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Abstract

This paper deals with a 1/κα-type length-preserving nonlocal flow of convex closed plane curves for 
all α > 0. Under this flow, the convexity of the evolving curve is preserved. For a global flow, it is shown 
that the evolving curve converges smoothly to a circle as t → ∞. Some numerical blow-up examples and a 
sufficient condition leading to the global existence of the flow are also constructed.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Let α > 0 be a constant, which can be arbitrary, and let γ0 ⊂ R2 be a given smooth convex 
closed curve parametrized by X0 (ϕ) : S1 →R2. We study 1/κα-type nonlocal length-preserving 
flow of the form
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂X (ϕ, t)

∂t
=
⎛
⎜⎝ 1

2π

∫
X(·,t)

κ1−α(·, t)ds − κ−α(ϕ, t)

⎞
⎟⎠Nin(ϕ, t) , t > 0

X(ϕ,0) = X0 (ϕ) , ϕ ∈ S1,

(1)

where, in (1), κ(ϕ, t) is the curvature of the evolving curve X(ϕ, t); L(t) is the length of X (ϕ, t); 
Nin(ϕ, t) is the inward unit normal of X(ϕ, t); and the integral 

∫
ds is with respect to arc length 

parameter s. For time T > 0, a family of smooth convex closed curves X(ϕ, t) : S1 × [0, T ) →
R2 is said to evolve by the flow if it satisfies the initial value problem (1) on the domain S1 ×
[0, T ). For simplicity, we also say that X(ϕ, t) : S1 × [0, T ) → R2 is a convex solution of (1).

Note that the flow (1) is parabolic in the sense that the curvature term F (κ) := −κ−α in the 
speed function of (1) is a strictly increasing function of κ ∈ (0,∞). Similar to the discussions 
in [7] (using Leray-Schauder’s fixed point theory), or in [6] (using the linearization method), 
or in many other nonlocal flow papers, there is a unique smooth convex solution of (1) defined 
on S1 × [0, T ) for some short time T > 0. Therefore, we have short-time existence of a convex 
solution to (1).

Our goal in this paper is to understand the long-time behavior of the flow (1). There are two 
aspects:

The noteworthy feature of the 1/κα-type nonlocal length-preserving flow (1) is that a singu-
larity (curvature blow-up to +∞) can happen in finite time even if the enclosed area A (t) is 
increasing and the isoperimetric ratio L2 (t) /4πA (t) of the evolving curve is decreasing during 
the evolution (so the curve X(·, t) is getting circular in the isoperimetric sense!). For the case 
α = 1 in (1), the formation of a singularity has been shown to occur for some initial convex 
closed curves; see [11]. In Section 5, we shall give an intuitive example (using ellipse as the 
initial curve) to demonstrate the formation of a singularity in finite time and also provide some 
numerical blow-up examples.

Due to these blow-up examples, the optimal result we can prove is that, as long as the curvature 
κ (·, t) does not blow up in any finite time, the solution X(·, t) of the flow (1) converges smoothly 
to a fixed circle with radius L (0) /2π as t → ∞. See Theorem 2.4. For convenience, we also call 
(1) a global flow if it exists in time interval [0, ∞). Assume the flow (1) is global, the key step in 
the proof of Theorem 2.4 is to show that the function v (ϕ, t) := 1/κα (ϕ, t) (the solution to the 
quasilinear equation (10)) tends to the constant (L(0)/2π)α as t → ∞. It is first shown that the 
W 2,2(S1)-norm of v is uniformly bounded (see the proof of Lemma 3.1). For the case α ≥ 1, one 
can use the fact that the area functional A(t) is increasing to prove the convergence of v(·, t) (see 
Lemmas 2.1, 3.9 and 3.11). For the case 0 < α < 1, we adopt an interesting geometric method 
which relies on the Green-Osher’s inequality for convex closed plane curves and the classical
Blaschke Selection Theorem in the theory of convex geometry (see Lemma 3.12).

The work on the flow (1) is a continuation of our previous works in [5,10–12]. For a brief sur-
vey on other related nonlocal flows of convex closed curves, please see the introduction section 
in [5,12,13].

2. Properties of the flow (1)

It is well-known that if X(·, t) : S1 ×[0, T ) → R2 is a family of evolving simple closed curves 
(not necessarily convex), its length L (t) and enclosed area A (t) satisfy the following equations:
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dL

dt
(t) = −

∫
X(·,t)

〈W, κNin〉ds,
dA

dt
(t) = −

∫
X(·,t)

〈W,Nin〉ds, t ∈ [0, T ), (2)

where W = ∂X/∂t is the velocity vector of X and 〈, 〉 is the inner product in R2. By (2), we 
have:

Lemma 2.1. Assume X (ϕ, t) : S1 × [0, T ) → R2 is a convex solution of (1). Then we have

dL

dt
(t) ≡ 0, ∀ t ∈ [0, T ) (3)

and

dA

dt
(t) =

∫
X(·,t)

κ−α(·, t)ds − L(t)

2π

∫
X(·,t)

κ1−α(·, t)ds ≥ 0, ∀ t ∈ [0, T ). (4)

Moreover, we have dA (t) /dt = 0 if and only if the curve X(·, t) is a circle.

Proof. By (1) and (2), we have

dL

dt
(t) = −

∫
X(·,t)

⎛
⎜⎝ 1

2π

∫
X(·,t)

κ1−α(·, t)ds − κ−α

⎞
⎟⎠κds

=
∫

X(·,t)
κ1−α(·, t)ds −

⎛
⎜⎝ 1

2π

∫
X(·,t)

κ1−α(·, t)ds

⎞
⎟⎠ · 2π = 0

and

dA

dt
(t) = −

∫
X(·,t)

⎛
⎜⎝ 1

2π

∫
X(·,t)

κ1−α(·, t)ds − κ−α

⎞
⎟⎠ds

=
∫

X(·,t)
κ−α(·, t)ds − L(t)

2π

∫
X(·,t)

κ1−α(·, t)ds. (5)

To see that we have dA (t) /dt ≥ 0, we use the outward normal angle θ ∈ [0,2π] to express the 
right hand side of (5) as (note that we have ds = κ−1dθ and L (t) = ∫ 2π

0 κ−1 (θ, t) dθ )

dA

dt
(t) =

∫
X(·,t)

κ−α(·, t)ds − L(t)

2π

∫
X(·,t)

κ1−α(·, t)ds

= 1

2π

⎛
⎝ 2π∫

0

dθ

2π∫
0

1

κα+1 (θ, t)
dθ −

2π∫
0

1

κ (θ, t)
dθ

2π∫
0

1

κα (θ, t)
dθ

⎞
⎠ (6)
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and by the Hölder inequality, we have

2π∫
0

1

κ (θ, t)
dθ ≤

⎛
⎝ 2π∫

0

(
1

κ (θ, t)

)α+1

dθ

⎞
⎠

1
α+1

(2π)
α

α+1

and

2π∫
0

1

κα (θ, t)
dθ ≤

⎛
⎝ 2π∫

0

(
1

κα (θ, t)

) α+1
α

dθ

⎞
⎠

α
α+1

(2π)
1

α+1 .

