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Abstract

We show that for any finite configuration of closed curves � ⊂ R2, one can construct an explicit planar 
polynomial vector field that realizes �, up to homeomorphism, as the set of its limit cycles with prescribed 
periods, multiplicities and stabilities. The only obstruction given on this data is the obvious compatibility 
relation between the stabilities and the parity of the multiplicities. The constructed vector fields are Darboux 
integrable and admit a polynomial inverse integrating factor.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction and statement of the main theorem

We consider the planar vector field

X = P(x, y)∂x + Q(x,y)∂y, (1.1)
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where P and Q are polynomials. The degree of X is defined as the maximum of the degrees of P
and Q, and will be denoted by deg(X). The study of the limit cycles of planar polynomial vector 
fields has a long tradition, starting with the celebrated second part of Hilbert’s 16th problem, 
cf. [12], which consists in finding the maximum number of limit cycles for the vector field (1.1)
in terms of the degree deg(X), and studying the relative positions of these cycles. We recall that 
a limit cycle of X is a periodic trajectory that is isolated. Despite having been formulated more 
than a century ago, Hilbert’s 16th problem is still wide open, even for quadratic vector fields, i.e. 
deg(X) = 2.

A related problem that has attracted considerable attention in the last years is the realization 
problem for limit cycles. To state it in a precise way let us introduce some basic definitions. Let 
C be a closed curve embedded in R2. A configuration of cycles is a finite set � = {C1, . . . , Cn}
of closed curves.

Definition 1.1. We say that two configurations of cycles �, �′ are equivalent if there exists a 
homeomorphism φ : R2 → R2 such that φ(�) = �′. A vector field X is said to realize a config-
uration of cycles � if its set of limit cycles is equivalent to �.

The realization (or inverse) problem asks if, for any configuration of cycles �, there exists 
a planar vector field X that realizes �. In this problem it is usual to prescribe other dynamical 
properties of the limit cycles (e.g. stability) as well as some additional conditions on the vector 
field X (e.g. regularity).

The realization problem for limit cycles was first addressed by Al’mukhamedov [1] for 
Ck vector fields using the theory of Lyapunov functions. The same techniques allowed 
Sverdlove [17] to solve the Ck realization problem completely (also prescribing the stability 
of the cycles), fixing a gap in Al’mukhamedov’s construction that had been noticed by other 
authors, see [17] for details.

Regarding polynomial vector fields, the first realization result was obtained by Bautin in [3]
(later corrected in [7]), where explicit expressions for polynomial planar vector fields with a pre-
scribed set of algebraic limit cycles were derived. Alternative constructions appear in the works 
of Winkel [18], Christopher [5] and Korchagin [13]. The idea of using inverse integrating fac-
tors to construct polynomial vector fields with prescribed algebraic limit cycles was first given in 
[11,4]. This idea culminated in the complete solution to the realization problem in the polynomial 
setting obtained by Llibre and Rodríguez in [14] using inverse integrating factors and the Dar-
boux theory of integrability. An alternative proof using Lyapunov functions was given in [16], 
with a generalization to higher dimensions. A remarkable recent solution of the realization prob-
lem was obtained by Coll, Dumortier and Prohens [6] using polynomial Liénard equations and 
the theory of slow–fast systems. All these works provide an upper bound for deg(X) which de-
pends on the configuration of cycles. Notice that since the degree of X is not fixed a priori, the 
realization problem is much easier than Hilbert’s 16th problem.

The main result of this paper is a realization theorem for planar polynomial vector fields 
prescribing not only the configuration of limit cycles, but also their periods, multiplicities and 
stabilities. These are the three most basic invariants under smooth conjugacy, so it is reasonable 
to consider them as a part of the realization problem. The limit cycles of the systems constructed 
in [14] and [6] are all hyperbolic and their stabilities depend on the configuration that is realized 
(of course, there are no semistable limit cycles due to the hyperbolicity).

To state our main theorem let us introduce some notation. We call DC the compact set bounded 
in R2 by the closed curve C. We say that a limit cycle C is stable (unstable) in the interior 
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if all the trajectories of X in DC that are sufficiently close to C approach the limit cycle as 
t → ∞ (t → −∞). Analogously, if all the trajectories of X in R2 \ DC that are close enough 
to C approach the limit cycle as t → ∞ (t → −∞), we say that C is stable (unstable) in the 
exterior. It is obvious that the exterior stability of a cycle is determined by its interior stability 
and multiplicity.

