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scale to the smallest scale can be up to 106. In this paper,
we study an H-ψ formulation for the nonlinear eddy current
problem in laminated conductors. By omitting the insulating films
between neighboring laminations, we propose an approximate
but effective H-ψ formulation for the nonlinear eddy current
problem, which reduces the scale ratio by 2–3 orders of magnitude.
The well-posedness of the original problem and the approximate
problem are established by examining their weak formulations.
The convergence is proved for the solution of the approximate
problem to the solution of the original problem as the thickness
of coating films approaches zero.
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Fig. 1. A typical model of the eddy current problem.

1. Introduction

Consider the following eddy current problem for magnetic and anisotropic materials in terms of
Farady’s law and Ampere’s law:

∂ B

∂t
+ curl E = 0 in R

3, (1a)

curl H = J in R
3, (1b)

where E is the electric field, B is the magnetic flux, H is the magnetic field, and J is the current
density defined by

J =
{

σ E in Ωc,

J s in R
3\Ω̄c.

(2)

Eq. (1) is the eddy current model which approximates Maxwell’s equations at very low frequency by
neglecting the displacement currents in Ampere’s law [1]. For magnetic materials, B = (B1, B2, B3)

is a nonlinear vector function of H = (H1, H2, H3) in the form of Bi = Bi(Hi), 1 � i � I , so that (1)
is the nonlinear eddy current problem. And for nonmagnetic materials, B = μ0 H where μ0 is the
permeability in the empty space, and (1) stands for the linear eddy current problem. In (2), σ � 0 is
the electric conductivity, J s is the source current density carried by some coils and satisfies div J s = 0,
Ωc denotes the conducting region, and the complement R

3\Ω̄c denotes the nonconducting region
(see Fig. 1). There are many works studying linear eddy current problems, e.g., on numerical methods
[7,8,16,22,24,29], or on the regularity of the solution [17]. However, little has been done for the
mathematical and numerical analysis for nonlinear eddy current problems. We refer to Bachinger
et al. [6] for the numerical analysis of nonlinear multi-harmonic eddy current problems in isotropic
materials.

In this paper, we shall study the nonlinear eddy current problem in GO silicon steel laminations.
GO silicon steel laminations are widely used in iron cores and shielding structures of large power
transformers [13,14]. The complex structure is made of many laminated steel sheets and each sheet
is about 0.18–0.35 mm thick. Moreover, each steel sheet is coated with a thin layer of insulating
film with thickness 2–5 μm to prevent the electric current from flowing into its neighboring sheets,
as seen in Fig. 2. Usually the lamination stack has multiple scale sizes and the ratio of the largest
scale to the smallest scale can be up to 106. Clearly, it is extremely difficult to do the full three-
dimensional finite element simulation for the model problem (1) due to extensive unknowns from
meshing the laminations and the coating films. Very few works have been done on the computation
of three-dimensional eddy currents inside the laminations in the literature.

In recent years, there are considerable efforts which have been devoted to developing efficient
numerical methods for nonlinear eddy current problems in steel laminations in the engineering com-
munity. Most of them were particularly made for effective reluctivities and conductivities of the
lamination stack, e.g. [9,10,23,27]. The main idea is to replace physical parameters with equivalent
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Fig. 2. GO silicon steel laminations. (Left) the magnetic shield for protecting the magnetic plate; (Right) the magnetic shield
made of laminated steel sheets.

(or homogenized) parameters for Maxwell’s equations. In [11,12], Bottauscio et al. proposed a mathe-
matical homogenization technique based on the multi-scale expansion theory to derive the equivalent
electric parameters and effective magnetization properties. In [19,20], Gyselinck et al. deduced the
effective material parameters by an orthogonal decomposition of the flux in the perpendicular and
parallel directions to the lamination plane. In [21], Napieralska-Juszczak et al. established equivalent
characteristics of magnetic joints of transformer cores by minimizing the magnetic energy of the sys-
tem. In [25], Nédélec and Wolf studied the homogenization method for eddy currents in a transformer
core and proved the convergence of the exact solution to the solution of the homogenized problem
as the thickness of the steel sheet approaches zero. Numerical methods based on the homogenization
of material parameters provide an efficient way to simulate electromagnetic field in steel laminations.
In [2], Ammari and Nédélec studied the electromagnetic scattering problem by a perfectly conducting
object coated with a thin chiral curved layer. They proposed the approximate impedance condition
without modeling the exact fields inside the thin layer and proved optimal error estimates. In [3],
Ammari et al. studied the electromagnetic scattering by a thin dielectric planar structure. The approx-
imate solution of Maxwell’s equations comprises both the leading term and a first-order correction.
We also refer to [4] for the asymptotic analysis of nonlinear Maxwell’s equations with thin ferromag-
netic films.

Since the effective conductivity is anisotropic and has zero value in the perpendicular direction
to the lamination plane, the homogenized eddy current is thus two-dimensional in the lamination
stack. Moreover, since the number of steel laminations is finite, the homogenization method usually
introduces large modeling error near the boundary of the lamination stack, especially near the part of
boundary close to the applied field. When the leakage of the magnetic flux is so strong as to enter the
lamination plane perpendicularly, for example, in the outer laminations of large power transformer
core, the eddy current loss induced there must be taken into account in the electromagnetic design. It
is preferable to accurately compute the three-dimensional eddy currents at least in a few laminations
close to the source, i.e., to use the zoned treatment for practical approaches, as seen in Fig. 3. In the
three-dimensional eddy current region, one usually has to subdivide the laminations and the coating
films into fine meshes. Using the zoned treatment, Cheng et al. investigated in [15] the effect of the
eddy current, induced by the normal magnetic field on the total iron loss and the distortion of the
local magnetic flux in the lamination stack.

The purpose of this work is to present an approximate and effective model to the eddy current
problem (1) by omitting coating films in the system. The new model reduces the scale ratio of the
system by 2–3 orders of magnitude and thus can save computational efforts greatly in numerical
approximations. Besides, the new model conserves eddy current inside each lamination even ignor-
ing the coating films. The eddy current cannot flow across the interface between neighboring steel
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Fig. 3. Zoned treatment of the lamination stack. The six laminations close to the source are treated with three-dimensional
simulations while the other laminations are treated with homogenization methods.

laminations. Specifically, we obtained the following results for Maxwell’s equations of the nonlinear
eddy current problem:

1. We proved the existence and uniqueness of both the exact solution and the approximate solution
for the original and the approximate problems. We developed some new techniques to handle the
nonlinearity in the mathematical analysis of Maxwell’s equations. To the best of our knowledge,
this is the first work studying the well-posedness of the H -ψ formulation for nonlinear and
time-dependent eddy current problems.

2. We proved the stability of the exact and the approximate solutions to the original and the ap-
proximate problems with respect to the source current.

3. We proved that the approximate solution converges strongly to the exact solution in the L2-norm
as the thickness of the coating film approaches zero.

4. For the linear eddy current problem, we deduced an explicit error estimate between the approx-
imate solution and the exact solution with respect to the thickness of the coating film.

