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We obtain Serrin type characterization of isolated singularities for solutions of
fully nonlinear uniformly elliptic equations F(D2u)=0. The main result states that
any solution to the equation in the punctured ball bounded from one side is either
extendable to the solution in the entire ball or can be controlled near the centre of
the ball by means of special fundamental solutions. In comparison with semi- and
quasilinear results the proofs use the viscosity notion of generalised solution rather
than distributional or Sobolev weak solutions. We also discuss one way of defining
the expression −P+

l, L(D
2u), (P−

l, L(D
2u)) as a measure for viscosity supersolutions

(subsolutions) of the corresponding equation. Here P±
l, L are the Pucci extremal

operators. © 2001 Elsevier Science
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1. INTRODUCTION

The classical result due to Serrin [35] describes isolated singularities of
solutions to the equation

div A(x, u, Du)+B(x, u, Du)=0. (1.1)

Let W be an open set in Rn, n \ 2, containing 0. Serrin’s theorem asserts
that under special growth assumptions on the structure of the vector func-
tion A and the scalar function B every weak solution u of (1.1) in W0{0},
u ¥W1, 2

loc (W0{0}), u \ const, either can be defined at 0 as a solution of (1.1)
in W (that is, the singularity at 0 is removable) or

c [ u/E [ 1/c, c > 0 (1.2)



in some neighbourhood of 0. Here E is a special fundamental singular
solution of Eq. (1.1). In particular for the p-Laplace equation Dpu=
div(|Du|p−2 Du)=0, 1 < p [ n,

E(x)=Ep(x)=˛
1

|x| (n−p)/(p−1) , 1 < p < n

− log |x|, p=n;

see also [44, Chap. 1]. The main goal of the present paper is to establish a
Serrin type characterisation of isolated singularities for solutions of fully
nonlinear (nonlinear on the second derivatives) uniformly elliptic equations

F(D2u)=0. (1.3)

Before stating our results let us make some bibliographical remarks.
Isolated singularities for semi- and quasilinear elliptic and parabolic equa-
tions were investigated by many authors. The number of papers on this
subject is very substantial and it is hard to review the literature in a short
article. We refer to Véron’s monograph [44] for results for these classes of
equations and a rich bibliography up to 1996. Among the recent results we
mention [8, 24]. In [8] singularities of solutions quasilinear subelliptic
equations of type (1.1) on stratified Lie groups were carefully investigated.
In particular the Serrin characterisation (1.2) was proved. In [24] a simpler
proof of the characterisation (1.2) was obtained for positive solutions of
the semilinear Yamabe type equation. Originally this equation was treated
in [7, 16]. The important tools in [8, 24, 44] are the flexible notions of
generalised solution: weak solution for quasilinear equations or, some-
times, distributional solution for semilinear equations. Such notions of
generalised solutions are not applicable to fully nonlinear elliptic equations
(1.3). In the present paper we use the recently introduced viscosity
generalised solutions to investigate isolated singularities for fully nonlinear
equations.
Our main results are the three theorems 1.1, 1.2, and 1.4 below. The plan

of this paper is as follows. In Section 2 we formulate preliminaries con-
cerning viscosity solutions of elliptic equations. In Section 3 the main
theorems are proved. In Section 4 we study superharmonic functions con-
nected with some fully nonlinear operators, see the end of this Section for a
summary. Now we recall some notions and finish this Section stating the
main results.
Let O · , ·P be the Euclidean inner product in Rn, n \ 2. B(x, R) denotes

an open ball in Rn with centre x and radius R, BR=B(0, R). By Sn, n \ 2,
we denote the space of real n×n symmetric matrices equipped with its
usual order; that is for N ¥ Sn N \ 0 means ONx, xP \ 0 for all x ¥ Rn; I
stands for the identity matrix. In Eq. (1.3) F: Sn Q R1. We will assume that
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F is a uniformly elliptic operator. That is, there are two constants L \ l > 0
(which are called the ellipticity constants) such that for any M ¥ Sn

l trace(N) [ F(M+N)−F(M) [ L trace(N) -N \ 0,

or equivalently lI [ [“F(M)/“Mij] [ LI. Examples of fully nonlinear
uniformly elliptic equations arising in applications are the Bellman and
Isaacs equations; see [5, 17]. Important operators for the viscosity theory
(and for our work) are the Pucci extremal operators P±

l, L, see Section 2 for
definitions. By a solution of (1.3) we always mean the viscosity solution
(Sect. 2) unless otherwise indicated.
Our first result concerns the Pucci extremal operators P±

l, L and their
fundamental solutions E±=E±

L/l, e
±=e±L/l, see (2.5)–(2.9).

Theorem 1.1. Let u ¥ C2
loc(BR 0{0}), u \ 0, satisfy

P+
l, L(D

2u)=0 in BR 0{0}, (1.4)

where BR … Rn, n \ 2, 0 < l < L, 1 < L/l [ n−1. Then either the singularity
at 0 is removable and u is a classical solution of (1.4) in the entire ball BR, or
there exists a real number c > 0 such that

u(x)=cE+
L/l(x)+O(1), xQ 0, (1.5)

and

Dau(x)=cDaE+
L/l(x)+o 1 1

|x|l(n−1)/L−1+|a|
2 , xQ 0, (1.6)

for all multi-indices a with 1 [ |a| [ 2, |a|=a1+·· ·+an.

According to the Evans–Krylov estimates, any viscosity solution to (1.4)
enjoys C2, a

loc regularity [29] and, consequently, is a classical solution.
Because of the lack of differentiability of the matrix function (2.5) we
cannot in general expect the existence of derivatives of order 3 and higher
for solutions of (1.4). Theorem 1.1 and its proof are also valid for l=L,
P+
L, L(D

2u)=L Du. To exclude the classical case of harmonic functions we
will always assume that 0 < l < L. The proof of Theorem 1.1 is based on
the scale invariance of (1.4) and the classical maximum principle. It uses a
construction of Kichenassamy and Véron [22]. Concerning the condition
L/l [ n−1 in Theorems 1.1, 1.2, see Remark 1.3. Of course, statements
completely analogous to Theorem 1.1 hold for P+

l, L and e+, or for P−
l, L

and E−, e−, see (2.5)–(2.9).
Due to the Evans–Krylov C2, a

loc regularity results and the convexity of
P+
l, L we could avoid the use of the viscosity solutions in the proof of
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Theorem 1.1. For example, in the proof of the removability part of
Theorem 1.1 we argue utilising a simple linearisation. For general equa-
tions (1.3) the best local regularity known is the Trudinger C1, a regularity
[31, 38, 39] (see also [5, Chap. 5]), so the linearisation cannot be
employed. However, for the general nonlinear equation (1.3) we have the
following generalisation of the Liouville theorem [9, 30] on removable
singularities.