The above two inequalities together imply dA (t) /dt ≥ 0. Moreover, we see that dA (t) /dt = 0
if and only if both inequalities are equalities, which implies κ (θ, t) is a constant, i.e. a circle. �

As an immediate consequence of Lemma 2.1, we have:

Lemma 2.2. Assume X (ϕ, t) : S1 × [0, T ) → R2 is a convex solution of (1). Then

L(t) ≡ L(0) and A(0) ≤ A(t) ≤ L2 (0)

4π
, ∀ t ∈ [0, T ) (7)

and the isoperimetric ratio L2 (t) /4πA (t) of X (·, t) is decreasing in t ∈ [0, T ). Moreover, it is 
strictly decreasing unless the initial curve X0 is a circle (which is an equilibrium solution of the 
flow (1)).

According to the explanation in Section 1, for given initial convex curve X0, the flow (1) has 
a convex solution X(ϕ, t) : S1 × [0, T ) → R2 defined on some short time interval [0, T ). The 
curvature κ (ϕ, t), in terms of the outward normal angle θ ∈ S1 of the convex curve X(ϕ, t), 
satisfies the evolution equation (see [3,2] for computational details)

∂κ

∂t
(θ, t) = κ2 (θ, t)

⎡
⎣(−κ−α(θ, t)

)
θθ

+
⎛
⎝ 1

2π

2π∫
0

κ−α(θ, t)dθ − κ−α(θ, t)

⎞
⎠
⎤
⎦ ,

(θ, t) ∈ S1 × [0, T ), (8)

where κ (θ,0) = κ0 (θ) > 0, θ ∈ S1, is the curvature of X0. To obtain a better-looking evolution 
equation, we look at the radius of curvature ρ (θ, t) := 1/κ(θ, t) and get

∂ρ

∂t
(θ, t) = (

ρα
)
θθ

(θ, t) + ρα(θ, t) − 1

2π

2π∫
0

ρα(θ, t)dθ, (θ, t) ∈ S1 × [0, T ) (9)

with ρ (θ,0) = ρ0 (θ) = 1/κ0 (θ). In particular, if we let v (θ, t) = ρα(θ, t), α > 0, we get
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∂v

∂t
= αvp (vθθ + v − λ (t)) , v = v (θ, t) , p = 1 − 1

α
, λ (t) = 1

2π

2π∫
0

vdθ. (10)

At this moment, we may use equation (9) to give an intuitive explanation why the curvature 
κ(θ, t) can blow up in finite time. Roughly speaking, when the curvature κ (θ, t) is large on some 
interval of θ∗ (where κ (θ∗, t) = κmax (t)), the function ρ (θ, t) is small on that interval. Hence 
the diffusion term (ρα)θθ (θ∗, t) is also small (positively) and it does not help here. The nonlocal 
term −λ (t) will make ρ (θ∗, t) to become even smaller, causing ρ (θ∗, t) to drop to zero (i.e. 
curvature blow-up) in finite time.

Remark 2.3. Instead, if we consider the κα-type nonlocal length-preserving flow, the evolution 
of the curvature κ (θ, t) is given by

∂κ

∂t
(θ, t) = κ2 (θ, t)

[(
κα
)
θθ

(θ, t) + κα (θ, t) − λ (t)
]
, α > 0, λ (t) = 1

2π

2π∫
0

κα (θ, t) dθ.

When the curvature κ (θ, t) is large on some interval of θ∗ (where κ (θ∗, t) = κmax (t)), the diffu-
sion term (κα)θθ (θ∗, t) , α > 0, is also large (negatively), which will prevent the blow-up of the 
curvature and eventually we have convergence to circle. See [12].

As explained in the above and in Section 1, a singularity (curvature blow-up to +∞) can hap-
pen in finite time under the flow (1). Therefore, the optimal result we can obtain is the following:

Theorem 2.4. Assume α > 0 and X0 (ϕ) , ϕ ∈ S1, is a smooth convex closed curve. Consider 
the length-preserving flow (1) and assume that the curvature κ will not blow up to +∞ in 
any finite time during the evolution. Then the flow exists for all time t ∈ [0, ∞) and is length-
preserving. Each X(·, t) remains smooth, convex, and it converges to a fixed round circle with 
radius L (0) /2π in C∞ norm as t → ∞.

Remark 2.5. For the case α = 1, see [10].

3. Proof of Theorem 2.4

We shall decompose the proof of Theorem 2.4 into several lemmas. The first one is to show 
that if the curvature κ will not blow up to +∞ in finite time, then it will not drop down to 0 in 
finite time either.

3.1. Uniform convexity of the evolving curve; lower bound of the curvature

Lemma 3.1 (Lower bound of the curvature). Let X(ϕ, t) : S1 × [0, T ) → R2 be a convex solu-
tion of the flow (1). There is a positive constant C > 0, which depends only on the initial curve 
X0 and is independent of time T , so that we have

κ (ϕ, t) ≥ C > 0, ∀ (ϕ, t) ∈ S1 × [0, T ). (11)
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Proof. The idea is to use the fact that the curve X(·, t) has fixed length and to derive an integral 
estimate analogous to Lemma 4.3.5 in [3]. In the following computation, we shall express the 
curvature κ and the functions ρ and v in terms of the outward normal angle θ ∈ S1.

By (10), we have

d

dt

2π∫
0

((
∂v

∂θ

)2

− v2

)
dθ = 2

2π∫
0

(
∂v

∂θ

∂2v

∂θ∂t
− v

∂v

∂t

)
dθ = −2

2π∫
0

(
∂2v

∂θ2 + v

)
∂v

∂t
dθ

= −2

2π∫
0

(
1

α
v−p ∂v

∂t
+ λ (t)

)
∂v

∂t
dθ = − 2

α

2π∫
0

v−p

(
∂v

∂t

)2

dθ − 1

2π

d

dt

⎛
⎝ 2π∫

0

vdθ

⎞
⎠

2

≤ − 1

2π

d

dt

⎛
⎝ 2π∫

0

vdθ

⎞
⎠

2

. (12)

Integrating the above inequality with respect to time on the interval [0, t] gives

2π∫
0

(
∂v

∂θ

)2

dθ −
2π∫

0

v2dθ

≤
⎡
⎣ 2π∫

0

(
∂v0

∂θ

)2

dθ −
2π∫

0

(v0)
2dθ

⎤
⎦− 1

2π

⎡
⎢⎣
⎛
⎝ 2π∫

0

vdθ

⎞
⎠

2

−
⎛
⎝ 2π∫

0

v0dθ

⎞
⎠

2⎤⎥⎦

≤
2π∫

0

(
∂v0

∂θ

)2

dθ + 1

2π

⎛
⎝ 2π∫

0

v0dθ

⎞
⎠

2

:= C0 (13)

where v0 (θ) = v (θ,0). Therefore, there exists a constant C0 given by (13), which depends only 
on X0 and is independent of time, such that

2π∫
0

(
∂v

∂θ
(θ, t)

)2

dθ ≤
2π∫

0

v2 (θ, t) dθ + C0, ∀ t ∈ [0, T ). (14)

For each t ∈ [0, T ) and each δ ∈ (0,2π), define the number

ρ∗
δ (t) = sup{b|ρ(θ, t) > b on some interval of θ with length δ}. (15)

Intuitively, we see that for δ close to 0, ρ∗
δ (t) is close to ρmax(t) = maxθ∈S1 ρ (θ, t) and for δ

close to 2π , ρ∗
δ (t) is close to ρmin(t) = minθ∈S1 ρ (θ, t).

