estimates (Lemma 2.1) and Lemma A.3 we obtain

‖Tσj (u1)ξ
1
j − Tσj (u2)ξ

2
j ‖βj −1,p,∞ � ‖σj‖∞‖ξ1

j − ξ2
j ‖βj −1,p,∞ + ‖σj‖C2‖ξ2‖βj −1,p,∞

× (
1 + ‖u1‖α,p,∞ + ‖u2‖α,p,∞

)‖u1 − u2‖α,p,∞
(3.23)

and
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‖Tξ1
j
σj (u

1) − Tξ2
j
σ (u2)‖βj −1,p,∞

� ‖σj‖C2‖ξ1
j ‖βj −1,p,∞

(
1 + ‖u1‖α,p,∞ + ‖u2‖α,p,∞

)‖u1 − u2‖α,p,∞
+ ‖σj‖C1‖u2‖α,p,∞‖ξ1

j − ξ2
j ‖βj −1,p,∞.

(3.24)

It remains to show the local Lipschitz continuity of π(σj(u
i), ξ i

j ). For j = 2, due to α + β2 −
1 > 0, we directly apply the paraproduct estimates (Lemma 2.1) and Lemma A.3 to get

‖π(σ2(u
1), ξ1

2 ) − π(σ2(u
2), ξ2

2 )‖α+β2−1,p/2,∞
� ‖σ2‖C2‖ξ1

2 ‖β2−1,p,∞
(
1 + ‖u1‖α,p,∞ + ‖u2‖α,p,∞

)‖u1 − u2‖α,p,∞
+ ‖σ2‖C1‖u2‖α,p,∞‖ξ1

2 − ξ2
2 ‖β2−1,p,∞.

For j = 1 we linearise π(σ1(u
i), ξ i

1) more carefully using Lemma A.4, the ansatz and the com-
mutator estimate (3.7). Rewriting the ansatz (3.15) as

ui =
∑

k=1,2

Tũi
k
(ϕk ∗ ξ i

k) + u#,i

with

u#,i := u
#,i
0 +

∑
j=1,2

(
ϕj ∗ (

π(σj (u
i), ξ i

j ) + Tξi
j
σj (u

i)
) + Rϕj

(σj (u
i), ξ i

j )
)
,

ũi
k := u

(k),i
0 + σk(u

i(· − rk)), k = 1,2,

we find as in the proof of Proposition 3.12 that

π(σ1(u
i), ξ i

1) =
∑

k=1,2

(
σ ′

1(u
i )̃ui

kπ(ϕk ∗ ξ i
k, ξ

i
1) + σ ′

1(u
i)C(̃ui

k, ϕk ∗ ξ i
k, ξ

i
1)

+ C(σ ′
1(u

i), Tũi
k
(ϕk ∗ ξ i

k), ξ
i
1)

)
+ π(Tσ ′

1(u
i )u

#,i , ξ i
1) + π(Sσ1(u

i), ξ i
1)

=:
∑

k=1,2

(
D

k,i
1 + D

k,i
2 + D

k,i
3

) + Di
4 + Di

5.

We estimate the differences of these five terms, with k = 1, 2, using again Besov embed-
dings (α > 1/p), the paraproduct estimates (Lemma 2.1) and the auxiliary Besov estimates 
(Lemma A.1, A.2 and A.3). In order to abbreviate theses estimates, let us introduce

C̃u :=
(

1 +
2∑

i,k=1

(‖ui‖α,p,∞ + ‖u#,i‖2α,p/2,∞ + ‖u(k),i
0 ‖α,p,∞

))2

,

C̃ξ := 1 + ‖π(ϕ1 ∗ ξ1
1 , ξ1

1 )‖α+β1−1,p/2,∞ +
2∑

i,k=1

‖ξ i
k‖βk−1,p,∞,

C̃ϕ := ‖ϕ1‖γ1,1,∞ + ‖ϕ2‖γ2,1,∞.
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For the first term we have

‖Dk,1
1 − D

k,2
1 ‖α+β1−1,p/2,∞

� Lσ C̃ξ C̃u

(‖u(k),1
0 − u

(k),2
0 ‖α,p,∞ + ‖u1 − u2‖α,p,∞

+ ‖π(ϕk ∗ ξ1
k , ξ1

1 ) − π(ϕk ∗ ξ2
k , ξ2

1 )‖α+β1−1,p/2,∞
)
.

Applying the commutator estimate (3.7) and Young’s inequality (Lemma 2.2), we obtain

‖Dk,1
2 − D

k,2
2 ‖α+β1−1,p/2,∞

� Lσ C̃ϕC̃2
ξ C̃u

(‖u(k),1
0 − u

(k),2
0 ‖α,p,∞ + ‖u1 − u2‖α,p,∞

+ ‖ξ1
k − ξ2

k ‖βk−1,p,∞ + ‖ξ1
1 − ξ2

1 ‖β1−1,p,∞
)
.

The commutator estimate and Young’s inequality moreover yield

‖Dk,1
3 − D

k,2
3 ‖α+β1−1,p/2,∞

� Lσ C̃ϕC̃2
ξ C̃u

(‖u1 − u2‖α,p,∞ + ‖u(k),1
0 − u

(k),2
0 ‖α,p,∞

+ ‖ξ1
k − ξ2

k ‖βk−1,p,∞ + ‖ξ1
1 − ξ2

1 ‖β1−1,p,∞
)
.

Applying Lemma 3.4, we deduce that

‖D1
4 − D2

4‖α+β1−1,p/2,∞
� Lσ C̃ξ C̃u

(‖u1 − u2‖α,p,∞ + ‖u#,1 − u#,2‖2α,p/2,∞ + ‖ξ1
1 − ξ2

1 ‖β1−1,p,∞
)
.

Finally, [41, Lemma 4.2] leads to

‖D1
5 − D2

5‖α+β1−1,p/2,∞ � Lσ C̃2
ξ C̃u

(‖u1 − u2‖α,p,∞ + ‖ξ1
1 − ξ2

1 ‖β1−1,p,∞
)
.

Relying additionally on the estimate

‖π(ϕ2 ∗ ξ1
2 , ξ1

1 ) − π(ϕ2 ∗ ξ2
2 , ξ2

1 )‖α+β1−1,p/2,∞
≤ ‖ϕ2‖γ2−1,1,∞‖ξ1

1 ‖β1−1,p,∞‖ξ1
2 − ξ2

2 ‖β2−1,p,∞
+ ‖ϕ2‖γ2,1,∞‖ξ1

2 ‖β2−1,p,∞‖ξ1
1 − ξ2

1 ‖β1−1,p/2,∞,

we conclude that there exist a constant C(M) such that

‖π(σ1(u
1), ξ1

1 ) − π(σ1(u
2), ξ2

1 )‖2α,p/2,∞

� Lσ C(M)

(
‖u1 − u2‖α,p,∞ + ‖π(ϕ1 ∗ ξ1

1 , ξ1
1 ) − π(ϕ1 ∗ ξ2

1 , ξ2
1 )‖α+β1−1,p/2,∞

+
∑

j=1,2

(‖ξ1
j − ξ2

j ‖β1−1,p,∞ + ‖u(j),1
0 − u

(j),2
0 ‖α,p,∞

) + ‖u#,1 − u#,2‖2α,p/2,∞
)

.
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The last term can be further estimated by

‖u#,1 − u#,2‖2α,p/2,∞
≤ ‖u#,1

0 − u
#,2
0 ‖2α,p/2,∞ +

∑
j=1,2

‖ϕj‖γj ,1,∞
(‖π(σj (u

1), ξ1
j ) − π(σj (u

2), ξ2
j )‖2α,p/2,∞

+ ‖Tξ1
j
σj (u

1) − Tξ2
j
σj (u

2)‖2α,p/2,∞ + ‖Rϕj
(σj (u

1), ξ1
j ) − Rϕj

(σj (u
2), ξ2

j )‖2α,p/2,∞
)

� ‖u#,1
0 − u

#,2
0 ‖2α,p/2,∞ + C̃ϕLσ C(M)

(
‖u1 − u2‖α,p,∞ + ‖u#,1 − u#,2‖2α,p/2,∞

+
∑

j=1,2

(‖ξ1
j − ξ2

j ‖β1−1,p,∞ + ‖u(j),1
0 − u

(j),2
0 ‖α,p,∞

)
+ ‖π(ϕ1 ∗ ξ1

1 , ξ1
1 ) − π(ϕ1 ∗ ξ2

1 , ξ2
1 )‖α+β1−1,p/2,∞

)
,

where we used that Rϕ(·, ·) from Lemma 3.4 is a bounded linear operator by its definition. For 
Lσ small enough the last inequality in combination with (3.22) (3.23) and (3.24) implies

‖u1 − u2‖α,p,∞ � ‖u#,1
0 − u

#,2
0 ‖2α,p/2,∞ + Ĉ

(
‖π(ϕ1 ∗ ξ1

1 , ξ1
1 ) − π(ϕ1 ∗ ξ2

1 , ξ2
1 )‖α+β1−1,p/2,∞

+
∑

j=1,2

(‖ξ1
j − ξ2

j ‖β1−1,p,∞ + ‖u(j),1
0 − u

(j),2
0 ‖α,p,∞

)
,

for some constant Ĉ := C(Lσ , M) > 0. This Lipschitz estimate allows to extend the Itô-Lyons 
map (3.17) from smooth driving signals ξ1 with compact support to the space of convolutional 
rough paths. �
3.4. Solutions for general vector fields

In Theorem 3.10 we assumed that

	 = ‖σ 0
1 ‖C3‖ϕ1‖γ1,1,∞ + ‖σ 0

2 ‖C2‖ϕ2‖γ2,1,∞

is sufficiently small, which can be interpreted as a flatness condition on the vector fields σ1, σ2. In 
this subsection we discuss how the existence and uniqueness results can be extended to general 
vector fields σ1, σ2 applying a scaling argument in the spirit of Gubinelli et al. [25] to a localised
version of (1.2). Interestingly, 	 is small if the (localised) kernels ϕ1, ϕ2 are supported on a 
sufficiently small domain and if γ1, γ2 < 1, cf. Remark 3.16. For simplicity we suppose σ1(0) =
σ2(0) = 0 in the following theorem.

Theorem 3.13. Let p ∈ [3, ∞], 0 < β1 � β2 � 1 and 0 < γ1 � γ2 satisfy α := β1 + γ1 − 1 ∈
( 1

3 , 1), α + β1 < 1 < 2α + β1 and α + β2 > 1. If γj > 1 for j = 1, 2, let also βj > 1/p be 
fulfilled. Suppose that

(i) σ1 ∈ C3 and σ2 ∈ C2 with σ1(0) = σ2(0) = 0,
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(ii) ϕj ∈ Bγj

1,∞ such that there exists rj ∈ R with ‖(· − rj )ϕj‖γj +1,1,∞ < ∞, for j = 1, 2,

(iii) (ξ1, μ) ∈ Bβ1−1,γ1
p (ϕ1) and ξ2 ∈ Bβ2−1

p,∞ ,
(iv) u0 ∈ B2α

p/2,∞.

