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Abstract

Sufficient and necessary conditions for the embeddings between Besov spaces B‘;,],q and modulation
spaces M;,%q are obtained. Moreover, using the frequency-uniform decomposition method, we study the
Cauchy problem for the generalized BO, KdV and NLS equations, for which the global well-posedness of
solutions with the small rough data in certain modulation spaces Mg’] is shown.
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1. Introduction

In this paper we study the Cauchy problem for the generalized Korteweg—de Vries (KdV),
Benjamin—Ono (BO) and nonlinear Schrodinger equations

du+ 2u+u,u=0, u0,x)=uo(x), (1.1)
du +H(d2u) +u deu =0, u(0,x) =up(x), (1.2)
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iatu+8§u+uax(|u|"u)=0, u(0,x) =ug(x), (1.3)

where H :=1i.% ! sign(&).% denotes the Hilbert transform; u (¢, x) is a complex-valued function
of (t,x) e R i=/~1,ueC, 8 =0d/dt, 3 = 3/dx and 3™ = 3" /3" x, m = 2,3,k >4 is
an integer, ug is a complex-valued function of x € R. We will study the global well-posedness of
(1.1)=(1.3) with small rough data in a class of modulation spaces M3

In order to state our main results precisely, we now recall the deﬁnmon of modulation spaces.
Let Qo =1{§: —1/2<& <1/2, i =1,...,n} be the unit cube and Q,, = u + Qo, u € R". Let
{ok}kezr be a function sequence satisfying

low(®)| >c, V&€ O,

suppox C {&: |& — k| < /n},

Y oE)=1, VEeR", (1.4)
kezn

|D%01(§)| < Cn, VEER", la| <meN.

Denote

T = {{ok}kezr: {ok}kerr satisfies (1.4)}. (1.5)

Let {ox}rezn € T be a function sequence and
Ok :=F ‘v, kel (1.6)

which are said to be the frequency-uniform decomposition operators. For any k € Z", we write
lk| = |ki|+---+1kyl, (k) =1+ 1k|. Forany s e R,0 < p,q < oo, wedenote || - ||, := || - || Lr ®&m)
and

1/q
5q(R") = {fef(R") Ilf 13, =(Z(k>”’IIDkfII%) <O<>}, (.7

keZ

M IS, =M lsj q (R") is said to be a modulation space, which was first introduced by Feichtinger [9]
in the cases 1 < p, g < 0o. The norm || - || M5, adopted here is an equivalent norm on modulation
spaces; cf. [9,12,23,24,38,40]. For simplicity, we will write M, 0O =M .-

Besov spaces B;, ¢ = BS (R”) are defined as follows (cf [1 35]). Let ¥ :R" — [0,1] b
a smooth radial bump functlon adapted to the ball B(0,2): ¥(§) =1as |§| <1 and ¥ (§) =
as |&] > 2. We write 8§(-) := ¢ (-) — ¥ (2-) and 8 :=8(Q2 %) fork > 1;80:=1 — Zk>1 S- We
say that Ay :=.F~18;.7, k € Z., are the dyadic decomposition operators. Besov spaces B;, q
are defined in the following way:

o0 1/q
B;,q={fe5”(R"): ||f||3;,q=(Zzsf‘ﬂm,-fn%) <oo}. (1.8)
j=0

First, we will give some sufficient and necessary conditions for the embeddings between Besov
and modulation spaces, which cover the corresponding results as in [11,28,34,40].
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Theorem 1.1. Let 0 < p, g < o0, 51, 52 € R. Then we have

(1) By C My, ifand only if s\ > 52 + T(p, q), where

1 1 1 1
(P, q) =max{0, n(— — —),n(— 4+ - 1)};
q P q P

(2) M)}, C By, ifand only if s1 > 52+ 0 (p, q), where

11 11
o(p.q) =max{0, n(— - —),n(l - _)}
P g P q

In this paper, we are particularly interested in the space M3 | (R), for which the norm can be
rewritten as

1L o @ ~ D00 ot k40 Z 2,
keZ

where [k, k+1) denotes the characteristic function on [k, k + 1). In view of Theorem 1.1 we see
that le/ 12 R) Cc M2 1(R) C Bg 1 (R) are both sharp embeddings. So, one can regard M |(R) as
the lower regularity version of le/ IZ(R). Moreover, in [40] we have shown that M> | ¢ B; oo Y

Bgo’oo (Ve > 0),! from which we see that M> 1(R) has no derivative regularity. We have the
following

Theorem 1.2. Let k > 4, ug € Mz 1(R). Then there exists T > 0 such that (1.1) has a unique
solutionu € C([-T,T]; M2,1) N X,Edv, where

T
Xgav = {Mi Z I0kull sty 20y < oo}. (1.9)
ez x Lre(=T,T)

Moreover, if there exists a small § > 0 such that |uollp,, < 8, then (1.1) has a unique global
solution u € C(R, Ma,1) N X5y

Recall that Kenig, Ponce and Vega [20] showed the global well-posedness of Eq. (1.1) with
small data in the Sobolev spaces H'< for k > 4, s¢ = 1/2 — 2/k. Molinet and Ribaud [26]
generalized their work to the case ug € B;’foo. Due to Mz ¢ B;’( oo if & >4, our Theorem 1.2
obtains new local and global well-posedness result for a class of rough Cauchy data. However,
our result cannot cover the cases k = 2, 3, the sharp global well-posedness in H* for the cases
k = 2, 3 has been shown in [6,33].

Theorem 1.3. Let «k > 4, ug € M21/1K (R). Assume that there exists a small § > 0 such that
||uo||M1/K < 8. Then (1.2) has a unique solution u € C (R, le/lk) N XBo, where
2,1 s

1 n [40], the result was stated as My & BS o Y BS, oo however, it was shown in fact that P> Mp | ¢ BS o Y

BS oor P>1=F x(g1>0 7.



216 B. Wang, C. Huang / J. Differential Equations 239 (2007) 213-250

Xpo = {u € &' (R™): Jullxyo S 8}, (1.10)
lellxao = D _(I0kullyrpe + 00 N0kl 2e) + 3 0Dl o (111
keZ ’ lk[>>1

We remark that Molinet and Ribaud [26] obtained the global well-posedness of Eq. (1.2)

with small data ug € Bg('f), s(k) =1/2 — 1/k, k > 4. In view of Theorem 1.1, one sees that

le/l'( 4 Bg('f) if k > 4. So, our Theorem 1.3 obtains new global well-posedness result for a class

of rough initial data. When « = 2, 3, our method is invalid for Eq. (1.2) (see [22,27]).

The derivative nonlinear Schrodinger equation (1.3) has been studied by many authors in the
case k = 2; cf. [13,14,29,32]. Applying the gauge transform technique, Hayashi [13] was able to
show the global well-posedness of Eq. (1.3) in the energy space H!; cf. also [29]; and the global
well-posedness of Eq. (1.3) in H® (s > 1/2) was obtained in [7]. For the higher power cases
k >4, Wang [39] introduced a generalized gauge transform ¢ := exp(i ff oo lu(#, W|“dy)u and
obtained some sufficient conditions for the well-posedness results of Eq. (1.3) in the energy
space H!. Molinet and Ribaud’s techniques on the generalized BO equation can be developed
to Eq. (1.3) and the global well-posedness with small data ug € Béff), s)=1/2—1/k,k >4,
was essentially obtained in [26]. The following is a global well-posedness result with small rough

. 1/« ,
data in M2,1 :

Theorem 1.4. Let k > 4 be an even integer, u € C, ug € M21/ 1/« (R). Assume that there exists

a small § > 0 such that ||u0||M1/K < 8. Then (1.3) has a unique solution u satisfying the same
2,1

conclusions as in Theorem 1.3.

One can easily generalize the above results to the nonlinearity with an exponential growth,
say, we consider the following problem:

10;u + a§u + ,uax((elu‘K - l)u) =0, u(0,x)=up(x), (1.12)
Btu—l—aiu—i—ax((e’ﬂ — 1)u)=0, u(0, x) =ugp(x). (1.13)

Theorem 1.5. Let k > 4 be an even integer, i € C, ug € le/ ]K (R). Assume that there exists a
small § > 0 such that ||uo||M1/K < 6. Then the same results as in Theorem 1.4 hold for Eq. (1.12).
2,1

Theorem 1.6. Let k > 4, ug € Ma,1(R). Then the same results as in Theorem 1.2 hold for
Eq. (1.13).