For given δ ∈ (0,2π), one can choose a subinterval (θ1, θ2) ⊂ [0, 2π] with length δ so that 
ρ(θ, t) ≥ ρ∗(t) in (θ1, θ2) and ρ(θ1, t) = ρ(θ2, t) = ρ∗(t). By
δ δ
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L(t) =
2π∫

0

ρ (θ, t) dθ = L(0) ≥
θ2∫

θ1

ρ (θ, t) dθ ≥ δρ∗
δ (t), ∀ t ∈ [0, T ),

one obtains the inequality

ρ∗
δ (t) ≤ L(0)

δ
, ∀ t ∈ [0, T ), ∀ δ ∈ (0,2π) , (16)

and thus ρ(θ, t) ≤ L(0)
δ

except on intervals (θ1, θ2) with length less than or equal to δ. In other 
words, if there is some interval I = (θ1, θ2) ⊂ [0, 2π] such that

ρ (θ, t) >
L(0)

δ
, ∀ θ ∈ I and ρ(θ1, t) = ρ(θ2, t) = L(0)

δ
,

then by (16) and the definition of ρ∗
δ (t), we must have |I | ≤ δ. On such a small interval I , we 

have

ρα (θ, t) = v (θ, t) = v(θ1, t) +
θ∫

θ1

∂v

∂θ
(θ, t) dθ ≤

(
L(0)

δ

)α

+ √
δ

⎡
⎣ 2π∫

0

(
∂v

∂θ
(θ, t)

)2

dθ

⎤
⎦

1
2

≤
(

L(0)

δ

)α

+ √
δ

⎛
⎝ 2π∫

0

v2 (θ, t) dθ + C0

⎞
⎠

1
2

, ∀ θ ∈ I = (θ1, θ2) , (17)

where the inequality (14) is used in the last step. By (17), the function vmax(t), t ∈ [0, T ), 
satisfies

vmax(t) ≤
(

L(0)

δ

)α

+ √
δ
[
2π(vmax(t))

2 + C0

] 1
2 ≤

(
L(0)

δ

)α

+ √
δ
(√

2πvmax(t) +√
C0

)
.

(18)
Choosing δ = 1/ (8π), we get

vmax(t) =
(

1

κmin(t)

)α

≤ 2(8πL(0))α +
√

C0

2π
, ∀ t ∈ [0, T ). (19)

Therefore, the function v (θ, t) has a time-independent positive upper bound, so does ρ (θ, t) =
1/κ (θ, t). Consequently, the curvature κ (θ, t) has a time-independent positive lower bound. The 
proof of (11) is finished. �
3.2. Long-time existence of the flow (1)

Lemma 3.2. Let α > 0 and X0 (ϕ) , ϕ ∈ S1, be a smooth convex closed curve. Assume X(ϕ, t) :
S1 ×[0, T ) → R2 is a convex solution of the flow (1) such that its curvature κ (ϕ, t) will not blow 
up to +∞ as t → T . Then the evolving curve X(·, t) converges to a smooth convex closed curve 
X (·, T ) as t → T and the flow (1) can continue beyond time T .
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Proof. On the domain S1 × [0, T ), by the assumption and Lemma 3.1, the curvature κ (θ, t)

has uniform positive upper and lower bounds, which means that the equation (10) is uniformly 
parabolic on S1 ×[0, T ) with the nonlocal term λ (t) = (2π)−1 ∫ 2π

0 v (θ, t) dθ > 0 being bounded 
on [0, T ). The usual parabolic regularity theory can still be applied to a nonlocal equation of the 
form (10) and guarantee that all space-time derivatives of v (θ, t) are bounded on S1 × [0, T ), 
which in turn implies that all space-time derivatives of κ (θ, t) are uniformly bounded on the 
domain S1 × [0, T ) (presumably, the bound on each derivative of κ (θ, t) may depend on the 
order of differentiation and on T ). By the well-known Arzela-Ascoli theorem, one can conclude 
that there exists a smooth positive function κT (θ) on S1 such that

lim
t→T

‖κ (θ, t) − κT (θ)‖Cm
(
S1
) = 0, ∀ m ∈ {0}

⋃
N. (20)

More precisely, for any sequence tk → T there exists a subsequence, which we still denote it as 
tk , where tk → T , such that κ (θ, tk) converges uniformly to some function κT (θ), which is at 
least continuous. Next, we note that if there are two sequences tk → T and tm → T such that 
κ (θ, tk) → κT (θ) and κ (θ, tm) → κ̃T (θ), then by the mean value theorem

|κ (θ, tk) − κ (θ, tm)| =
∣∣∣∣∂κ

∂t
(θ, t∗) · (tk − tm)

∣∣∣∣ , t∗ lies between tk and tm,

we have limtk→T κ (θ, tk) = limtm→T κ (θ, tm) and so κT (θ) = κ̃T (θ). This observation guaran-
tees that we have full-time uniform convergence to the same limit κT (θ), i.e. limt→T κ (θ, t) =
κT (θ). If we apply the same argument to the function κθ (θ, t), we can obtain the full-time 
uniform convergence of κθ (θ, t) to some function g (θ), which is at least continuous. Standard 
theorem in advanced calculus tells us that g (θ) = κ ′

T (θ) (i.e. κT (θ) must be differentiable). 
Therefore, we have the convergence result in (20) for m = 0 and 1. Repeating the process to 
κθθ (θ, t) , κθθθ (θ, t) , ..., etc. will give us the convergence result in (20) for m = 2, 3, 4, .... 
Finally, since X(·, T ) is a smooth convex closed curve, one can use it as the new initial data 
for the flow (1). By the short-time existence property as explained in Section 1, the flow (1) can 
continue beyond time T . The proof is done. �

As an immediate consequence of Lemma 3.2, we obtain:

Lemma 3.3 (Long-time existence of the flow (1)). Assume α > 0 and X0 (ϕ) , ϕ ∈ S1, is a 
smooth convex closed curve. Consider the length-preserving flow (1) and assume that the curva-
ture κ of X (·, t) will not blow up to +∞ in any finite time during the evolution. Then the flow 
has a unique convex solution X(ϕ, t) : S1 × [0, ∞) → R2 defined for all time.

Remark 3.4. However, at this moment, Lemma 3.3 cannot exclude the possibility that the cur-
vature may blow up to +∞ as t → ∞. We will show that this cannot happen in Section 3.3.

Proof. This is a straightforward consequence of Lemma 3.1 and Lemma 3.2. �
3.3. Convergence of the flow (1) under the global existence assumption

In this section, we will show that the flow (1) converges to a circle if it exists on the time 
interval [0, ∞) (which is so if the curvature κ of X (·, t) will not blow up to +∞ in finite time). 
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The proof is divided into two cases: the case α ≥ 1 and the case 0 < α < 1. We first show 
that the radius of curvature ρ(θ, t) converges to a positive constant ρ∞ = L (0) /2π . Using this 
fact, one can prove that the norm ‖Xt(·, t)‖C0

(
S1
) of the flow decays exponentially in time. The 

convergence of the evolving curve X(·, t) is obtained by integrating the flow equation (1) with 
respect to time.