Theorem 1.2. Let u ¥ Cloc(BR 0{0}) be a solution to

F(D2u)=0 in BR 0{0}, (1.7)

where BR … Rn, n \ 2, and F is a uniformly elliptic operator with the
ellipticity constants 0 < l < L, 1 < L/l [ n−1. If

u(x)=o(E+
L/l(x)), xQ 0, (1.8)

then the singularity at 0 is removable and u is a solution of (1.7) in the entire
ball BR.

The example of fundamental solutions E± of the operators P±
l, L shows

that condition (1.8) is sharp. The main idea in the proof of Theorem 1.2 is
purely viscosity in nature.

Remark 1.3. The condition L/l [ n−1 for operators P±
l, L(D

2u) (or for
F(D2u)) is analogous to the condition p [ n for the p-Laplacian (or to the
well known growth restriction for general quasilinear operators in (1.1)
[35]). For L/l > n−1, the fundamental solution E+

L/l for the operator
P±
l, L is Hölder continuous at the nonremovable singularity, (2.8), as in the

case for the fundamental solution for the p-Laplacian for p > n. Conse-
quently, in removability statements like our Theorem 1.2, the absolute
value restrictions are no longer sufficient for L/l > n−1. Nevertheless, the
ideas behind Theorems 1.1, 1.2 work for any L/l. For example, using
‘‘tilting’’ arguments as in the proof of Theorem 1.2 and (2.7) it is not hard
to show that if |u(x)−u(0)| [ C |x|b for some b > 1−(l(n−1)/L) then 0 is
a removable singularity for (1.7), even when the ellipticity constants for F
satisfy L/l > n−1. The example of P±

l, L and E± shows that this condition
on b is sharp. The proof of the characterisation (1.4)–(1.6) moreover can be
easily adapted to embrace the case L/l > n−1, see [22] for the case of the
p-Laplacian with p > n.

In our Theorem 1.4 below we establish a characterisation of isolated
singularities for nonlinear equations more general than (1.4). The proof of
Theorem 1.4 relies on an idea different from that in the proof of Theorem
1.1. Namely we use an observation from [43], based on the moving plane
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method. We will also need the following conditions on the fully nonlinear
uniformly elliptic operator F:

I. F is rotationally invariant, that is

F(TXT t)=F(X) for all X, T ¥ Sn, TT t=I;

II. F(X)=0 2 F(tX)=0 for all t > 0;
III. There exist two radial solutions E, e to F(D2u)=0 in Rn0{0}

such that

lim
xQ 0

E=−lim
xQ 0

e=+..

Theorem 1.4. Let u ¥ Cloc(BR 0{0}), u \ 0, be a solution to

F(D2u)=0 in BR 0{0}, (1.9)

where the uniformly elliptic operator F satisfies I–III. Then either the singu-
larity at 0 is removable and u is a solution of (1.9) in the entire ball BR, or
there exists a real number c > 0 such that

u(x)=cE(x)+O(1), xQ 0. (1.10)

We remark that the asymptotic conditions (1.5), (1.10) are stronger than
(1.2). Using the blow-up construction in the proof of Theorem 1.1, the
estimate (1.10) can be refined further as in (1.6), if more information on the
structure of E is given.
In Section 4 we discuss some properties of viscosity supersolutions u,

that is

P+
l, L(D

2u) [ 0. (1.11)

This material is related to the question whether it is possible to define
−P+

l, L(D
2E+
L/l) as the Dirac mass d. The set of all supersolutions u of

(1.11) is a convex cone [5, Chap. 5]. In the case l=L this cone is exactly
the cone of the classical superharmonic functions [19, Chap. 3]. For
superharmonic functions the expression −P+

1, 1(D
2u)=−Du can be defined

as a Radon measure, weakly* continuous with respect to L1
loc convergence,

see e.g. [19, Chap. 3].
Recently Trudinger and Wang [41–43] generalised this classical result as

follows. They defined fully nonlinear expressions Fk[u] as Radon measures
for viscosity subsolutions u, Fk[u] \ 0, k=1, ..., n. Here the k-Hessian
operator Fk[u] is the kth elementary symmetric function of the eigenvalues
of the Hessian matrix [D2u], F1[u]=Du, Fn[u]=det D2u. Trudinger and
Wang proved weak* continuity of Fk[u] with respect to L1

loc convergence,
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and existence and uniqueness theorems for the Dirichlet problem. In
Section 4, using an idea from [42] we prove that if u is a viscosity super-
solution of (1.11) with 0 < l < L, then Diju are signed Radon measures for
all i, j=1, ..., n. Then we define the expression −P+

l, L(D
2u) as a Radon

measure and prove an upper semicontinuity result for this measure with
respect to L1

loc convergence. Properties of −P+
l, L(D

2u) on the cone of
supersolutions are analogous to properties of the operator

F[u]=1det 5 “
2u

“zj “z̄k
621/n (1.12)

on the cone of plurisubharmonic functions in Cn, n \ 2, discussed by
Bedford and Taylor in [2, Sect. 5].

2. PRELIMINARIES

First we recall some well known facts from viscosity theory. The visco-
sity notion of generalised solution to fully nonlinear equations was
introduced and investigated by Crandall, Lions, Evans, Jensen, Ishii, and
others. See the surveys [11, 13] for exposition, history and bibliography.
For fully nonlinear uniformly elliptic equations of the form

F(D2u)=0 (2.1)

(and for more general equations) their existence and uniqueness results,
together with the regularity results of Trudinger [38, 39], Caffarelli [4],
and others, form a complete theory; also see [11, 13], and the monograph
[5]. For (2.1) with concave or convex F (in particular for Eq. (2.10)), the
questions of existence, uniqueness and regularity were first investigated by
Lions utilising a connection with stochastic control theory, see [27–29].
Consider Eq. (2.1), where the real function u is defined in a bounded

domain W … Rn, n \ 2, and F is a uniformly elliptic operator. We say that a
polynomial P of degree 2 touches the function f: W Q R1 above at x0 ¥ W if
there is a neighbourhood B(x0, e), e > 0 such that

f [ P in B(x0, e) and f(x0)=P(x0). (2.2)