Finally, we consider the following NLS equation:
i0,u + Bfu = F(u,u, oyu, oyu), u0,x)=uo(x), (1.14)
where

Fu, @i, dyu, ,) = > Mereavy gt @2 (B5)" (0,0)? (1.15)
m+1<k+Hko v+ <m+1
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is a multi-polynomial of u, i, dxu and dxit with m = m > 4, L i,u,v, € C. Equation (1.14) has
been studied in [5,15,18,21]. Using the energy method, together with the gauge transformation
technique, Hayashi and Ozawa [15] showed the well-posedness in H 3 m > 3. On the basis of
pseudo-differential calculus, Chihara [5] constructed the gauge transformation in higher spatial
dimensions and obtained the local well-posedness of Eq. (1.14) in higher spatial dimensions.
Kenig, Ponce and Vega [18,21] developed the smooth effect estimates of Kato’s type for the
Schrodinger semigroups and established the local well-posedness for the smooth data, the solu-
tions are almost global if the smooth initial data are small enough. In this paper we consider the

small initial data in the space lejl/ "™ which has the lower regularity. We have the following

Theorem 1.7. Letm >m >4, ug € Mzlel/ " (R). Assume that there exists a small § > 0 such that
||u()||M1+l/m < 8. Then (1.14) has a unique solution u € C (R, letl/m) N XaNLs, Where
2,1 s

Xanus = {u € S (R flullxgus < 8}, (1.16)
leell xans = Z Z(”Dkai””wm + (k)™ | Oy <L§’°L,%>mL§,t’”)
i=0,1keZ
DD DR Ratatid [ 7] (1.17)
i=0,1 [k|>2 o

Theorem 1.7 can be developed to the case ug € H® with s > 3/2 — 1/m, see [41]. If
F(u,u,uy,ity) = |ul“u+ 0y (Ju|"u), combining Theorems 1.4 and 1.7, we have

Corollary 1.8. Let F(u,u,uy,uy) = Au'u 4+ do|ul?u + 0, (1 |ul’'u + wolu|?u) with

4<m<ky, k2, v, v2 <m, A, A2, 1, 2 €C, ug € le/lm (R). Assume that there exists a small

8§ > 0 such that ”MO”MZI/IW < 6. Then (1.14) has a unique solutionu € C(R, Mé/l'n) NXNLs, where

Xnis = jue (R Jlullxgs S8} (1.18)
lullxges = D (10l age + )™ 1Tkull o 21 20m)
keZ ’ '
+ IOl e 2 (1.19)
k| =2

This paper is organized as follows. In Section 2 we will state a complex interpolation theorem
on modulation spaces My, ,, which is useful for us establishing the inclusions between Besov
spaces and modulation spaces and the details of the proof will be given in Appendix A of this pa-
per. In Section 3 we will prove Theorem 1.1. Some dispersive smooth effects for the Schrodinger
semigroup will be given in Section 4 and Theorems 1.3—1.5 will be proved in Section 5. Sec-
tion 6 is devoted to considering the smooth effects for the KdV semigroup and we show our
Theorem 1.2 in Section 7. Finally, Theorem 1.7 will be shown in Section 8.

The following are some notations which will be frequently used in this paper: R, N and Z
will stand for the sets of reals, positive integers and integers, respectively. Ry = [0, 00),
Z4y =NU{0}. ¢ < 1, C > 1 will denote positive universal constants, which can be different
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at different places. a < b stands for a < Cb for some constant C > 1, a ~ b means that a < b
and b < a. We write a A b =min(a, b), a vV b = max(a, b). We denote by p’ the dual number of
pell, ool ie., 1/p+1/p =1. We will use Lebesgue spaces L” := LP(R"), || - |, := || - [I»,
Sobolev spaces H® = (I — A)™*/>L?, homogeneous Sobolev spaces HS = (—A)5/2L2. Some
properties of these function spaces can be found in [1,35]. We will use the function spaces
LY L? and L2 LY, for which the norms are defined by

tel tel
» q/p 1/q
|thw=(/<fummym) m)

1 R~
plq 1/p
ey, = ([( [lraofar)as) ™
R” 1
and / will be omitted if / =R, i.e., we simply write L;’Lf = LtqeRLf, LfL,q = LﬁL?eR.
We denote Li’,zel = Lfo]E, and I will be omitted if / = R. We denote by . := . (R") and

=" (R") the Schwartz space and its dual space, respectively. B(x, R) stands for the ball in
R” with center x and radius R..Z or ~ denotes the Fourier transform; .% ~! denotes the inverse
Fourier transform. We will frequently use the Bernstein multiplier estimate; cf. [1,16,35]: For
any r € [1, oo],

|7 0 Z £, <Clieluslfllr. s >n/2. (1.20)

Let f(t,x) € (R") and .Z 1 € L' (R"). In view of Minkowski’s and Young’s inequalities,
we easily see the following Bernstein’s estimate:

17707 fll s <70l L@ fliog. poa =1 (1.21)
2. Complex interpolation for Mj, ,

In this section we consider the complex interpolation for the modulation spaces M, ,
with s e R, 0 < p,q < oo. Recall that the complex interpolation for M ; q in the cases
1 < p, g < oo has been studied by Feichtinger [9,10].

We now recall the complex interpolation space (Ag, A1)g; cf. Calderén [2], Calderén and
Torchinsky [3,4] and Triebel [35]. Let A = {z: 0 < Rez < 1} be a strip in the complex plane. Its
closure {z: 0 < Rez < 1} is denoted by A. We say that f(z) is an .7’ (R")-analytic function in A
if the following properties are satisfied:

(1) For every fixed z € A, f(z) € .7"(R").

(2) For any compact subset £2 C R” and ¢ € .7 (R") with suppg C 2, (F 'o.Z f)(x,z7) isa
uniformly continuous and bounded function in R” x A.

(3) For any compact subset £2 C R” and ¢ € . (R") with suppp C 2, (F 0.7 f)(x, z) is an
analytic function in A for every fixed x € R".

We will denote by A(.%”) the set of all ./ (R")-analytic functions in A.
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Definition 2.1. (Cf. Triebel [35].) Let 0 < p;, g; < 00, s5; € R with i =0, 1. We define

F(MP M3 Y ={f(@) e AS): fe+ineM . =01},
|/ “F(Mpo w0 ML) = phax sup||f(€ +ir) ”M

and

(Mpo a0 M. ql) =1{g: 3f () e F(M, oo M, (11) such that f (0) = g}, 2.1)
”g”(Mpo q90° Mi’lb‘ll)e mf”f(Z) ”F S(()) q0° M;ll-ql)’

where the infimum is taken over all admissible functions f(z) in the sense of (2.1).
The next proposition is also essentially known; cf. Triebel [35]:

Proposition 2.2. We have

. L q1-0 N
I8l g0 =infsuplfG0 L8 £+l -

S
po-a0-Mpy.a1)0

where the infimum is taken over all f(z) with f(z) € F(M;,% 90> My q)) such that f(0) =g

The following is the interpolation theorem for the modulation spaces M, . in the cases
0<p,g <oo.

Theorem 2.3. Let 0 < p, q, pi,qi <00, 8,5 € Rwithi =0, 1 and

1 1-6 6 1 1-6 6
s=(1—0)so+0s;, —= +2, —-= + = (2.2)
P po pi g 9 @ q

Then we have

50 51 _ s
(Mpo q0° MPI ql) - Mp,q

Recall that the result of Theorem 2.3 is quite similar to Besov spaces, indeed, if (2.2) holds,
then we have

(Bpoaor Borar)o = Bp.g- (2.3)

Theorem 2.3 seems essentially known, cf. [36,37]. The proof proceeds in a similar way as that
of (2.3) and we leave it into Appendix A of this paper.
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3. Sharp embeddings between Bj, , and Mj, ,

The first result on the inclusions between BS . and MS in the cases 1 < p,q < oo is due
to Grobner’s unpublished thesis [11], where he obtained a sufﬁ01ent embedding condition, and
by our Theorem 1.1, his result is optimal at the vertices of the square {(1/p,1/g): 0 < 1/p,
1/q < 1} in the (1/p, 1/q)-plane. Toft [34] used a different way showing the sharp sufficient
conditions for the inclusions between B; q and M o in the cases 1 < p, g < oo, and our suffi-
cient conditions in Theorem 1.1 in the case 1 < p q < oo is identical with Toft’s result. Wang
and Hudzik [40] generalized their embeddings to the cases 0 < p, g < oo. Theorem 1.1 covers
the corresponding results as in [11,28,34,40]. In this section we give the details of the proof of
Theorem 1.1 and our technique is the frequency-uniform decomposition method applied in [11,
40], which is different from those in [28,34].