The following two useful properties will be needed later on. We leave their proofs to the 
readers.

Lemma 3.5. Let {hn (x)}∞n=1 be a sequence of differentiable functions defined on the interval 
[a, b] ⊂ R. If there exist constants C > 0 and p > 1, such that

b∫
a

∣∣h′
n (x)

∣∣p dx ≤ C, ∀ n = 1, 2, 3, ..., (21)

then {hn (x)}∞n=1 is equicontinuous on [a, b].

Remark 3.6. The condition p > 1 in Lemma 3.5 is necessary.

Lemma 3.7. Let g (t) ≥ 0 be a differentiable function on [0, ∞) with 
∫∞

0 g (t) dt < ∞. If there 
exists a constant C < 0 such that g′ (t) ≥ C on [0, ∞) or there exists a constant C > 0 such that 
g′ (t) ≤ C on [0, ∞), then we must have

g (t) → 0 as t → ∞. (22)

Remark 3.8. The condition g′ (t) ≥ C or g′ (t) ≤ C in Lemma 3.7 is necessary.

3.3.1. The case α ≥ 1

Lemma 3.9. Assume α ≥ 1 and X (ϕ, t) : S1 × [0, ∞) → R2 is a convex solution of the length-
preserving flow (1). Then we have

dA

dt
(t) → 0 as t → ∞. (23)

Proof. Keep in mind that here we assume the flow solution X(ϕ, t) is defined for all time t ∈
[0, ∞). By (19), there is a constant C > 0 independent of time so that

0 ≤ v (θ, t) ≤ C, ∀ (θ, t) ∈ S1 × [0,∞), (24)

where, at this moment, we cannot exclude the bad scenario that limt→∞ vmin (t) = 0 (which will 
be shown to be impossible to happen later on).

Let g (t) = dA/dt . By (4), we know that g (t) ≥ 0 on [0, ∞) with

∞∫
g (t) dt = A(∞) − A(0) <

L2 (0)

4π
< ∞.
0
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Compute

g′ (t) = d2A

dt2 (t) = d

dt

⎛
⎝−L(t)

2π

2π∫
0

vdθ +
2π∫

0

v1+ 1
α dθ

⎞
⎠

= −L(0)

2π

2π∫
0

αvp (vθθ + v − λ (t)) dθ + (α + 1)

2π∫
0

v (vθθ + v − λ (t)) dθ, p = 1 − 1

α

=

⎧⎪⎨
⎪⎩

L(0)
2π

[
(α − 1)

∫ 2π

0 v− 1
α

(
∂v
∂θ

)2
dθ − α

∫ 2π

0 v2− 1
α dθ + αλ(t)

∫ 2π

0 v1− 1
α dθ

]

+ (α + 1)
[
− ∫ 2π

0

(
∂v
∂θ

)2
dθ + ∫ 2π

0 v2dθ − λ (t)
∫ 2π

0 vdθ
]
.

(25)

For α ≥ 1, by (25), (14), and (24), we have

g′ (t) ≥ −α
L(0)

2π

2π∫
0

v2− 1
α dθ − (α + 1)

⎛
⎝ 2π∫

0

(
∂v

∂θ

)2

dθ + λ (t)

2π∫
0

vdθ

⎞
⎠≥ −C (26)

for some constant C > 0 independent of time. Hence Lemma 3.7 implies g (t) = dA/dt → 0 as 
t → ∞. �
Remark 3.10. For the case 0 < α < 1, the first integral in (25) may approach to −∞ as t → ∞. 
Also note that we have

− α

2π∫
0

v2− 1
α dθ + αλ(t)

2π∫
0

v1− 1
α dθ

= − α

2π

⎡
⎣ 2π∫

0

dθ

2π∫
0

v2− 1
α dθ −

2π∫
0

vdθ

2π∫
0

v1− 1
α dθ

⎤
⎦

= − α

4π

2π∫
0

⎛
⎝ 2π∫

0

(
v1− 1

α (x, t) − v1− 1
α (y, t)

)
(v (x, t) − v (y, t)) dx

⎞
⎠dy ≥ 0 (27)

due to 0 < α < 1. However, one cannot exclude the possibility that (27) tends to +∞ as t → ∞. 
Hence Lemma 3.7 is not applicable here.

As a consequence of Lemma 3.9, we have:

Lemma 3.11. Assume α ≥ 1 and X (ϕ, t) : S1 × [0, ∞) → R2 is a convex solution of the length-
preserving flow (1). Then we have

lim
t→∞

∥∥∥∥v (θ, t) −
(

L(0)

2π

)α∥∥∥∥
0
(

1
) = 0, (28)
C S
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where L (0) is the length of X0 and v (θ, t) = ρα (θ, t) = 1/κα (θ, t).

Proof. It follows from (14) and (19) that the L2-norm of ∂v/∂θ is uniformly bounded:

2π∫
0

(
∂v

∂θ
(θ, t)

)2

dθ ≤ 2π

(
2(8πL)α +

√
C0

2π

)2

+ C0, ∀ t ∈ [0,∞), (29)

where v (θ, t) > 0 is defined on S1 × [0, ∞). By Lemma 3.5 and the Arzela-Ascoli theorem, 
for any sequence tk → ∞ there exists a subsequence (which we still denote it as tk) such that 
limk→∞ v(θ, tk) = v∞ (θ) uniformly on S1, where v∞ (θ) ≥ 0 is some nonnegative continuous 
bounded function on S1.

Next, by Lemma 3.9, we know that

dA

dt
(t) = −L(t)

2π

2π∫
0

vdθ +
2π∫

0

v1+ 1
α dθ → 0 as t → ∞,

which gives the identity

−L(∞)

2π

2π∫
0

v∞ (θ) dθ +
2π∫

0

v
1+ 1

α∞ (θ) dθ = 0. (30)

Due to the uniform convergence of v1/α(θ, tk) to v1/α∞ (θ) as k → ∞ and the fact that the flow is 
length-preserving, the length L (0) = L (∞) can be expressed as

L(0) = lim
k→∞L(tk) = lim

k→∞

2π∫
0

v
1
α (θ, tk) dθ =

2π∫
0

v
1
α∞ (θ) dθ. (31)

By (31), one can rewrite (30) as

2π∫
0

v
1
α∞ (θ) dθ

2π∫
0

v∞ (θ) dθ =
2π∫

0

dθ

2π∫
0

v
1+ 1

α∞ (θ) dθ, (32)

which can be rewritten further as

1

2

2π∫
0

2π∫
0

[(
v

1
α∞ (x) − v

1
α∞ (y)

)
(v∞ (x) − v∞ (y))

]
dxdy = 0. (33)

As the integrand in (33) is nonnegative everywhere on S1 × S1 and v∞ (θ) ≥ 0 is a continu-
ous function, v∞ (θ) must be a constant function on S1 and by (31) the constant is given by 
(L (0) /2π)α . Because every convergent subsequence tends to the same limit, we must have the 
convergence to (L (0) /2π)α for all t → ∞. The proof is done. �
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3.3.2. The case 0 < α < 1
For 0 < α < 1, Lemma 3.11 is still correct, but due to Remark 3.10 we need to use a different 

proof.