Similarly P touches f below if P [ f in B(x0, e), f(x0)=P(x0). An upper
semicontinuous function u: W Q R1 2 {−.} (resp. lower semicontinuous
function u: W Q R1 2 {+.}) is a viscosity subsolution (resp. viscosity
supersolution) of (2.1) in W when the following condition holds:

if x0 ¥ W, and P is any polynomial of degree 2 touching u above at x0

then F(D2P(x0)) \ 0
(respectively if P touches u below at x0 then F(D2P(x0)) [ 0).
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We say that u is a viscosity solution of (2.1) when it is simultaneously a
subsolution and a supersolution (in particular u is continuous). We say that
F(D2u) \ 0 (resp. [ 0, =0) in the viscosity sense in W whenever u is a
viscosity subsolution (resp. supersolution, solution) of (2.1) in W. In what
follows, by a solution we always mean a viscosity solution.
This definition is taken from [5, Chap. 2]. Definitions in [13, Sect. 2],

[11, Sect. 2] are slightly different and use arbitrary C2
loc functions instead

of polynomials of degree 2. However, all the definitions are equivalent, see
[5, Chap. 2].
We refer to [20] for the theory of viscosity solutions and to [6, 37] for

Lp-viscosity solutions of the general equations F(x, u, Du, D2u)=0, with
respectively continuous and measurable dependence on x. A complete
treatment of the parabolic counterpart can be found in [12].
The comparison principle holds for viscosity solutions of (2.1),

[5, Chap. 5; 21]. That is, for u, v ¥ C(W̄), F(D2u) \ 0, F(D2v) [ 0, the
inequality u|“W [ v|“W implies u [ v in W.
Let F be a uniformly elliptic operator. If u ¥ Cloc(B3r/2), u \ 0 in B3r/2, is

a viscosity solution to (2.1) in B3r/2, then the the Krylov–Safonov Harnack
inequality [5, Chap. 6], holds:

sup
Br

u [ C(l, L, n)(inf
Br

u+r ||F(0)||Ln(B3r/2 )). (2.3)

Inequality (2.3) for classical and strong solutions of (2.1) was proved in
[33]; see also [26, Chap. 4; 17, Chap. 17]. For quasilinear equations (1.1),
the Harnack inequality was established by Serrin earlier in [34].
If F is additionally convex or concave on Sn then solutions to (2.1) enjoy

C2, a
loc regularity. Moreover, the following Evans–Krylov estimate [14, 25],

holds. If u ¥ Cloc(B1) is a solution to (2.1) in B1, then

||u||C2, a(B̄1/2 ) [ C ||u||L.(B1 ), (2.4)

where 0 < a < 1 and C=C(l, L, n) > 0. The proof of (2.4) can be found
for classical solutions in [15; 17, Chap. 17; 40], and for viscosity solutions
in [4, 5].
Important examples of fully nonlinear uniformly elliptic operators are

the Pucci extremal operators P±
l, L(M), M ¥ Sn. If mj, j=1, ..., n are the

eigenvalues of M, and 0 < l [ L then (see [5, Chap. 2])

P+
l, L(M)= sup

lI [ A [ LI

1 C
n

i, j=1
AijMij
2=L C

mj > 0
mj+l C

mj < 0
mj, (2.5)

P−
l, L(M)= inf

lI [ A [ LI

1 C
n

i, j=1
AijMij
2=l C

mj > 0
mj+L C

mj < 0
mj. (2.6)
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For arbitrary uniformly elliptic operator F with the ellipticity constants
0 < l [ L, the following property holds for viscosity sub- and supersolu-
tions, [5, Chap. 2]:

F(D2u) \ 0 2P+
l, L(D

2u) \ −F(0)

F(D2u) [ 0 2P−
l, L(D

2u) [ −F(0).
(2.7)

The fundamental solutions E+, e+ to the operator P+
l, L are defined by

E+(x)=E+
L/l(x)=˛

1
|x| (n−1) l/L−1 if 1 [ L/l < n−1

− log |x| if L/l=n−1
−|x|1−(n−1) l/L if n−1 < L/l,

(2.8)

e+(x)=e+L/l(x)=˛
−1

|x| (n−1) L/l−1 if L/l \ 1 and n \ 3

−1
|x|L/l−1 if L/l > 1 and n=2

log |x| if L=l and n=2.

(2.9)

Note that E+
L/l ] −e+L/l if L/l > 1. Using the rotational invariance of the

Pucci extremal operators, it is easy to check that E+, e+ satisfy the
equation

P+
l, L(D

2u)=0 (2.10)

in Rn0{0}. As a direct consequence of the comparison principle in spheri-
cal shells any radial solution to (2.10) in Rn0{0} has either the form
aE++b, or ae++b, where a \ 0, b ¥ R1. We define the fundamental
solutions E−, e−, to the operator P−

l, L by

E−=E−
L/l=−E+

L/l, e−=e−L/l=−e+L/l. (2.11)

In this paper we will consider only the operator P+
l, L. Using the equality

P+
l, L(M)=−P−

l, L(−M) (2.12)

it is easy to formulate and prove results forP−
l, L parallel to the results forP

+
l, L.

In [32] Pucci introduced the slightly different extremal operators

Ma(ma)(D2u)=sup(inf) 1 C
n

i, j=1
AijDiju2 ,
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where sup (inf) is taken over all A ¥ Sn such that Tr A=1, A \ aI,
0 < a [ 1/n. See also [17, Chap. 17]. The operators Ma, ma have funda-
mental solutions of type (2.8), (2.9). The results of this paper can be
obtained by the same methods for Ma, ma, and similar operators.

3. PROOFS OF THE RESULTS

Proof of Theorem 1.1. We employ only classical solutions to (1.4). The
plan of the proof is as follows. First, using linearisation and properties of the
classical solutions, we show that either the singularity at 0 is removable or

E+/C [ u [ CE+ in BR/2 0{0}. (3.1)

Then we will refine (3.1) and prove (1.5), (1.6).
We claim that for u satisfying (1.4) there exists

lim
xQ 0

u(x)=u0, 0 [ u0 [+.. (3.2)

In fact, let

u0=lim inf
xQ 0

u(x).