The layout of the paper is as follows. In Section 2, we present some notation and Sobolev spaces
and study the H -ψ formulation for the model problem (1). The well-posedness of the nonlinear eddy
current problem is established in Section 3. Section 4 is devoted to the well-posedness of the solution
for an approximate H -ψ formulation of the nonlinear eddy current problem by omitting coating films.
The convergence is examined in Section 5 for the approximate solution to the exact solution as the
thickness of the coating film tends to zero.

2. The H -ψ formulation of eddy current problem

Let Ω ⊂ R
3 be a sufficiently large, bounded, and convex polyhedral domain containing all conduc-

tors and coils. Denote the conducting domain by Ωc which consists of all conductors. Let Ωnc = Ω\Ωc

be the nonconducting domain such that σ ≡ 0 in Ωnc . Throughout the paper, we make the following
assumptions on the electric conductivity and the nonlinear relationship between H = (H1, H2, H3)

and B = (B1, B2, B3) which are usually satisfied in electrical engineering:

(H1) The conductivity σ is a piecewise constant in Ω . There exist two constants σmin and σmax such
that

0 < σmin � σ � σmax in Ωc.

(H2) Bi is a Lipschitz continuous function of Hi satisfying Bi(Hi) = μ0 Hi in Ωnc and Bi(0) = 0. There
exist two constants μmin and μmax such that

0 < μmin � B ′
i(Hi) � μmax a.e. in Ω, i = 1,2,3.
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Fig. 4. BH-curves for GO silicon steel laminations. (Left) the rolling direction; (Right) the transverse direction.

Here μ0 is the magnetic permeability of the vacuum. The nonlinear function H = H(B) is usually
obtained by spline interpolations using experimental data. Fig. 4 shows a typical example of the
BH-curves for the GO silicon steel laminations in large power transformers [13]. Clearly, the assump-
tion (H2) is satisfied.

We shall focus on simply-connected conductors, i.e., each connected component of Ωc is a simply-
connected Lipschitz domain. A typical engineering application lies in magnetic shields for the oil tank
of large power transformers. We also refer to [13] for a family of benchmark problems, TEAM Work-
shop Problem P21c-M1, P21c-EM1, P21c-M2, P21c-EM2, and P21d-M, for this application, as seen in
Fig. 2. Obviously, the nonconducting domain Ωnc is simply connected for these benchmark problems.

2.1. Hilbert spaces

Let L2(Ω) be the usual Hilbert space of square integrable functions equipped with the following
inner product and norm:

(u, v) :=
∫
Ω

u(x)v(x)dx and ‖u‖0,Ω := (u, u)1/2.

Define Hm(Ω) := {v ∈ L2(Ω): Dξ v ∈ L2(Ω), |ξ | � m} which is equipped with the following norm and
semi-norm

‖u‖m,Ω :=
( ∑

|ξ |�m

∥∥Dξ u
∥∥2

0,Ω

)1/2

and |u|m,Ω :=
( ∑

|ξ |=m

∥∥Dξ u
∥∥2

0,Ω

)1/2

,

where ξ represents non-negative triple index. As usual, H1
0(Ω) is the subspace of H1(Ω) whose func-

tions have zero traces on ∂Ω . Throughout, we denote vector-valued quantities by boldface notation,
such as L2(Ω) := (L2(Ω))3.

Define

H(curl,Ω) := {
v ∈ L2(Ω): curl v ∈ L2(Ω)

}
,

H 0(curl,Ω) := {
v ∈ H(curl,Ω): n × v = 0 on ∂Ω

}
,

where n is the unit outer normal and the spaces are equipped with the inner product

(v, w)H(curl,Ω) := (v, w) + (curl v, curl w)

and the norm

‖v‖H(curl,Ω) :=
√

(v, v)H(curl,Ω).

Introduce the spaces of functions with square integrable divergence
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H(div,Ω) := {
v ∈ L2(Ω): div v ∈ L2(Ω)

}
,

H 0(div,Ω) := {
v ∈ H(div,Ω): n · v = 0 on ∂Ω

}
,

which are equipped with the inner product

(v, w)H(div,Ω) := (v, w) + (div v,div w)

and the norm

‖v‖H(div,Ω) :=
√

(v, v)H(div,Ω).

To study the weak solution of (1), we shall use the subspaces of H(curl,Ω):

X := ∇H1(Ω) + H 0(curl,Ωc), (3)

Xc := {
v ∈ H 0(curl,Ωc): div v = 0 in Ωc

}
. (4)

It is easy to see that

‖v‖2
H(curl,Ω) = ‖v‖2

L2(Ω)
+ ‖curl v‖2

L2(Ωc)
for all v ∈ X .

We shall use the convention that all functions in H 0(curl, D) and H1
0(D) are extended by zero to the

exterior of D for any D ⊂ Ω .

Lemma 2.1. Let the nonconducting region Ωnc be simply connected. Then

X = {
v ∈ H(curl,Ω): curl v = 0 in Ωnc

}
.

Furthermore, for any v ∈ X , there exist a unique vc ∈ Xc and a unique φ ∈ H1(Ω)/R such that

v = vc + ∇φ, ‖vc‖H(curl,Ω) + ‖φ‖H1(Ω) � C‖v‖H(curl,Ω),

where C > 0 is a constant only depending on Ωnc .

Proof. It is clear that X ⊂ {v ∈ H(curl,Ω): curl v = 0 in Ωnc}.
Suppose that v ∈ H(curl,Ω) and satisfies curl v = 0 in Ωnc . Since Ωnc is simply connected, the

potential theorem [5] shows that v = ∇φnc in Ωnc for some φnc ∈ H1(Ωnc). By Stein’s extension
theorem [28], there exist a φ1 ∈ H1(Ω) and a constant C only depending on Ωnc such that

φ1 = φnc in Ωnc and ‖φ1‖H1(Ω) � C‖φnc‖H1(Ωnc)
� C‖v‖L2(Ω). (5)

Clearly v1 := v − ∇φ1 ∈ H 0(curl,Ωc) and satisfies

‖v1‖H(curl,Ω) � C
(‖φ1‖H1(Ω) + ‖v‖H(curl,Ω)

)
� C‖v‖H(curl,Ω). (6)

Thus v = v1 + ∇φ1 ∈ X and {v ∈ H(curl,Ω): curl v = 0 in Ωnc} ⊂ X .
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Now suppose that v = v1 + ∇φ1 with v1 ∈ H 0(curl,Ωc) and φ1 ∈ H1(Ω)/R. Let φ2 ∈ H1
0(Ωc) be

the unique solution of the following elliptic problem:

∫
Ωc

∇φ2 · ∇ϕ =
∫
Ωc

v1 · ∇ϕ for all ϕ ∈ H1
0(Ωc).

Then v = vc + ∇φ with vc := v1 − ∇φ2 ∈ Xc and φ := φ1 + φ2 ∈ H1(Ω)/R. Combining (5) and (6)
yields that

‖vc‖H(curl,Ω) � 2‖v1‖H(curl,Ω) � C‖v‖H(curl,Ω)

and

‖φ‖H1(Ω) � C‖∇φ‖L2(Ω) � C‖v − vc‖L2(Ω) � C‖v‖H(curl,Ω).