Additionally, we impose the structural assumption on the kernel ϕ1:

(v) There is some ψ ∈ Bs+δ
1,∞ for δ > (2 − 2β1) ∨ 1 and s ∈ [0, 1) such that ϕ1(x) = (x −

r1)
−s1(r1,∞)(x)ψ(x).

Let χ be a C∞ function with suppχ ⊆ [−2, 2] and χ(x) = 1 for x ∈ [−1, 1]. Then there is 
some λ ∈ (0, 1) depending on (u0, (ξ1, μ), ξ2), ϕ1, ϕ2 and σ1, σ2, such that the localised Volterra 
equation

u(t) = u
loc,λ
0 (t) + (

ϕ
loc,λ
1 ∗ (σ1(u)ξ1)

)
(t) + (

ϕ
loc,λ
2 ∗ (σ2(u)ξ2)

)
(t), t ∈ R, (3.25)

with kernels ϕloc,λ
j := χ(λ−1·)ϕj , j = 1, 2, and initial condition uloc,λ

0 := χ(λ−1·)u0 has a 
unique solution in the space Bα−ε

p,∞ for any ε > 0.

Proof. Let us introduce the dilation operator �λf := f (λ·) for any f ∈ S ′. For δ, λ > 0, we first 
observe that

u = u
loc,λ
0 +

∑
j=1,2

ϕ
loc,λ
j ∗ (σj (u)ξj )

= u
loc,λ
0 +

∑
j=1,2

∫
R

λ

δ
ϕ

loc,λ
j (· − λs)δσj

(
u(λs)

)
�λξj (s)ds.

Therefore, u solves (3.25) if and only if ̃u := �λu solves

ũ = �λu
loc,λ
0 +

∑
j=1,2

∫
R

λ

δ
�λϕ

loc,λ
j (· − s)δσj

(̃
u(s)

)
�λξj (s)ds. (3.26)

Applying the dilation estimate from [41, Lem. 2.3] we have∥∥�λξj

∥∥
βj −1,p,∞ � (1 + λβj −1| logλ|)λ−1/p‖ξj‖βj −1,p,∞. (3.27)

The auxiliary Lemma A.5 yields

‖�λϕ
loc,λ
j ‖γj ,1,∞ = ‖χ�λϕj‖γj ,1,∞ � λ(γ ′∧1)−1| logλ|‖ϕj‖γj ,1,∞ for any γ ′ < γj ,

‖�λu
loc,λ
0 ‖2α,p/2,∞ = ‖χ�λu0‖2α,p/2,∞ � λα−1/p| logλ|‖u0‖2α,p/2,∞.

(3.28)

We now may choose δ such that the norms of the scaled noise and kernels remain bounded 
while ‖δσj‖C3 → 0 for δ → 0. Due to the assumptions on the parameters, we have 1 < βj +
p
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(γj ∧ 1) − 1 such that there is some 0 < τ < (βj + (γj ∧ 1) − 1 − 1/p)/2 and we can choose 
δ = λβj +(1∧γj )−1−1/p−2τ . Setting ̃uloc

0 := �λu
loc
0 and

ξ̃j := λ1+1/p−βj +τ�λξj , ϕ̃loc
j := λ1−(1∧γj )+τ�λϕ

loc
j , σ̃j := δσj ,

we obtain from (3.26) the dilated representation

ũ := ũloc
0 +

∑
j=1,2

(
ϕ̃loc

j ∗ (̃σj (̃u)̃ξj

)
. (3.29)

Owing to (3.27) and (3.28), we have uniformly in λ > 0

‖̃ξj‖βj −1,p,∞ � ‖ξj‖βj −1,p,∞, ‖ϕ̃loc
j ‖γj ,1,∞ � ‖ϕj‖γj ,1,∞,

‖ũloc
0 ‖2α,p/2,∞ � ‖u0‖2α,p/2,∞.

We may now choose λ and thus δ sufficiently small such that Theorem 3.10 applies to (3.29)
when γj and α are replaced by γ̃j := γj − ε and α̃ := α − ε = β1 + γ̃1 − 1, respectively, for 
some sufficiently small ε > 0. Since ‖ϕ̃loc

j ‖γ̃j ,1,∞ � ‖ϕ̃loc
j ‖γj ,1,∞ � ‖ϕj‖γj ,1,∞, it only remains 

to verify bounds for ‖(· − rj )ϕ̃
loc
j ‖γ̃j +1,1,∞ and ‖π(ϕ̃loc

1 ∗ ξ̃1, ̃ξ1)‖α̃+β1−1,p/2,∞ uniformly in λ. 
Setting rj = 0 without loss of generality, we obtain from Lemma A.5 for γ ′ = 1 ∧ γj − τ/2

‖xϕ̃loc
j (x)‖γ̃j +1,1,∞ = λ−(1∧γj )+τ‖χ(x)χ(x/2)�λ(xϕj (x))‖γ̃j +1,1,∞

� λγ ′−(1∧γj )+τ | logλ|(‖xϕj (x)‖γj +1,1,∞ + ‖ϕj‖γj ,1,∞
)
.

Moreover, we have due to [41, Lem. 2.3], Lemma A.6 and α + β1 < 1:

‖π(ϕ̃loc
1 ∗ ξ̃1, ξ̃1)‖α̃+β1−1,p/2,∞

= λ2+2/p−2β1−(γ1∧1)+3τ‖π(�λ(ϕ
loc,λ
1 ∗ ξ1),�λξ1)‖α̃+β1−1,p/2,∞

≤ λ2+2/p−2β1−(γ1∧1)+3τ
(‖�λ(π(ϕ

loc,λ
1 ∗ ξ1), ξ1))‖α̃+β1−1,p/2,∞

+ ‖π(�λ(ϕ
loc,λ
1 ∗ ξ1),�λξ1) − �λ(π(ϕ

loc,λ
1 ∗ ξ1, ξ1))‖α̃+β1−1,p/2,∞

)
� λα̃+1−β1−(γ1∧1)+3τ | logλ|‖π(ϕ

loc,λ
1 ∗ ξ1, ξ1)‖α̃+β1−1,p/2,∞

+ λα̃+1−β1−(γ1∧1)+3τ‖ϕloc,λ
1 ∗ ξ1‖α̃,p,∞‖ξ1‖β1−1,p,∞

+ λ2+2/p−2β1−(γ1∧1)+3τ‖�λ(ϕ
loc,λ
1 ∗ ξ1)‖α̃,p,∞‖�λξ1‖β1−1,p,∞.

(3.30)

The last two terms in (3.30) can be bounded by Young’s inequality

λα̃+1−β1−(γ1∧1)+3τ‖ϕloc,λ
1 ∗ ξ1‖α̃,p,∞‖ξ1‖β1−1,p,∞ � λ3τ‖ϕloc,λ

1 ‖γ̃ ,p,∞‖ξ1‖2
β1−1,p,∞

and, in combination with [41, Lem. 2.3] and Lemma (A.5) for ε < τ ,
248



D.J. Prömel and M. Trabs Journal of Differential Equations 302 (2021) 222–272
λ2+2/p−2β1−(γ1∧1)+3τ‖�λ(ϕ
loc,λ
1 ∗ ξ1)‖α̃,p,∞‖�λξ1‖β1−1,p,∞

� λ3+2/p−2β1−(γ1∧1)+3τ‖�λϕ
loc,λ
1 ‖γ̃ ,1,∞‖�λξ1‖2

β1−1,p,∞
� λτ | logλ|3‖ϕloc,λ

1 ‖γ̃ ,1,∞‖ξ1‖2
β1−1,p,∞.

Choosing q, q ′ ∈ [1, ∞) such that 1
q ′ + 1

q
= 1 and γ1 > 1

q
> γ̃1, we observe

‖ϕloc,λ
1 ‖γ̃ ,1,∞
� ‖Tϕ1χ(λ−1·)‖γ̃1,1,∞ + ‖Tχ(λ−1·)ϕ1‖γ̃1,1,∞ + ‖π(ϕ1, χ(λ−1·))‖γ̃1,1,∞
� ‖ϕ1‖Lq′ ‖χ(λ−1·)‖γ̃1,q,∞ + ‖χ(λ−1·)‖L∞‖ϕ1‖γ̃1,1,∞

+ ‖ϕ1‖γ̃1,1,∞‖χ(λ−1·)‖β1−1,∞,∞
� ‖ϕ1‖γ1,1,∞(1 + λ−γ̃1 | logλ−1|)λ 1

q ‖χ‖γ̃1,q,∞ + ‖χ‖L∞‖ϕ1‖γ1,1,∞
+ ‖ϕ1‖γ1,1,∞(1 + λ1−β1 | logλ−1|)‖χ‖β1−1,∞,∞,

(3.31)

where we applied Bony’s decomposition, [41, Lem. 2.3] and Besov embeddings. Hence,

‖ϕloc,λ
1 ‖γ̃ ,1,∞ � ‖ϕ1‖γ1,1,∞

and we can estimate (3.30) by

‖π(ϕ̃loc
1 ∗ ξ̃1, ξ̃1)‖α̃+β1−1,p/2,∞

� λα̃+1−β1−(γ1∧1)+3τ | logλ|‖π(ϕ
loc,λ
1 ∗ ξ1, ξ1)‖α̃+β1−1,p/2,∞

+ ‖ϕ1‖γ̃ ,p,∞‖ξ1‖2
β1−1,p,∞

� ‖π(ϕ1 ∗ ξ1, ξ1)‖α+β1−1,p/2,∞ + ∥∥π
(
((1 − �1/λχ)ϕ1) ∗ ξ1, ξ1

)∥∥
α̃+β1−1,p/2,∞

+ ‖ϕ1‖γ̃ ,p,∞‖ξ1‖2
β1−1,p,∞.

(3.32)

It remains to estimate the term π
(
((1 − �1/λχ)ϕ1) ∗ ξ1, ξ1

)
since the other terms can be seen to 

be uniformly bounded in λ ∈ (0, 1] keeping in mind (3.31). We use that the potential irregularity 
of ϕ1 at the origin is smoothed out. Setting ε′ := (1 −α−β1) +ε such that ε−2(β1 −1) = γ +ε′, 
we can bound∥∥π

(
((1 − �1/λχ)ϕ1) ∗ ξ1, ξ1

)∥∥
α̃+β1−1,p/2,∞ �

∥∥π
(
((1 − �1/λχ)ϕ1) ∗ ξ1, ξ1

)∥∥
ε,p/2,∞

� ‖((1 − �1/λχ)ϕ1) ∗ ξ1‖ε−β1+1,p,∞‖ξ1‖β1−1,p,∞
� ‖((1 − �1/λχ)ϕ1)‖γ+ε′,1,∞‖ξ1‖2

β1−1,p,∞.