If u0=+., then from the definition u(x)Q+., xQ 0. If u0 <+.,
consider the function

ue=u−u0+e, e > 0.

It satisfies (1.4) in BR 0{0} and is positive in some neighbourhood of 0. By
the Harnack inequality (2.3)

max
“Brj

ue [ C(n) e

for a monotone sequence {rj}, rj Q 0. Due to the comparison principle for
classical solutions in shells Brj 0Br(j+1)

we conclude by letting e Q 0 that

lim sup
xQ 0

u(x)=u0.

We show that (3.1) holds in the case u0=+.. Let

mj=min
“BR4 −j

u, Mj=max
“BR4 −j

u, j=1, 2... .
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We define aj, aj \ 0, such that

mj=aj(E+(x)−E+(R/2)), |x|=R4−j.

If the sequence {aj} is unbounded then the comparison principle applied to
u and aj(E+−E+(R/2)) in the shells BR/2 0BR4 −j implies u —+., a con-
tradiction. Thus aj [ C1 for some constant C1 > 0. Combining this with the
Harnack inequality (2.3) for classical solutions, we obtain

Mj [ C(l, L, n) mj [ C2(E+(x)−E+(R/2)) for all x ¥ “BR4 −j.

Using the comparison principle, we conclude that

u [ CE+ in BR/2 0{0}.

The proof of the lower bound in (3.1) is the same.
To finish the first part of the proof we now show that in the case

u0 <+. in (3.2) the singularity is removable. The proof is similar to the
linear case [44, Chap. 1]. Consider the function v ¥ C2, a(B̄R/2) such that

3P
+
l, L(D

2v)=0 in BR/2

v=u on “BR/2.

The function (u−v) ¥ C2
loc(BR/2 0{0}) 5 L.(BR/2) satisfies the equation

C
n

i, j=1
Aij(x) Dij(u−v)=0 in BR/2 0{0},

where the measurable coefficients Aij, lI [ [Aij] [ LI, are obtained by
linearisation, that is

Aij(x)=F
1

0

“

“rij
P+
l, L(tD

2u(x)+(1−t) D2v(x)) dt. (3.3)

By definition, the function E+=E+
L/l satisfies

C
n

i, j=1
Aij(x) DijE+[ 0 in BR/2 0{0}.

Using comparison principle for (u−v) and eE+, e Q 0, we obtain u [ v in
BR/2 0{0}. The opposite inequality is proved in the same way. We conclude
that

u=v in BR/2 0{0}

and the singularity at 0 is removable.
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We have proved that either the singularity at 0 is removable or (3.1)
holds. In the remaining part of the proof we show that (3.1) can be refined
and (1.5), (1.6) hold.
The scale invariance of the equation in (1.4) and the Evans–Krylov

estimate (2.4) give the following: let y, z satisfy 0 < |y| < |z| < 1, and let the
function f satisfy (1.4) in B3 0{0}. Then

|Df(y)| [ C
||f||L.(B2 0B|y|/2 )

|y|
, (3.4)

|D2f(y)| [ C
||f||L.(B2 0B|y|/2 )

|y|2
, (3.5)

|D2f(y)−D2f(z)| [ C
||f||L.(B2 0B|y|/2 ) |y−z|a

|y|2+a
, (3.6)

where 0 < a < 1, C=C(l, L, n).
In the proof of (1.5) and (1.6) we treat the cases 1 < L/l < n−1 and

1 < L/l=n−1 separately.

Case (i). 1 < L/l < n−1. Due to the invariance of the equation we can
assume that R=1/2 and max“B1/4u=0. Let

C(r)= max
r [ |x| [ 1/4

(u(x)/E+(x)), 0 < r < 1/4. (3.7)

From the comparison principle there exists xr, |xr |=r, such that

C(r)=max
“Br

(u/E+)=u(xr)/E+(xr). (3.8)

Consequently C(r) ‘ c as r a 0, where

c=O
xQ 0

(u(x)/E+(x)), c > 0. (3.9)

We introduce the function vr : B1/(4r) 0{0}Q R, by

vr(x)=u(rx)/E+(ar), |ar |=r. (3.10)

The function vr satisfies equation in (1.4) in B1/(4r) 0{0}, and from (3.1),
(3.7), (3.9)

0 [ vr [ cE+ in B2 0{0} (3.11)

for all r > 0 small enough. Let K … B2 be a compact set, 0 ¨K. From (3.11)
and (3.4)–(3.6)

||vr ||C2, a(K) [ cCK for all r ¥ (0, 1/4), (3.12)
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where the constant CK=CK(l, L, n, dist(0, K)) is independent of r. From
(3.12) we can find a sequence rj Q 0 such that vrj Q v in C2

loc(B2 0{0}). The
function v satisfies equation (1.4) in B2 0{0}. Moreover, from (3.11)

0 [ v(x) [ cE+(x) for all x ¥ B2 0{0}. (3.13)

Let tj=xrj/rj, |tj |=1, where xr is given in (3.8). We can assume tj Q t,
|t|=1. From (3.8)–(3.10) we have

vrj (tj)
E+(tj)

=C(rj)Q c, jQ..

Thus

v(t)
E+(t)

=c, |t|=1. (3.14)

From (3.13) and (3.14), due to the strong maximum principle, [17,
Chap. 2],

v(x)=cE+(x) for all x ¥ B2 0{0}.

Thus in particular the limit function v is independent of the sequence {rj}.
Consequently vr Q cE+ as rQ 0 in C2

loc(B2 0{0}). Hence if we put D0u=u,
then

Dbvr Q cDbE+ as rQ 0, uniformly on “B1,

for 0 [ |b| [ 2. Thus

lim
xQ 0

1 Dbu(x)
E+(x) |x|−|b|

2=c(DbE+) 1 x
|x|
2 . (3.15)

For 1 [ |b| [ 2, (1.6) then follows from (3.15).
In case b=0 it is possible to strengthen (3.15). Consider the functions

V+
e (x)=(c+e) E+(x)−(c+e) E+(z0)+max

“B1/2
u,

V−
e (x)=(c− e) E+(x)−(c− e) E+(z0)+min

“B1/2
u,

where |z0 |=1/2. From the comparison principle we get V−
e [ u [ V+

e , and
letting e go to 0 then give (1.5).
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Case (ii). 1 < L/l=n−1. First we proceed as in the case L/l < n−1,
again assuming that

R=1/2, max
“B1/4

u=0.