In order to prove Theorem 1.1, we need the following multiplier estimate; cf. Peetre [30],
Triebel [35].

Proposition 3.1 (Bernstein’s multiplier estimate). Let 2 C R" be a compact subset. Let
0 < p < 1. Then we have

|7~ MF f], S UM grsp-r £ 1L
P
forall feL?, ={felLP: suppr 2}, Me B;,(;/p_l/z).

In view of Proposition 3.1, we have

Corollary 3.2. Let b > 0, 0 < p < 1. Then we have

|7 M7 £, <C|M®-)]

(1/p=1/2)
gl 1y

forall f € LB(O by M e Bg(;/p_l/z), where the constant C > 0 is independent of b > 0.

It is easy to see thatif f € LB(0 by’ then f(b~ ') e Lg(o 1 Since

(F\MF £) @) =[F M®b ) fb1)]bx),
one can use Proposition 3.1 to get the result of Corollary 3.2.

Lemma 3.3. Let 0 < p < oo. Then we have?

B g 3.1

2 Here we have corrected a mistake in [40, Lemma 2.13], where Bg,oo C Mp, in the case 0 < p < 1 is not true.
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Proof. If p > 1, (3.1) was shown in [1_ 1,34,40]. We now consider the case 0 < p < 1. By Corol-
lary 3.2, we have for |k| > 1, |k| € [2/71, 27),

4
10k f 1l = Hﬁ‘—‘ak Y ST f

S low (@)
=—4

p

4
BrU/r=1/2 D o Ajsefllp (B2
P
{=—4

Applying the scaling inequality (cf. [35])

[s@)]

S=1/P | o e >
gy, SH TGl AZL

~

we have3

Jox(27-)] g /r=1 S 2j”(l/p*l)||<7k||1_,3n(1/p—1/2) < 2/nt/p=h), (3.3)
2,p 2,p
Inserting (3.3) into (3.2), we immediately obtain that
4
10k £llp S 27PN Ao fllp. (3.4)

=—4

It follows from (3.4) that (3.1) holds. O

Proof of Theorem 1.1. First, we prove (1). Denote R%_ ={{/p,1/q): 1/p,1/q > 0} and as
in Fig. 1

Si={/p,1/q)eR%: 1/g>1/p, 1/p<1/2};
S=1{0/p.1/q) e R}

t1/g<1/p, 1/p+1/g<1};
S3=Ri\ (S;US).

Step 1 (Sufficiency). We divide our proof into the following three cases.

Case 1.1. (1/p,1/q) € S3. It is easy to see that T(p,q) =n(1l/p + 1/q — 1). Taking (po, q0)
and (p1, q1) such that

one has that for 6 =

(5 +

Ll 1
a'p 4

3 Since {oktkezn, {tklkezn € T generate equivalent norms on M;,’q (ctf. [40]), we can always assume that o} =
oo(- — k) in the definition of M z,q'
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119

|-»-P=2

(1/2,1/2)

(0,0) (1,0 1p

Fig. 1. The distribution of 7(p, ¢) in R%_: w(p,q) =n(% - %) in Sy, t(p,q) =01in S,, and t(p, q) =n(% + % -1
in S3.

1-6 0 1 1-6 6
+

- ’

1

P po pioq 90 @ q
11 1 11
—t——l==-0)——1)+[—==)6.
P q Po q 2

In view of Lemma 2.10 in [40] and Lemma 3.3, we have

n(1/q1—1/2) n(1/po—1)
B2,q1 C Mg, B py,00 C Mp,00-

A complex interpolation yields

n(l/p+1/q—1)
Bp.q CMpy,

which implies the result, as desired.

Case 1.2. (1/p,1/q) € Sy. For any (1/p, 1/q) € S; (Si denotes the set of all inner points
of S1), we can interpolate (1/p, 1/q) between (1/00, 1/00) and a point (1/py, 1/q1) in the line

{(1/p,1/q): p=2,q <2} and finally obtain that
(1/g—1/p)
By My, (3.5)

Noticing that t(p,q) =n(1/q — 1/p) if (1/p,1/q) € Sy, we see that (3.5) implies the result. If
(1/p,1/q) = (0, 1/q), the result was shown in [40].

Case 1.3. (1/p, 1/q) € S2. This case has been discussed in [34,40].
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Step 2 (Necessity). We need to show that forany 0 < n < 1,
Byt M,,. (3.6)
Case2.1.(1/p,1/q) € S3. Let f =9’18j, Jj > 1. Itis easy to see that

1
11 = D 2OV F TS 08 |, S 20070 G7
& =1

On the other hand, we may assume, without loss of generality that the dyadic decomposition
function

5 . 3.
8j(&)=1, ifgeD,-:z{s: Zz/‘gmgz.zﬁ‘}.

Noticing that the set
Aj=lkeZ" B(k,/n)C Dj}
contains at least O (2/") many lattice points, we have

1£1,, = 21218500 > Y- |7 sy 2 2V, (3:8)
kez" keA;

Hence, it follows from (3.7) and (3.8) that

1/ 0oty 2270 g,

which implies (3.6), as desired.

Case 2.2. (1/p,1/q) € $2. If g < o0, this case has been discussed in [40, Proposition 2.8]. It
suffices to consider the case g = co. Taking k(j) = (2/,0,...,0) and f = ﬁ_lok(j), we easily
see that

1 £ty 00 2122V 1f N g -
Case 2.3. (1/p,1/q) € S1. We can assume, without loss of generality that the frequency-

uniform decomposition function o3 (§) =0if & & Qk =& & - kil <5/8, 1 Si< n}, and the
dyadic decomposition function 8;(§) = 1if £ € Dj(={&: 3 -2/71 < |&] < 2 -2/+1)). Let

Aj={keZ": QrCD;}. j>1. 39

It is easy to see that A; has at least 0(2") elements. Let f € .7 (R") be a radial function
satisfying suppf C B(0,1/8) and
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g =) M mNHx), wf=[f(—k. (3.10)

kEAj

Noticing that supp 1.71(7 C B(0, 1/8), we see that supp tx (171(7) Nsuppoy = @ if k # £. 1t follows
that

1/q - 1/q
lgllu,, > ( Y |7 o g IZ) =< > ||5f‘okrk<rkf>||‘;)

keA; keA;
_ Vg
= F oo ) >2inla, (3.11)
P
kGAj

On the other hand, we have supp g C {&: 27—l €] < 2j+1}. Hence,

1 1/q
I8l grasa-1im < ( 3 20D | F1s,, Fg ||j§> : (3.12)

{=—1

In view of Bernstein’s multiplier estimate and Holder’s inequality, we have

— -2 2
| 7718072, S lglp < liglles ™ ligly’” (3.13)
By Plancherel’s identity,
NN C I
||g||z=||§||z=</2}rk(exksf(s))| dg) <Mi2, (3.14)
R~ kEA]'

We can further assume that f(x) = f(|x|) is a monotone function of |x|. Since f € . (R"), we
see that

fe—R)| S+ —k)", N>1. (3.15)
We denote
Bo={keAj: |x —k| <2}, Bi={keA;: 2i<|x—k|<2i+l},
We easily see that B; contains at most 0 (2") elements. It follows from (3.15) that

8D D | fa=0)| SO+ 22D 20V (316)

i>0 keB; i1 i=0

Collecting (3.13), (3.14) and (3.16), we have

|- 77180 7|, S 27, (3.17)
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179

©.n 1Up+ig=1

" (112, 102)

(0,0 (1.0 1lp

Fig. 2. The distribution of o (p, ¢) in R%_: o(p,q)=0in Ry, o(p,q) :n(l - l) in Ry, and o (p,q) =n(l — % - %)

. Z]
in R3.
Inserting (3.17) into (3.12), and then using (3.11), we immediately obtain that

I8l gsa-im 2" S gl (3.18)

which implies (3.6). This finishes the proof of (1).
Next, we prove (2). The sufficiency has been shown by Toft [34] in the case 1 < p,q < 00
and by Wang and Hudzik [40] in the case 0 < p, ¢ < oco. Put (see Fig. 2)

Ri={(/p.1/q) eR3: /g > 1/p, 1/p+1/q >1};
Ry={(1/p.1/q) eR%: 1/qg<1/p, 1/p>1/2};
Ry =R2\ (R URy).