We will now use the kernel assumption ϕ1(x) = x−sψ(x)1[0,∞)(x). According to [46, Corol-
lary 2.9.3] and the proof of [46, Theorem 2.9.1], the extension operator

S0 : {f ∈ Bδ
p,∞(R+) : f (0) = 0} → Bδ

p,∞(R), f �→ f̃ (x) :=
{

f (x), x � 0

0, x < 0
,

is bounded and linear if 1
p

< δ < 1
p

+ 1. In particular, for any function f ∈ Bδ
p,∞ with f (0) = 0

we conclude with restriction f |R to R+ that
+
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‖f1[0,∞)‖δ,p,q � ‖f |R+‖Bδ
p,∞(R+)

= inf
{‖g‖δ,p,∞ : g ∈ Bδ

p,∞, g(x) = f (x)∀x � 0
}

� ‖f ‖δ,p,∞.
(3.33)

Since χ is constant one in a neighbourhood of the origin, we may apply (3.33) to f (x) = (1 −
χ(λ−1x))x−sψ(x) and any δ ∈ ((γ + ε′) ∨ 1, 2). Together with Lemma A.5 we obtain for ε′′ ∈
(s, 1)

‖(1 − χ(λ−1·))ϕ‖γ+ε′,1,∞ �
∥∥∥1 − χ(x/λ)

xs
ψ

∥∥∥
δ,1,∞ = λ−s

∥∥∥1 − χ(λ−1x)

(x/λ)s
ψ

∥∥∥
δ,1,∞

� λε′′−s | logλ|‖x−s(1 − χ(x))‖δ,1,∞‖ψ‖δ,1/(1−ε′′),∞
� ‖x−s(1 − χ(x))‖δ,1,∞‖ψ‖δ+ε′′,1,∞.

In combination with (3.32), we observe a uniform bound for ‖π(ϕ̃loc
1 ∗ ξ̃1, ̃ξ1)‖α̃+β1−1,p/2,∞

which concludes the proof. �
Remark 3.14. Note that under the support assumptions suppϕi ⊆ [0, ∞) and supp ξi ⊆ [0, ∞)

for i = 1, 2 the solution of the localised equation (3.25) coincide with the solution of the original 
Volterra equation (1.2) on a small time horizon, provided the initial condition is, e.g., a constant 
or has sufficiently small support. Based on this observation, one can iteratively solve the Volterra 
equation (1.2) in order to obtain a global solution using a classical pasting argument. In case of 
Volterra equations this procedure will require carefully chosen support conditions on the kernel 
functions and the noise terms. In the special case of classical rough differential equations (which 
corresponds to ϕ1 = ϕ2 = 1[0,∞), see Subsection 5.1) such procedure was carried out in, e.g., 
[25] and [41].

Remark 3.15. The assumption (v) on the kernel ϕ1 is fairly flexible and covers many typical 
applications. For s = 0 we may replace 1(0,∞) by 1[0,∞) and we obtain a class of regular kernels 
ϕ1 = 1[0,∞)ψ for some ψ ∈ Bδ

1,∞, δ ∈ (1 ∨ (γ1 + 1 − α − β1), γ1 + α), (setting r1 = 0 for 
simplicity). In this case the singularity at 0 is not more severe than a jump such that we recover 
many features of ordinary rough differential equations, especially γ1 = 1. The condition ψ ∈
Bδ

1,∞ is quite weak and includes, for instance, the kernels studied in [16] where ψ ∈ C3. On the 
one hand δ has to be larger than γ such that ψ is more regular than ϕ1 itself and on the other 
hand δ > 1 ensures that ψ is continuous. For s > 0 and ψ(0) �= 0 the kernel is singular. Note 
that the degree of the singularity is constrained by the regularity assumption ϕ1 ∈ Bγ1

1,∞ implying 
s � 1 − γ1. For example, if ξ1 is white noise, then α > 1/3 implies γ > 5/6 such that we require 
s ∈ [0, 1/6). For further examples we refer to Section 5.

Remark 3.16. More generally, for singular kernels ϕ1 which do not satisfy assumption (v), a uni-
form bound (in λ) of the localised resonant term ‖π(ϕ

loc,λ
1 ∗ ξ1, ξ1)‖α+β1−1−ε,p/2,∞ from (3.30)

could be directly assumed. Indeed, we will see in the stochastic construction below (see the proof 
of Theorem 4.6) that this resonant term is typically of order ‖ϕloc,λ

1 ‖γ,1,∞, which can be bounded 
by Lemma A.5 as

‖ϕloc,λ
1 ‖γ−ε,1,∞ = ‖χ(λ−1·)ϕ1‖γ−ε,1,∞

� λε| logλ|‖χ‖γ−ε,1,∞‖ϕ1‖γ−ε,1/(1−ε),∞ � λε/2‖χ‖γ,1,∞‖ϕ1‖γ,1,∞.
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Note that the last estimate is arbitrary small for sufficiently small λ, Theorem 3.10 can then 
be directly applied to the localised equation (3.25) without an additional scaling argument if 
γ1, γ2 < 1.

4. The resonant term

In order to apply the existence and unique results provided in Section 3 to stochastic Volterra 
equations, it is often necessary to construct the resonant term π (ϕ ∗ ξ ,ξ ) for the driving stochastic 
processes. In the case of regular kernels ϕ ∈ B1

1,∞, the existence of the resonant term π (ϕ ∗ ξ ,ξ )
is equivalent to the existence of the classical rough path, see Subsection 4.1. However, for sin-
gular kernels ϕ ∈ Bδ

1,∞ with δ < 1 this equivalence does not hold anymore and it is necessary 
to include the kernel ϕ in the definition of the “rough path”, see Example 4.3. Therefore, we 
provide a probabilistic construction of convolutional rough paths for a wide class of Gaussian 
processes in Subsection 4.2.

4.1. Relation to rough path theory

For a regular kernel ϕ = 1[0,∞)ψ and a rough signal ξ the resonant term π(ϕ ∗ ξ, ξ) can 
be reduced to the resonant term π(1[0,∞) ∗ ξ, ξ) = π(

∫ t

−∞ dξ(s), ξ) between ξ and its anti-
derivative. The latter corresponds to the classical rough path integral, cf. [25]. Considering the 
Volterra equation on some bounded time interval, we may use π((1[0,∞)χ) ∗ ξ, ξ) instead of 
π(1[0,∞) ∗ ξ, ξ) where χ is some smooth compactly supported function being constant one in 
a neighbourhood of the origin. Note that χ only ensures integrability of the kernel, while the 
characteristic regularity properties of 1[0,∞) are preserved. In particular, the (weak) derivative of 
(1[0,∞)χ) ∗ ξ is ξ up to some additional smooth remainder.

Lemma 4.1. Let ξ ∈ Bβ−1
p,∞ for β > 0, p ∈ [2, ∞] and (ξn)n ⊆ S be such that ξn → ξ in Bβ−1

p,∞
as n → ∞. Suppose that χ ∈ C∞ is a smooth compactly supported function with χ(0) = 1
and ϕ := ψ1[0,∞) ∈ B1

1,∞ for some ψ ∈ Bδ
1,∞ with δ ∈ (1 ∨ 2(1 − β), 2) and ψ(0) �= 0. Then, 

π(ϕ ∗ ξ, ξ) := limn→∞ π(ϕ ∗ ξn, ξn) exists in B2β−1
p/2,∞ if and only if π

(
(1[0,∞)χ) ∗ ξ, ξ

) :=
limn→∞ π

(
(1[0,∞)χ) ∗ ξn, ξn

)
exists in B2β−1

p/2,∞. In this case, one has

π(ϕ ∗ ξ, ξ) − ϕ(0)π
(
(1[0,∞)χ) ∗ ξ, ξ

) ∈ Bδ−2(1−β)
p/2,∞ .

Proof. Let (ξn)n ⊆ S be such that ξn → ξ in Bβ−1
p,∞ and π(ϕ ∗ ξ, ξ) := limn→∞ π(ϕ ∗ ξn, ξn) in 

B2β−1
p/2,∞. We first observe that

π
(
(1[0,∞)χ) ∗ ξn, ξn

)
= ψ(0)−1π(ϕ ∗ ξn, ξn) − (

ψ(0)−1π(ϕ ∗ ξn, ξn) − π
(
(1[0,∞)χ) ∗ ξn, ξn

))
.

Since the first term converges by assumption, it is sufficient to consider the other two. Setting 
ε := δ − 2(1 − β) > 0, Bony’s paraproduct estimates and the generalised Young inequality yield∥∥π(ϕ ∗ ξn, ξn) − ψ(0)π

(
(1[0,∞)χ) ∗ ξn, ξn

)∥∥

ε,p/2,∞

251



D.J. Prömel and M. Trabs Journal of Differential Equations 302 (2021) 222–272
= ∥∥π
((

(ψ − ψ(0)χ)1[0,∞)

) ∗ ξn, ξn
)∥∥

ε,p/2,∞
�

∥∥(
(ψ − ψ(0)χ)1[0,∞)

) ∗ ξn
∥∥

ε−β1+1,p,∞‖ξn‖β−1,p,∞

�
∥∥(

(ψ − ψ(0)χ)1[0,∞)

)∥∥
δ,1,∞‖ξn‖2

β−1,p,∞.

Applying the estimate (3.33) for the regularity 1 < δ < 2, we obtain∥∥(
(ψ − ψ(0)χ)1[0,∞)

)∥∥
δ,1,∞ � ‖ψ − ψ(0)χ‖δ,1,∞

� ‖ψ‖δ,1,∞ + |ψ(0)|‖χ‖δ,1,∞ �
(
1 + ‖χ‖δ,1,∞

)‖ψ‖δ,1,∞.

As ξn → ξ in Bβ−1
p,∞ and Bδ−2(1−β)

p/2,∞ ⊆ B2β−1
p/2,∞, this implies one direction of the assertion. The 

converse direction follows analogously. �
Remark 4.2. For α + β1 < 1 the condition δ > 2(1 − β) = 1 − α − β + γ > γ is in line with the 
regular case in Theorem 3.13. Lemma 4.1 especially implies that for regular kernels the results, 
developed in Section 3 for convolutional rough paths, can be applied to all stochastic processes 
which can be enhanced to rough paths such as semi-martingales and various Gaussian processes, 
cf. Friz and Victoir [20].

While in the regular case the additional information can be reduced to π((1[0,∞)χ) ∗ξ, ξ), the 
following example illustrates that for singular Volterra equations it is indeed necessary to include 
the kernel into the resonant term, i.e., it is not sufficient to take only this “classical” resonant term 
into account.