Lemma 3.12. Assume 0 < α < 1 and X (ϕ, t) : S1 × [0, ∞) → R2 is a convex solution of the 
length-preserving flow (1). Then we have the same limit as in (28).

Proof. We shall use a different approach with the help of Green-Osher’s inequality. Note that 
for 0 < α < 1 the two functions F1(x) = x1+α and F2(x) = −xα are convex on x ∈ (0, ∞). It 
follows from Green-Osher’s inequality (see [4], Theorem 0.1) that for each t ∈ [0, ∞) we have 
the inequalities

2π∫
0

ρ1+αdθ ≥ π

⎡
⎣(L − √

L2 − 4πA

2π

)1+α

+
(

L + √
L2 − 4πA

2π

)1+α
⎤
⎦ , (34)

and

2π∫
0

−ραdθ ≥ π

[
−
(

L − √
L2 − 4πA

2π

)α

−
(

L + √
L2 − 4πA

2π

)α]
, (35)

where in the above ρ = ρ (θ, t) = 1/κ (θ, t) , L = L (t) (which is a constant), A = A (t).
Using the evolution equation of A(t) and (34), (35), one can conclude

dA

dt
= − L

2π

2π∫
0

vdθ +
2π∫

0

v1+ 1
α dθ, v = ρα

≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L
2

[
−
(

L−
√

L2−4πA
2π

)α

−
(

L+
√

L2−4πA
2π

)α]

+π

[(
L−

√
L2−4πA
2π

)1+α

+
(

L+
√

L2−4πA
2π

)1+α
]

=
√

L2 − 4πA

2

[(
L + √

L2 − 4πA

2π

)α

−
(

L − √
L2 − 4πA

2π

)α]
.

By the mean value theorem there exists a number ξ (t) in the interval (L − √
L2 − 4πA, L +√

L2 − 4πA) such that(
L +

√
L2 − 4πA

)α −
(
L −

√
L2 − 4πA

)α = 2αξα−1
√

L2 − 4πA.

Substituting this identity into the above inequality and note that 0 < α < 1 we obtain

dA ≥ α
α ξα−1

(
L2 − 4πA

)
≥ α

α

(
L +

√
L2 − 4πA

)α−1 (
L2 − 4πA

)
, ∀ t ∈ [0,∞).
dt (2π) (2π)
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So the isoperimetric difference satisfies

d

dt
(L2 − 4πA) ≤ − 4πα

(2π)α

(
L +

√
L2 − 4πA

)α−1 (
L2 − 4πA

)

≤ − 4πα

(2π)α

(
L +

√
L2 − 4πA(0)

)α−1 (
L2 − 4πA

)
, ∀ t ∈ [0,∞), (36)

where we have used the property that A(t) is increasing in time. Note that now the coefficient in 
front of L2 −4πA in (36) is a constant and integrating the above inequality can give us the decay

0 ≤ L2 (t) − 4πA(t) ≤ (L2 (0) − 4πA(0))e−c0t , ∀ t ∈ [0,∞), (37)

where c0 is the constant c0 = 4πα
(2π)α

(
L(0) +√

L2 (0) − 4πA(0)
)α−1

> 0.

By (19), (14), and Lemma 3.5, the Arzela-Ascoli theorem can be applied to the function 
v (θ, t). For any sequence of time tk → ∞, there exists a subsequence (which, for convenience, 
we still denote it as tk) such that limk→∞ v (θ, tk) = v∞ (θ) uniformly on S1, where v∞ (θ) ≥ 0
is some nonnegative continuous bounded function on S1. The corresponding convex closed curve 
X (·, tk) has its isoperimetric difference decay to 0 as k → ∞. Since v (θ, tk) remains unchanged 
under a translation of X(·, tk) in the plane, without loss of generality, we may assume that 
each curve X(·, tk) encloses the origin O = (0,0) of R2. As the length L (tk) of X (·, tk) is 
independent of time, all X(·, tk) must lie in some bounded set of R2. The classical Blaschke 
Selection Theorem (see Theorem 3.1 of [1]) implies the existence of a subsequence X

(·, tkj

)
of X (·, tk) such that X

(·, tkj

)
converges to some convex closed curve X∞ (·) in the Hausdorff 

metric. Continuity implies that the isoperimetric difference L2 (∞) − 4πA (∞) of X∞ (·) is 
given by the limit of L2

(
tkj

)− 4πA 
(
tkj

)
, which is 0 due to the exponential decay (37). There-

fore, the convex closed curve X∞ (·) must be a circle with radius L (0) /2π . Since we have 
limj→∞ v

(
θ, tkj

)= v∞ (θ) uniformly on S1, we obtain v∞ (θ) = (L (0) /2π)α .
By the above discussion and a simple contradiction argument, we actually have the full-time 

convergence, i.e. limt→∞ v (θ, t) = (L (0) /2π)α uniformly on S1. The proof is done. �
Remark 3.13. At this point, by (28), we only have the convergence of curvature κ (θ, t). See 
Lemma 3.16 for the convergence of X(ϕ, t).

3.3.3. Higher derivatives estimate and convergence for any α > 0
If the flow (1) exists globally in time t ∈ [0, ∞), then by Lemma 3.11 and Lemma 3.12, the 

evolution equation

∂v

∂t
= αvp (vθθ + v − λ (t)) , v = v (θ, t) , p = 1 − 1

α
, λ (t) = 1

2π

2π∫
0

vdθ (38)

is uniformly parabolic on S1 ×[0, ∞). Moreover, the quantity λ (t) = (2π)−1 ∫ 2π

0 v (θ, t) dθ > 0
is bounded on [0, ∞), which means that it will not cause serious trouble. The usual parabolic 
regularity theory can still be applied to a nonlocal equation of the form (38) and can guarantee 
that all space-time derivatives of v (θ, t) are uniformly bounded on S1 ×[0, ∞). For the readers’ 
convenience, we provide a simple proof using the argument in [8].
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Lemma 3.14. For any α > 0, if the length-preserving flow (1) has a convex solution X(ϕ, t) :
S1 × [0, ∞) → R2, then there exist constants Ck (k = 1, 2, ...) independent of time such that

∣∣∣∣∂kv

∂θk
(θ, t)

∣∣∣∣≤ Ck, ∀ (θ, t) ∈ S1 × [0,∞). (39)

Proof. We shall prove the case k = 1 only. The proof for k > 1 is similar and can be argued 
by mathematical induction (see [8]). Let u = vθ (the partial derivative of v with respect to θ ), 
Q = v2, and let w = u + βQ, where β is a constant to be chosen later on. We first compute