Repeating the arguments (3.7)–(3.9), we conclude that

u(x) [ cE+
n−1(x) for all x ¥ B1/4 0{0},

where c is defined by (3.9). Combining this with (3.1), we conclude that for
some R0 > 0

0 [ u(x) [ cE+
n−1(x) for all x ¥ BR0

0{0}. (3.16)

Consider the function vr defined by (3.10) with E+=E+
n−1. Using (3.16)

and (3.4)–(3.6), we obtain (3.12) for any compact set K … Rn0{0}. Conse-
quently we can find a sequence {rj}, rj Q 0 when jQ., such that

vrj Q ṽ in C2
loc(R

n0{0}).

The function ṽ satisfies equation (1.4) in Rn0{0}. Moreover, (3.16) gives

0 [ ṽ(x)=lim
jQ.

vrj (x)=lim
jQ.

u(rjx)
− log rj

[ lim
jQ.

c(−log rj − log |x|)
− log rj

=c for all x ¥ Rn0{0}.

Thus ṽ is a bounded solution to (1.4) in Rn0{0}. It does not satisfy (3.1).
Thus, as we have already proved, the singularity at 0 is removable. The
Harnack inequality (2.3) applied to the solution ṽ gives ṽ(x) — b [ c. (For
this Liouville theorem see [5, Chap. 4].) For the sequence {tj}, tj=xrj/rj,
|tj |=1, where xr is defined in (3.8), we have

vrj (tj)Q c, jQ..

We conclude that b=c. Consequently

vr Q c in C2
loc(R

n0{0}) as rQ 0. (3.17)

As in the case L/l < n−1, this gives

u(x)=−c log |x|+O(1), xQ 0. (3.18)
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Thus (1.5) proved. However, the estimates for vrj contained in (3.17) do not
give (1.6).
To prove the asymptotic estimates (1.6) for the derivatives it is enough to

show that there exists a constant N ¥ R such that

||u(r · )− cE+(r · )−N||C2(B2 0B1) Q 0 when rQ 0.

We establish this convergence by showing that:

• For any sequence {rj}, rj Q 0 when jQ., there exists a sub-
sequence {rj}, rk=rjk , and a function j ¥ C2(B2 0B1) such that

||u(rj · )− cE+(rj · )−j||C2(B2 0B1) Q 0, jQ.. (3.19)

• There exists a constant N ¥ R such that

||u(r · )− cE+(r · )−N||L.(B2 0B1 ) Q 0, rQ 0. (3.20)

Of course, it follows from (3.19), (3.20) that j —N. In the remaining part
of the proof we establish assertions (3.19), (3.20).
We introduce for 0 < r < 1/4 the function

wr(x)=u(rx)− c(−log r), (3.21)

defined in B1/4r 0{0}. Let us first obtain some estimates for the function wr

and its derivatives. We have from (3.18)

−C+cE+(x) [ wr(x) [ C+cE+(x), (3.22)

where

C= sup
0 < |x| < 1/4

|u(x)− cE+(x)|.

Using estimates (3.22) and (2.4) for the function wr we obtain

||wr ||C2, a({x: 1/2 [ |x| [ 2}) [ C ||wr ||L.({x: 1/4 [ |x| [ 3}), (3.23)

C is independent of r. Estimate (3.23) leads us to the estimate for
C2, a-norm of u, and then definition (3.21) leads us back to the estimates for
wr. The latter are:

|Dbwr(x)| [ C
1

|x| |b|
, 1 [ |b| [ 2, (3.24)

|D2wr(x)−D2wr(y)| [ C
|x−y|a

|x|2+a
, 0 < a < 1, (3.25)

where 0 < |x| < |y| < 1/(8r) and C=C(u) is independent of r.
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From (3.22), (3.24), (3.25) for any sequence {rj}, rj Q 0, there is a
subsequence {rj}, rk=rjk , 0 < rk < 1/4, such that

wrj Q w in C2
loc(R

n0{0}), jQ., (3.26)

or, equivalently,

u(rj · )− cE+(rj · )Q w( · )− cE+( · ) in C2
loc(R

n0{0}), jQ.,
(3.27)

for a function w ¥ C2
loc(R

n0{0}). Thus (3.19) is proved with j=w− cE+.
Now we pass to the proof of (3.20). The function w (chosen for a fixed

{rj} in (3.26)) is a solution to (1.4) in Rn0{0} due to the Evans–Krylov
estimate (2.4). We also have

|w(x)− cE+(x)| [ C, x ] 0,

with C independent on x. The bounded, smooth function w− cE+ satisfies
in Rn0{0} the linear homogeneous uniformly elliptic equation obtained by
linearisation (3.3) of (1.4). Thus by the Krylov–Safonov Harnack inequal-
ity for the strong solutions [26, Chap. 4; 33] we obtain

lim
xQ 0

(w− cE+)=M.

The assertion (3.20) will be proved with N=M if we establish that

lim
xQ 0

(u(x)− cE+(x))=M. (3.28)

In particular (3.28) implies that M does not depend on {rj}. We remark
that (3.28) is a refinement of (3.18). The same refinement holds for (1.5)
with 1 < L/l < n−1.
For the proof of (3.28) we fix an arbitrary e > 0 and choose r0 > 0 so

small that

|w− cE+−M| [ e on “Br0 .

Combining this with (3.27), we obtain

cE++M−2e [ u [ cE++M+2e on “Brjr0

for all j large enough. At the same time, both u and cE++M+const are
solutions to

P+
l, L(D

2U)=0 in B1/2 0{0}.
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From the comparison principle in spherical shells, we conclude that

lim sup
xQ 0

|u(x)− cE+(x)−M| [ 2e.

Thus (3.20) holds. L

Proof of Theorem 1.2. The best known regularity results for solutions
of the general equation (1.7) are the Trudinger C1, a estimates, [31, 39].
Thus we cannot use linearisation as in the proof of Theorem 1.1. The proof
of Theorem 1.2 consists of two steps. The first step is to show that any
function u satisfying (1.7), (1.8) can be defined at 0 by continuity. The
second step is to verify that this continuous function is the viscosity
solution to equation (1.7) in the entire ball BR.
To show the existence of

lim
xQ 0

u(x)=u0, −. < u0 <+., (3.29)

we first prove that u ¥ L.(BR/2). In fact, (1.7) (2.7) imply

P+
l, L(D

2u) \ −F(0) in BR 0{0}.