We now prove the necessity. It suffices to show that

My g BY . Wy >0. (3.19)

We will consider the following three separate cases.

Case (i). (1/p,1/q) € Ry. This case has been discussed in our earlier work [40, Proposi-
tion 2.8].

Case (i1). (1/p, 1/q) € R3. Assume for a contrary that (3.19) does not hold, i.e., there is an
n > 0 such that M}~ /P79 < BY 1 1 < p,q < 0o, by the duality we have BY, . C
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Mﬁn(l/p,ﬂ/q,fl)+77 which contradicts (3.6). If p = 00 or ¢ = 00, we can use the same way as

p.q’

in Case 2.1 to get the result. Indeed, putting f =.Z 1§, j» we have
£y, = #1858, 227071, (3.20)

On the other hand,
11y < supth)" VP F s |, < 207D, (3.21)
P, k
j(g—1 1 q Va '
(RIS < > 2wV g g ||Oo> <M, (3.22)
N lkle[2/-1,2/+1]

In view of (3.20)—(3.22) we also have (3.19) in the case p = 0o or g = 0.

Case (iii) (1/p,1/q) € Ry. We use the idea as in Case 2.3. Let f € #(R") satisfy f(0) =1
and supp f C Qo. Taking 0<axl which will be fixed in (3.28), we denote f,(x) = f(x/a)
One easily sees that supp fa C Qo,q :=1{&: &1 < 1/2a, 1 <i < n}. Recall that D; = {&: 4
2771 < |&] < 32741} contains at least O (a™2/") many pairwise disjoint cubes Qx(),q := k(i) +
Qo0a,i=1,...,0(a"2/"). Denote A; = {k(i): i =1,..., 0(a"2/")} and

gr) =Y e (i fa)(x). (3.23)
kEAj
Since for any N > 1,
lFool<en(+1x)7", (3.24)
we see that
| fa()| < Cya™ |x|7V. (3.25)

By the continuity of f(x) and f(0) = 1, one sees that there exists o > 0 such that*
|fa()| > 1/2, x € B(0,0). (3.26)

It follows from (3.23) and (3.26) that for any x € B(k(i), o),

g = | fa(x k@)= Y |falx =)

keA \{k())

>

- > |falx=h). (3.27)

keAj\(k()

N =

4 Itis easy to see that o can be chosen as ¢ = ap(, 09 > 0 depends only on f and is independent of a.



B. Wang, C. Huang / J. Differential Equations 239 (2007) 213-250 227

We write Aj,:={k € Aj: 28 < |k — k()] < 2¢F1}. One can further assume that f(x) is
a monotone function of |x|. Since A;, has at most O(a™2") elements, we have for any
x € B(k(i), 0),

Yo =< DY [falr =R <C Y a"2" | fu(2 - 0))|

keAj\k(i)) (>1keA 1
S Cna"tN2mNEC 14, (3.28)
1

where we have chosen N > n+ 1 and CCya™t" < 1/4. Hence, it follows from (3.27) and (3.28)
that

lg(x)| = 1/4, x e B(k(i).0). (3.29)
Thus, in view of (3.29), we have
0(a"2")

1
> 7 XBk@).0)

i=1

> (ag)"/P2"/P, (3.30)
P

s, >

where ¢ and a are independent of j > 1. We can assume, without loss of generality that
8j(¢§)=1if & € D;. Due to suppg C D;, we have ﬂ_léjﬁg = g. So, (3.30) implies that

lglisg, = 77", 78], 2 (@e)"'P2"1". (3.31)

On the other hand,

. 1/q
||g||M;f;/p1/q>=< > 2””””‘”}19“okﬁg||§i>

lk|e[2—1,2/+1)
<29 sup | 7o T g, (3.32)
lklel2/=1,27+1]

Since supp oy overlaps at most finite many supp Ig(@), in view of Bernstein’s multiplier esti-
mate, one easily sees that

|7~ o Zg ||, SUfllp- (3.33)
So, we have from (3.32) and (3.33) that
gl ncm-1/a0 S 2milp, (3.34)
p.q

By (3.31) and (3.34) we immediately have (3.19). We have finished the proof of Theo-
rem 1.1. O

In view of Theorem 1.1 and the sharp embeddings between Besov spaces:
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n n
Bls,‘(’),q C Bf,’q, 50 — % >5— ;, S0 =58, po<p, (3.35)

we get the following
Corollary 3.4. Let O < po, p,qo,q < 09, 59, s € Rand let t(p, q), o (p, q) be as in Theorem 1.1.

(1) Let po < p. Then B;%,qo C M;’q if and only if so —n/po=s —n/p+t(p,q), so =5,
q0 < 4. ‘

(2) Let p < po. Then M;,’q C B;%,qo ifand only if s —n/p > so —n/po+ o (p,q), so <,
q0 2 q.

4. Smooth effects of the Schrodinger semigroup

In the sequel, we will always assume that the spatial dimension n = 1. Since the Schrodinger
semigroup and the BO semigroup have the same basic estimates (see below, Lemmas 4.1
and 4.3), it follows that the Schrédinger semigroup and the BO semigroup enjoy the same smooth
effects and so, it suffices to consider the case of the Schrodinger semigroup. We will mainly use
the sharp version of Kato’s smoothing effects described by the following lemma which is due to
Kenig, Ponce and Vega; cf. [18,19].

Lemma 4.1. Let W(t) = F16E T Then we have

WO f || o2 S 111 @.1)
WO F] i e SN 14 4.2)
WO £ ooz S 1S 1l2- 4.3)

We will use Lemma 4.1 deriving some smoothing effect estimates in local frequency spaces.
The smooth effect estimates for the dyadic localization to the frequency spaces were obtained by
Molinet and Ribaud [25,26]. Our idea is to substitute the dyadic decomposition by the uniform
partition to the frequency spaces, which enable us to deal with a class of initial data with lower
regularity indices (one can compare (4.2) with (4.5) below). We have

Lemma 4.2. Let W(t) = T T Then we have for any p >4 and k € Z,

|DeW O £ oo 2 S N8 S 1112 (4.4)
”DkW(t)fHL{(’L?O 5 ”Dkf”Hl/Pv (45)
|DeW @) f] oo 2 S 15k f 2. (4.6)

where the omitted constants in (4.4)—(4.6) are independent of k € 7.

Proof. By Lemma 4.1, it suffices to show that (4.5) holds. In fact, in view of (4.2) and
Plancherel’s equality, we have
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|CeW O] s oo S NS gp1sa- (4.7)
By Hausdorff—Young’s, Holder’s inequalities and Plancherel’s identity,
2
”DkW(l)f”L,mL;C < Je kaf”L?"L}(
S loll2llZ fligz S I f 2. (4.8)

We emphasize that the omitted constants in (4.7) and (4.8) are independent of k € Z. A complex
interpolation between (4.7) and (4.8) yields

[SeW O] Lo oo SN 10 (4.9)

We can assume that suppog C (—1, 1), it follows that o} ng] Ok+¢ = ok. In view of (4.9), we
have

ISWO £l e S D0 1Bkre WO F [ oo SNk S g1 (4.10)
1411

which implies the result, as desired. O

Next, we consider the estimates for the integral operator fot W(t — ) f(r) dt. The following
result is also due to Kenig, Ponce and Vega [18]:

Lemma 4.3. Let W(t) = F=1eE F Then we have

t
[we-vss@ar]  <ifly. @11)
0 LPL?