Theorem 1.2. Consider sets {T1, . . . , Tn} of positive constants and {m1, . . . , mn} of positive in-
tegers. Let � = {C1, . . . , Cn} be a configuration of cycles with fixed interior stabilities. Then � is 
realized as the set of limit cycles of a polynomial vector field X, where each Ck has multiplicity 
mk , period Tk and the required stability. Moreover, there exists an explicit upper bound for the 
degree of X in terms of the prescribed quantities (see Theorem 5.2).

The proof of Theorem 1.2 is based on the construction of Llibre and Rodríguez [14]. As 
in [14], the realized limit cycles are algebraic and the vector fields are Darboux integrable and 
admit a polynomial inverse integrating factor. We would like to remark that the limit cycles of 
a polynomial vector field do not need to be algebraic, cf. [15], but we are not aware of any 
construction of polynomial vector fields with given limit cycles that are not algebraic. It thus 
remains an interesting open problem to characterize those analytic curves that can be limit cycles 
of a polynomial vector field.

The structure of the paper is as follows. In Section 2 we construct a vector field XT realizing 
the configuration of cycles � with prescribed periods. The construction of a vector field Xm

with prescribed limit cycles and multiplicities is presented in Section 3, where we also combine 
both constructions to obtain a vector field XT m prescribing periods and multiplicities at the same 
time. In Section 4 we construct a vector field XT s realizing the configuration of cycles � with 
prescribed periods and stabilities. Finally, using the constructions in the previous sections, the 
main theorem is proved in Section 5.

2. A planar polynomial vector field with prescribed limit cycles and periods

In the following theorem we show that any configuration of cycles � can be realized by 
a planar polynomial vector field, where the period of each limit cycle is also prescribed. The 
method of the proof is a variation of the construction introduced in [14]. In the statement of the 
theorem, a curve Ck ∈ � is called primary if no other curve Cj ∈ �, j �= k, is contained in the 
domain DCk

.
We recall that a Darboux first integral is a (possibly multivalued) function G that can be 

written as:

G = eg/h
L∏

l=1

f
λl

l ,

where fl , g and h are complex polynomials and λl ∈ C are complex constants, and a smooth 
function V is an inverse integrating factor of a vector field X if

X · ∇V = V div(X),

where div denotes the divergence operator.
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Theorem 2.1. Let � = {C1, . . . , Cn} be a configuration of cycles and {T1, . . . , Tn} a set of positive 
constants, then � is realized by a planar polynomial vector field XT with deg(XT ) < 2(n + r), 
where each periodic orbit Ck has period Tk . Here r is the number of primary cycles in �. More-
over, XT admits a polynomial inverse integrating factor, it is Darboux integrable and all its limit 
cycles are algebraic and hyperbolic.

Proof. It is well known [14] that any configuration of cycles is homeomorphic to a set of circles. 
Accordingly, we can take that � consists of n disjoint circles of radii {rk}nk=1 centered at the 
points {pk}nk=1, i.e.

Ck = {fk(x, y) = 0} with fk(x, y) := (x − xk)
2 + (y − yk)

2 − r2
k , (2.1)

where pk = (xk, yk). We can safely assume that the first r cycles {C1, . . . , Cr} are primary and 
that no point pk is contained in any circle Cj .

Let us introduce the following auxiliary functions:

gk(x, y) := (x − xk)
2 + (y − yk)

2,

A :=
n∏

k=1

fk,

AT :=
n∏

k=1

f
τk

k ,

B :=
r∏

k=1

gk,

C := exp

(
−2

r∑
k=1

θk

)
,

DT := AT BC,

HT := lnDT ,

where τk are positive constants that will be fixed later in order to prescribe the desired periods Tk , 
and θk is an angular (multivalued) function defined as

θk := arctan

(
y − yk

x − xk

)
. (2.2)

We claim that the vector field XT in the statement of the theorem can be defined as

XT := PT ∂x + QT ∂y, with
PT := −AB

∂HT

∂y
,

QT := AB
∂HT

.

∂x
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We observe that in the case that τk = 1 for all k, then AT = A and the vector field XT is the 
same as in the construction by Llibre and Rodríguez [14]. Throughout the paper, we shall use the 
notation XLR := XT |τk=1.