Example 4.3. Consider the following 2-dimensional Volterra equation

u1 = ϕ ∗ ξ1,

u2 = ϕ ∗ (u1ξ2) = ϕ ∗ (
(ϕ ∗ ξ1)ξ2),

with some singular kernel ϕ ∈ Bγ

1,∞ for γ ∈ (0, 1) and (ξ1, ξ2) ∈ Bβ−1
p,∞. We notice that 

π((1[0,∞)χ) ∗ ξ1, ξ2) ∈ B2β−1
p/2,∞ is well-defined if 2β > 1, but π((ϕ ∗ ξ1), ξ2) ∈ B2β−2+γ

p/2,∞ is not 

well-defined if 2β < 2 − γ . Hence, for γ < 1 and 1/2 < β < 1 − γ /2 the product (ϕ ∗ ξ1)ξ2 is 
not well-defined while the resonant term π((1[0,∞)χ) ∗ ξ1, ξ2) gives no additional information.

In order to make the example more explicit, we set ξ i = dϑi , i = 1, 2, with ϑi = Bi
H χ̃ for 

fractional Brownian motions Bi
H with Hurst index H ∈ (1/2, 2/3) and a compactly supported 

function χ̃ ∈ C∞. Moreover, we choose the kernel ϕ(s) = sr−11(0,∞)(s)χ̃(s) for r ∈ (4/3 −
H, 2 − 2H), which is associated to the fractional integration operator of order r , cf. Section 5.3. 
We then have for any arbitrarily small ε > 0 that (ϑ1, ϑ2) ∈ Bβ∞,∞ and ϕ ∈ Bγ

1,∞ with β = H −ε

and γ = r − ε. By the choice of r and H , we indeed have 1/2 < β < 1 − γ /2, but also α :=
β + γ − 1 > 1/3 and 2α + β > 1 such that Theorem 3.10 is applicable.

4.2. Stochastic construction of the resonant term

While Lemma 4.1 allows for the construction of the resonant term π(ϕ ∗ ξ, ξ) for a regular 
kernels ϕ and a large class of noise processes ξ via rough path theory, the aim of this section 
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is to directly construct π(ϕ ∗ ξ, ξ). This is particularly interesting for singular kernels, but also 
gives some deeper understanding on the interplay between the analytical object π(ϕ ∗ ξ, ξ) and 
the stochastic behaviour of ξ . We investigate a class of stochastic processes admitting a series 
expansion

ξt =
∑
n�1

an(t)ζn, t ∈R, (4.1)

for coefficient processes (an)n�1 and random variables ζn, which are all defined on a joint proba-
bility space (�, F , P ) with corresponding expectation operator E. We will impose the following 
assumptions:

(A) Let (ζn)n�1 be a sequence of random variables satisfying E[ζnζm] = 1{n=m} and the fol-
lowing hypercontractivity property: For every r � 1 there is a constant Cr > 0 such that for 
every polynomial P : Rn → R of degree 2 we have

E
[|P(ζ1, . . . , ζn)|r

]
� CrE

[|P(ζ1, . . . , ζn)|2
]r/2

.

(B) Let an ∈ Bβ−1
p,1 , n � 1, for some p � 2, β ∈ (0, 1) such that 

∑
n�1 ‖an‖2

β−1,p,1 < ∞.

An important class of processes satisfying these assumptions are centred Gaussian processes ξ
whose covariance operator can be represented as an L2-inner product, i.e., E[ξsξt ] = 〈fs, ft 〉 for 
a class of functions (ft )t∈R. If we expand ft = ∑

n an(t)ψn, an(t) = 〈ft , ψn〉, with respect to 
some orthonormal basis (ψn), we may obtain the representation (4.1) with i.i.d. standard nor-
mal (ζn). Indeed, the distribution of the finite dimensional distributions of the random series 
then coincides with the original process by construction, such that in general only tightness has 
additionally to be verified.

Example 4.4.

(i) Let (Bt )t∈[0,1] be a Brownian motion. Its well-known Karhunen-Loève expansion is given 
by

Bt = √
2

∞∑
n=1

sin
(
(n − 1/2)πt

)
(n − 1/2)π

ζn, t ∈ [0,1],

for i.i.d. ζn ∼ N (0, 1). Using a periodic version of Brownian motion, we may consider 
this series for all t ∈ R. Let ξ = (dB)χ be the distributional derivative multiplied with 
a localising function χ ∈ Lp . Then ξ admits the representation with (4.1) with an(t) =√

2 cos((n − 1/2)πt)χ(t). Since ‖an‖β−1,p,1 is of the order nβ−1, Assumption (B) is sat-
isfied for all β < 1/2.

(ii) Dzhaparidze and van Zanten [17] have proved the following series expansion for the frac-
tional Brownian motion (Xt)t∈[0,1] with Hurst index H ∈ (0, 1):

Xt =
∞∑ sin(xnt)

xn

σnζn +
∞∑ 1 − cos(ynt)

yn

τnηn, t ∈ [0,1],

n=1 n=1

253



D.J. Prömel and M. Trabs Journal of Differential Equations 302 (2021) 222–272
where (ζn)n�1 and (ηn)n�1 are independent, standard normal random variables, x1 < x2 <

. . . are the positive, real zeros of the Bessel function J−H of the first kind of order −H

and y1 < y2 < . . . are the positive zeros of J1−H . Moreover, σ 2
n = cH x−2H

n J−2
1−H (xn)

and τ 2
n = cH y−2H

n J−2
−H (yn) with some explicit constant cH > 0 given in [17]. Xt can be 

decomposed into a two-dimensional process with coordinates given by the first and the 
second sum, respectively. As noise process ξ , we again consider the localised derivative 
leading to (4.1) with an(t) = (a

(1)
n (t), a(2)

n (t)) = (σn cos(xnt), τn sin(yn))
�χ(t). Noting the 

asymptotic expressions σ 2
n ∼ τ 2

n ∼ n1−2H and xn ∼ yn ∼ n for n → ∞, cf. [17], we obtain 
‖a(1)

n ‖β−1,p,p ∼ σnx
β−1
n ∼ n−1/2−H+β and ‖a(2)

n ‖β−1,p,p ∼ n−1/2−H+β . We conclude that 
Assumption (B) is fulfilled for β < H .

Based on the assumption (A) and (B), we first verify the Besov regularity of ξ .

Lemma 4.5. Let (ζn)n�1 and (an)n�1 fulfil Assumptions (A) and (B), respectively. Then, there 
is a monotone integer valued sequence (mn) ↑ ∞ such that the approximating sequence ξn =∑mn

k=1 ak(s)ζk is almost surely a Cauchy sequence with respect to ‖ · ‖β−1,p,∞. In particular, the 
almost sure and Lp-limit

ξt := lim
n→∞ ξn

t , t ∈ R,

is Bβ−1
p,∞-regular.

Proof. We set m0 = 1 and

mn := inf
{
K � mn−1 :

∞∑
k=K+1

‖ak‖2
β−1,p,p � n−6

}
, n � 1. (4.2)

It is sufficient to show ∑
n�1

P
(
‖ξn+1 − ξn‖β−1,p,∞ > bn

)
< ∞ (4.3)

for some sequence (bn) ∈ �1. Then, the Borel-Cantelli Lemma yields that for almost every ω ∈ �

there is some n(ω) � 1 such that ‖ξm+1 − ξm‖β−1,p,∞ � bm for all m � n(ω). Since bm is 
summable, (ξn)n�1 is almost surely a Cauchy sequence converging to ξ ∈ Bβ−1

p,∞. Moreover, it 

suffices to consider p < ∞ due to the embedding Bβ−1
p,∞ ⊆ Bβ−1−1/p∞,∞ , which is sufficient if p is 

chosen large enough.
We now verify (4.3). By definition we have

‖ξn+1 − ξn‖β−1,p,∞ =
∥∥∥∥ mn+1∑

k=mn+1

ζkak

∥∥∥∥
β−1,p,∞

= sup
j�−1

(
2(β−1)j

∥∥∥∥ mn+1∑
ζk(	jak)

∥∥∥∥
Lp

)

k=mn+1
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= sup
j�−1

(
2(β−1)jp

∫
R

∣∣∣∣ mn+1∑
k=mn+1

ζk(	jak)(x)

∣∣∣∣p dx
)1/p

.

Hence, using an union bound for the supremum and Markov’s inequality we have

P
(
‖ξn+1 − ξn‖β−1,p,∞ > bn

)
≤ b

−p
n

∑
j∈N

2(β−1)jp

∫
R

E

[∣∣∣∣ mn+1∑
k=mn+1

ζk(	jak)(x)

∣∣∣∣p]
dx.

(4.4)

Using the hypercontractivity and E[ζnζm] = 1{n=m}, we obtain the upper bound

b
−p
n

∑
j∈N

2(β−1)jp

∫
R

E

[( mn+1∑
k=mn+1

ζk(	jak)(x)

)2] p
2

dx

= b
−p
n

∑
j∈N

2(β−1)jp

∫
R

( mn+1∑
k=mn+1

(	jak)
2(x)

) p
2

dx.

We now use Hölder’s inequality to obtain for any sequence (ck) ∈ �1

P
(
‖ξn+1 − ξn‖β−1,p,∞ > bn

)
�b

−p
n

∑
j∈N

2(β−1)jp
( mn+1∑

k=mn+1

ck

)p/2−1

×
mn+1∑

k=mn+1

c
−(p/2−1)
k ‖	jak‖p

Lp

=b
−p
n

( mn+1∑
k=mn+1

ck

)p/2−1 2n+1∑
k=2n+1

c
−(p/2−1)
k ‖ak‖p

β−1,p,p

�b
−p
n

( mn+1∑
k=mn+1

ck

)p/2(
sup
k

c
−1/2
k ‖ak‖β−1,p,p

)p

.

Choosing ck := ‖ak‖2
β−1,p,1 � ‖ak‖2

β−1,p,p , it remains to note that dn := (
∑mn+1

k=mn+1 ck)
1/2 �

n−3 by the choice of mn, such that we may choose bn = n−3/2. �
Young’s inequality (Lemma 2.2) yields automatically ϕ ∗ ξ ∈ Bγ+β−1

p,∞ for ϕ ∈ Bγ

1,∞. With 
these preparations we can verify the existence of a limit limn→∞ π(ϕ ∗ ξn, ξn) =: π(ϕ ∗ ξ, ξ) ∈
B2β+γ−2

p/2,∞ .

Theorem 4.6. Let (ζn)n�1 and (an)n�1 fulfil Assumptions (A) and (B), p � 4 and γ > 0. Further, 
suppose that (ζn) are independent, and ϕ ∈ Bγ

1,∞. Set ξn := ∑mn

k=1 akζk for a sufficiently fast 
growing integer valued sequence (mn) ↑ ∞. Then (π(ϕ ∗ ξn, ξn))n�1 is almost surely a Cauchy 
sequence with respect to ‖ · ‖2β+γ−2,p/2,∞ with almost sure and Lp/2-limit
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π(ϕ ∗ ξ, ξ) := lim
n→∞π(ϕ ∗ ξn, ξn) ∈ B2β+γ−2

p/2,∞ .