To prove the uniqueness, we let v = ṽc + ∇φ̃ be another decomposition with ṽc ∈ Xc and φ̃ ∈
H1(Ω)/R. Then vc − ṽc ∈ H 0(curl,Ωc) and satisfies

div(vc − ṽc) = 0, curl(vc − ṽc) = 0 in Ωc.

It follows from [5] that vc = ṽc and thus φ = φ̃. �
2.2. The weak formulation

Since div J s ≡ 0, there exists a source magnetic field H s such that

J s = curl H s in R
3. (7)

The field H s can be written explicitly by the Biot–Savart law for general coils

H s := curl As,

where

As(x) := 1

4π

∫
R3

J s(y)

|x − y| d y.

Denote the residual H r := H − H s , which is also called the reaction field in [18]. Using (1) and (7),
we have curl H r = 0 in Ωnc . A direct application of Lemma 2.1 yields the following result.

Lemma 2.2. The reaction field H r ∈ H(curl,Ω) admits a unique decomposition

H r = u + ∇ψ, u ∈ Xc, ψ ∈ H1(Ω)/R. (8)
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Next we deduce a weak formulation of (1). For any v ∈ X , (1a) implies that∫
Ωc

∂ B

∂t
· v = −

∫
Ωc

curl E · v = −
∫
Ωc

E · curl v +
∫

∂Ωc

(E × nc) · v

=
∫
Ωc

σ−1( J s − curl H) · curl v +
∫

∂Ωc

(E × nc) · v, (9)

∫
Ωnc

∂ B

∂t
· v = −

∫
Ωnc

curl E · v =
∫

∂Ωnc

(E × nnc) · v, (10)

where nc , nnc are the unit outer normals to ∂Ωc and ∂Ωnc respectively. Noting the tangential conti-
nuity of E and v across ∂Ωc and the fact that

σ−1( J s − curl H) = −σ−1 curl H r in Ωc,

we add (9) and (10) and obtain∫
Ω

∂ B

∂t
· v +

∫
Ωc

σ−1 curl H r · curl v = 0 for all v ∈ X . (11)

For convenience, we shall drop the subscript of H r and let H denote the reaction field in the rest of
the paper, and define

σ1 =
{

σ−1 in Ωc,

0 in Ωnc.

Using (11) and viewing B as a nonlinear vector function of the total magnetic field, we obtain a
weak formulation of (1): Find H ∈ X such that H(·,0) = 0 and∫

Ω

∂

∂t
B(H + H s) · v +

∫
Ω

σ1 curl H · curl v = 0 for all v ∈ X . (12)

3. Well-posedness of the weak formulation

We shall use Rothe’s method (cf. [26]) to study the weak solution. Let N be a positive integer
and {tn = nτ : n = 0, . . . , N} be an equidistant partition of [0, T ] with τ = T /N . The semi-discrete
approximation to (12) reads: Given H 0 = 0, find Hn ∈ X , 1 � n � N , such that∫

Ω

Bn − Bn−1

τ
· v +

∫
Ω

σ1 curl Hn · curl v = 0 for all v ∈ X, (13)

where Bn := B(Hn + H s(tn)).
We define the piecewise constant and piecewise linear interpolations in time by

H̄τ (·, t) = Hn, Hτ (·, t) = ln(t)Hn + (
1 − ln(t)

)
Hn−1,

B̄τ (·, t) = Bn, Bτ (·, t) = ln(t)Bn + (
1 − ln(t)

)
Bn−1, (14)



3484 P. Li, W. Zheng / J. Differential Equations 254 (2013) 3476–3500
for any t ∈ (tn−1, tn] and 1 � n � N , where

ln(t) := τ−1(t − tn−1).

Clearly we have

H̄τ ∈ L2(0, T ; X), Hτ ∈ C(0, T ; X),

B̄τ ∈ L2(0, T ; L2(Ω)
)
, Bτ ∈ C

(
0, T ; L2(Ω)

)
.

The following lemma is concerned with the well-posedness of the weak formulation (13).
The proof is given in Appendix A.

Lemma 3.1. For any 1 � n � N, the weak formulation (13) has a unique solution Hn ∈ X . Suppose that
H s ∈ H 1(0, T ; L2(Ω)). Then there exists a constant C only depending on Ωc , T , μmax , μmin , σmax , σmin such
that

‖Hτ ‖H 1(0,T ;L2(Ω)) + ‖curl Hτ ‖L∞(0,T ;L2(Ω)) � C‖H s‖H 1(0,T ;L2(Ω)), (15)

‖H̄τ ‖L2(0,T ;L2(Ω)) + ‖curl H̄τ ‖L∞(0,T ;L2(Ω)) � C‖H s‖H 1(0,T ;L2(Ω)), (16)

‖B̄τ ‖L2(0,T ;L2(Ω)) + ‖Bτ ‖H 1(0,T ;L2(Ω)) � C‖H s‖H 1(0,T ;L2(Ω)). (17)

It follows from Lemma 2.1 that each Hn admits the decomposition in a direct sum

Hn = un + ∇ψn, un ∈ Xc, ψn ∈ H1(Ω)/R.

For any t ∈ (tn−1, tn] and 1 � n � N , we may define ūτ ∈ L2(0, T ; X c) and uτ ∈ C(0, T ; Xc) by us-
ing {un}:

ūτ (·, t) = un, uτ (·, t) = ln(t)un + (
1 − ln(t)

)
un−1, (18)

which gives the decompositions

H̄τ = ūτ + ∇ψ̄τ , Hτ = uτ + ∇ψτ .

Here ψ̄τ and ψτ are defined as

ψ̄τ (·, t) := ψn, ψτ (·, t) := ln(t)ψn + (
1 − ln(t)

)
ψn−1,

for all t ∈ (tn−1, tn] and 1 � n � N .
Introduce the Sobolev–Bochner space (cf. [26, Section 7.1])

W 1,2,2(0, T ; H 1(Ω), L2(Ω)
) :=

{
v ∈ L2(0, T ; H 1(Ω)

)
:

∂ v

∂t
∈ L2(0, T ; L2(Ω)

)}
,

which is equipped with the following norm

‖v‖W 1,2,2(0,T ;H 1(Ω),L2(Ω)) =
(

‖v‖2
L2(0,T ;H 1(Ω))

+
∥∥∥∥∂ v

∂t

∥∥∥∥2

2 2

)1/2

.

L (0,T ;L (Ω))
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Next we examine the convergence of the temporally discrete functions. For convenience, we shall use
the same notation to denote their subsequences without causing confusion.

Lemma 3.2. Assume that each connected component of Ωc is a convex polyhedron. Then uτ ∈ W 1,2,2(0, T ;
H 1(Ωc), L2(Ωc)) and satisfies

‖ūτ ‖L2(0,T ;H 1(Ωc))
+ ‖uτ ‖W 1,2,2(0,T ;H 1(Ωc),L2(Ωc))

� C‖H s‖H 1(0,T ;L2(Ω)). (19)

Furthermore, there exist a subsequence of {uτ }τ�0 , a subsequence of {ūτ }τ�0 , and a u ∈ L2(0, T ; Xc) such
that

lim
τ→0

‖uτ − u‖L2(0,T ;L2(Ωc))
= lim

τ→0
‖ūτ − u‖L2(0,T ;L2(Ωc))

= 0. (20)

Proof. Since each connected component of Ωc is a convex polyhedron, we know that H 0(curl,Ωc) ∩
H(div,Ωc) ⊂ H 1(Ωc) (cf. e.g., [5]). This implies un ∈ H 1(Ωc) and

‖un‖H 1(Ωc)
� C

{‖un‖H(curl,Ωc) + ‖div un‖L2(Ωc)

}
� C‖Hn‖H(curl,Ω), (21)

where we have used Lemma 2.1 and the fact that div un = 0 in Ωc in the last inequality. Then (19)
follows from (15).