To prove that XT satisfies all the claims in the statement of the theorem, let us first show that 
it is a polynomial vector field with deg(XT ) < 2(n + r), that DT is a Darboux first integral and 
that VT := AB is an inverse integrating factor. Indeed, noticing that

B
∂C

∂x
= C

∂B

∂y
, B

∂C

∂y
= −C

∂B

∂x
, (2.3)

a straightforward computation shows that PT and QT can be written as

PT = A

(
∂B

∂x
− ∂B

∂y

)
− B

n∑
k=1

τkμk

∂fk

∂y
, (2.4)

QT = A

(
∂B

∂x
+ ∂B

∂y

)
+ B

n∑
k=1

τkμk

∂fk

∂x
, (2.5)

where

μk :=
n∏

j �=k

fj .

It is clear from these expressions that PT and QT are polynomials of degree at most 2(n + r) −1. 
Moreover, it is easy to check that the Darboux function DT satisfies XT ·∇DT = 0, thus implying 
that DT is a Darboux first integral of XT . Another easy computation shows that the vector field 
XT

VT
is divergence-free in R2 \ V −1

T (0), and hence VT is an inverse integrating factor of XT .

Accordingly, all the limit cycles of XT are contained in the zero set V −1
T (0) of its inverse 

integrating factor [10]. Therefore, since

V −1
T (0) = � ∪ {p1, . . . , pr},

we conclude that if XT has a limit cycle, it has to be precisely one of the circles {C1, . . . , Cn}. 
Let us now prove that indeed all of them are realized as limit cycles.

We first show that each Ck is a periodic trajectory of XT . Since V −1
T (0) is invariant under the 

flow of XT , it is enough to prove that XT does not vanish on each Ck . Using Eqs. (2.4) and (2.5)
we can evaluate the components PT and QT of the vector field on each circle Ck = {fk = 0}, 
thus obtaining

XT |Ck
= τkB|Ck

μk|Ck

(
−∂fk

∂y

∣∣∣
Ck

∂x + ∂fk

∂x

∣∣∣
Ck

∂y

)
= τkXLR|Ck

. (2.6)

Since the gradient of fk only vanishes at the point pk , and the functions B and μk do not vanish 
on Ck (because all the circles in � are disjoint and no point pj is contained in any circle Ck), we 
infer that XT has no zeros on Ck , which is then a periodic orbit.
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Let us assume that the periodic orbit Ck is not a limit cycle. Since XT is polynomial, it then 
follows that Ck must belong to a period annulus, i.e. it is surrounded by a family of periodic 
orbits. Consider a periodic orbit γk close enough to Ck so that it is disjoint from the set �
and all the points pj . In particular, we have that VT |γk

does not vanish. Defining the 1-form 
ωT := −QT dx + PT dy, we have that

∫
γk

ωT

VT

= 0 (2.7)

because γk is a periodic orbit of XT . On the other hand, using the definitions of PT , QT and VT , 
we can also write∫

γk

ωT

VT

= −
∫
γk

dHT = −
∫
γk

[
d (lnAT ) + d (lnB) + d (lnC)

]

= 2
r∑

j=1

∫
γk

dθj = ±4πsk �= 0,

where we have used that the functions lnAT and lnB are smooth on γk because AT and B do 
not vanish there, and hence 

∫
γk

d (lnAT ) = 0 = ∫
γk

d (lnB). The number sk in the last equality 
is the number of primary cycles contained in DCk

, which is at least 1 (it is 1 if and only if Ck

is primary). The sign of the last expression depends on how we orient the circle Ck. Since this 
formula contradicts Eq. (2.7), we conclude that all the periodic orbits Ck are limit cycles of XT . 
Moreover, since the vanishing order of the inverse integrating factor VT on each cycle Ck is 1, it 
follows that all the limit cycles are hyperbolic [8,9].

To conclude the proof of the theorem, let us show that each constant τk can be chosen in such 
a way that the period of the limit cycle Ck is Tk . Indeed, since XT |Ck

= τkXLR|Ck
by Eq. (2.6), 

denoting by T LR
k the period of the limit cycle Ck for the vector field XLR, we have that the orbit 

Ck has period Tk if we choose

τk = T LR
k

Tk

.

The theorem then follows. �
3. A planar polynomial vector field with prescribed limit cycles, multiplicities and periods

We first prove that, for any configuration of cycles �, we can construct a planar polynomial 
vector field that realizes it as a set of limit cycles with prescribed multiplicities. As in Section 2, 
the method of the proof is modeled upon the construction of Llibre and Rodríguez [14].