t
/W(r — 1)y f(v)dt S0l e (4.12)
0 LLE

On the basis of Lemma 4.3, we have

Lemma 4.4. Let W(t) = f_leitgzgf, D = (—8)%)”2. Then we have for any p > 4 and k € Z,

t
O [ we - f@de| S0y (4.13)
0 LEL?
t
Dka(t—r)Sxf(r)dr < HD}C/ZDkf”L}L?, (4.14)
0 LPL?
t
Dk/ Wt — 1), f(7)dt < ||Di/2+1/pDkf||LiLtz, (4.15)
0 LYL®

where the omitted constants in (4.13)—(4.15) are independent of k € Z.
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Proof. We will use the dual estimate method. By Lemma 4.3, we see that (4.13) and (4.14)
uniformly hold for all k € Z, i.e., the omitted constants are independent of k € Z. So, it suffices
to show that (4.15) holds. First, we prove that

o (4.16)

Hmkfwu—r)f(r)dr S 0k f |
2
R X

L®L

Indeed, for any f, g € (R?)3, we have from Holder’s inequality and Lemma 4.2 that,

‘/(Dk/W(t—t)f(r)dr,g(t)> dt
R R
= ‘ /(Dkf(r),/W(r—t)g(t)dt) dt
R R

S ||D)]‘/pDkf||Lf/Lr1 Z
lej<1

< HD}/”DkaLg/Lrl Y I0kreglyyg
le1<1

g DX T e (4.17)

D7y / Wi — gty dr
R

Liree

whence, (4.16) uniformly hold for all k£ € Z. In view of (4.12) and (4.16), we have

‘[(Dk/W(t—r)f(r)dr,g(t)> dt
R R

2.

2jg<1

5 ‘

DkDi/”/W(—z)f(z)dr
2
R

iy Dy /P / W (—1)g(r)di
R

SIDT PO f e D 10kl

1e1<1 el
X

SO s el (“.18)

/
P
Ly L,

which implies that

uniformly hold for all k£ € Z. By Christ—Kiselev’s lemma (cf. [25]) and (4.19), we immediately
have (4.15). O

Dk/W(t—r)axf(r)dr LS |Dx P f | a2 (4.19)
LPL® xti
R

5 SR ={fe.FRY: D*F f(0)=0, Ya}.
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Lemma 4.5. Let W(t) = F16E Z Then we have foranyr > 6, p >4 and k €7,

|Zw @) f 1, S8l (4.20)
t
O [ we-of@de = PE 421)
0 Ly N(LPLY) ’
t
O [ we-nf@ar| 5|00y, (4.22)
0 LeL? '
t
O [ we-ns@ar] <DV O],y (423)
LPL® "
0 x Lt
t
Dk/ Wt —1)d f(D)dr|| < ||D;/zmkf||L£er, (4.24)
0 Ly,
where the omitted constants in (4.20)—(4.24) are independent of k € 7Z.
Proof. By the Strichartz estimate, we have (cf. [17])
WO Fls, <0712, (4.25)

which can also be derived by an interpolation between the inequalities in (4.1) and (4.2). It
follows from (4.25) and (4.8) that

[EeW@ fll s, S 1S, (4.26)

W@ f] e, S 1Ml (4.27)

Interpolating between (4.26) and (4.27), then using the almost orthogonal properties of {{;}, we
have (4.20). By a standard dual estimate method, we have (4.21), see [40] for details.
Analogous to (4.18), we can use (4.12) and (4.21) to get that

‘/(Dk/W(t—r)f(t)dt, g(t)) dt
R R
U(Dkfvv(t—r)f(f)dr, g(t)) dt
R R

which implies (4.22) and (4.24), as desired.

< | oo

L;i, ”g”LLLtZ ’ (4.28)

S0 N plislyy o 429)
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Analogous to (4.18), by (4.16) and (4.21) we have

‘/(Dk[W(t—r)f(r)dr, g(t))dt
R R

which implies (4.23). O

<Dy O

(4.30)

L;/,t ”g”Lf/L,l’

5. Proofs of Theorems 1.3-1.5

In this section we prove our Theorem 1.3. Our main idea is to apply the smooth effect esti-
mates obtained in Section 4 and we consider the following resolution space:

X= {u e (R flullx = Y N0ull+ Y )"V Dl e 2 < p},
keZ k| =K

where
15 kuell = 1Bkl g e + (k) N0kl 21 (5.1)

and K > 2 which will be fixed as in the following. The construction of the above resolution space
follows some ideas as in [31], [25,26] and [40]. However, Planchon [31], Molinet and Ribaud
[25,26] mainly used the dyadic decomposition to the frequency space; the frequency-uniform
decomposition was applied in [38,40], but the dispersive smooth effects were not involved in
[38,40]. We consider the mapping

T u(t) = Wi)ug — ﬂ(u"axu), (5.2)
where we denote
t
W) =F 1l Z, %z/W(l—t)w{r. (5.3)
0

We now give a brief explanation to the resolution space X. Recall that (4.13) is the only known
estimate which can be applied for controlling the 1-order derivative in the nonlinearity, so L{° L,2
is introduced in the working space X. However, taking k = 0 in (4.13), one has that

||D0527f||L§oL[2 S ” Dx_IDOf”L}CL,Z’

which is an extremely bad estimate for the low frequency case. So, (4.13) has no use to the low
frequency case. To overcome this difficulty, our idea is to use the space Lﬁ’( and the Strichartz
estimates treating the low frequency part of the solutions, see Lemma 4.5. By (4.13), in order to
estimate ||[Jg (“KH)“L;L,Z’ we need to introduce LKL in X. In view of (4.5), the initial data

1
up € MZ/IK seems necessary.
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Proof of Theorem 1.3. For |k| > K > 2, in view of Lemmas 4.2, 4.5 and Bernstein’s multiplier
estimates,

Y2V W o] ooz < 000N Dkol 112

< k)Y N Dol (5.4)
15w o] oo SNTkteoll e S k)Y N DTkuoll2, (5.5)
L L7
)M | CUW o | 216 < ()€ Do 2. (5.6)

Notice that (5.5) and (5.6) hold for all k € Z. It follows from (5.4)—(5.6) that
5w @uo] < ||uo|| (5.7

Now we consider the estimates of ||.<7 (u*d,u)| x. Using the frequency-uniform decomposition,
one has that

Z Ry 2| Ot (B ”LOCL,2
kI>K '

<Y Y e OO Ok )] 2
|kIZK ky,....kcq1€Z x

= Z Z <k)1/2+1/K||3x42{Dk(Dk|u-~~DkK+1u)||Lo_cL[2
KK ki Ves o | 2K '
+ > > <k>1/2+1/K||axﬂmk(mk1u...kau)HL;oL?
KIZK Vet V-Vl 1| <K
=1+11 (5-8)

Since suppoy C (k — 1,k + 1) and supp(oy, it) * - - - * (0, #) C B(ky + -+ +keq1,k + 1), we
have from Lemma 4.4 and Bernstein’s estimate (1.21) that

I= Z Z (k)1/2+1/K ||8X%Dk(|:|k1u"'Dk;a—l”)“Lchtz X(k—ky = ki1 | <k+2)
[kIZK |ki|V--Viker1| 2K
S > () AV Og el L1 2 XQk—ky =~k 1 1<k +2) (5.9)

[kIZK [ky|V--Viker1| 2K

We may assume, without loss of generality that in (5.9), |k1| = k1| V -+ V |ke1]. It follows
from (5.9), Young’s and Holder’s inequalities that

Kk+1
1§ ( > <k1>”2+”K||Dklu||LgoL,z) [T 10ule e < el (5.10)
k1| =K i=2 kieZ

We estimate II. By Lemma 4.5,
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I<Ck Z Z ” Ly (Dklu - DkK+1 u) HL% X(k—ky = —ki1 | <K+2)
KIZK ki Vvl <K xr
1
<Cx )0 18kull e 0kl 20 < Crlull™. (5.11)

[k |V V]ker1]1<K

In view of (5.8), (5.10) and (5.11), we obtain that

D)V Ot (w0 | oo 2 S el (5.12)
KI>K Y

We consider the estimate of ), , [I[Ck.o? (u*dcu)||. By (4.21) and (4.24) in Lemma 4.5 and
Bernstein’s estimate (1.21),

Z(k)l/K”Dkd(ukax”)”ﬁt"SJ Z (k>1/x||aka(m+1)” o
keZ T K<tk Bai”
+ > DO )
Ik|> (k+2)K A