Proof. Let (mn)n�0 be as in (4.2). As in the Lemma 4.5 thanks to the Borel-Cantelli Lemma it 
suffices to prove for some sequence (bn) ∈ �1 and finite p ∈ [1, ∞):∑

n�1

P
(
‖π(ϕ ∗ ξn+1, ξn+1) − π(ϕ ∗ ξn, ξn)‖2β+γ−2,p/2,∞ > bn

)
< ∞.

Defining 	ϕ
k f := 	k(ϕ ∗ f ) = F−1[ρjFϕ] ∗ f for distributions f , we have

π(ϕ ∗ ξn+1, ξn+1) − π(ϕ ∗ ξn, ξn)

=
∑
j�1

j+1∑
k=j−1

	j

(
ξn+1 − ξn

)
	

ϕ
k ξn+1 +

∑
j�1

j+1∑
k=j−1

	jξ
n	

ϕ
k

(
ξn+1 − ξn

)
=: Tn,1 + Tn,2.

Since both terms can be estimated analogously, we focus on Tn,1, for which we have

Tn,1 =
∑
j�1

j+1∑
k=j−1

	j

( mn+1∑
m=mn+1

ζmam

)
· 	ϕ

k

(mn+1∑
m=1

ζkam

)

=
∑
j�1

j+1∑
k=j−1

mn+1∑
m=mn+1

mn+1∑
m′=1

ζmζm′(	jam)(	
ϕ
k am′).

Hence, we get

‖Tn,1‖2β+γ−2,p/2,∞
= sup

j

(
2(2β+γ−2)j‖	jT1‖Lp/2

)

� sup
j

(
2(2β+γ−2)j

∑
j ′∼j

∥∥∥ j ′+1∑
k=j ′−1

mn+1∑
m=mn+1

mn+1∑
m′=1

ζmζm′(	jam)(	
ϕ
k am′)

∥∥∥
Lp/2

)

� sup
j

(
2(2β+γ−2)j

∥∥∥ j+1∑
k=j−1

mn+1∑
m=mn+1

mn+1∑
m′=1

ζmζm′(	jam)(	
ϕ
k am′)

∥∥∥
Lp/2

)
.

As above, Markov’s inequality and the hypercontractivity yield

P
(‖Tn,1‖2β+γ−2,p/2,∞ > bn

)
� b

−p/2
n

∑
j

2(2β+γ−2)jp/2
∫

E
[∣∣∣ j+1∑

k=j−1

mn+1∑
m=mn+1

mn+1∑
m′=1

ζmζm′(	jam)(x)(	
ϕ
k am′)(x)

∣∣∣p/2]
dx
R
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� b
−p/2
n

∑
j

2(2β+γ−2)jp/2
∫
R

E
[∣∣∣ j+1∑

k=j−1

mn+1∑
m=mn+1

mn+1∑
m′=1

ζmζm′(	jam)(x)(	
ϕ
k am′)(x)

∣∣∣2] p
4

dx

� b
−p/2
n

∑
j

2(2β+γ−2)jp/2
∫
R

( j+2∑
k1,k2=j−1

mn+1∑
m1,m2=mn+1

mn+1∑
m′

1,m
′
2=1

E
[
ζm1ζm′

1
ζm2ζm′

2

]

× (	jam1)(x)(	
ϕ
k1

am′
1
)(x)(	jam2)(x)(	

ϕ
k2

am′
2
(x)

) p
4

dx.

In the previous sum it suffices the consider the terms where {m1 = m2, m′
1 = m′

2}, {m1 =
m′

1, m2 = m′
2} (being equivalent to {m1 = m′

2, m2 = m′
1}) and {m1 = m2 = m′

1 = m′
2}, because 

in all other cases E
[
ζm1ζm′

1
ζm2ζm′

2

]
is zero by independence of the (ζm). Since all partial sums 

can be bounded similarly, we consider only {m1 = m2, m′
1 = m′

2} for brevity. This partial sum is 
given by

Sn :=b
−p/2
n

∑
j

(
2(2β+γ−2)jp/2

∑
j−1�k1,k2�j+1

∫
R

( mn+1∑
m=mn+1

mn+1∑
m′=1

(	jam)2(x)(	
ϕ
k1

am′)(x)(	
ϕ
k2

am′)(x)
) p

4
dx

)

=b
−p/2
n

∑
j

(
2(2β+γ−2)jp/2

∑
j−1�k1,k2�j+1

∫
R

( mn+1∑
m=mn+1

(	jam)2(x)
) p

4
( mn+1∑

m′=1

(	
ϕ
k1

am′)(x)(	
ϕ
k2

am′)(x)
) p

4
dx

)
.

Hölder’s inequality yields for the �1-sequence ck := ‖ak‖2
β−1,p,1, k � 1,

Sn � 1

b
p/2
n

∑
j

2(2β+γ−2)jp/2
∑

j−1�k1,k2�j+1

∫
R

( mn+1∑
m=mn+1

cm

) p
4 −1( mn+1∑

m=mn+1

c
−(

p
4 −1)

m (	jam)
p
2 (x)

)

×
( mn+1∑

m′=1

cm′
) p

4 −1( mn+1∑
m′=1

c
−(

p
4 −1)

m′ (	
ϕ
k1

am′)
p
4 (x)(	

ϕ
k2

am′)
p
4 (x)

)
dx

� ‖cm‖
p
4 −1

�1 b
−p/2
n

( 2n+1∑
m=2n+1

cm

) p
4 −1 ∑

j

2(2β+γ−2)jp/2

∑
j−1�k1,k2�j+1

mn+1∑
m=mn+1

c
− p

4 +1
m

mn+1∑
m′=1

c
− p

4 +1
m′

∫
R

(	jam)
p
2 (x)(	

ϕ
k1

am′)
p
4 (x)(	

ϕ
k2

am′)
p
4 (x)dx.

Writing dn := (
∑mn+1 ck)

1/2 ∈ �1 and applying once again Hölder’s inequality, we obtain
k=mn+1
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Sn � ‖cm‖
p
4 −1

�1 b
−p/2
n d

p/2−2
n

∑
j

∑
j−1�k1,k2�j+1

mn+1∑
m=mn+1

c
−(p/4−1)
m 2(β−1)jp/2‖	jam‖p/2

Lp

2n+1∑
m′=1

c
−(p/4−1)

m′ 2(β−1+γ )k1p/4‖	ϕ
k1

am′ ‖p/4
Lp 2(β−1+γ )k2p/4‖	ϕ

k2
am′ ‖p/4

Lp

� ‖cm‖
p
4 −1

�1 b
−p/2
n d

p/2−2
n

2n+1∑
m=2n+1

c
−(p/4−1)
m ‖am‖p/2

β−1,p,p/2

2n+1∑
m′=1

c
−(

p
4 −1)

m′ ‖ϕ ∗ am′‖p/2
β−1+γ,p,p/4

� ‖cm‖
p
4
�1(dn/bn)

p/2
(

sup
m′

c
−1/2
m′ ‖ϕ ∗ am′ ‖β−1+γ,p,p/4

)p/2
.

With ‖ϕ ∗ am′ ‖β−1+γ,p,p/4 � ‖ϕ‖γ,1,1‖am′‖β−1,p,p/4 by Young’s inequality, we conclude Sn �
(dn/bn)

p/2‖ϕ‖p/2
γ,1,1. Since dn � n−3, we deduce 

∑
n�1 Sn < ∞ for bn = n−3/2. �

Remark 4.7. For the special case where ϕ ∗ ξ is replaced by the antiderivative of ξ , alternative 
constructions of rough path and iterated integrals above stochastic processes defined by random 
Fourier or Schauder expansions were considered in [21,26,41].

5. Application to rough and stochastic differential equations

The general existence and uniqueness results for solutions to Volterra equations of the 
form (1.2) provided in Section 3 allow to recover well-known results in the paracontrolled dis-
tribution setting but additionally contain many novel results concerning differential equations 
driven by stochastic processes or convolutional rough paths. In the following we discuss some 
exemplary stochastic equations and explicitly state the particular existence and uniqueness re-
sults.

5.1. Stochastic and rough differential equations with possible delay

Ordinary stochastic differential equations and their pathwise counterparts given by rough dif-
ferential equations constitute fundamental and well studied objects in stochastic analysis. These 
differential equations can typically written in their integral form

u(t) = u0 +
t∫

0

σ1(u(s − r1))dϑ(s) +
t∫

0

σ2(u(s − r2))ds, t ∈ [0, T ], (5.1)

where ϑ is a suitable driving signal, e.g., a (fractional) Brownian motion or a rough path, and 
r1, r2 ≥ 0 are constant delay parameters. Thanks to the general regularity assumptions required 
on the kernel functions in Section 3, the differential equation (5.1) can be viewed as a special 
case of the Volterra equation (1.2), and we can recover for instance the following results. For 
this purpose, we denote by ϑ̇ the distributional derivative of ϑ ∈ Bβ

p,∞ and introduce a kernel 
function ϕT which is assumed to be compactly supported on [0, 2T ], smooth on R \ {0} and 
satisfying ϕT (t) = 1[0,∞)(t) for all t ∈ [−T , T ].
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Corollary 5.1. Let u0 ∈ R, σ1 ∈ C3, σ2 ∈ C2 with σ1(0) = σ2(0) = 0 and r1, r2 ≥ 0.

(i) If ϑ is an n-dimensional fractional Brownian motion with Hurst index H > 1/2, then there 
exists a unique solution to the stochastic differential equation (5.1) up to a random time T .

(ii) If (ϑ̇, π(ϕT ∗ (ϑ̇1[0,T ]), ϑ̇(· + r1)1[0,T ](· + r1))) ∈ Bβ,1
p (ϕT ) for β > 1/3 and p ∈ [3, ∞), 

then there exists a unique solution to the rough differential equation (5.1) up to a random 
time T .

Proof. Let χ be a smooth and compactly support function with χ(t) = 1 for t ∈ [0, T ]. Equa-
tion (5.1) coincides on the interval [0, T ] with

u(t) = u0χ(t) +
∫
R

ϕT (t − s − r1)σ1(u(s))�̇(s)ds +
∫
R

ϕT (t − s − r2)σ2(u(s))1[0,T ](s + r2)ds

for t ∈ R and driving signal �̇(·) := ϑ̇(· + r1)1[0,T ](· + r1). Note that ϕT (· − r1) ∈ B1
1,∞ and 

(· − r1)ϕT (· − r1) ∈ B2
1,∞. Hence, (i) and (ii) follow by applying Theorem 3.13 and recalling 

that a fractional Brownian motion with Hurst index H > 1/2 has almost surely (H − ε)-Hölder 
continuous sample paths for every ε > 0. �

Existence and uniqueness results for stochastic delay equations like (5.1) driven by a fractional 
Brownian motion with Hurst index H > 1/2 were first obtained by Ferrante and Rovira [19]. Dif-
ferential equations driven by α-Hölder continuous rough paths with α ∈ (1/3, 1/2) and constant 
delay were first treated by Neuenkirch et al. [39]. Rough differential equations without delay 
but in the paracontrolled distribution setting were considered in [25] and [41]. Furthermore, we 
would like to point out that Corollary 5.1 (ii) can be applied to a fractional Brownian motion 
with Hurst index H ∈ (1/3, 1/2) due to Theorem 4.6.