Theorem 3.1. Let � = {C1, . . . , Cn} be a configuration of cycles and {m1, . . . , mn} a set of 
positive integers, then � is realized by a planar polynomial vector field Xm with deg(Xm) <
2(r + ∑

mk), where each periodic orbit Ck has multiplicity mk . Here r is the number of pri-
mary cycles in �. Moreover, Xm admits a polynomial inverse integrating factor, it is Darboux 
integrable and all its limit cycles are algebraic.
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Proof. Arguing as in the proof of Theorem 2.1, we can assume that � is a set of n circles 
Ck = {fk(x, y) = 0}, see Eq. (2.1) for the definition of fk , where the first r ones are the primary 
cycles and no point pk lies on any Cj .

We consider the auxiliary functions A, B , C defined in Section 2, as well as the functions:

Am :=
n∏

k=1

f
mk

k ,

D := ABC,

D := D exp

(
�

n∑
k=1

hk

)
,

H := lnD,

λk :=
n∏

j �=k

f
mj

j ,

F := �

n∑
k=1

λk

∂fk

∂y
,

G := �

n∑
k=1

λk

∂fk

∂x
,

where � is a constant defined as

� :=
n∑

k=1

(mk − 1),

which vanishes if and only if mk = 1 for every k = 1, · · · , n, and

hk :=

⎧⎪⎨
⎪⎩

f
1−mk

k

(1 − mk)
if mk ≥ 2,

lnfk if mk = 1.

We claim that the vector field Xm in the statement of the theorem can be defined using these 
functions as:

Xm := Pm∂x + Qm∂y with
Pm := −AmB

∂H

∂y
− BF,

Qm := AmB
∂H

∂x
+ BG.

Observe that if mk = 1 for all k, then Am = A and F = 0 = G, thus we have Xm|mk=1 = XLR, 
where XLR is the vector field constructed by Llibre and Rodríguez in [14].
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To prove that Xm satisfies the desired properties, let us show that it is a polynomial vector 
field with deg(Xm) < 2(r + ∑

mk), that D is a Darboux first integral and that Vm := AmB is 
an inverse integrating factor. Indeed, by direct computations we obtain that Pm and Qm can be 
written as

Pm = PLR

n∏
k=1

f
mk−1
k − BF, (3.1)

Qm = QLR

n∏
k=1

f
mk−1
k + BG. (3.2)

From these expressions it follows that Pm and Qm are polynomials of degree at most 2(n +∑
mk) − 1. Moreover, using the identities:

∂D
∂x

= D
(

1

D

∂D

∂x
+ G

Am

)
,

∂D
∂y

=D
(

1

D

∂D

∂y
+ F

Am

)
,

one can easily check that D is a Darboux first integral of Xm. It is also straightforward to show 
that the vector field Xm

Vm
is divergence-free in R2 \ V −1

m (0), thus implying that Vm is an inverse 
integrating factor of Xm.

Arguing as in the proof of Theorem 2.1, we conclude that the circles {C1, · · · , Cn} are invari-
ant under the flow of Xm, and that if Xm has a limit cycle, it has to be precisely one of these 
circles. Let us now prove that all of them are limit cycles.

First we check that Xm does not vanish on each Ck . Using Eqs. (3.1) and (3.2) we can write

Xm|Ck
= B|Ck

λk|Ck

(
� + f

mk−1
k |Ck

)(
−∂fk

∂y

∣∣∣
Ck

∂x + ∂fk

∂x

∣∣∣
Ck

∂y

)
. (3.3)

Notice that the functions B , λk and � + f
mk−1
k do not vanish on Ck because all the circles in 

� are disjoint, no point pj is contained in a circle Ck and � > 0 unless mj = 1 for all j . In the 
case that all the limit cycles have multiplicity 1, it follows that � + f

mk−1
k = 1. Moreover, the 

gradient of fk only vanishes at the point pk , so we infer that Xm has no zeros on Ck , which is 
then a periodic orbit.