By the compact embedding (cf. [26, Lemma 7.7])

W 1,2,2(0, T ; H 1(Ωc), L2(Ωc)
)
� L2(0, T ; L2(Ωc)

)
,

there exist a subsequence of {uτ }τ�0 and a u ∈ W 1,2,2(0, T ; H 1(Ωc), L2(Ωc)) such that

lim
τ→0

uτ = u
strongly in L2

(
0, T ; L2(Ωc)

)
,

weakly in W 1,2,2
(
0, T ; H 1(Ωc), L2(Ωc)

)
.

The weak convergence of {uτ }τ�0 indicates that, for any v ∈ L2(0, T ; H 1(Ωc)),

T∫
0

∫
∂Ωc

(u × n) · v =
T∫

0

∫
Ωc

(u · curl v − curl u · v) = lim
τ→0

T∫
0

∫
Ωc

(uτ · curl v − curl uτ · v)

= lim
τ→0

T∫
0

∫
∂Ωc

(uτ × n) · v = 0.

We conclude that u ∈ L2(0, T ; H 0(curl,Ωc)). Since div uτ = 0, it is clear that

T∫
0

∫
Ωc

u · ∇ϕ = lim
τ→0

T∫
0

∫
Ωc

uτ · ∇ϕ = 0 for all ϕ ∈ L2(0, T ; H1
0(Ωc)

)
,

which shows div u = 0 and thus u ∈ L2(0, T ; Xc).
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Finally we deduce from (19) and the strong convergence of uτ that

lim
τ→0

‖ūτ − u‖2
L2(0,T ;L2(Ωc))

� lim
τ→0

‖ūτ − uτ ‖2
L2(0,T ;L2(Ωc))

= lim
τ→0

N∑
n=1

τ

3
‖un − un−1‖2

L2(Ωc)

= lim
τ→0

τ 2

3

∥∥∥∥∂uτ

∂t

∥∥∥∥2

L2(0,T ;L2(Ωc))

= 0,

which completes the proof. �
Lemma 3.3. Let (H1)–(H2) be satisfied. Assume that each connected component of Ωc is a convex polyhedron
and

lim
τ→0

‖H s,τ − H s‖L2(0,T ;L2(Ω)) = 0, (22)

where H s,τ is the piecewise constant interpolation of H s in time

H s,τ (·, t) = H s(·, tn) for all t ∈ (tn−1, tn], 1 � n � N.

Then there exists an H ∈ L2(0, T ; X) such that

lim
τ→0

Hτ = lim
τ→0

H̄τ = H
strongly in L2

(
0, T ; L2(Ω)

)
,

weakly in L2(0, T ; X).

Proof. Since L2(0, T ; X) is self-reflective, by (16), there exist a subsequence of {Hτ }τ�0 and a subse-
quence of {H̄τ }τ�0 such that

lim
τ→0

Hτ = lim
τ→0

H̄τ = H weakly in L2(0, T ; X).

By Lemma 2.1, H can be decomposed into H = u + ∇ψ where ψ ∈ H1(Ω)/R and u is the limit
of ūτ .

Next we prove the strong convergence of H̄τ . The strong convergence of Hτ comes directly from
that of H̄τ . For convenience we denote the discrete and continuous total magnetic fields by Ĥτ =
H̄τ + H s,τ and Ĥ = H + H s respectively. It follows from (22) and the weak convergence of H̄τ that

lim
τ→0

Ĥτ = Ĥ weakly in L2(0, T , L2(Ω)
)
. (23)

From (13) and (14) we deduce that

(B̄τ ,∇ϕ) = 0 for all ϕ ∈ H1(Ω).

Then using Lemmas 3.1–3.2 and (22), we obtain

lim
τ→0

T∫
0

(B̄τ , Ĥτ − Ĥ) = lim
τ→0

T∫
0

(B̄τ , ūτ − u + H s,τ − H s) = 0. (24)

Noting the monotonicity of B(·) and using (23)–(24), we have
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μmin lim
τ→0

‖Ĥτ − Ĥ‖2
L2(0,T ;L2(Ω))

� lim
τ→0

T∫
0

(
B(Ĥτ ) − B(Ĥ), Ĥτ − Ĥ

)

= lim
τ→0

T∫
0

(B̄τ , Ĥτ − Ĥ) − lim
τ→0

T∫
0

(
B(Ĥ), Ĥτ − Ĥ

) = 0,

which shows together with (22) that limτ→0 ‖H̄τ − H‖2
L2(0,T ;L2(Ω))

= 0. �
Theorem 3.1. Let (H1)–(H2) be satisfied. Furthermore, assume that each connected component of Ωc is a
convex polyhedron, and H s ∈ H 1(0, T ; L2(Ω)) satisfies (22) and H s|t=0 = 0. Then (12) has a unique solution
H ∈ H 1(0, T ; X), and there exists a constant C only depending on Ωc , T , μmax , μmin , σmax , σmin such that

‖H‖H 1(0,T ;L2(Ω)) + ‖H‖L2(0,T ;H(curl,Ω)) � C‖H s‖H 1(0,T ;L2(Ω)).

Proof. Using (14), we first write (13) into the following equation

T∫
0

(
∂ Bτ

∂t
, v

)
+

T∫
0

(σ1 curl H̄τ , curl v) = 0 for all v ∈ L2(0, T ; X). (25)

Since H 1(0, T ; L2(Ω)) is self-reflective, by (17), {Bτ }τ�0 has a subsequence satisfying

lim
τ→0

Bτ = B0 weakly in H 1(0, T ; L2(Ω)
)
, (26)

which implies that

lim
τ→0

B̄τ = B0 weakly in L2(0, T ; L2(Ω)
)
.

Write Ĥτ := H̄τ + H s,τ and Ĥ := H + H s , where H is the limit of H̄τ in Lemma 3.3. Due to the
strong convergence of H̄τ and H s,τ , it is easy to show that

lim
τ→0

‖Ĥτ − Ĥ‖L2(0,T ;L2(Ω)) = 0.

Using (H2), we deduce that

lim
τ→0

∥∥B̄τ − B(H + H s)
∥∥

L2(0,T ;L2(Ω))
= lim

τ→0

∥∥B(Ĥτ ) − B(Ĥ)
∥∥

L2(0,T ;L2(Ω))

� μmax lim
τ→0

‖Ĥτ − Ĥ‖L2(0,T ;L2(Ω)) = 0.