The uniform ellipticity of F implies that for any A, a > 0

P+
l, L(D

2(aE+(x)−A |x|2)) [ −l2An in BR 0{0}.

Consequently, from (1.8) and the comparison principle for viscosity solu-
tions, we conclude that for any x ¥ BR/2 0{0} and all sufficiently small a > 0

u(x) [ aE+
L/l(x)−

|F(0)|
l

|x|2+
|F(0)|

l
(R/2)2+max

“BR/2
u.

Letting aQ 0 we see that u is bounded from above in BR/2. A bound from
below is obtained by using the same arguments with P−

l, L and E−
L/l,

|E−|=|E+|. We conclude the proof of (3.29) by using the Harnack
inequality (2.3) and the comparison principle in the same way as in the
proof of (3.2). But this time we need (2.3) and the comparison principle for
viscosity solutions.
From (3.29) we can assume that u ¥ Cloc(BR). We show that this function

satisfies

F(D2u)=0 in BR

in the viscosity sense. Let us show that u is a viscosity subsolution. (The
proof that u is a supersolution is the same.) We need to establish that

F(D2P) \ 0 (3.30)
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for any quadratic polynomial P touching u above at 0. Let P be a quadra-
tic polynomial such that (2.9) holds for f=u, x0=0. Due to the invariance
of the equation, we can assume that u(0)=P(0)=0, DP(0)=0.
First we note that u cannot have a strict local maximum at 0. To see this,

suppose that there is a ball of radius r <min{R/2, 1} such that

max
“Br

u=M< 0.

Consider the sequence of functions M+(E+/j), j \ 1. Let 0 < |x0 | < r. Due
to the comparison principle in the shell Br 0Brj for sufficiently small rj > 0
one has

u(x0) [M+E+(x0)/j for all j \ 1.

When jQ. we obtain u [M< 0 in Br 0{0}, which contradicts the conti-
nuity of u at 0. Consequently we can assume that there is a sequence {zj},
zj Q 0, jQ., such that all coordinates of every zj are positive and

u(zj) \ 0, j=1, 2, ... . (3.31)

Now we establish (3.30). Fix any d > 0. There exists r0=r0(d) > 0 such
that the polynomial Pd(x)=P(x)+d |x|2/2 satisfies

Pd(0)=u(0), Pd(x) > u(x) for any x ¥ Br0 .

Consequently there exists e=e(d) > 0 such that, for the polynomial

Pd, e(x)=Pd(x)− e(x1+·· ·+xd)

=P(x)+d |x|2/2− e(x1+·· ·+xd),

we have

u(0)−Pd, e(0)=0, (u−Pd, e) < 0 on “Br0 . (3.32)

From (3.31) we obtain

u(zj)−Pd, e(zj) > 0

for zj and sufficiently large j. Thus from (3.32) we can find a point x e ¥ Br0 ,
x e ] 0, such that

u(xe)−Pd, e(x e)=max
Br0

(u−Pd, e) > 0. (3.33)
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From (3.32), (3.33), the polynomial

Qd, e(x)=Pd, e(x)+u(xe)−Pd, e(x e)

touches u above at x e, x e ] 0. The function u satisfies (1.7) in the viscosity
sense. Consequently

0 [ F(D2Qd, e)=F(D2P+dI).

Letting d Q 0 we obtain (3.30). L

Proof of Theorem 1.4. Following the beginning of the proof of
Theorem 1.1, we see that either

lim
xQ 0

u(x)=u0, −. < u0 <+.,

or

E/C [ u [ CE in BR/2 0{0} (3.34)

for some constant C > 0. (Note that in order to repeat the arguments of
the corresponding part of the proof of Theorem 1.1 it is necessary use
conditions II and III.)
In case −. < u0 <+., we can follow the proof of Theorem 1.2 and

establish that

F(D2u)=0 in BR

in the viscosity sense. (Note that repeating the arguments of the correspon-
ding part of the proof of Theorem 1.2 we also use conditions II and III.)
In the remaining part of the proof we will refine (3.34) and prove the

asymptotic estimate (1.10). We can assume that min“BR/2 u=0, and set
M=max“BR/2 u. Consider the sequence {vj}, where vj ¥ C(B̄R/2 0B2 −jR) is
defined as follows:

F(D2vj)=0 in BR/2 0 B̄2 −jR

vj=M on “BR/2

vj=u on “B2 −jR.

(3.35)

From the comparison principle

vj −M [ u [ vj in BR/2 0B2 −jR. (3.36)
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We claim that there exists a subsequence {jk} and a function U ¥

Cloc(BR/2 0{0}) such that

vjk Q U in Cloc(BR/2 0{0}). (3.37)

Accepting this assertion we now finish the proof of the theorem.
From (3.36), (3.37)

U−M [ u [ U in BR/2 0{0}. (3.38)

In particular U(x)Q+. when xQ 0. From (3.35), (3.37), and the stability
of the viscosity notions with respect to uniform convergence, we obtain

˛F(D
2U)=0 in BR/2 0{0}

U=M on “BR/2

U(x)Q+. if xQ 0.
(3.39)

The rotational invariance condition I and the comparison principle for
lower semicontinuous viscosity supersolutions allows us to apply the
moving plane arguments of [36] to solutions of (3.39). We thus see that U
is radially symmetric. Next, by the comparison principle we conclude from
II and (3.34) that

U=cE+a

for some c > 0, a ¥ R. Combining this with (3.38) we derive (1.10) and the
theorem is proved.
It is left to establish (3.37) for the sequence {vj} given by (3.35). From

(3.34), (3.36) and the comparison principle, we obtain

0 [ vj [ CE+M in BR/2 0B2 −jR

with C and M independent of j. The existence of a subsequence {vjk} with
property (3.37) now follows directly from the Arzela–Ascoli lemma and the
local C0, a estimates for solutions of uniformly elliptic equations, e.g.
[5, Chap. 4]. L

4. PROPERTIES OF VISCOSITY SUPERSOLUTIONS

For a domain W … Rn, let Yl/L(W) be the set of all viscosity supersolu-
tions of

P+
l, L(D

2u) [ 0 in W
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which are not identically equal to +.. This set is well-defined since
P+
l, L(D

2u) [ 0 implies that P+
tl, t L(D

2u) [ 0, t > 0. For example, if by con-
tinuity we define E+

L/l(0)=+., then E+
L/l is lower semicontinuous in Rn

and consequently E+
L/l ¥ Yl/L(Rn).