Since the vector field Xm is polynomial, if Ck is not a limit cycle then it must belong to a 
period annulus. Let us assume that this is the case, and take a periodic orbit γk close enough 
to Ck so that it is disjoint from the set � and all the points pj . In particular, we have that the 
function Vm|γk

does not vanish. Defining the 1-form ωm := −Qmdx + Pmdy, we have that

∫
γk

ωm

Vm

= 0 (3.4)

because γk is a periodic orbit of Xm. Using the definitions of Pm, Qm and Vm, and proceeding 
as in the proof of Theorem 2.1, we can also write
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∫
γk

ωm

Vm

= −
∫
γk

⎡
⎣dH + �

n∑
j=1

dhj

⎤
⎦

= −
∫
γk

[
d (lnA) + d (lnB) + d (lnC)

]
= ±4πsk �= 0.

To obtain this formula we have used that the functions lnA, lnB and hj are smooth on γk because 
A, B and fj do not vanish there. The number sk in the last equality is the number of primary 
cycles contained in DCk

, which is at least 1 by definition. Since this formula contradicts Eq. (3.4), 
we deduce that all the periodic orbits Ck are limit cycles of Xm.

To conclude the proof of the theorem, we notice that, by construction, the vanishing order of 
the inverse integrating factor Vm on the limit cycle Ck is mk . Since the multiplicity of a limit 
cycle is equal to the vanishing order of the inverse integrating factor [8,9], it follows that the 
multiplicity of Ck is mk , in particular Ck is hyperbolic if and only if mk = 1. �

Combining the constructions in Theorems 2.1 and 3.1, and arguing exactly as in their proofs, 
it is easy to check that the vector field XTm defined as

XT m := PT m∂x + QT m∂y, with
PT m := −AmB

∂HT

∂y
− BFT ,

QT m := AmB
∂HT

∂x
+ BGT ,

realizes the set of cycles � with prescribed periods and multiplicities. Here the functions B and 
HT were defined in the proof of Theorem 2.1, Am in the proof of Theorem 3.1 and we set

FT := �

n∑
k=1

τkλk

∂fk

∂y
,

GT := �

n∑
k=1

τkλk

∂fk

∂x
.

The constants τk are chosen so that the limit cycle Ck has period Tk . Indeed, noticing that

XT m|Ck
= τk

(
� + f

mk−1
k |Ck

) ∏
j �=k

f
mj −1
j |Ck

XLR|Ck
, (3.5)

if we denote by γ LR
k (t) the integral curve parametrizing Ck of the Llibre–Rodríguez vector field 

XLR realizing �, the constant τk is chosen as

τk = 1

Tk

T LR
k∫

0

dt

[� + f
mk−1
k (γ LR

k (t))]∏N
j �=k f

mj −1
j (γ LR

k (t))
,

thus implying that the period of Ck for the vector field XT m is Tk . Here T LR
k is the period of the 

integral curve γ LR(t). The theorem can then be stated as follows:
k
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Theorem 3.2. Let � = {C1, . . . , Cn} be a configuration of cycles, {m1, . . . , mn} a set of positive 
integers and {T1, . . . , Tn} a set of positive constants, then � is realized by a planar polynomial 
vector field XT m with deg(XT m) < 2(r + ∑

mk), where each periodic orbit Ck has multiplicity 
mk and period Tk . Here r is the number of primary cycles in �. Moreover, XT m admits a poly-
nomial inverse integrating factor, it is Darboux integrable and all its limit cycles are algebraic.

4. A planar polynomial vector field with prescribed limit cycles, periods and stabilities

The goal of this section is to prove that, for any configuration of cycles �, we can construct a 
planar polynomial vector field that realizes it as a set of hyperbolic limit cycles with prescribed 
stabilities and periods. To this end, we first show that the stability of each limit cycle Ck of the 
polynomial vector field XT constructed in Section 2 can be characterized in terms of the relative 
position of Ck with respect to the other cycles. In what follows, we will say that the limit cycle 
Ck has stability −1 if it is stable and 1 if it is unstable. Since all the limit cycles considered in this 
section are hyperbolic, the interior and exterior stabilities are the same; the case of semistable 
limit cycles will be addressed in Section 5.

Lemma 4.1. The limit cycle Ck of the vector field XT introduced in Section 2 has stability 
(−1)Nk , where Nk := card {Cj : Ck ⊂ DCj

, j �= k}.