Thus we have B0 = B(H + H s).
Since σ1 is bounded and positive in Ωc , the weak convergence of H̄τ in L2(0, T ; X) shows that

lim
τ→0

T∫
(σ1 curl H̄τ , curl v) =

T∫
(σ1 curl H , curl v) for all v ∈ L2(0, T ; X). (27)
0 0
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Plugging (26) and (27) into (25) lead to

T∫
0

(
∂

∂t
B(H + H s), v

)
+

T∫
0

(σ1 curl H , curl v) = 0 for all v ∈ L2(0, T ; X). (28)

Therefore (12) holds in the sense of distribution.
Next we prove the initial condition. We write B = B(H + H s) for convenience and take any ϕ ∈

C1([0, T ]) satisfying ϕ(0) = 1 and ϕ(T ) = 0. By (26) and integration by parts, we deduce that

(B|t=0, v) =
T∫

0

{
ϕ(t) · ∂

∂t
(B, v) + ϕ′(t) · (B, v)

}
dt

= lim
τ→0

T∫
0

{
ϕ(t) · ∂

∂t
(Bτ , v) + ϕ′(t) · (Bτ , v)

}
dt

= lim
τ→0

(Bτ |t=0, v) = (
B(H 0 + H s|t=0), v

) = 0 for all v ∈ L2(Ω).

Thus B|t=0 = 0. Since H s|t=0 = 0, by (H2) we have H |t=0 = 0.
The stability estimates for H are easy. In fact, from Lemma 3.1, there exists a subsequence of

{Hτ }τ�0 which converges to H weakly in both H 1(0, T ; L2(Ω)) and L2(0, T ; X). Then (15) shows
that ∥∥∥∥∂ H

∂t

∥∥∥∥
L2(0,T ;L2(Ω))

+ ‖H‖L2(0,T ;H(curl,Ω))

� lim
τ→0

{∥∥∥∥∂ Hτ

∂t

∥∥∥∥
L2(0,T ;L2(Ω))

+ ‖Hτ ‖L2(0,T ;H(curl,Ω))

}
� C‖H s‖H 1(0,T ;L2(Ω)),

which completes the proof. �
4. The approximate formulation without coating films

GO silicon steel laminations are widely used in iron cores and magnetic shields of large power
transformers. Each lamination is usually coated with an insulating film whose thickness is only
2–5 μm so that the electric current cannot flow into the neighboring laminations (see Fig. 5). In
this section, we propose an approximate formulation by omitting coating films from the model. Com-
paring with traditional homogenization methods, the new model is an accurate approximation to the
original problem and yields a full three-dimensional eddy current density inside laminations.

To simplify the setting, we assume that the conducting domain consists of hexahedral laminations,
that is, Ωc = ⋃I

i=1 Ωi where

Ω1 := (X1, X2) × (Y1, Y2) × (Z0, Z1),

Ωi := (X1, X2) × (Y1, Y2) × (Zi−1 + d, Zi), i = 2,3, . . . , I.

Here d > 0 stands for the thickness of the coating film (see Fig. 6). We assume that σ1 is constant in
each Ωi , namely,

σ1 ≡ Ci > 0 in Ωi, 1 � i � I.
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Fig. 5. Geometric size of silicon steel laminations in Team Workshop Problem 21c -M1 [13].

Fig. 6. Computational domain with steel laminations and coating films.

We remark that the assumptions on Ω1, . . . ,ΩI and σ are not essential in the mathematical analysis.
The results can be easily extended to convex polyhedral conductors and to the case that σ is not
piecewise constant.

To omit coating films, we define the extended conductors by (see Fig. 7)

Ω̃c := (X1, X2) × (Y1, Y2) × (Z0, Z I ),

Ω̃i := (X1, X2) × (Y1, Y2) × (Zi−1, Zi), i = 1,2, . . . , I,

and define the modified material parameters by
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Fig. 7. Extended conductors by merging the coating film into the even conductors.

B̃(H) = B(H), σ̃1 = Ci in Ω̃i, 1 � i � I,

B̃(H) = μ0 H , σ̃1 = 0 elsewhere. (29)

The approximate formulation to (12) reads: Find H̃ ∈ X̃ such that H̃(·,0) = 0 and∫
Ω

∂

∂t
B̃(H̃ + H s) · v +

∫
Ω

σ̃1 curl H̃ · curl v = 0 for all v ∈ X̃, (30)

where

X̃ := ∇H1(Ω) +
I∑

i=1

H 0(curl, Ω̃i).

Here we adopt the convention that each function in H 0(curl, Ω̃i) is extended by zero to the exterior
of Ω̃i .

Lemma 4.1. Define X̃ i := {v ∈ H 0(curl, Ω̃i): div v = 0 in Ω̃i} for any 1 � i � I . Then any function v ∈ X̃
admits a unique decomposition

v = ∇ψ +
I∑

i=1

v i, ψ ∈ H1(Ω)/R, v i ∈ X̃ i,

‖∇ψ‖L2(Ω) +
I∑

i=1

‖v i‖H(curl,Ω̃i)
� C‖v‖H(curl,Ω),

where the constant C > 0 only depends on Ω̃1, . . . , Ω̃I .

Proof. Let v = ∑I
i=1 w i + ∇φ ∈ X̃ be any function with w i ∈ H 0(curl, Ω̃i) and φ ∈ H1(Ω). Let φi ∈

H1
0(Ω̃i) solve the elliptic problems∫

Ω̃

∇φi · ∇ϕ =
∫
Ω̃

w i · ∇ϕ for all ϕ ∈ H1
0(Ω̃i), 1 � i � I.
i i
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Then we have v = ∑I
i=1 v i + ∇ψ with v i := w i − ∇φi ∈ X̃ i and ψ = φ + ∑I

i=1 φi ∈ H1(Ω). The
Poincaré-type inequality [5] shows that

‖v i‖H(curl,Ω) � C‖curl v i‖L2(Ω̃i)
= C‖curl w i‖L2(Ω̃i)

= C‖curl v‖L2(Ω̃i)
,

‖∇ψ‖L2(Ω) � ‖v‖L2(Ω) +
I∑

i=1

‖v i‖L2(Ω) � C‖v‖L2(Ω),

where the constant C only depends on Ω̃i . The uniqueness of the decomposition follows from the
stability estimate. �
Theorem 4.1. Let (H1)–(H2) be satisfied and let H s ∈ H 1(0, T ; L2(Ω)) satisfy (22) and H s(·,0) = 0. Then
(30) has a unique solution H̃ ∈ H 1(0, T ; X̃) and

‖H̃‖H 1(0,T ;L2(Ω)) + ‖H̃‖L2(0,T ;H(curl,Ω)) � C‖H s‖H 1(0,T ;L2(Ω)).

Proof. The proof is similar to that of Lemma 3.1. We omit the details here. �
5. Convergence of the approximate solution

This section is to show that the solution of (12) converges to the solution of (30) as the thickness
of the coating film tends to zero. For simplicity, we assume that d = dist(Ωi;Ωi+1) is constant for all
1 � i < I and denote the solution of (12) by H (d) . We first consider the convergence for the nonlinear
eddy current problem, and then deduce an explicit error estimate for the linear eddy current problem.

5.1. Convergence for the nonlinear eddy current problem

We begin with a useful lemma.

Lemma 5.1. There exists an H (0) ∈ L2(0, T ; X̃) such that

lim
d→0

H (d) = H (0) strongly in L2(0, T ; L2(Ω)
)

and weakly in L2(0, T ; X̃).