The set Yl/L(W) is a convex cone, [5, Chap. 5], and obviously

Ys(W) … Yt(W), 0 < s [ t [ 1.

The cone Y1(W) is in fact the cone of classical superharmonic functions, see
e.g. [19, Chap. 3]. In this Section we will investigate properties of func-
tions in Yt(W), 0 < t < 1. Corollary 4.3 states that for any u ¥ Yt(W),
0 < t < 1, the second derivatives Diju, i, j=1, ..., n, are signed Radon
measures in W. Of course, this is not true for classical superharmonic func-
tions. Properties of functions whose Hessian matrices are Radon measures
have been investigated in the literature, see e.g. [1] and references therein.
Thus Corollary 4.3 implies that the results of [1] hold for functions in
Yt(W), 0 < t < 1.

Remark 4.1. Originally we were motivated by the problem of which
properties of the Laplace operator on Y1(W) could be extended to the
operator P+

l, L acting on Yl/L(W). More precisely, is it possible to define the
expression −P+

l, L(D
2u), u ¥ Yl/L(W), as a measure with some sequential

continuity properties so as to construct a nontrivial existence-uniqueness
theory for the Dirichlet problem? It is tempting to ask whether it is possible
to define P+

l, L such that

−P+
l, L(D

2E+
L/l)=Cd, C > 0,

where d is the Dirac mass at 0. If u ¥ Y1(W), then −Du is a Radon
measure, weakly* continuous with respect to L1

loc convergence. Recently
Trudinger and Wang [41, 42] obtained a similar result (see the introduc-
tion) for viscosity subsolutions of fully nonlinear Hessian equations. For
k-Hessian operators Fk and for quasilinear equations involving the
p-Laplacian Dp (and even for more general operators) such definitions
exist, and the corresponding fundamental solutions satisfy the equation
with a Dirac mass d. In contrast with P+

l, L, the operators Fk and Dp have a
variational structure. Concerning Dp-superharmonic functions and mea-
sures related to them, see [3; 23; 44, Chap. 5]. For our results for P+

l, L, see
Remark 4.4 and Proposition 4.5 below.
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It follows immediately from (2.5) that u ¥ C2
loc(W) belongs to Yt(W),

0 < t [ 1, if and only if for any x ¥ W the eigenvalues of the Hessian matrix
[D2u(x)] lie in the cone

Ct=3t ¥ Rn : C
tj \ 0

tj+t C
tj [ 0

tj [ 04 . (4.1)

The function

C
tj \ 0

tj+t C
tj [ 0

tj=t C
n

j=1
tj+(1−t) C

n

j=1
max{tj, 0}

is convex on Rn. Thus Ct, 0 < t [ 1, is a convex cone in Rn. The cone Cg
t

dual to Ct is defined by

Cg
t ={g ¥ Rn : Og, tP \ 0 -t ¥ Ct}. (4.2)

From the definition, Cg
s ‡ Cg

t , 0 < s [ t [ 1, and Cg
1=(−1, · · · ,−1).

A radial test function

j \ 0, F j=1, supp(j) … B1,

is called a smoothing kernel, je(x)=e−nj(x/e). We recall that for a
distribution f ¥DŒ(W), the condition f \ 0 means that

(f, k) \ 0 for every k ¥D(W), k \ 0.

Every nonnegative distribution is a Radon measure, see e.g. [45, Chap. 1].
The following lemma was inspired by [42].

Lemma 4.2. Let W be a domain in Rn, 0 < t [ 1. If u ¥ Yt(W), then

C
n

i, j=1
AijDiju \ 0 in DŒ(W) (4.3)

for all A ¥ Sn with eigenvalues in Cg
t . Conversely, if U ¥DŒ(W) satisfies (4.3)

for all A ¥ Sn with eigenvalues in Cg
t , then U is equivalent to a unique

u ¥ Yt(W).

Proof. We remark that the cone dual to Cg
t is Ct. Thus the lemma holds

for u ¥ C2
loc(W).

Let u ¥ Yt(W) … Y1(W). So in particular u ¥ L1
loc(W), see [19, Chap. 3].

Consider the inf-convolution (another name is the lower e-envelope) of u,
defined by

u−
e (x)= inf

y ¥ WŒ
{u(y)− e+|x−y|2/e},
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where e > 0, x ¥ WŒ …… W. One has

u−
1/k ¥ Yt(WŒ) 5 C(WŒ), u−

1/k ‘ u in WŒ when kQ..

The proof of these facts for continuous u can be found in [5, Chap. 5]. For
lower semicontinuous u the proof is essentially the same. Thus

u−
1/k Q u in L1(WŒ) when kQ..

From the continuity of u−
1/k and the convexity of the matrix function P+

l, L,
it follows that

u−
1/k f je ¥ Yt(Wœ), Wœ …… WŒ,

see [5, Chap. 6]. Now choose ek Q 0 such that u−
1/k f jek Q u in L1(Wœ) and

consequently in DŒ(Wœ). For smooth functions u−
1/k f jek it is clear that (4.3)

holds. Thus (4.3) holds for the limit distribution u as well.
Let now U ¥DŒ(W) be such that (4.3) holds. In particular −DU \ 0. By

a classical result for superharmonic functions, [19, Chap. 3], we have
U ¥ L1

loc(W). Thus if j is a smoothing kernel, there is a unique super-
harmonic function u: W Q R1 2 {+.} such that U=u and

u f je(x) ‘ u(x), e Q 0,

for every x ¥ W. The function u f je defined in WŒ …… W is smooth, and
(4.3) holds for it because

1 C
n

i, j=1
AijDij(u f je), k2=1 C

n

i, j=1
AijDiju, k f je 2 \ 0,

for all k ¥D(WŒ), k \ 0. Thus u f je ¥ Yt(WŒ), WŒ …… W. Finally since u is
the limit of an increasing sequence of viscosity supersolutions, it is also a
supersolution, [11, Sect. 8]. L

Corollary 4.3. If u ¥ Yt(W), 0 < t < 1, then the distributional deriva-
tives Diju are signed Radon measures for all i, j=1, ..., n.

Proof. Due to the invariance of P+
l, L with respect to orthogonal trans-

formations, it is sufficient to prove that D11u is a signed Radon measure.
From (4.3)

C
n

i, j=1
Aij Diju
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is a Radon measure for any corresponding A. Moreover, for 0 < t [ 1

A (1)=diag{−1, ..., −1} ¥ Cg
t .