∂u

∂t
=
(

∂v

∂t

)
θ

= αvpuθθ + αpvp−1uuθ + αvp−1 (p (v − λ (t)) + v)u, p = 1 − 1

α
, (40)

and by Qθ = 2vu, Qθθ = 2vuθ + 2u2, we get

∂Q

∂t
= 2αvp+1 (uθ + v − λ (t)) = αvp

(
Qθθ − 2u2

)
+ 2αvp+1 (v − λ (t)) , (41)

which together with the identity

wθ = uθ + βQθ = uθ + 2βvu, wθθ = uθθ + βQθθ ,

gives

∂w

∂t
= ∂u

∂t
+ β

∂Q

∂t
=
{

αvpuθθ + αpvp−1u (wθ − 2βvu) + αvp−1 (p (v − λ (t)) + v)u

+αvp
(
βQθθ − 2βu2

)+ 2αβvp+1 (v − λ (t))

=
{

αvp · wθθ + αpvp−1u · wθ − 2αβvp (1 + p)u2

+αvp−1 (p (v − λ (t)) + v)u + 2αβvp+1 (v − λ (t)) .
(42)

Since Q = v2 and λ (t) are both bounded quantities, if w = u + βQ becomes sufficiently large 
(either positively or negatively), it must be due to the term u = vθ . In (42), the coefficient of u2

is

−2αβvp (1 + p) = −2αβvp

(
2 − 1

α

)
= −βvp (4α − 2) , p = 1 − 1

α
(43)

and we know that vp has positive upper bound and positive lower bound due to (28). By (43) and 
the maximum principle, we can conclude the following:

(1). If α > 1/2, choose β = 1, then w = u +Q and −βvp (4α − 2) = −vp (4α − 2) is strictly 
negative and if w(θ∗, t) = wmax (t) becomes sufficiently large (positively) at the maximum point 
θ = θ∗, we get

∂w

∂t
≤ −vp (4α − 2)u2 + αvp−1 (p (v − λ (t)) + v)u + 2αvp+1 (v − λ (t)) < 0 at (θ∗, t) .

(44)
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The maximum principle implies that the function w = u + Q has a positive time-independent 
upper bound and so is the function u = vθ . Similarly, if we choose β = −1, then w = u − Q and 
−βvp (4α − 2) = vp (4α − 2) is strictly positive and if w(θ∗, t) = wmin (t) becomes sufficiently 
large (negatively) at the minimum point θ = θ∗, we get

∂w

∂t
≥ vp (4α − 2)u2 +αvp−1 (p (v − λ (t)) + v)u−2αvp+1 (v − λ (t)) > 0 at (θ∗, t) . (45)

The minimum principle implies that the function w = u − Q has a negative time-independent 
lower bound and so is the function u = vθ .

(2). If 0 < α < 1/2, choose β = 1, then w = u + Q and −βvp (4α − 2) = −vp (4α − 2) is 
strictly positive and if w(θ∗, t) = wmin (t) becomes sufficiently large (negatively) at the mini-
mum point θ = θ∗, we get (45) and the minimum principle implies that the function w = u + Q

has a negative time-independent lower bound and so is the function u = vθ . Similarly, if we 
choose β = −1, then w = u − Q and −βvp (4α − 2) = vp (4α − 2) is strictly negative and if 
w (θ∗, t) = wmax (t) becomes sufficiently large (positively) at the maximum point θ = θ∗, we 
get (44) and the maximum principle implies that the function w = u − Q has a positive time-
independent upper bound and so is the function u = vθ .

(3). When α = 1/2, the coefficient −βvp (4α − 2) = 0 and the above maximum/minimum 
principle argument is not applicable. In such a case, we look at the evolution equation of w =
u + βv and by

wθ = uθ + βvθ = uθ + βu, wθθ = uθθ + βvθθ ,

we get

∂w

∂t
=
⎧⎨
⎩

αvpwθθ + αpvp−1u (wθ − βu) + αvp−1 (p (v − λ (t)) + v)u

+αvp (βv − βλ (t)) , where p = 1 − 1
α

= −1

= 1

2
v−1wθθ − 1

2
v−2uwθ + 1

2
βv−2u2 + 1

2
v−2λ (t)u + 1

2
v−1 (βv − βλ (t)) .

Now similar to (1) and (2) (by choosing β = 1 or β = −1), we can get time-independent upper 
bound and lower bound of u = vθ .

By (1) , (2) , (3), the proof of (39) for the case k = 1 is finished. �
As a consequence of Arzela-Ascoli theorem, Lemma 3.11, Lemma 3.12 and Lemma 3.14, we 

immediately have the following smooth convergence:

Lemma 3.15. Let α > 0 and assume X(ϕ, t) : S1 × [0, ∞) → R2 is a convex solution of the 
length-preserving flow (1). Then we have

lim
t→∞

∥∥∥∥v (θ, t) −
(

L(0)

2π

)α∥∥∥∥
Cm

(
S1
) = 0, ∀ m ∈ {0}

⋃
N, (46)

where L (0) is the length of X0 and v (θ, t) = ρα (θ, t) = 1/κα (θ, t). In particular, we obtain
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lim
t→∞

∥∥∥∥ρ (θ, t) − L(0)

2π

∥∥∥∥
Cm

(
S1
) = 0, ∀ m ∈ {0}

⋃
N. (47)

Lemma 3.15 says that the evolving curve X(·, t) converges to a circle smoothly in the sense 
that its curvature κ (·, t) converges smooth to the constant 2π/L (0). Conceivably, although it 
seems very unlikely, the evolving curve X(·, t) may escape to infinity or oscillate indefinitely. 
This is because we only look at the convergence of the radius of curvature (or the curvature). To 
see that this will not happen, we will prove that X(·, t) has a limit as t → ∞.

3.3.4. Exponential decay of the speed of the flow (1)

Lemma 3.16. Let α > 0 and assume X(ϕ, t) : S1 × [0, ∞) → R2 is a convex solution of the 
length-preserving flow (1). Then there exist constants C1, C2 > 0, both are independent of time, 
so that ∣∣∣∣∂X

∂t
(ϕ, t)

∣∣∣∣≤ C1e
−C2t , ∀ (ϕ, t) ∈ S1 × [0,∞). (48)

In particular, we have

lim
t→∞X (ϕ, t) = X0 (ϕ) +

∞∫
0

Xt (ϕ, t) dt, ∀ ϕ ∈ S1, (49)

where, for each ϕ ∈ S1, the integral 
∫∞

0 Xt (ϕ, t) dt converges and X(ϕ, t) has a limit X∞ (ϕ)

as t → ∞.

Remark 3.17. Now Lemma 3.15 tells us that the limiting curve X∞ (·) is a fixed circle with 
radius L (0) /2π . The center (a, b) ∈ R2 of X∞ (·) is given by

(a, b) = lim
t→∞

1

2π

2π∫
0

X (θ, t) dθ = lim
t→∞

1

π

2π∫
0

p (θ, t) (cos θ, sin θ) dθ, (50)

where p (θ, t) is the support function of the curve X(·, t).