Remark 5.2. For stochastic and rough differential equations like (5.1), it is straightforward to 
obtain a solution on any arbitrary large interval [0, T ] applying iteratively Corollary 5.1 on small 
intervals and glueing the so obtained local solutions together.

5.2. Stochastic and rough Volterra equations

Stochastic integral equations of Volterra type appear in various areas of mathematical mod-
elling such as in physics or mathematical finance and the treatment of such Volterra equations 
involving stochastic integration goes back to the pioneering works of Berger and Mizel [8,9]. 
The pathwise counterparts of stochastic Volterra equations, namely, Volterra equations driven 
by rough paths were first considered by Deya and Tindel [15,16]. More precisely, we consider 
Volterra equations of convolution type

u(t) = u0(t) +
t∫

0

ψ1(t − s)σ1
(
u(s)

)
ϑ̇(s)ds +

t∫
0

ψ2(t − s)σ2
(
u(s)

)
ds, (5.2)

for t ∈ [0, T ] and ϑ̇ denotes again the distributional derivative of the path ϑ ∈ Bβ
p,∞.
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Corollary 5.3. Let p ∈ [3, ∞] and β ∈ (1/3, 1/2). Suppose that ψ1, ψ2 ∈ B1∞,∞, u0 ∈ B2β
p,∞ and 

σ1 ∈ C3, σ2 ∈ C2 with σ1(0) = σ2(0) = 0. If (ϑ̇, π((ϕT ψ1) ∗ (ϑ̇), ϑ̇) ∈ Bβ,1
p (ϕT ψ1) and T > 0 is 

sufficiently small, then there exists u ∈ Bβ
p,∞ which is the unique solution to the rough Volterra 

equation (5.2) on [0, T ].

Proof. We first observe that ψiϕT ∈ B1
1,∞ because ψi ∈ B1∞,∞ and ϕT ∈ B1/p

p,∞, for i = 1, 2. 
Moreover, the rough Volterra equation (5.2) coincides on the interval [0, T ] with

u(t) = u0(t) +
∫
R

ϕT (t − s)ψ1(t − s)σ1(u(s))ϑ̇(s)ds

+
∫
R

ϕT (t − s)ψ1(t − s)σ2(u(s))ds, t ∈ R.

Therefore, Theorem 3.13 and Remark 3.14 imply the assertion. �
Remark 5.4. Assuming ψ1(0) �= 0, it is not necessary to include the kernel function ψ1 in the 
definition of the driving rough path. Indeed, one can take a generic rough path, i.e., independent 
of ψ1, thanks to Lemma 4.1. Furthermore, notice that the kernel ψ1 has only to be Lipschitz 
continuous. This Lipschitz assumption is a significant relaxation compared to the C3-regularity 
of the kernel functions so far required for Volterra equations of convolutional type driven by 
rough paths, see Deya and Tindel [15,16].

The previous pathwise existence and uniqueness result for Volterra equations can immediately 
be applied to a wide class of stochastic processes thanks to Theorem 4.6.

Corollary 5.5. Let ϑ be a stochastic process such that ϑ̇ is of the form (4.1) satisfying As-
sumption (A) and (B) for β ∈ (1/3, 1) and p ≥ 3. Suppose that ψ1, ψ2 ∈ B1∞,∞, u0 ∈ B2β

p,∞
and σ1 ∈ C3, σ2 ∈ C2 with σ1(0) = σ2(0) = 0. Then, there exists u ∈ Bβ

p,∞ which is the unique 
solution of the stochastic Volterra equation (5.2) up to a random time T .

5.3. SDEs with fractional derivatives

Stochastic Volterra equations with singular kernels are of particular interest because of their 
applications to stochastic partial differential equations (e.g. [48]) and stochastic differential equa-
tions with fractional derivatives (e.g. [47]), but also because of recent developments in mathemat-
ical finance showing that Volterra equations with singular kernels serve as very suitable models 
for the probabilistic and irregular behaviour of volatility in financial markets, see e.g. [18].

In order to consider SDEs allowing for fractional derivatives, let us recall the definition of the 
Riemann-Liouville fractional integral operator (with base point 0), which is given by

I r (f )(t) := 1

�(r)

(
(sr−11(0,∞)(s)) ∗ f

)
(t) = 1

�(r)

t∫
0

(t − s)r−1f (s)ds

for r ∈ (0, 1), f a suitable function and the Gamma function
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�(r) :=
∞∫

0

t r−1e−t dt, r > 0.

The corresponding fractional derivative operator is defined by Drf := d
dt

I 1−r (f ). While there 
are many different fractional derivative operators, the Riemann-Liouville derivative can be con-
sidered as a natural extension of the classical derivative to fractional order. A (fairly simple) 
stochastic differential equation of fractional order r ∈ (0, 1) driven by a Brownian motion is

Dru(t) = σ(u(t))dW(t), u(0) = u0,

or equivalently expressed as a Volterra integral equation with singular kernel

u(t) = u0 + 1

�(r)

t∫
0

(t − s)r−1σ(u(s))Ẇ (s)ds, t ∈ [0, T ], (5.3)

where Ẇ is the distributional derivative of a Brownian motion W . For a more general treatment 
of fractional stochastic differential equations driven by Brownian motion, we refer for instance to 
Lototsky and Rozovsky [34]. Based on the results provided in Section 3, we obtain the following 
existence and uniqueness statement.

Corollary 5.6. Let W be an n-dimensional Brownian motion and r > 5/6. Suppose that u0 ∈ R
and σ ∈ C3 with σ(0) = 0. Then, there exists u ∈ Bα

3,∞ for any α < r − 1/2, which is the unique 
solution to the stochastic Volterra equation (5.3) up to a random time T .

Proof. The proof works as the proof of Corollary 5.3 combined with the observations that the 
localised kernel function ϕ(x) := xr−1ϕT satisfies ϕ ∈ Bγ

1,∞ for every γ < r and that the sample 
paths of a Brownian motion can be considered as convolutional rough paths with regularity β <

1/2 due to Theorem 4.6. �
5.4. SDEs with additive Lévy noise

Stochastic differential equations with an additive Lévy noise constitute appropriate models 
for dynamical systems which are subject to external shocks. Examples of such systems naturally 
appear in insurance mathematics, where for instance SDEs with long term memory and additive 
Lévy noise are used to model the general reserve process of an insurance company, cf. Rolski 
et al. [43]. More precisely, we consider the stochastic differential equation

u(t) = u0 +
t∫

0

σ1(u(s))ds +
t∫

0

σ(u(s))dϑ(s) + L(t), t ∈ [0, T ], (5.4)

where ϑ is a fractional Brownian motion and L is a Lévy process. This type of stochastic differ-
ential equations were recently investigated, e.g., in Bai and Ma [3].
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Corollary 5.7. Let L be an n-dimensional Lévy process and ϑ be a fractional Brownian motion 
with Hurst index H > 1/2. Let p ∈ [2, ∞] and β ∈ (1/2, 1). Suppose that p > 2, u0 ∈ R and 
σ1, σ2 ∈ C2 with σ1(0) = σ2(0) = 0. Then, there exists u ∈ B1/p

p,∞ ∩ L∞ which is the unique 
solution of the stochastic differential equation (5.4) up to a random time T .

Proof. As in the proof of Corollary 5.1 one can reformulate the SDE (5.4) as a Volterra equation 
which coincides with (5.4) on the interval [0, T ]. Furthermore, let us recall that the sample paths 
of a fractional Brownian motion and of a Lévy process are almost surely in Bβ

p,∞ and B1/p
p,∞

for every β < H and p > 2, respectively, see for instance [44, Proposition 2] and [11, Proposi-
tion 5.31]. Hence, we deduce the assertion from Proposition 3.2 in combination with a scaling 
argument analogously the proof of Theorem 3.13 and Remark 3.14. �
5.5. Stochastic moving average processes driven by Lévy processes

Moving average processes driven by Lévy processes and in particular shot noise processes 
provide a modern toolbox for mathematical modelling of, e.g., turbulence, signal processing 
or shot prices on energy markets, see [5,6] and the references therein. Allowing these types of 
models to possess a state dependent volatility, we consider the stochastic convolution equation

u(t) = u0 +
∫
R

ψ(t − s)σ (u(s))dL(s), t ∈ [0, T ], (5.5)

where L is a general Lévy process. Because of the desired averaging property generated by the 
kernel function, it is naturally to postulate the assumption of ψ ∈ Bγ

1,∞ for γ > 1. In this case we 
arrive at the following existence and uniqueness result.

Corollary 5.8. Let L be an n-dimensional Lévy process, p ∈ (2, ∞], γ > 1 and α = 1/p+γ −1. 
Suppose that ψ ∈ Bγ

1,∞ has compact support, u0 ∈ R and σ ∈ C2 with σ(0) = 0. Then, there 
exists u ∈ Bα

p,∞ which is the unique solution of the stochastic convolution equations (5.5) up to 
a random time T .

Proof. Due to the compact support assumption of ψ , we can localise the equation (5.5) such that 
we obtain a (localised) Volterra equation which coincides with (5.5) on the interval [0, T ]. Since 
the sample paths of a Lévy process are almost surely in B1/p

p,∞ for every p > 2, see again [11, 
Proposition 5.31], we conclude the assertion from Proposition 3.1 in combination with a scaling 
argument analogously the proof of Theorem 3.13 and Remark 3.14. �
5.6. Relation to stochastic PDEs

In general, stochastic Volterra equations are known to have many links to stochastic partial 
differential equations. Here we would like to discuss this link in the case of (a slightly modified 
version of) a stochastic evolution equation studied by Mytnik and Salisbury [38]. We consider 
the differential operator 	ϑ := ∂xx

ϑ∂x (in one space dimension) for a parameter ϑ < 2 and the 
associated evolution equation

∂tu(t, x) = 	ϑu(t, x) + σ
(
u(t, x)

)
ξ(dt,dx), (5.6)
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u(0, x) = g(x),

with multiplicative noise, where ξ is the space-time derivative of ϑ(t, x) = Wt1[η,∞)(x) for some 
η ∈R, that is

ξ(dt,dx) = Ẇ (dt) δη(dx),

with Dirac measure δη in η ∈ R. Note that we recover the stochastic heat equation with multi-
plicative noise in the case ϑ = 0 and the fundamental solution of (5.6) with ξ = 0 is

pt (x) = cϑ

t1/(2−ϑ)
exp

(
− x2−ϑ

(2 − ϑ)2t

)
,

with normalising constant cϑ such that a mild solution of (5.6) is given by the formula

u(t, x) =
∫
R

p(t, x − y)g(y)dy +
t∫

0

∫
R

p(t − s, x − y)σ
(
u(t, y)

)
ξ(ds,dy)

=
∫
R

p(t, x − y)g(y)dy +
t∫

0

p(t − s, x − η)σ
(
u(t, η)

)
Ẇ (ds).