Proof. Denoting by γk(t), t ∈R, the integral curve of XT whose image is the limit cycle Ck , we 
first compute the derivative of the angular variable θj defined in Eq. (2.2) for each j :

dθj (γk(t))

dt
= XT (γk(t)) · ∇θj (γk(t))

= 2τkB(γk(t))μk(γk(t))
(x − xk)(x − xj ) + (y − yk)(y − yj )

(x − xj )2 + (y − yj )2

∣∣∣
γk(t)

, (4.1)

which is negative (positive) if the orientation of Ck induced by the integral curve γk(t) is clock-
wise (counterclockwise). The constants τk and the functions B and μk were defined in the proof 
of Theorem 2.1. Assuming that the point (xj , yj ) is contained in the interior of the compact set 
DCk

, it easily follows that

(x − xk)(x − xj ) + (y − yk)(y − yj )

(x − xj )2 + (y − yj )2

∣∣∣
γk(t)

> 0. (4.2)

Accordingly, since B is always positive over Ck , the sign of dθj (γk(t))

dt
is given by the sign of μk

over Ck . Noticing that the function fj = (x − xj )
2 + (y − yj )

2 − r2
j is positive over Ck if and 

only if Ck is not contained in DCj
, the definition of μk implies that its sign is precisely (−1)Nk .

The stability of the limit cycle Ck is given by the sign of the following integral [2]

L :=
Tk∫

divXT (γk(t))dt.
0
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Using the identity XT · ∇VT = VT divXT we obtain

L =
Tk∫

0

XT (γk(t)) · ∇ lnA(γk(t))dt

+
Tk∫

0

XT (γk(t)) · ∇ lnB(γk(t))dt

=
Tk∫

0

XT (γk(t)) · ∇ lnfk(γk(t))dt,

where to pass to the second equality we have used that the functions lnB and lnfj with j �= k

are smooth on Ck , and therefore the corresponding integrals vanish. Using the definition of XT , 
the identities (2.3) and the value of XT on Ck computed in (2.6), after a few straightforward 
computations we can write

L = −1

τk

Tk∫
0

XT (γk(t)) · ∇ lnC(γk(t))

+ −1

τk

Tk∫
0

XT (γk(t)) · ∇ ln
(
B

∏
j �=k

f
τj

j

)
(γk(t)).

As before, the second integral in this expression vanishes because the function B
∏

j �=k f
τj

j is 
smooth on Ck . Finally, from the definition of the function C we obtain

L = 2

τk

r∑
j=1

Tk∫
0

dθj (γk(t))

dt
dt = (−1)Nk 4πsk

τk

,

where sk ∈ {1, . . . , r} is the number of primary cycles contained in DCk
, and we have used the 

sign (−1)Nk computed before (observe that there is a non-vanishing contribution to the integral 
above if and only if θj is the angle whose center (xj , yj ) is contained in DCk

, so that Eq. (4.2)
holds). We then conclude that the stability of Ck is (−1)Nk , as we wanted to show. �

This lemma proves that the stability of the limit cycle Ck of XT is fixed by the configuration of 
cycles that we want to realize. In the following theorem, which is the main result of this section, 
we show how to modify the vector field XT in order to prescribe the stabilities of its limit cycles. 
The idea is to add additional cycles to the configuration � to obtain a new configuration �̃ so 
that Ñk for the new configuration has the desired sign. Since we do not want to realize the extra 
cycles �̃\�, we can remove them by adding a singular (zero) point over each extra limit cycle of 
the vector field X̃T realizing �̃.
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Theorem 4.2. Let � = {C1, . . . , Cn} be a configuration of cycles, {T1, . . . , Tn} a set of positive 
constants and {ν1, . . . , νn} a set of ±1. Then � is realized by a planar polynomial vector field 
XT s with deg(XT s) < 2(3n + r), where each periodic orbit Ck is hyperbolic, has period Tk and 
stability νk . Here r is the number of primary cycles in �. Moreover, XT s admits a polynomial 
inverse integrating factor, it is Darboux integrable and all its limit cycles are algebraic.

Proof. As in previous sections, we can assume that � consists of circles. Take a circle Cn+k

centered at pk of radius rk − ενk . Recall that rk is the radius of the circle Ck and pk is its center. 
It is clear that we can take ε > 0 small enough such that all the circles are disjoint and no pj

lies on any Ck and Cn+k . We denote the whole configuration by �̃ := {C1, · · · , C2n}. Observe 
that the number of primary cycles and their centers remain unchanged (a primary cycle Ck in �
with νk > 0 is no longer a primary cycle in �̃, instead Cn+k will be primary, but it has the same 
center), and therefore the function B will be the same for � and �̃.