LD S Y
kl<(c+2)K L

+ Y (k>1/K||Di/25k(u"+l)||L;_L$

[k|=(+2)K
=TI+ 1IV. (5.13)
Analogous to the estimates of I, we see that
I < Ci JlulH. (5.14)

Now we consider the estimate of IV. It follows from Minkowski’s and Young’s inequalities that

[0 12 £ D017 (el V2) e Dy 2

le1<1
< D17 (owrelel ) | o O 1y - (5.15)
1< ' '
By Bernstein’s multiplier estimates,
|7~ (orrelel2) ] 11 < )2 (5.16)

So,

IVS Z <k)1/2+1/K ”Dk(uK"rl)
|k|>(+2)K

P (5.17)

Similar to (5.9),



B. Wang, C. Huang / J. Differential Equations 239 (2007) 213-250 235

vs > Yo RVRIOGu . Ol g2 Xkt =k 1<) (5:18)
|k|=(w4+2)K ki,....key1€Z

It is easy to see that in the summation of (5.18), |k1|V --- V |ke4+1| = K if K > k + 1. Hence, we
can repeat the procedure as in the estimates of I to obtain that

IV < Ck flullst. (5.19)

So, collecting (5.13), (5.14) and (5.19), we obtain that

D M| Ot (u Dpue) | 2o S NuallH (5.20)
keZ o
By Lemmas 4.4 and 4.5,
Z”Dk"y(”l(axu)HL;L;’C N Z | O () | e
keZ Ikl <(k+2)K Lys
+ Y DO e (5.21)
K> (42K o

which reduces to the estimates of III and IV as in (5.13). Hence,

D e (' ouu) || < el (5.22)
keZ

Now, collecting (5.7) and (5.22), we have
| 7ulx S llnoll e + ™. (5.23)
Similarly,

I7u— Tvllx S (lulk + lvlk)llu = vlix. (5.24)

So, by the standard contraction mapping argument, we see that (1.2) has a solution u# € X. More-
over, this solution is unique in X. By (4.6) and (4.14), in an analogous way as above, we have

ue C(R, le’/l'(). This finishes the proof of Theorem 1.3. O

Since all of the estimates obtained in Section 4 adapt to both the BO and the Schrédinger semi-
groups, we see that Theorem 1.4 can be shown in the same way as in the proof of Theorem 1.3
and the details will be omitted.

Proof of Theorem 1.5. We follow the proof of Theorem 1.3 and the proof will be outlined. Put

X= {u e (R™M): Nullx =Y N0kl + Y (k)0 o2 < p},
keZ |k|>2

18kl = 10kl g e + (k) NDktell 24y oo 2 (5.25)
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We consider the mapping

T u(t) — S(tug +ipne 3, (e — 1)u), (5.26)
where
t
Sty =7 e 18 7, d:fS(t—r).dr. (5.27)
0

Following (5.7) and (4.14),

[ S@uollx < luol e (5.28)

It follows from Taylor’s expansion of el that

Z (k) Der 0 (e — 1))

[k|=2
1 1 2+1 ~ ~
27 )N ORGSR w7 N (7w AT PP
=17 k>2 ki 41 €Z
1 ~ ~
S 7 /e Z (|mY(mPTRe Dty 1) ”LLL?
izl : |&| 22 ki |V Vikiej 1122 ’
1 ~ ~
+ Z = Z 1/2+1/K Z “Dk(Dklu e Dkxj+1’/‘) ” 3
jz1 J! [k| =2 [kp VeV 1] <2 Lyt
=141, (5.29)

where # denotes u or u. Using the same way as in the proof of Theorem 1.3, one has that for
kil = 1ki| V-V lkejgtls

Z | O @i .. Diejsa ) ”L;L,2
[ky|V-Vikiej11122
S > N80, - Dt 8l 1 22 XUty ==k 11 e +2)
kv Vikiejp1 122
k+1
< Y I8kl [T 10k s Lo
[kl Vikiejp1 122 i=2
Kj+1
X l_[ D0k 1l 220 X (lk—ky =~k j 1 1<k j+2) - (5.30)
i=k+2

Hence, we have from (5.30) and ||Tx f oo < |0k f |2 that
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Z(k)1/2+1/K Z ||Dk(Dklzz...Dkwﬁ)”L;Lg
keZ [k |V- ki 1122
g(Kj)C Z <k1)1/2+1/K||Dk1ﬁ||L$oLTZ
|k1|>2»k2,~u,kkj+1€Z :
el Kj+1
XH”DkU”LKLO" [T 10kl
i=k+2
S W o 5.31
S ) (llullx)™ ™ (5.31)

By (5.29) and (5.31), we have for any u € X,
1 ,
599 FIGARCEAS (5.32)
jeN

Using (5.32) and following the same way as in the proof of Theorem 1.3, we can get that II has
the same upper bound as I. Hence,

S ) 2 D (M~ 1)) g £ 3 )BT, (5:33)
= x jeN ]

Similarly,

2B 0c (e = 1)u)

keZ

LYLY

25 D DIED DI (= 2 N =N R

J>1 kEZ kiy..., kKj+]EZ

Z Z<k Ve Z ”Dk(Dklﬁ"'Dkijrlﬁ)”L}CL,z

LyLye

]>1 " keZ ki [VeVikyjp1] 22
1/2+1 5 i
n Z Z /2+1/k 3 |0 i .. Dkk_,+,u)||L%+T;
=17 kez [k |V-eV k1] <2 o
=1I+41V. (5.34)

One can use the same way as in I and II to get the estimate of III and I'V. Hence,

D 1Tk 0, (¢ = V)| ey S %(Kj)C(SKj_H. (5.35)
keZ o jeN J:
Similarly,
Z(k)l//c ”Dk,;zfax((e\ulk ) )“ e S Z J_(K])C3KJ+1 (5.36)

keZ jeN
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Finally,

| I
| Zullx Slluoll e+ — w8, (5.37)
' jeN "

which implies the result, as desired. O
6. Smooth effects of KAV semigroup

In this section, we will consider the smooth effect estimates for the solutions of the linear
KdV equation. The following lemma is also due to Kenig, Ponce and Vega; cf. [20].

Lemma 6.1. Let W(t) = F e~ 6’ Z. Then we have

WO por2 SN ©.1)
WO f] i e SN 1as (6.2)
WO f] ooz = 112- (6.3)

By Lemma 6.1, we have

Lemma 6.2. Let W(t) = F=1eE T Then we have for any p > 4 and k € Z,

ICeW O f] oo 2 S 15Nl 1 (6.4)
[BeW O £l g0 S N5 S girses 6.5)
2w @ ] o1z S 1O N2 (6.6)

where the omitted constants in (6.4)—(6.6) are independent of k € Z.
Proof. Using the same way as in the proof of Lemma 4.2, we can get the result, as desired. O

Corollary 6.3. We have for any p >4 and k € Z,

HDkW(t)fHLgﬂLg(pH) S0k f 2, (6.7)
where the omitted constant in (6.7) is independent of k € Z.

Proof. By (6.4) and (6.5),

DWW O [ oo 2 S UF Nl (6.8)

[CeW O] oo UL (6.9)
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One can interpolate L? between HY/? and H —1 and interpolate L? i Ltz(p +) between LY L
and L°L? to obtain the result. O

The next lemma is the smooth effect estimates for the nonhomogeneous part of the solution
to the linear KdV equation; cf. Kenig, Ponce and Vega [20] (cf. also [8]):

Lemma 6.4. Let W (1) = .Z ~'e=6° Z. Then we have

t
[we-or@ar]  Sifly. (6.10)
i Lee?

t
[we=vas@ar] il 6.11)
0 L°LY

On the basis of Lemma 6.4, we have

Lemma 6.5. Ler W(t) = T~V F Then we have for any p > 4 and k € Z,

t
O [ we-osr@dn]  SI0 . (6.12)
2 L |
t
O [ we-as@dr| <10y, (6.13)
0 LL}
t
O [ W - va.s e <10l 21 (6.14)
0 Lf+1L?<p+1) x

where the omitted constants in (6.12)—(6.14) are independent of k € 7Z.