In particular, the solution process v(t) := u(t, η) along the edge {(t, η) : t ∈ R+} solves the 
singular stochastic Volterra equation

v(t) =
∫
R

p(t, η − y)g(y)dy +
t∫

0

p(t − s,0)σ
(
v(t)

)
Ẇ (ds)

=
∫
R

p(t, η − y)g(y)dy +
t∫

0

cϑ

(t − s)1/(2−ϑ)
σ
(
v(t)

)
Ẇ (ds).

For ϑ < −4 Theorem 3.10 provides the existence of the pathwise solution process v(t). In the 
case of the Laplace operator, i.e. ϑ = 0, the singularity in the kernel is too severe to directly 
apply Theorem 3.10 and would require a further extension of the above theory.

Appendix A. Auxiliary Besov estimates

The appendix provides (in the previous sections) frequently used, but fairly elementary lem-
mas concerning Besov spaces. The first one states the invariance of Besov norms under linear 
shifts.

Lemma A.1. Let α ∈ R, p ∈ [1, ∞] and y ∈ Rd . If f ∈ Bα
p,∞, then f (· + y) ∈ Bα

p,∞ with

‖f ‖α,p,∞ = ‖f (· + y)‖α,p,∞.
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Proof. For y ∈Rd and f ∈ Bα
p,∞, note that

Ff (· + y)(z) =
∫
Rd

ei〈z,x−y〉f (x)dx = Ff (z)ei〈z,y〉, z ∈Rd ,

from which we deduce that

	jf (· + y)(z) = F−1(ρj e
−i〈·,y〉Ff )(z) = F−1(ρjFf )(z + y).

Therefore, ‖	jf (· + y)‖Lp = ‖	jf ‖Lp for each j ≥ −1 and thus ‖f ‖α,p,∞ = ‖f (· +
y)‖α,p,∞. �

For sufficiently regular distributions/functions the Besov norm of a product can be directly 
estimated and in particular the product is then a well-defined operation.

Lemma A.2.

(i) Let p ∈ [2, ∞], α ∈ (1/p, 1) and β ∈ (1 − α, 1). If f ∈ Bα
p,∞ and g ∈ Bβ−1

p,∞, then

‖fg‖β−1,p,∞ � ‖f ‖α,p,∞‖g‖β−1,p,∞.

(ii) Let p ∈ [2, ∞] and β ∈ [0, 1) be such that 1
p

+ β > 1. If f ∈ B
1
p
p,∞ ∩ L∞ and g ∈ Bβ−1

p,∞, 
then

‖fg‖β−1,p,∞ �
(‖f ‖ 1

p
,p,∞ + ‖f ‖∞

)‖g‖β−1,p,∞.

(iii) Let p ∈ [3, ∞], α ∈ (1/p, 1) and β > 0 such that α + β < 1 and 2α + β > 1. If f ∈
L∞ ∪Bα

p,∞ and g ∈ Bα+β−1
p/2,∞ , then

‖fg‖α+β−1,p/2,∞ �
(‖f ‖∞‖g‖2α+β−1,p/3,∞

) ∧ (‖f ‖α,p,∞‖g‖α+β−1,p/2,∞
)
.

(iv) Let p ∈ [2, ∞] and α ∈ (1/p, 1). If f ∈ Bα
p,∞ and g ∈ Bα

p,∞, then

‖fg‖α,p,∞ � ‖f ‖α,p,∞‖g‖α,p,∞.

(v) If f ∈ B
1
p
p,∞ ∩ L∞ and g ∈ B

1
p
p,∞ ∩ L∞ with p ∈ [2, ∞], then

‖fg‖ 1
p

,p,∞ �
(‖f ‖ 1

p
,p,∞ + ‖f ‖∞

)(‖g‖ 1
p

,p,∞ + ‖g‖∞
)
.

Proof. Applying Besov embedding (α > 1/p) and Bony’s estimates (Lemma 2.1) lead to:

(i) ‖fg‖β−1,p,∞ � ‖Tf g‖β−1,p,∞ + ‖π(f,g)‖α+β−1,p/2,∞ + ‖Tgf ‖α+β−1,p/2,∞
� ‖f ‖ ‖g‖ ,
α,p,∞ β−1,p,∞
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(ii) ‖fg‖β−1,p,∞ � ‖Tf g‖β−1,p,∞ + ‖π(f,g)‖ 1
p

+β−1,p/2,∞ + ‖Tgf ‖ 1
p

+β−1,p/2,∞

�
(‖f ‖ 1

p
,p,∞ + ‖f ‖∞

)‖g‖β−1,p,∞,

(iii) ‖fg‖α+β−1,p/2,∞ � ‖Tf g‖α+β−1,p/2,∞ + ‖π(f,g)‖2α+β−1,p/3,∞ + ‖Tgf ‖α+β−1,p/2,∞
� ‖f ‖∞‖g‖α+β−1,p/2,∞ + ‖g‖α+β−1,p/2,∞‖f ‖0,∞,∞

+(‖f ‖0,∞,∞‖g‖2α+β−1,p/3,∞ ∧ ‖f ‖α,p,∞‖g‖α+β−1,p/2,∞
)

�
(‖f ‖∞‖g‖2α+β−1,p/3,∞

) ∧ (‖f ‖α,p,∞‖g‖α+β−1,p/2,∞
)
,

(vi) ‖fg‖α,p,∞ � ‖Tf g‖α,p,∞ + ‖π(f,g)‖2α,p/2,∞ + ‖Tgf ‖a,p,∞ � ‖f ‖α,p,∞‖g‖a,p,∞,

(v) ‖fg‖ 1
p

,p,∞ � ‖Tf g‖ 1
p

,p,∞ + ‖π(f,g)‖ 2
p

,p/2,∞ + ‖Tgf ‖ 1
p

,p,∞

�
(‖f ‖ 1

p
,p,∞ + ‖f ‖∞

)(‖g‖ 1
p

,p,∞ + ‖g‖∞
)
. �

The following estimates are crucial to obtain the existence of a solution to the Volterra equa-
tion (1.2) and the local Lipschitz continuity of the corresponding Itô-Lyons map (3.17).

Lemma A.3.

(i) Let α > 0 and p ∈ [1, ∞]. If f ∈ Bα
p,∞ ∩ L∞ and F ∈ C�α� with F(0) = 0, then

‖F(f )‖α,p,∞ � ‖F‖C�α�‖f ‖α,p,∞.

(ii) Let α ∈ (1/p, 1] and p ∈ [2, ∞]. If f, g ∈ Bα
p,∞ and F ∈ C2, then

‖F(f ) − F(g)‖α,p,∞ � ‖F‖C2

(
1 + ‖f ‖α,p,∞ + ‖g‖α,p,∞

)‖f − g‖α,p,∞.

(iii) If f, g ∈ B
1
p
p,∞ ∩ L∞ and F ∈ C2 with p ∈ [2, ∞], then

‖F(f ) − F(g)‖ 1
p

,p,∞ � ‖F‖C2

(
1 + ‖f ‖ 1

p
,p,∞ + ‖f ‖∞ + ‖g‖ 1

p
,p,∞ + ‖g‖∞

)
× (‖f − g‖ 1

p
,p,∞ + ‖f − g‖∞

)
.

Proof. (i) can be deduced from [2, Theorem 2.87].
For (ii) we apply Lemma A.2 (iv) and the first part of this lemma to obtain

‖F(f ) − F(g)‖α,p,∞ ≤
1∫

0

‖F ′(f + s(g − f ))(f − g)‖α,p,∞ ds

� ‖f − g‖α,p,∞
1∫

0

‖F ′(f + s(g − f ))‖α,p,∞ ds

� ‖F‖C2

(
1 + ‖f ‖α,p,∞ + ‖g‖α,p,∞

)‖f − g‖α,p,∞.
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For (iii) we apply an analogous estimate, but use Lemma A.2 (v) instead of (iv). �
We also need this linearisation lemma:

Lemma A.4. Let σ ∈ C2, p � 1 and α > 1/p. Supposing u = Tu(1)w1 + Tu(2)w2 + u# ∈ Bα
p,∞

with u(1), u(2), w1, w2 ∈ Bα
p,∞ and u# ∈ B2α

p/2,∞, we have

σ(u) = σ(0) + Tσ ′(u)u + Sσ (u)

for a function Sσ (u) ∈ B2α
p/2,∞ satisfying

‖Sσ (u)‖2α,p/2,∞ � ‖σ‖C2

(
1 +

∑
j=1,2

‖u(j)‖∞‖wj‖α,p,∞
)(‖u‖α,p,∞ + ‖u#‖2α,p/2,∞

)
.

Proof. The proof follows from Step 1 in the proof of [41, Proposition 5.6] with ũ = u and 
vu = Tu(1)w1 + Tu(2)w2. �

A refinement of [41, Lemma 2.3] is given by the following result:

Lemma A.5. Let λ, γ > 0, p � 1 and f ∈ Bγ
p,∞. We have for any γ ′ ∈ [0, γ ) ∩ [0, 1/p]:

(i) If χ ∈ Bγ

1/γ ′,∞, then

‖χ�λf ‖γ,p,∞ � λγ ′−1/p| logλ|‖f ‖γ,p,∞‖χ‖γ,1/γ ′,∞.

(ii) If additionally xf (x) ∈ Bγ+1+ε
p,∞ for some ε > 0, then we have for any functions χ1, χ2 such 

that Cχ := ‖χ1‖γ+1,∞,∞(‖χ2‖γ+1,p,∞ + ‖xχ2(x)‖
L1/γ ′ ) is finite and for any λ ∈ (0, 1)∥∥χ1(x)χ2(x)�λ

(
xf (x)

)∥∥
γ+1,p,∞�λ1+γ ′−1/p| logλ|Cχ

(‖xf (x)‖γ+1+ε,p,∞ + ‖f ‖γ,p,∞
)
.