Proof. Using the evolution of u = vθ in (40) and p = 1 − 1/α, we can obtain

d

dt

2π∫
0

1

2

(
∂v

∂θ

)2

dθ =
2π∫

0

uutdθ =
⎧⎨
⎩
∫ 2π

0 αvpuuθθdθ + ∫ 2π

0 αpvp−1u2uθdθ

+ ∫ 2π

0 αvp−1 (p (v − λ (t)) + v)u2dθ

(51)

and by

2π∫
αvpuuθθdθ = −

2π∫ (
αvpu

)
θ
uθdθ = −

2π∫ (
αpvp−1u2 + αvpuθ

)
uθdθ
0 0 0
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= −
2π∫

0

αvp(uθ )
2dθ −

2π∫
0

αpvp−1u2uθdθ,

(51) can be simplified as

d

dt

2π∫
0

1

2

(
∂v

∂θ

)2

dθ = −
2π∫

0

αvp(uθ )
2dθ +

2π∫
0

αvp−1 (p (v − λ (t)) + v)u2dθ

= −
2π∫

0

αv1− 1
α

(
∂2v

∂θ2

)2

dθ + (2α − 1)

2π∫
0

v1− 1
α

(
∂v

∂θ

)2

dθ − (α − 1)λ (t)

2π∫
0

v− 1
α

(
∂v

∂θ

)2

dθ

= −
2π∫

0

αv1− 1
α

(
∂2v

∂θ2

)2

dθ + α

2π∫
0

v1− 1
α

(
∂v

∂θ

)2

dθ + (α − 1)

2π∫
0

(v − λ (t)) v− 1
α

(
∂v

∂θ

)2

dθ.

(52)

Since v = ρα , where ρ = ρ (θ, t) = 1/κ (θ, t), we have

⎧⎪⎨
⎪⎩

∂v
∂θ

= αρα−1ρθ ,
∂2v
∂θ2 = αρα−1ρθθ + α (α − 1) ρα−2(ρθ )

2

(
∂2v
∂θ2

)2 = α2ρ2α−2(ρθθ )
2 + 2α2 (α − 1) ρ2α−3(ρθ )

2ρθθ + α2 (α − 1)2 ρ2α−4(ρθ )
4

(53)

and by the identities

⎧⎨
⎩
∫ 2π

0 ρ cos θdθ = ∫ 2π

0 ρ sin θdθ = 0, ∀ t ∈ [0,∞)∫ 2π

0 ρθdθ = ∫ 2π

0 ρθ cos θdθ = ∫ 2π

0 ρθ sin θdθ = 0,

(54)

we have the following form of Wirtinger inequality (see [3], p. 92, or use Fourier series expan-
sion to verify it)

2π∫
0

(
∂2ρ

∂θ2

)2

dθ ≥ 4

2π∫
0

(
∂ρ

∂θ

)2

dθ. (55)

Now we look at the integral 
∫ 2π

0

(
∂2v/∂θ2

)2
dθ and by (53) we get

2π∫
0

(
∂2v

∂θ2

)2

dθ

= α2

2π∫
0

ρ2α−2
(

∂2ρ

∂θ2

)2

dθ +
2π∫

0

[
2α2(α − 1)ρ2α−3ρθθ + α2(α − 1)2ρ2α−4ρ2

θ

](∂ρ

∂θ

)2

dθ
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and since we have the convergence (47), for any small ε > 0, if t is large enough, we can conclude

2π∫
0

(
∂2v

∂θ2

)2

dθ ≥ α2

[(
L(0)

2π

)2α−2

− ε

] 2π∫
0

(
∂2ρ

∂θ2

)2

dθ − ε

2π∫
0

(
∂ρ

∂θ

)2

dθ

≥ 4α2

[(
L(0)

2π

)2α−2

− ε

] 2π∫
0

(
∂ρ

∂θ

)2

dθ − ε

2π∫
0

(
∂ρ

∂θ

)2

dθ, (56)

where in (56) we have used the Wirtinger inequality (55). On the other hand, we also have for 
large t the estimate

2π∫
0

(
∂v

∂θ

)2

dθ = α2

2π∫
0

ρ2α−2
(

∂ρ

∂θ

)2

dθ ≤ α2

[(
L(0)

2π

)2α−2

+ ε

] 2π∫
0

(
∂ρ

∂θ

)2

dθ, (57)

which, together with (56), implies

2π∫
0

(
∂2v

∂θ2

)2

dθ ≥
(

4α2

[(
L(0)

2π

)2α−2

− ε

]
− ε

) 2π∫
0

(
∂ρ

∂θ

)2

dθ

≥
4α2

[(
L(0)
2π

)2α−2 − ε

]
− ε

α2

[(
L(0)
2π

)2α−2 + ε

]
2π∫

0

(
∂v

∂θ

)2

dθ ≥ (4 − δ)

2π∫
0

(
∂v

∂θ

)2

dθ, (58)

for some number δ > 0 satisfying δ → 0 as ε → 0. As a consequence of (58), we have for large 
t the following

2π∫
0

αv1− 1
α

(
∂2v

∂θ2

)2

dθ

≥ α

[(
L(0)

2π

)1− 1
α − ε

] 2π∫
0

(
∂2v

∂θ2

)2

dθ ≥ α

[(
L(0)

2π

)1− 1
α − ε

]
(4 − δ)

2π∫
0

(
∂v

∂θ

)2

dθ. (59)

By (59) and (52), we conclude for large t the estimate

d

dt

2π∫
0

1

2

(
∂v

∂θ

)2

dθ

= −
2π∫

αv1− 1
α

(
∂2v

∂θ2

)2

dθ + α

2π∫
v1− 1

α

(
∂v

∂θ

)2

dθ + (α − 1)

2π∫
(v − λ (t)) v− 1

α

(
∂v

∂θ

)2

dθ
0 0 0
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≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−α

[(
L(0)
2π

)1− 1
α − ε

]
(4 − δ)

∫ 2π

0

(
∂v
∂θ

)2
dθ

+α

[(
L(0)
2π

)1− 1
α + ε

]∫ 2π

0

(
∂v
∂θ

)2
dθ + ε

∫ 2π

0

(
∂v
∂θ

)2
dθ

≤ −C

2π∫
0

(
∂v

∂θ

)2

dθ, ∀ t ∈ [0,∞)

(60)

for some constant C > 0, which is independent of t, ε, δ as long as t is large enough and ε, δ > 0
are small enough. Therefore, 

∫ 2π

0 (∂v/∂θ)2 dθ decays exponentially:

2π∫
0

(
∂v

∂θ
(θ, t)

)2

dθ ≤ Ke−2Ct , ∀ t ∈ [0,∞), (61)

where K is a positive constant depending only on the initial data X0. By Sobolev’s inequality, 
one can estimate the speed of the flow (1):

‖Xt (ϕ, t)‖C0
(
S1
) =

∥∥∥∥∥∥v (θ, t) − 1

2π

2π∫
0

v (θ, t) dθ

∥∥∥∥∥∥
C0

(
S1
)

≤ √
2π

⎛
⎝ 2π∫

0

(v (θ, t) − λ (t))2 dθ

⎞
⎠

1
2

+ 1√
2π

⎛
⎝ 2π∫

0

(
∂v

∂θ
(θ, t)

)2

dθ

⎞
⎠

1
2

≤
(√

2π + 1√
2π

)⎡⎣ 2π∫
0

(
∂v

∂θ
(θ, t)

)2

dθ

⎤
⎦

1
2

≤
(√

2π + 1√
2π

)√
Ke−Ct , ∀ t ∈ [0,∞).