Now we construct a vector field X̃T as in Theorem 2.1 realizing the 2n cycles of �̃ where each 
limit cycle Ck has an associated constant τk that will be fixed later (cf. the proof of Theorem 2.1
for the definition of such a constant) and τn+k = 1 so that the limit cycle Cn+k has period T LR

n+k , 
for k ∈ {1, . . . , n}. It is obvious from the definition of �̃ that the parity of the number Ñk defined 
in Lemma 4.1 only depends on the relative positions of Cn+k and Ck , and that (−1)Ñk = νk for 
k = 1, . . . , n. The lemma then implies that the cycles Ck have the desired stability. In order to 
remove the additional cycles Cn+k , we consider the functions:

lk(x, y) := (x − ak)
2 + (y − bk)

2

LT s :=
n∏

k=1

lk

where each qk := (ak, bk) ∈ Cn+k is a point at the extra cycle Cn+k . Then the vector field:

XT s := LT sX̃T

satisfies the statements of the theorem. Indeed, since the factor LT s is positive on �, this set is 
realized by XT s as algebraic limit cycles, while the cycles Cn+k contain a singular point of XT s , 
thus becoming homoclinic connections. The factor LT s does not change the stability of each 
cycle Ck of X̃T , which is νk . Moreover, if γ LR

k (t) is the integral curve parametrizing Ck of the 
Llibre–Rodríguez vector field XLR that realizes �̃, see Section 2 for the definition, the constant 
τk must be chosen such that

τk = 1

Tk

T LR
k∫

0

dt

LT s(γ
LR
k (t))

,

which implies that the period of Ck for the vector field XT s is Tk . Here T LR
k is the period of the 

integral curve γ LR
k (t). Finally, observe that the degree of XT s is 2(3n + r) because the vector 

field X̃T has degree 2(2n + r) and the factor LT e has degree 2n. Additionally, VT s := ABLT s is 
an inverse integrating factor of XT s , and the Darboux first integral H̃T of X̃T is a first integral of 
XT s as well. This completes the proof of the theorem. �
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5. The main theorem

In this section we construct a vector field X that realizes a configuration of cycles � with 
prescribed periods, stabilities and multiplicities, thus establishing the main theorem of the paper. 
As in Section 4 we shall use νk ∈ {−1, 1} to denote the interior stability that we want to prescribe 
for the limit cycle Ck (negative means stable in the interior and positive is unstable). Observe that 
the exterior stability of Ck is determined by νk and the multiplicity mk as (−1)mk+1νk . In the 
following lemma we show that the interior stability of each limit cycle Ck of the polynomial 
vector field XT m constructed in Section 3 can be characterized in terms of the relative position 
of Ck with respect to the other limit cycles and the set of multiplicities {m1, . . . , mn}. In the case 
that mk = 1 for all k we recover Lemma 4.1.

Lemma 5.1. The limit cycle Ck of the vector field XT m constructed in Section 3 has interior 
stability νk = (−1)mk+Mk+1, where

Mk :=
∑

j∈Mk

mj

and Mk := {j ∈ {1, . . . , n} / Ck ⊂ DCj
, j �= k}.

Proof. Consider a closed curve Ĉk in the region bounded by Ck and close enough to it so that 
Ĉk is disjoint from all Cj and pj . Since Ck is a limit cycle of XT m we can assume that Ĉk is 
transverse to the integral curves of XT m at each point. The interior stability of Ck is determined 
by the sign of the flux through Ĉk of XT m, which is given by

Fluxk :=
∫
Ĉk

XT m · nds, (5.1)

where n is the unit normal vector on Ĉk pointing outwards and s parametrizes the curve Ĉk in 
the positive direction (i.e. counterclockwise).

The sign of the flux (5.1) can be easily computed using the 1-form ωT m := −QT mdx+PT mdy

and the inverse integrating factor VT m := AmB of XT m. Indeed, noticing that VT m does not 
vanish at any point of Ĉk , and observing that

ωT m

VT m

= −dHT − �

n∑
j=1

dfj

f
mj

j

,

see the definitions of all the involved functions in Sections 3 and 4, it is obvious that the sign of 
Fluxk is the same as the sign of

F̂luxk := VT m(p0)

∫
ˆ

ωT m

VT m

= −VT m(p0)

∫
ˆ

dHT = 4πskVT m(p0),
Ck Ck
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where p0 is any fixed point on Ĉk . The second equality follows from the fact that each term dfj

f
mj
j

does not contribute to the integral because fj does not vanish at any point of Ĉk . For the last 
equality we have used the expression of 