Proof. Since Ωi ⊂ Ω̃i , we have H 0(curl,Ωi) ⊂ H 0(curl, Ω̃i) for all 1 � i � I and thus X ⊂ X̃ . We
infer from (16) that {H (d)}d>0 constructs a bounded sequence in L2(0, T ; X̃). Then there exists a
subsequence still denoted by {H (d)}d>0 such that

lim
d→0

H (d) = H (0) weakly in L2(0, T ; X̃).

It follows from Lemma 4.1 that H (d) and H (0) can be decomposed uniquely into

H (d) =
I∑

i=1

u(d)
i + ∇ψ(d), H (0) =

I∑
i=1

u(0)
i + ∇ψ(0),

where u(d)
i , u(0)

i ∈ L2(0, T ; X̃ i) and ψ(d),ψ(0) ∈ H1(Ω)/R. The uniqueness of the decompositions indi-
cates that

lim u(d)
i = u(0)

i weakly in L2(0, T ; X̃ i).

d→0
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Using Theorem 3.1 and the stability of the decompositions, we have

I∑
i=1

∥∥∥∥∂u(d)
i

∂t

∥∥∥∥
L2(0,T ;L2(Ω))

+
I∑

i=1

∥∥u(d)
i

∥∥
L2(0,T ;H(curl,Ω))

� C‖H s‖H 1(0,T ;L2(Ω)).

The embedding of H 0(curl, Ω̃i) ∩ H(div, Ω̃i) ⊂ H 1(Ω̃i) [5] shows that

I∑
i=1

∥∥u(d)
i

∥∥
W 1,2,2(0,T ;H 1(Ω̃i),L2(Ω̃i))

� C‖H s‖H 1(0,T ;L2(Ω)).

By the compact embedding W 1,2,2(0, T ; H 1(Ω̃i), L2(Ω̃i)) � L2(0, T ; L2(Ω̃i)), there exists a subse-
quence still denoted by {u(d)

i }d>0 such that

lim
d→0

u(d)
i = u(0)

i

strongly in L2
(
0, T ; L2(Ω̃i)

)
,

weakly in W 1,2,2
(
0, T ; H 1(Ω̃i), L2(Ω̃i)

)
.

Define B(d) := B(H (d) + H s). Taking test functions from ∇H1(Ω) in (12) shows that

(
B(d),∇ϕ

) = 0 for all ϕ ∈ H1(Ω).

We have from assumption (H2) that

μmin lim
d→0

∥∥H (d) − H (0)
∥∥2

L2(0,T ;L2(Ω))

� lim
d→0

T∫
0

(
B(d) − B(0), H (d) − H (0)

)

= lim
d→0

I∑
i=1

T∫
0

∫
Ωi

B(d) · (u(d)
i − u(0)

i

) − lim
d→0

T∫
0

(
B(0), H (d) − H (0)

) = 0,

where we have used the strong convergence of u(d)
i and the weak convergence of H (d) in the last

equality. This completes the proof. �
Theorem 5.1. Let (H1)–(H2) be satisfied and let H (d), H̃ be the solutions of (12) and (30) respectively. Then

lim
d→0

∥∥H (d) − H̃
∥∥

L2(0,T ;L2(Ω))
= 0.

Proof. Denote B(d) := B(H (d) + H s) and B̃
(d) := B̃(H (d) + H s) for any d � 0, where B̃ is defined

in (29). Following from (H2) and Theorem 3.1, we have

∥∥B̃
(d)∥∥

1 2 � C
∥∥H (d) + H s

∥∥
1 2 � C‖H s‖H 1(0,T ;L2(Ω)). (31)
H (0,T ;L (Ω)) H (0,T ;L (Ω))
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Since H 1(0, T ; L2(Ω)) is self-reflective, there exist a B0 ∈ H 1(0, T ; L2(Ω)) and a subsequence of

{B̃
(d)}d>0 such that

lim
d→0

B̃
(d) = B0 weakly in H 1(0, T ; L2(Ω)

)
. (32)

Using assumption (H2) and Lemma 5.1, we obtain that

lim
d→0

∥∥B̃
(d) − B̃

(0)∥∥
L2(0,T ;L2(Ω))

� μmax lim
d→0

∥∥H (d) − H (0)
∥∥

L2(0,T ;L2(Ω))
= 0,

where H (0) is the limit of H (d) in Lemma 5.1. Thus we conclude that

B0 = B̃
(0) = B̃

(
H (0) + H s

)
.

Noting the measure (Ω̃i\Ω i) → 0 as d → 0, we have from (31) that

lim
d→0

T∫
0

∫
Ω̃i\Ω i

∂

∂t

(
B(d) − B̃

(d)) · v = 0 for all v ∈ L2(0, T ; L2(Ω)
)
,

which implies that

lim
d→0

T∫
0

(
∂

∂t
B(d), v

)
= lim

d→0

T∫
0

(
∂

∂t
B̃

(d)
, v

)
for all v ∈ L2(0, T ; L2(Ω)

)
. (33)

From (12) and supp(curl H (d)) = supp(σ1), we deduce that H (d) satisfies

T∫
0

(
∂

∂t
B(d), v

)
+

T∫
0

(
σ̃1 curl H (d), curl v

) = 0 for all v ∈ L2(0, T ; L2(Ω)
)
.

Taking the limit of both sides as d → 0 and using (32) and (33), we obtain that H (0) satisfies (30).
Furthermore, the initial condition that H (0)(·,0) = 0 can be proved by similar arguments as in the

proof of Theorem 3.1. We conclude that H̃ := H (0) is the unique solution of (30). �
5.2. Error estimate for the linear eddy current problem

In this section, we are concerned with the linear eddy current problem for laminated conductors,
and intend to estimate the approximation error with respect to the thickness of the coating film. For
the linear model problem, it is assumed that B(H) = μ0 H in Ω where μ0 is the magnetic perme-
ability of the vacuum.

Similar to (12), the weak formulation for isolated conductors may be formulated as follows: Find
H ∈ X such that∫

μ0
∂ H

∂t
· v +

∫
σ1 curl H · curl v = −

∫
μ0

∂ H s

∂t
· v for all v ∈ X . (34)
Ω Ω Ω
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Comparing with the weak formulation for the approximate nonlinear problem (30), we have the ap-
proximate linear problem for extended (or adjacent) conductors: Find H̃ ∈ X̃ such that

∫
Ω

μ0
∂ H̃

∂t
· v +

∫
Ω

σ̃1 curl H̃ · curl v = −
∫
Ω

μ0
∂ H s

∂t
· v for all v ∈ X̃ . (35)

Lemma 5.2. Let H ∈ H 1(0, T ; X) and H̃ ∈ H 1(0, T ; X̃) be the solutions of (34) and (35) respectively. Then
there exists a constant C > 0 only depending on T , Ω̃c , σmax , σmin such that

‖H̃ − H‖L∞(0,T ;L2(Ω)) + ∥∥curl(H̃ − H)
∥∥

L2(0,T ;L2(Ω))

� C inf
v∈H 1(0,T ;X)

v(0)=0

{‖H̃ − v‖H 1(0,T ;L2(Ω)) + ∥∥curl(H̃ − v)
∥∥

L2(0,T ;L2(Ω))

}
.