Proof. By Lemma 6.4, it suffices to show that (6.14) holds. First, we prove that

SES N ovrp 2asmrepen. (6.15)
LPLY

Dk/ Wi —1)f(r)drt
R

Indeed, for any f, g € (R?), we have from Hélder’s inequality and Corollary 6.3 that,

’/(Dk/W(t —1)f(r)dr, g(t)) dt
R R

Dhe / W( - ng(t)dt
R

STk £ i 20s0repen Y
X t

p+152(p+1)
le1<1 L Ly
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SN0k f Il oevrp 2wensepinllglpize, (6.16)

which implies (6.15). In view of (6.11) and (6.15), we have

‘/(Dk/W(t—r)f(r)dr, g(t)) dt
R R

2

< ”Dk / W(—1)f()dr e / W(—1)g(t)d1
R R

21 2
< Dx_lef”L}L,Z 1811, w+07p 20412040 (6.17)
which implies
_ <
HDk/W(I 7)oy f(T)dT Lot e I8k il z2- (6.18)
R X 1

Using the same way as in Lemma 4.4, we immediately have (6.14). O
7. Proof of Theorem 1.2

In this section we prove our Theorem 1.2. The main idea is similar to that of the generalized
BO equation and we consider the following resolution space:

X= {u e (R™): llullx = Y 10l oo 2004 < p}. (7.1)
keZ

We consider the mapping

T ut) = Wtug — %(u’(axu), (7.2)
where we denote,
t
W =e %,  #= f W —1)- dr. 1.3)
0

Proof of Theorem 1.2. Step 1. We show the global well-posedness for the small data in M ;.
In view of Corollary 6.3,

1D W (1)uo HL§+1L,2(K“> S 15 kuoll2 (7.4)
By Lemma 6.5,

H Dk‘@("x Bxu) H Lt 20D S “ D! ” L2 (7.5)
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Combining (7.4) with (7.5), we get

| T ullx < Nuollags, + YOk 112 (7.6)
keZ

Using the frequency-uniform decomposition, one has that

[y FRVPSST SR | Y (/AR m ) PSS (1.7)

Kk+1
S Z l_[ 1802l et g 2060 X (b =i 1 1<k 42)- (7.8)
kiyeens ke+1€Z i=1

In view of (7.6) and (7.8), we have for any u € X,
17 ullx < lluollm, + lulH (7.9)
Similarly, for any u, v € X,
I 7u— Tvllx S (lul + Ivll%) e — vlix. (7.10)

So, by the standard contraction mapping argument, we see that (1.1) has a solution u € X. More-
over, this solution is unique in X. By (6.6) and (6.13), we have u € C(R, M> 1).

Step 2. We show the local well-posedness for any Cauchy data in M ;. Put

X7 = {ue s @) s =S M0l ey <o) b
keZ '

Since ug € M» 1, there exists K € N verifying

C > 1Dkuollz < p/4. (7.12)
|k|>K
It follows from (7.4) that
2 BW o]l 20 <C 37 I0kuolla < p/4. (7.13)
|k|>K |k|>K

=0, we see that there exists 7 < 1

For |k| < K, in view of lim7_,¢ ||DkW(t)u0||LK+1
x ]

20+
te[-T,T
such that
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Do IEWuo| i 2wn < p/4, (7.14)
x te[-T,T]
k<K
whence, we have
D ICW @] o 20 < p/2. (7.15)
ke X te[-T,T]

Then, we can repeat the procedure above as in Step 1 to get the local well-posedness of Eq. (1.1).
This finishes the proof of Theorem 1.2. O

8. Proof of Theorem 1.7

We may assume, without loss of generality that

F(u,ii, dyu, dcit) = F(u, dyu) = > U (dyu)” 8.1)
m+1<k+v<m+1

and the general cases can be handled in the same way. We consider the mapping
T u(t) = SOug — i F(u, dyu), (8.2)

where S(¢) and <7 are as in (5.27). For convenience, we write for i =0, 1,

Ni(u) = (k)" | Oedgu] o210 200 (8.3)
keZ ! '

Mi(u) == Z||Dkaiu||L§VL,°°’ (8.4
keZ

Ti(u) := Z (k)1/241/m Hmka;uHL;CLtz. (8.5)
Ik|>2

Proof of Theorem 1.7. Let Xgnis be as in (1.16). It follows from Lemmas 4.1 and 4.5 that
Ni(S®uo) + Mi (S(1uo) + Ti(S®uo) 5 Nuollyyiv1im-
Hence,
[S@uo] s S Noll 17 (8.6)
By (8.2) and (8.6),
17wl s S ol yyreom + [ Flutu [ - 8.7)

So, we need to estimate ||.&7 F (u, ux)| x4 and we divide our discussions into the following
four steps.
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Step 1. We consider the estimates of No(</ F(u, uy)). By the Strichartz estimate (4.21),

No(/Fau)) < Y5 D V" [Oeed (W u) | oo o) 2m

m+1<k+v<im+1 keZ

S 2 WMo g (8.8)

m1<k+v<im+t1 keZ L

Xt

For simplicity, we will use the following notations as in [40]:

el gy = 20 N0kl g ey = D 15wl (8.9)
keZ keZ

Considering the nonlinear estimates, we have

Lemma 8.1. Ler s >0, 1 < p, pi, ¥, ¥i < 00 satisfy

1 1 1 1 1 1
—— e —, = 4 (8.10)
P P1 PN Y Y1 YN
Then
N
”’41 .. .uN”ZES(LZL,C) S/ ||I/t1 ”gES(L;’l Lf') 1_[ ”ui “K‘IH(L;/I.L?)
1=
+ ”uZHZID’S(L;VszZ) 1_[ ”ui”ng(L?’iLi’f)"i_"'
i£2,i=1,..,N
N-1
[T il oy laewllgrs ow oy, @.11)
i=1
and in particular, ifuy =--- =uy = u, then
N
N
e s ey ) S Mo ooy T T ey (8.12)
i=2

Substituting the spaces Lg/LfZ and L;ﬁ LY by L,’?L;/ and Lf"Lg/", respectively, (8.11) and (8.12)

also holds.

Proof. See [40, Lemma 7.1]. O

We now use Lemma 8.1 to estimate the nonlinearity in (8.8) and we divide our discussion into
the following three cases.

Case 1. v=0. Taking s = 1/m, N =k in Lemma 8.1, from (8.12) we easily see that

I I
"ML

<lu|l 1.1 ul™ ulf<m-1 8.13
: S ||£D, /m(L;zﬁm)” ||e‘5(L§tnl)|| I (8.13)

eHLS)
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Noticing the fact that

“M”el (L) ~ ||“||(1 (L®L2) (8.14)

and from the definition of Ny(«), we immediately have

DR [ Py PRt Ll

~ i /zD(L”'")mz‘D(L;’OL})

||”||21 1/m 1,1/m < No(w)”. (8.15)

(LEmnes ™ (LeL2)

Case 2. k = 0. Substituting « by v, and u by u, in Case 1, we have

DO 2o S 10t i 2 19l
keZ LX t

28 (L2+'")mz (L®L2)
SNi(w)'. (8.16)

Case 3. k,v > 1. It suffices to consider the case k < m + 1, the case k > m + 1 is easier
than this case. Taking s = 1/m, N =k +v,u1 =---=u, =u and uy41 = -+ = U4, = Uy in
Lemma 8.1, and noticing (8.14), it follows that

1/m K,V < m+1—k K+v—m—1
IO ] S W m m WIGE o W
< K Vv
~ ||M ”KE’I/m(L)z(:{;m) ”ux ”KID(LEtm)mZID(LtOOL%)
< No()* Ni(u)". (8.17)
Collecting (8.8), (8.15)—(8.17), we have
No(o F (u, uy)) S > Now)*Niw). (8.18)
m+1<c+v<m+1

Step 2. We consider the estimates of N (7 F (u, uy)). Similar to (8.8), we have

Ni(/F(u,uy)) < o o ud)| LI (o L2y (8.19)
m+1<k+v<m+1

By Lemmas 4.4 and 4.5,

|| o7 0 (u*uy) “zllj‘/’”((LFLE)ﬂLﬁm)

<SS (ke 3 |5e @k u- . OBy D) | 12

keZ |kl|v"‘v‘kk+v|22
1
+ ) (k) > DO O uTy, . O, 1) | 26
keZ et [V [k | <2 Ley

=Ty + 1. (8.20)
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Noticing that |k —k; — -+ - — kv <& + v+ 1in Il ,, one sees that in I, ,, the summation on
k € Zis in lower frequency and has at most finite nonzero terms. Hence, in view of the Bernstein’s
multiplier estimate (1.20), the estimate of II,. , reduces to the case of No(o/ F (u, uy)):