Elementary calculations using (4.1), (4.2) also show that

A (2)=diag{−1/t,−1, ..., −1} ¥ Cg
t .

Thus

−D11u− · · · −Dnnu=m1,

−D11u/t−D22u− · · · −Dnnu=m2,

and for 0 < t < 1,

D11u=t(m1 −m2)/(1−t)

is a signed Radon measure. L

Now following the abstract construction of Goffman and Serrin [18] we
use Corollary 4.3 to define the Radon measure −P+

l, L(D
2u) as a function

of measures Diju, i, j=1, ..., n, u ¥ Yl/L(W). This was done in [2, Sect. 5]
for the operator F[ · ] in (1.12) on the cone of plurisubharmonic functions.
Our operator −P+

l, L enjoys the properties needed to make the construction
of [18] applicable:

• The set

{M ¥ Sn : P+
l, L(M) [ 0}

is a convex matrix cone.
• The function −P+

l, L is concave and homogeneous of degree 1 on
this cone.

• For any M ¥ Sn

|P+
l, L(M)| [ C(n) C

n

i, j=1
|Mij |.

In what follows we will refer to the proofs in the carefully written Sect. 5
in [2] whenever proofs for −P+

l, L(D
2u) and for F[v]=(det[vzjz̄k])

1/n are
the same.
Let us pass to the definition. Let u ¥ Yl/L(W). From Corollary 4.3

and Lemma 4.2 the matrix [D2u(E)]=[Diju(E)] has the eigenvalues
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in Cl/L for every Borel set E …… W. We define Borel measure ml, L[u]=
−P+

l, L(D
2u) by prescribing

ml, L[u]=−P+
l, L(D

2u)=inf 3 C
.

k=1
−P+

l, L(D
2u(Ek)) :

E=0
.

k=1
Ek, Ek disjoint Borel subsets of W4 , (4.4)

for arbitrary Borel subset E … W. It is clear that ml, L[u](K) <+. for any
compact K …… W. Thus ml, L[u] is a Radon measure for u ¥ Yl/L(W).
Let us give another definition equivalent to [2; 18, (4.4)]. We fix any

measure n such that all Diju are absolutely continuous with respect to n.
For example n=; |Diju|, where |Diju| is the total variation of Diju. By
Radon–Nikodym theorem Diju=hij dn, where hij are Borel measurable
functions in W. Then

ml, L[u]=−P+
l, L([hij]) dn, u ¥ Yl/L(W).

In particular if u ¥ Yl/L(W), Diju ¥ L1
loc(W), i, j=1, ..., n, then ml, L[u] is

absolutely continuous and

ml, L[u]=−P+
l, L(D

2u(x)) dx. (4.5)

We can also define ml, L[u] using the supremum of the family of signed
measures ; AijDiju, lI [ A [ LI, see [10, Chap. 3]. Such definition for
solutions to P+

l, L(D
2u)=0 and more general equations was discussed in

[26, Chap. 2], and [27, Sect. 1]. Using (4.5) it is not hard to show that this
definition is equivalent to the definitions above.
In Proposition 4.5 below we indicate some properties of ml, L[u].

Remark 4.4. From (4.5) it follows that

ml, L[E
+
L/l]=0 in Rn, l < L. (4.6)

Thus there can be no comparison principle for ml, L[u], u ¥ Yl/L(W) if
l < L. However part 3 of Proposition 4.5 shows that this effect is due to
the structure of P+

l, L rather than a particular way of defining ml, L[u].
From (4.6) and part 3 of Proposition 4.5 it follows that if a measure nl, L[u]
defined on Yl/L(W) coincides with −P+

l, L(D
2u) dx for smooth u ¥ Yl/L(W)

and nl, L[uj]Q nl, L[u] weakly* as uj Q u in L1
loc, then necessarily nl, L[E+]

=0 rather than nl, L[E+]=Cd, C > 0.
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Proposition 4.5. Let 0 < l < L.

1. If uj Q u in L1
loc(W), uj ¥ Yl/L(W), j \ 1, then after a possible

modification on a set of the Lebesgue measure 0 u ¥ Yl/L(W), and

ml, L[u](K) \ lim sup
jQ.

ml, L[uj](K)

for every compact set K … W.

2. If u ¥ Yl/L(W), j is a smoothing kernel, e > 0, WŒ+supp je … W,
then u f je ¥ Yl/L(WŒ).

3. If u ¥ Yl/L(W), then

lim
eQ 0

ml, L[u f je]=ml, L[u]

in the weak* sense.

4. If L/l > n−1, then Yl/L(W) … Caloc(W) for a=1−(n−1) l/L.

Proof. 1. Passing to the limit when jQ. we see by Lemma 4.2 that
(4.3) holds for u. Applying Lemma 4.2 again we see that u is equivalent to a
function from Yl/L(W). Proof of the last part of the assertion is the same as
in [2, Sect. 5; 18, Sect. 2].

2, 3. Proofs are the same as in [2, Sect. 5].
4. Let first u ¥ Yl/L(W) 5 C.loc(W). Fixing a ball B=B(y, R) …… W

we consider the fundamental solution E+
L/l(x−y) in B0{y}. By the

classical comparison principle

u(y)−u(x) [ (osc
B

u) 1 |x−y|
R
2a, a=1−

(n−1) l

L
, (4.7)

for all x ¥ B. Let s \ 0, dx=dist(x, “W),

|u| (s)0; W=sup
x ¥ W

(dsx |u(x)|),

[u](s)
a; W= sup

x, y ¥ B, x ] y
(min{dx, dy})s+a

|u(x)−u(y)|
|x−y|a

.

Then the direct consequence of (4.7) is the estimate

[u] (s)
a; W [ C1(n) |u|

(s)
0; W (4.8)

valid foranys \ 0.Using (4.8)withs=nand the interpolation inequality[42]

|u| (n)0; W [ ea[u] (n)
a; W+

C2(n)
en

F
W

|u|
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with e small enough we obtain

[u](n)
a; W [ C(n) F

W

|u|. (4.9)

For arbitrary u ¥ Yl/L(W) applying (4.9) to u f je and using parts 1, 2 we
complete the proof of 4. The example of the function E+

L/l ¥ Yl/L(Rn)
shows that the Hölder exponent a=1−(n−1) l/L is the best possible. L
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