∫
dHT obtained in the proof of Theorem 2.1, taking into 

account that the curve Ĉk is positively oriented.
Since the interior stability of Ck is given by − sign(Fluxk), the formula above implies that 

νk = − sign(VT m(Ĉk)) = − sign(Am(Ĉk)). Then, arguing as in the proof of Lemma 4.1, but 
taking into account the multiplicity, we easily obtain the desired expression for νk. �

In the following theorem we show how to modify the vector field XTm in order to prescribe 
the interior stabilities of its limit cycles. The idea is the same as in the proof of Theorem 4.2: we 
add additional cycles to the configuration � to obtain a new configuration �̃ so that ν̃k for the 
new configuration has the desired sign. To remove the extra cycles �̃\�, we add a singular point 
over each extra limit cycle of the vector field X̃Tm realizing �̃.

Theorem 5.2. Let � = {C1, . . . , Cn} be a configuration of cycles, {m1, . . . , mn} a set of positive 
integers, {T1, . . . , Tn} a set of positive constants and {ν1, . . . , νn} a set of ±1. Then � is realized 
by a planar polynomial vector field X with

deg(X) < 2

(
2(N − n) + r +

n∑
k=1

mk

)

where each periodic orbit Ck has multiplicity mk , period Tk and interior stability νk . As usual, 
r is the number of primary cycles in �, and N := n +n1 + 2n2 where n1 := card {k : mk is odd}
and n2 := card {k : mk is even and Mk is odd}. Moreover, X admits a polynomial inverse inte-
grating factor, it is Darboux integrable and all its limit cycles are algebraic.

Proof. As usual, we assume that � consists of circles. Let us define a new configuration of 
circles �̃ := � ∪ {Cn+1, . . . , CN } following these rules:

• If mk is odd, we add a concentric circle of radius rk − νkε.
• If mk is even and νk = −1, we add nothing.
• If mk is even and νk = 1, we add two concentric circles of radii rk ± ε.

Here ε is a small enough constant so that all the circles in �̃ are disjoint, and disjoint from pk . 
Using Lemma 5.1 it is easy to check that N = n + n1 + 2n2.

Now, we construct a vector field X̃T m as in Section 3 that realizes the configuration �̃, with 
mk , k ∈ {1, . . . , n}, the multiplicity we want to prescribe and mn+j = 1, j ∈ {1, . . . , N − n}. 
Moreover, the constant τk corresponding to each limit cycle Ck will be fixed later, while we take 
τn+j = 1. A simple argument using Lemma 5.1 implies that the interior stability of each limit 
cycle Ck of X̃T m is precisely νk .

Taking an arbitrary point qj := (aj , bj ) ∈ Cn+j for every extra circle, we define the function 
L as in the proof of Theorem 4.2, i.e.

L :=
N−n∏

lj ,
j=1
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where lj := (x − aj )
2 + (y − bj )

2, and the vector field

X := LX̃T m.

Since the factor L is positive on �, this set is realized by X as algebraic limit cycles, while the 
remaining cycles Cn+j ⊂ �̃ contain a singular point, thus becoming homoclinic connections. The 
factor L does not change the interior stability of each cycle Ck , which is then νk by construction, 
nor the multiplicity mk . The constants {τk}nk=1 can also be chosen such that each limit cycle Ck

of X has period Tk . More precisely, since the vector field X̃T m on each limit cycle Ck can be 
written as in Eq. (3.5), we conclude that

τk = 1

Tk

T LR
k∫

0

dt

L(γ LR
k (t))[�̃ + f

mk−1
k (γ LR

k (t))]∏N
j �=k f

mj −1
j (γ LR

k (t))
,

where we are using the notation introduced in Section 3.
Finally, an easy computation shows that X is a polynomial vector field of degree as in the 

statement of the theorem, and V := AmBL is an inverse integrating factor. Using the functions 
defined in Sections 2 and 3, it is ready to check that the function

AT BC exp
(
�

N∑
j=1

τjhj

)

is a Darboux first integral of the vector field X. This completes the proof of the theorem. �
Remark 5.3. We observe that the vector field X in the proof of Theorem 5.2 can be constructed 
without including the functions fn+j , j ∈ {1, . . . , N − n}, in the quantities HT , FT and GT

appearing in the definition of X̃T m.
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