L, S Y. No@)*Niw)". 8.21)
m+1<k+v<m+1

The estimates of I, proceeds in a similar way as in Section 5. Noticing that [k — k; — --- —
kes4v]l <k +v+1inl, ,, one has that

1/2+1/m
v < > max |k 10k O a0k e Oyl 12+ (8.22)
1<i<k+v Xt
et Voo 22

Using Holder’s inequality, we have

K+v
o1+ verullr 2 < Hotll ez [T lvill et
i=2
K+v m ; k+v—1—m
1
Shollggerz [T R el 5770, (8.23)
i=2

In (8.22), it suffices to consider the cases |k1| = |k1|V - -V ke | and k1| = k1] V-V ketol,
the other cases can be handled in a similar way. If |k1| = |k1| V- V ke 40|, by (8.14), (8.22) and
(8.23) we have

k+v—1—m

_m krv=1l—m
K+v—1 K+v—1

< Kk—1
Lev S ||u|| 1, 1/2+1/m(L;,OL12)(||M||Z1D(L;,LL§>O)|| ”Z' (LOOLZ))

K+v—1—m
K+v Kk+v—1 v
X (el oy el L)) (8.24)

If k1| = k1| V -+ - V ket |, similar to (8.24), we have

m K+v—1-—m
L S Nl g o2y (WG Nl "))
= e
X (M55 e Il ) (8.25)

Collecting (8.24) and (8.25), we have from the definition of M; (u), N;(u), T; (u) that
Lew S (To(u) + Ty (u)) (Mo (u) + My (u) + No(u) + N (u))HWI- (8.26)
Hence, in view of (8.19)—(8.21) and (8.26) we have

N (o F(u,uy)) < > fult (8.27)

XdNLS
m+1<k+v<m+1
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Step 3. By Lemmas 4.4 and 4.5, using a similar way as that of Ny (<7 F (u, u,)), we see that
the estimates of Tj (<7 F(u, uy)) and M{(«/ F (u, u,)) can be reduced to the similar versions as
in the right-hand side of (8.20), it follows that

My( F(u,uy)) + T (o F(u,ux)) S Z ||u||'§(;\‘;LS, (8.28)
m4+1<k+v<m+1

the details are omitted.

Step 4. Finally, we consider the estimates of Mo (< F (u, uy)) and To(</ F (u, u,)), which are
analogous to My(</ F (u, u,)). Indeed, by (4.22) and (4.23),

Mo (& F(u,uy)) < > > ikt ”Dk(u"u;)HL%, (8.29)
m+1<k+v<im+1 keZ Xt

To(AFuu)) S > > )| O ('t u )||L%. (8.30)
m+1<c+v<m+1 |k|=>2 Xt

So, in view of the estimates of (8.8) and (8.18), we have

Mo(2/ F (u, uy)) + To(A F(u, uy)) < > lulltY . (8.31)

XdNLS
m+1<k+v<m+1

Summarizing (8.7), (8.18), (8.27), (8.28) and (8.31), we have

K+v
| T ullxows Shuollyem + 35l (8.32)
' m+1<k+v<m+1

Following the same way as in Section 5, we can get the results. O
Acknowledgments

The authors are grateful to Professors H. Feichtinger and J. Toft for their enlightening con-
servations on the interpolation of modulation spaces, and on the inclusions between Besov and
modulation spaces, respectively. J. Toft kindly informed us that M. Sugimoto and N. Tomita inde-
pendently obtained partial results of Theorem 1.1, where they mainly used the dilation property
and Feichtinger’s norm on modulation spaces, which is different from our frequency-uniform
decomposition method. The authors are also indebted to the referee for his valuable comments
and pointing out the reference [23].

Appendix A. Proof of Theorem 2.3
The proof of Theorem 2.3 is similar to that of the complex interpolation of Besov spaces (cf.

Triebel [36,37]) and we will give the details of the proof for completeness. We need the following
(cf. Triebel [35,36])
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Lemma A.1. Let A be the strip, 0 < r < co. Then there exist two positive function uy(0,t) and
w1(0,1) in (0, 1) x R such that

1-6 0
8] < ((1 —9>—1/|g<it>|’uo<9,r>dz) (9—1f|g(1 +i)| 16, 1) dt)
R R

with § = Rez for any analytic function f(z) in A which is uniformly continuous and bounded
in A. Moreover,

a —9)_1/,uo(é,t)dt=9_l/,ul(e,t)dtz1.
R R

Lemma A.2. Assume that the conditions of Theorem 2.3 are satisfied. Then we have

S0 51 N
(AJPOQO’AIPIQI) C:Alﬁﬂ

Proof. Since (I — A)°/2: M]S,,q — Mf,,_" and F(Mp0 0> Pl ) = F(M;,% ,fo, MPI ql) are iso-
morphic mappings, it suffices to consider the case s =0, i.e., we need to show that

(M;?o a0 M) (11) CMpy, 0=(1-0)s0+0s).

Taking 0 < r < min;=o,1(pi, g:)> feF(Mpo q0° p1 ql)WIth f(0)=g, we have

||g||Mp,q=<ZHIDkf<9 9 l§§;> : (A1)

keZ

Denote

a(x)=(1-6)" / [ TR

R

br(x)=60"" /|Dkf(l +it, )| w10, 1) dt.

In view of Lemma A.1, we have from Holder’s and Minkowski’s inequalities that

lBer@. |

A

1-60
< <(1 _9)_1/,u0(t)”|jkf(it)“;0 dt)
R

p/r =

0
X (e—lfm(z)nmkf(l+it)||;1 dt) ) (A.2)

R
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Noticing that (1 —6)sg +60s1 = 0, inserting (A.2) into (A.1) and using Holder’s and Minkowski’s
inequalities, we have

1-6
||g||M,,,q<{Z[((l—e)”/uom ) |Befan |, dr)
R

keZ

q/ry1/q
x(e mow e osa+iol, dt)] }
R

q0/ry (1-0)/q0
<{Z((1—9)_1/Mo(t) ) |Befan |, dr) }
R

keZ

RN
x { Z(e /m(z) )" B f A+ ], dt) }
R

keZ

<sup £ (ir) HM?O ras+in ||?V,;llvql :
which implies the result, as desired. O

Proof of Theorem 2.3. The idea follows from Triebel’s [36]. The difference is that the
frequency-uniform decomposition is different from the dyadic decomposition, we need to modify
the maximal function used in [36] by the following one in (A.3).

By Lemma A .2, it suffices to show that

Mpq C (M 40 My g1)gs 0= (1—0)s0+0s1.

Put Ay =3 ,c 4 Okte, A ={€ €Z": suppog Nsuppoy # B} Let g € M), , and let g be the
maximal function of [ g, i.e.,

N [(Lkg)(x — y)I n
_ iy n A3
i A A
Let
Fe)=Y 0w [0 @)D g |57 () [
keZ?
where

1—z Z
01(2) =—( —z)s0 — zs1, Qz(z)=p< +—),
Do D1

1—z
03(2) =q<—z + i) —02(2), 04(2) =1-02(2) —03(2).
q0 q1

It is easy to see that f(6) = g. For any £ € Z",
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0@ = Y F ok [+ 090 Qo)™ gt |20 )15D A
kEAl

where A = {k: suppog N supp Ar # @} has at most O (4/n) many elements. Noticing that

|y Oehiye T [(k—i—@)g'(Z)(Dk eg)QZ(Z)” < k+£)ReQ1(Z)(|J O—O)‘-k|*’gkeQZ(Z)|)

5 <k+£)RCQI(Z)|g;§+K|ReQ2(Z), (AS)
it follows from (A.4) and (A.5) that
Bernl S Y tk+07lgkvel ™ lgitvel7n® 1 (88 lua ey (A.6)

ke

Hence, in view of (A.6) and the maximal function estimates (cf. [35, Theorem 1.6.2])

| £an ”M;%q ()] o wn Slelm, - (A7)

Similarly, || f(1 +it)|| M, has the same upper bound as in (A.7). By Proposition 2.2, we get
1-91
the result, as desired. O
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