Proof. It is clear that H is the Galerkin approximation to H̃ in the subspace X ⊂ X̃ . Denote the error
function by h := H̃ − H . Subtracting (34) from (35) yields∫

Ω

(
∂h

∂t
· v + σ̃1 curl h · curl v

)
= 0 for all v ∈ X .

Taking v ∈ H 1(0, T ; X) with v(·,0) = 0 and integrating the above equality over (0, t), we have

∥∥h(t)
∥∥2

L2(Ω)
+

t∫
0

∫
Ω

σ̃1|curl h|2

=
t∫

0

∫
Ω

{
∂h

∂t
· (h − v) + σ̃1 curl h · curl(h − v)

}

=
∫
Ω

h(t)
{

h(t) − v(t)
} +

t∫
0

∫
Ω

{
σ̃1 curl h · curl(h − v) − h · ∂(h − v)

∂t

}

� 1

2

{∥∥h(t)
∥∥2

L2(Ω)
+

t∫
0

∫
Ω

σ̃1|curl h|2
}

+ 1

2

t∫
0

‖h‖2
L2(Ω)

+ 2
∥∥h(t) − v(t)

∥∥2
L2(Ω)

+ 2

t∫
0

∫
Ω

{
σ̃1

∣∣curl(h − v)
∣∣2 +

∣∣∣∣∂(h − v)

∂t

∣∣∣∣2}
.

It follows that

∥∥h(t)
∥∥2

L2(Ω)
+ ‖curl h‖2

L2(0,t;L2(Ω̃c))
� 1

2

t∫
0

‖h‖2
L2(Ω)

+ C‖h − v‖2
L∞(0,T ;L2(Ω))

+ C
∥∥curl(h − v)

∥∥2
2 2 + C‖h − v‖2

1 2 .
L (0,T ;L (Ω)) H (0,T ;L (Ω))
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Using the initial condition for h − v , we have

∣∣h(s) − v(s)
∣∣2 =

∣∣∣∣∣
s∫

0

∂

∂t
(h − v)dt

∣∣∣∣∣
2

� T

T∫
0

∣∣∣∣ ∂

∂t
(h − v)

∣∣∣∣2

dt for all 0 � s � T ,

which implies that

∥∥h(t)
∥∥2

L2(Ω)
+ ‖curl h‖2

L2(0,t;L2(Ω̃c))
� 1

2

t∫
0

‖h‖2
L2(Ω)

+ C‖h − v‖2
H 1(0,T ;L2(Ω))

+ C
∥∥curl(h − v)

∥∥2
L2(0,T ;L2(Ω))

.

The proof is completed by an application of Gronwall’s inequality and the arbitrariness of t . �
Next we derive the convergence rate by finding a proper candidate of v in the infimum in

Lemma 5.2. First we write

H̃ = ∇ψ +
I∑

i=1

ui, ψ ∈ H1(Ω), ui ∈ H 0(curl, Ω̃i).

Let φi ∈ H1
0(Ω̃i) be the unique solution of the elliptic problem

∫
Ω̃i

∇φi · ∇v =
∫
Ω̃i

ui · ∇v for all v ∈ H1
0(Ω̃i).

Define w i := ui − ∇φi . Clearly we have

div w i = 0 in Ω̃i and w i ∈ H 0(curl, Ω̃i) ∩ H(div, Ω̃i).

By the imbedding theorem in [5], we know that w i ∈ H 1(Ω̃i) and

‖w i‖H 1(Ω̃i)
� C

(‖curl w i‖L2(Ω̃i)
+ ‖div w i‖L2(Ω̃i)

) = C‖curl u‖L2(Ω̃i)
, (36)

where the constant C only depends on Ω̃i . We extend φi , w i by zeros to the exterior of Ω̃i and define
φ := ∑I

i=1 φi ∈ H1(Ω). Then we have

H̃ = ∇(ψ + φ) +
I∑

i=1

w i . (37)

Lemma 5.3. Let H̃ ∈ H 1(0, T ; X̃) be the solution of (35) and assume curl H̃ ∈ L2(0, T ; H(curl,Ω)). There
exists a constant C independent of d such that



3496 P. Li, W. Zheng / J. Differential Equations 254 (2013) 3476–3500
inf
v∈H 1(0,T ;X)

v(0)=0

‖H̃ − v‖H 1(0,T ;L2(Ω)) � Cd1/3‖curl H̃‖H 1(0,T ;L2(Ω)), (38)

inf
v∈H 1(0,T ;X)

v(0)=0

∥∥curl(H̃ − v)
∥∥

L2(0,T ;L2(Ω))
� Cd1/3‖curl H̃‖L2(0,T ;H(curl,Ω)). (39)

Proof. We define a coordinate stretching Fi : Ωi �→ Ω̃i by

x = Fi(x̂) := Bi x̂ − bi for all x̂ ∈ Ωi,

where

Bi = diag

(
1,1,

Zi − Zi−1

Zi − Zi−1 − d

)
, bi =

(
0,0,

Zid

Zi − Zi−1 − d

)T

. (40)

Let w i ∈ H 0(curl, Ω̃i) be the splitting component of H̃ given in (37) and define

ŵ i := Bi(w i ◦ Fi).

Direct calculations show that

ĉurl ŵ i = Zi − Zi−1

Zi − Zi−1 − d
B

−1
i (curl w i ◦ Fi). (41)

Since the unit outer normals of ∂Ωi and ∂Ω̃i have the range{±(1,0,0)T ,±(0,1,0)T ,±(0,0,1)T }
,

we deduce that

(ŵ i × n̂)|∂Ωi = {
Bi(w i ◦ Fi) × n̂

}∣∣
∂Ωi

= {Bi w i × n}|∂Ω̃i
= Cn(w i × n)|∂Ω̃i

= 0,

where Cn is a diagonal matrix and each diagonal entry of Cn is either 1 or (Zid)/(Zi − Zi−1 − d)

according to the variation of n. Thus ŵ i ∈ H 0(curl,Ωi).
From (37), the first inequality in Lemma 5.3 is estimated as follows

inf
v∈H 1(0,T ;X)

v(0)=0

‖H̃ − v‖2
H 1(0,T ;L2(Ω))

�
I∑

i=1

‖w i − ŵ i‖2
H 1(0,T ;L2(Ω̃i))

�
I∑

i=1

{‖w i −Bi w i‖2
H 1(0,T ;L2(Ω̃i))

+ ∥∥Bi(w i − w i ◦ Fi)
∥∥2

H 1(0,T ;L2(Ω̃i))

}
. (42)

We have from (40) that

‖w i −Bi w i‖L2(Ω̃i)
� d

Z − Z − d
‖w i‖L2(Ω̃i)

.

i i−1
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Furthermore, there is a constant C independent of d such that

∣∣x − Fi(x)
∣∣ �

∣∣(1 −Bi)x
∣∣ + |bi | � Cd for all x ∈ Ωi .

Since w i ◦ Fi = 0 in Ω̃i\Ω̄i , we have

‖w i − w i ◦ Fi‖2
L2(Ω̃i)

= ‖w i − w i ◦ Fi‖2
L2(Ωi)

+ ‖w i‖2
L2(Ω̃i\Ω̄i)

.