Proof. We decompose χ�λf into small and larger Littlewood-Paley blocks. Arguing as in [41, 
Lemma 2.3] for the 	−1 block, we have for the small blocks∥∥∥∥∑

j�1

	j(χ�λf )

∥∥∥∥
γ,p,∞

=
∥∥∥∥∑

j�1

	j�λ(χ(λ−1·)f )

∥∥∥∥
γ,p,∞

�
∑

j :2j �λ−1∨1

λ−1/p
∥∥	j

(
χ(λ−1·)f )∥∥

Lp

� λ−1/p| logλ|‖χ(λ−1·)f ‖0,p,∞ � λ−1/p| logλ|‖χ(λ−1·)f ‖Lp .
(A.1)

For any γ ′ ∈ [0, γ ) ∩ [0, 1/p] and q � p satisfying 1
p

= γ ′ + 1
q

Hölder’s inequality yields (with 
convention 1/0 =: ∞)

‖χ(λ−1·)f ‖Lp � ‖χ(λ−1·)‖ 1/γ ′ ‖f ‖Lq � λγ ′ ‖χ‖ 1/γ ′ ‖f ‖γ,p,∞,

L L

266



D.J. Prömel and M. Trabs Journal of Differential Equations 302 (2021) 222–272
which gives the asserted bound for blocks 	j with j smaller than a fixed constant.
Hence, we are left to bound the higher Littlewood-Paley blocks. Using Bony’s decomposition, 

we get∥∥∥∥∑
j�1

	j(χ�λf )

∥∥∥∥
γ,p,∞

�
∥∥∥∥∑

j�1

	jTχ(�λf )

∥∥∥∥
γ,p,∞

+
∥∥∥∥∑

j�1

	jT�λf χ

∥∥∥∥
γ,p,∞

+
∥∥∥∥∑

j�1

	jπ(χ,�λf )

∥∥∥∥
γ,p,∞

.

(A.2)

We will estimate these three terms separately. By the support properties of the Littlewood-Paley 
blocks in the Fourier domain we have 	jTχ(�λf ) = 	j

∑
k∼j Sk−1χ	k(�λf ). Therefore,

2jγ ‖	jTχ(�λf )‖Lp � 2jγ
∑
k∼j

‖Sk−1χ‖L∞‖	k(�λf )‖Lp

� ‖χ‖∞
∥∥(

2kγ ‖	k(�λf )‖Lp

)
k�0

∥∥
�∞ .

The last norm in the previous display can be estimated as in [41, Lem. 2.3], which yields

sup
j�1

2jγ ‖	jTχ(�λf )‖Lp � λγ−1/p| logλ|‖χ‖∞‖f ‖γ,p,∞.

For the second term in (A.2) we note with γ ′ and q as above that

2jγ ‖	jT�λf χ‖Lp � 2jγ
∑
k∼j

‖Sk−1�λf ‖Lq ‖	kχ‖
L1/γ ′ � ‖f (λ·)‖Lq ‖χ‖γ,1/γ ′,∞,

where ‖f (λ·)‖Lq = λ−1/q‖f ‖Lq � λγ ′−1/p‖f ‖γ,p,∞. Finally, the third term in (A.2) is bounded 
by

2jγ ‖	jπ(χ,�λf )‖Lp � 2jγ
∑
k�j

∥∥∥ ∑
|l|�1

	k−lχ	k�λf

∥∥∥
Lp

�
∑
k�j

2−(k−j)γ
∑
|l|�1

‖	k−lχ‖∞2kγ ‖	k�λf ‖Lp

� ‖χ‖∞
∥∥(

2kγ ‖	k(�λf )‖Lp

)
k�0

∥∥
�∞ � λγ−1/p| logλ|‖χ‖∞‖f ‖γ,p,∞.

For part (i) it remains to note that ‖χ‖
L1/γ ′ � ‖χ‖γ,1/γ ′,∞ and ‖χ‖∞ � ‖χ‖γ−γ ′,∞,∞ �

‖χ‖γ,1/γ ′,∞ due to Besov embeddings.
For (ii) we first note for the small blocks as in (A.1)∥∥∥∑

j�1

	j

(
χ1(x)χ2(x)�λ(xf (x))

)∥∥∥
γ+1,p,∞ �

∑
j :λ2j �1

λ−1/p‖	j

(
χ1(x/λ)χ2(x/λ)xf (x)

)∥∥
Lp

� λ−1/p| logλ|‖χ1(x/λ)χ2(x/λ)xf (x)‖Lp
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� λ−1/p| logλ|‖xχ1(x/λ)χ2(x/λ)‖
L1/γ ′ ‖f ‖Lq

� λγ ′+1−1/p| logλ|‖xχ1(x)‖
L1/γ ′ ‖χ2‖∞‖f ‖γ,p,∞.

For the large blocks we obtain as in (i)∥∥∥∑
j�1

	j

(
χ1(x)χ2(x)�λ(xf (x))

)∥∥∥
γ+1,p,∞

� λγ+1−1/p| logλ|‖χ1‖∞‖χ2(λ
−1x)xf (x)‖γ+1,p,∞ + ‖χ2(x)�λ(xf (x))‖Lp‖χ1‖γ+1,∞,∞.

Since

‖χ2(x)�λ(xf (x))‖Lp = λ‖χ2(x)xf (λx)‖Lp � λ‖xχ2(x)‖
L1/γ ′ ‖f (λx)‖Lq

� λγ ′+1−1/p‖xχ2(x)‖
L1/γ ′ ‖f ‖γ,p,∞,

we only need a uniform bound for ‖χ2(λ
−1x)xf (x)‖γ+1,p,∞ for which we apply (i) with γ ′ =

p−1 − ε < 1:

‖χ2(λ
−1x)xf (x)‖γ+1,p,∞ = ‖xf (x)�λ−1χ2‖γ+1,p,∞

� λε| logλ|‖χ2‖γ+1,p,∞‖xf (x)‖γ+1,1/γ ′,∞
� ‖χ2‖γ+1,p,∞‖xf (x)‖γ+1+ε,p,∞,

where the last estimate follows from the embedding B1+γ+ε
p,∞ ⊆ B1+γ

γ ′,∞. �
Finally, we estimate the Besov norms of the scaled resonant term.

Lemma A.6. For α, β ∈R, p � 2, f, g ∈ S we have uniformly in λ ∈ (0, 1] that

∥∥�λπ(f,g) − π(�λf,�λg)
∥∥

α+β,p/2,∞ � λ−|α+β|−p/2‖f ‖α,p,∞‖g‖β,p,∞
+ ‖�λf ‖α,p,∞‖�λg‖β,p,∞.

Proof. We proceed by generalising the proofs of [25, Lem. B.1] and of [10, Theorem 2.1]. Let 
us choose K = K(λ) ∈ N such that λ′ := λ2K ∈ (1/2, 1] and decompose

�λπ(f,g) =
∑

j,k<K:|k−j |�1

�λ	if 	kg

+
∑

j,k�K:|k−j |�1

(
F−1[ρ(2−j+Kλ′−1·)] ∗ �λf

)(
F−1[ρ(2−k+Kλ′−1·)] ∗ �λg

)
.

(A.3)

The Fourier transform of the first term is spectrally supported in a ball with radius of order 
2K ∼ λ−1 such that
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∥∥∥ ∑
j,k�K:|k−j |�1

�λ	if 	kg

∥∥∥
α+β,p/2,∞

� (2K(α+β) ∨ 1)
∑

j,k�K:|k−j |�1

∥∥�λ	jf 	kg
∥∥

Lp/2

� (2K(α+β) ∨ 1)λ−2/p
∑

j,k�K:|k−j |�1

‖	jf ‖Lp‖	kg‖Lp

� (2K(α+β) ∨ 1)λ−2/p
∑

j,k�K:|k−j |�1

2−jα−kβ‖f ‖α,p,∞‖g‖β,p,∞

� (λ−(α+β) ∨ 1)(λ(α+β) ∨ 1)λ−2/p‖f ‖α,p,∞‖g‖β,p,∞.

The second term in (A.3) equals π ′(�λf, �λg) where π ′ is the resonant term corresponding to 
the modified partition of unity (χ(·/λ′), ρ(·/λ′)). Note that the scaling parameter λ′ ∈ (1/2, 1] is 
uniformly bounded from above and below. It remains to show∥∥π ′(f, g) − π(f,g)

∥∥
α+β,p/2,∞ � ‖f ‖α,p,∞‖g‖β,p,∞.

Owing to fg = T ′
gf + T ′

f g + π ′(f, g) for the paraproduct operators T ′
gf associated to 

(χ(·/λ′), ρ(·/λ′)), we have∥∥π ′(f, g) − π(f,g)
∥∥

α+β,p/2,∞ �
∥∥T ′

f g − Tf g
∥∥

α+β,p/2,∞ + ∥∥T ′
gf − Tgf

∥∥
α+β,p/2,∞.

Generalising [10, Thm. 2.1], we will now prove∥∥Tgf − T ∗
g f

∥∥
α+β,p/2,∞ � ‖f ‖α,p,∞‖g‖β,p,∞ (A.4)

for the operator

T ∗
g f := F−1

[∫
R

χ(u − v, v)Fg(u − v)Ff (v)dv
]

where χ : R2 \ {0} → [0, 1] is a C∞-function such that for sufficiently small constants 0 < ε1 <

ε2:

χ(u, v) =
{

1, |u| � ε1|v|
0, |u| � ε2|v| .

The estimate (A.4) especially implies that Tgf and thus π(f, g) does not depend on the choice 
of the partition of unity up to a regular remainder, which concludes the proof.

To verify (A.4), we decompose

F
[
T ∗

g f ] =
∑
j,k

∫
χ(u − v, v)F[	kg](u − v)F[	jf ](v)dv.
R
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Due to the support assumption on χ , the terms with 2k � 2j−1 are zero and the integrands with 
2k � 2j−1 coincide with F[	kg] ∗F[	jf ](u). Therefore, for integers N1 < N2 depending only 
on ε1, ε1 and (χ, ρ), respectively, we have

T ∗
g f =

∑
j

∑
k<j−N1

	kg	jf + R(g,f )

with

R(g,f ) =
∑
j

Rj (g,f ), Rj (g,f )

:=
j−N2∑

k=j−N1

F−1
[∫
R

χ(u − v, v)F[	kg](u − v)F[	jf ](v)dv
]
.

Fubini’s theorem yields

Rj (g,f )(x) =
j−N2∑

k=j−N1

1

2π

∫
R

∫
R

eix(u+v)χ(u, v)F[	kg](u)F[	jf ](v)dv du

=
j−N2∑

k=j−N1

∫
R

∫
R

F−1[χ](s, t)	kg(x − s)	jf (x − t)ds dt.

Since F−1χ ∈ L1(R2) due to the regularity of χ , Young’s inequality implies

‖Rj(g,f )‖Lp/2 �
j−N2∑

k=j−N1

‖F−1χ‖L1‖	kg‖Lp‖	jf ‖Lp .

Noting that Rj(g, f ) is spectrally supported in an annulus with radius of order 2jC for some 
C > 0, we obtain

‖R(g,f )‖α+β,p/2,∞ � sup
m

2m(α+β)
∑

2m∼2j C

∑
k∼j

‖	kg‖Lp‖	jf ‖Lp � ‖f ‖α,p,∞‖g‖β,p,∞

and thus (A.4). �
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