The above two terms are estimated as follows

‖w i‖2
L2(Ω̃i\Ω̄i)

� Cd2/3‖w i‖2
L6(Ω̃i\Ω̄i)

� Cd2/3‖w i‖2
L6(Ω̃i)

� Cd2/3‖w i‖2
H 1(Ω̃i)

,

‖w i − w i ◦ Fi‖2
L2(Ωi)

=
∫
Ωi

∣∣∣∣∣
1∫

0

∇w i
(
tx + (1 − t)Fi(x)

)
dt · [x − Fi(x)

]∣∣∣∣∣
2

dx

� Cd2
∫
Ωi

1∫
0

∣∣∇w i
(
tx + (1 − t)Fi(x)

)∣∣2
dt dx

� Cd2‖w i‖2
H 1(Ω̃i)

.

We conclude from (37) that

I∑
i=1

‖w i − ŵ i‖2
L2(Ω̃i)

� Cd2/3
I∑

i=1

‖w i‖2
H 1(Ω̃i)

� Cd2/3‖curl H̃‖2
L2(Ω)

. (43)

Plugging (43) into (42) yields (38).
Furthermore, observe that

curl w i · n = Curls
(
n × (w i × n)

) = 0 on ∂Ω̃i,

where Curls is the surface curl operator on ∂Ω̃i . Thus we get

curl H̃ = curl w i ∈ H 0(div, Ω̃i) ∩ H(curl, Ω̃i) ⊂ H 1(Ω̃i).

It can be verified that

inf
v∈H 1(0,T ;X)

v(0)=0

∥∥curl(H̃ − v)
∥∥2

L2(0,T ;L2(Ω))
�

I∑
i=1

∥∥curl(w i − ŵ i)
∥∥2

L2(0,T ;L2(Ω̃i))
.

Then (39) can be proved by (41) and similar arguments. We do not elaborate on the details here. This
completes the proof. �

A direct consequence of Lemmas 5.2 and 5.3 gives the following result on the convergence rate for
the approximate solution of the linear eddy current problem.
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Theorem 5.2. Let H ∈ H 1(0, T ; X) and H̃ ∈ H 1(0, T ; X̃) be the solutions of (34) and (35) respectively and
assume curl H̃ ∈ L2(0, T ; H(curl,Ω)). Then there exists a constant C > 0 only depending on T , Ω̃c , σmax ,
σmin such that

‖H̃ − H‖L∞(0,T ;L2(Ω)) + ∥∥curl(H̃ − H)
∥∥

L2(0,T ;L2(Ω))

� Cd1/3{‖curl H̃‖H 1(0,T ;L2(Ω)) + ‖curl H̃‖L2(0,T ;H(curl,Ω))

}
.
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Appendix A

The purpose of this appendix is to establish the well-posedness of the semi-discrete problem (13).
First we need the following theorem on strongly monotone operators.

Theorem A.1. (See [30, Theorem 25.B].) Let X be a real Banach space and let A: X → X ′ be an operator
satisfying

• strong monotonicity:

〈Au − Av, u − v〉 � c‖u − v‖2
X for all u, v ∈ X,

• Lipschitz continuity:

‖Au − Av‖X ′ � L‖u − v‖X for all u, v ∈ X,

where the constants c > 0, L > 0 only depends on A and X. Then for any b ∈ X ′ , the operator equation Au = b
has a unique solution u ∈ X.

Here is the proof of Lemma 3.1.

Proof of Lemma 3.1. First we write (13) as: Find Hn ∈ X such that

(Bn, v) + τ (σ1 curl Hn, curl v) = (Bn−1, v) for all v ∈ X, (A.1)

where Bn := B(Hn + H s(tn)).
For any w ∈ X , let Ln w ∈ X be the unique solution of the variational problem

(Ln w, v)H(curl,Ω) = (
Bn(w), v

) + τ (σ1 curl w, curl v) for all v ∈ X, (A.2)

where Bn(w) := B(w + H s(tn)). Let f n ∈ X be the unique solution of the variational problem

( f n, v)H(curl,Ω) = (Bn−1, v) for all v ∈ X .

Clearly (A.1) is equivalent to the operator equation

Ln Hn = f n in X . (A.3)
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From (H2) we infer that the operator Ln: X → X is Lipschitz continuous. Moreover, the strict mono-
tonicity of Ln comes directly from (H1)–(H2): for any u, v ∈ X ,

(Lnu −Ln v, u − v)H(curl,Ω) = (
Bn(u) − Bn(v), u − v

) + τ
(
σ1 curl(u − v), curl(u − v)

)
� min(μmin, τσmin)‖u − v‖2

H(curl,Ω).

Then Theorem A.1 shows that (A.3) or (A.1) has a unique solution for each n � 1.
Setting v = Hn − Hn−1 in (A.1) shows that

τ−1(Bn − Bn−1, Hn − Hn−1) + (σ1 curl Hn, curl Hn − curl Hn−1) = 0. (A.4)

Using the initial value H 0 = 0 and the inequality

2
(
σ1 curl Hn, curl(Hn − Hn−1)

)
�

∥∥σ 1
2

1 curl Hn
∥∥2

L2(Ω)
− ∥∥σ 1

2
1 curl Hn−1

∥∥2
L2(Ω)

,

we have

m∑
n=1

(σ1 curl Hn, curl Hn − curl Hn−1) � 1

2σmax
‖curl Hm‖2

L2(Ω)
. (A.5)

Denote the approximate magnetic field by Ĥn := Hn + H s(tn). By (H2), we have

(Bn − Bn−1, Hn − Hn−1)

= (
B(Ĥn) − B(Ĥn−1), Ĥn − Ĥn−1

) − (
B(Ĥn) − B(Ĥn−1), H s(tn) − H s(tn−1)

)
� μmin‖Ĥn − Ĥn−1‖2

L2(Ω)
− μmax‖Ĥn − Ĥn−1‖L2(Ω)

∥∥H s(tn) − H s(tn−1)
∥∥

L2(Ω)

� μmin

2
‖Ĥn − Ĥn−1‖2

L2(Ω)
− 2τμ2

max

μmin

tn∫
tn−1

∥∥∥∥∂ H s

∂t

∥∥∥∥2

L2(Ω)

dt. (A.6)

Plugging (A.5) and (A.6) into (A.4), we obtain

m∑
n=1

1

τ
‖Ĥn − Ĥn−1‖2

L2(Ω)
+

‖curl Hm‖2
L2(Ω)

μminσmax
�

(
2μmax

μmin

)2 tm∫
0

∥∥∥∥∂ H s

∂t

∥∥∥∥2

L2(Ω)

dt.

Then (15) follows from the above inequality and the arbitrariness of m. A direct consequence of (15)
gives (16).

From (H2) we deduce that

|Bn| = 1
∣∣B(Ĥn) − B(0)

∣∣ � μmax|Ĥn| = μmax|Hn + H s|,

|Bn − Bn−1| =
∣∣B(Ĥn) − B(Ĥn−1)

∣∣ � μmax

∣∣∣∣ ∂

∂t
(Hτ + H s)

∣∣∣∣.
Combining (15), we obtain (17). �
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