(62)

It follows from (62) that the speed of the flow (1) decays exponentially. The evolving curve 
X (·, t) has a limit X∞ (·) as t → ∞ due to the convergence of the integral:

lim
t→∞X (ϕ, t) = X0 (ϕ) +

∞∫
0

Xt (ϕ, t) dt, ∀ ϕ ∈ S1. (63)

The proof is done. �
3.3.5. Proof of Theorem 2.4

By Lemma 3.2, Lemma 3.3, Lemma 3.15, and Lemma 3.16, the proof of Theorem 2.4 is now 
complete. �
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4. Some flows with global existence

As we shall see in Section 5, for some initial curve X0, the curvature of X(·, t) can blow up 
to +∞ in finite time. In this section, we give certain sufficient condition on X0 so that under the 
flow (1), the convex solution X(·, t) exists for all time t ∈ [0, ∞).

For a convex closed curve X0 ⊂ R2 with radius of curvature ρ (θ) = 1/κ (θ), where θ ∈ S1 is 
its outward normal angle, by Green-Osher’s inequality [4], we have

2π∫
0

ρ2 (θ) dθ ≥ L2 − 2πA

π
, (64)

where the equality holds if and only if X0 is a circle. By the classical isoperimetric inequality 
L2 ≥ 4πA, the above also gives

2π∫
0

ρ2 (θ) dθ − 2A ≥ L2 − 2πA

π
− 2A ≥ 0. (65)

In order to construct a sufficient condition for the global existence of the flow, we need to have 
an upper bound of 

∫ 2π

0 ρ2 (θ) dθ − 2A. With the help of Fourier series expansion, we can obtain 
an upper bound, together with an improved lower bound.

Lemma 4.1. For any convex closed curve X ⊂ R2 with radius of curvature ρ (θ), enclosed area 
A, and length L, we have the inequality

2

π

(
L2 − 4πA

)
≤

2π∫
0

ρ2 (θ) dθ − 2A ≤ 1

3

2π∫
0

(
dρ

dθ

)2

dθ. (66)

Moreover, the equality holds (either in the first place or in the second one) if and only if the 
support function p (θ) of X has the form

p (θ) = L

2π
+ a1 cos θ + b1 sin θ + a2 cos 2θ + b2 sin 2θ, ∀ θ ∈ S1 (67)

for some constants a1, b1, a2, b2 satisfying

p′′ (θ) + p (θ) = L

2π
− 3a2 cos 2θ − 3b2 sin 2θ > 0, ∀ θ ∈ S1. (68)

Proof. The first inequality in (66) has been proved in [9] (see Lemma 1.7). Hence it suffices to 
prove the second one. It is known that the length L, area A, and radius of curvature ρ (θ) of X0
can be expressed as in terms of p (θ) as

L =
2π∫

p(θ)dθ, A = 1

2

2π∫
p(θ)ρ (θ) dθ, ρ (θ) = p′′ (θ) + p (θ) > 0. (69)
0 0
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Hence the Fourier expansion of p(θ) has the form

p (θ) = L

2π
+

∞∑
n=1

[an cos (nθ) + bn sin (nθ)] , θ ∈ S1,

where an, bn are the Fourier coefficients of p (θ). By (69), we can easily derive the following:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A = L2

4π
+ π

2

∑∞
n=2

(
1 − n2

) (
a2
n + b2

n

)
,

∫ 2π

0 ρ2(θ)dθ = L2

2π
+ π

∑∞
n=2

(
1 − n2

)2 (
a2
n + b2

n

)
,

∫ 2π

0

(
dρ
dθ

)2
dθ = π

∑∞
n=2 n2

(
n2 − 1

)2 (
a2
n + b2

n

)
,

which gives

2π∫
0

ρ2(θ)dθ − 2A

= π

∞∑
n=2

n2
(
n2 − 1

)(
a2
n + b2

n

)
≤ π

3

∞∑
n=2

n2
(
n2 − 1

)2 (
a2
n + b2

n

)
= 1

3

2π∫
0

(
dρ

dθ

)2

dθ, (70)

where the equality in (70) holds if and only if an = bn = 0 for all n ≥ 3. The proof is done. �
Now assume X(ϕ, t) is a convex solution of the flow (1) defined on S1 × [0, T ) for some 

T > 0. Using the evolution equation (9) of ρ, one can compute

d

dt

2π∫
0

ρ2dθ = −2α

2π∫
0

ρα−1
(

∂ρ

∂θ

)2

dθ + 2

2π∫
0

ρα+1dθ − 2λ (t)L (t) , (71)

which, together with (6), gives

d

dt

⎛
⎝ 2π∫

0

ρ2dθ − 2A(t)

⎞
⎠= −2α

2π∫
0

ρα−1
(

∂ρ

∂θ

)2

dθ. (72)

Moreover, by equation (9) we have

d

dt

2π∫
0

(
∂ρ

∂θ

)2

dθ

= 2

2π∫
∂ρ

∂θ

∂

∂θ

(
∂2ρα

∂θ2 + ρα

)
dθ = −2

2π∫
∂2ρ

∂θ2

∂2ρα

∂θ2 dθ + 2

2π∫
αρα−1

(
∂ρ

∂θ

)2

dθ
0 0 0
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= −2

2π∫
0

∂2ρ

∂θ2

(
αρα−1 ∂2ρ

∂θ2 + α (α − 1) ρα−2
(

∂ρ

∂θ

)2
)

dθ + 2α

2π∫
0

ρα−1
(

∂ρ

∂θ

)2

dθ, (73)

where by the integration by parts, we can rewrite the middle term in (73) and obtain

d

dt

2π∫
0

(
∂ρ

∂θ

)2

dθ

= −2α

2π∫
0

ρα−1
(

∂2ρ

∂θ2

)2

dθ + 2

3
α (α − 1) (α − 2)

2π∫
0

ρα−3
(

∂ρ

∂θ

)4

dθ + 2α

2π∫
0

ρα−1
(

∂ρ

∂θ

)2

dθ.

(74)

By (74) and (72), we get

d

dt

⎡
⎣ 2π∫

0

(
∂ρ

∂θ

)2

dθ +
2π∫

0

ρ2dθ − 2A(t)

⎤
⎦

= −2α

2π∫
0

ρα−1
(

∂2ρ

∂θ2

)2

dθ + 2

3
α (α − 1) (α − 2)

2π∫
0

ρα−3
(

∂ρ

∂θ

)4

dθ

≤ 2

3
α (α − 1) (α − 2)

2π∫
0

ρα−3
(

∂ρ

∂θ

)4

dθ. (75)

Now we assume α ∈ [1,2]. It follows from inequality (75) that 
∫ 2π

0 ρ2
θ dθ + ∫ 2π

0 ρ2dθ − 2A (t)
is decreasing in time under the flow (1). So we have

2π∫
0

(
∂ρ

∂θ

)2

dθ ≤ −
2π∫

0

ρ2dθ + 2A +
2π∫

0

(
dρ0

dθ

)2

dθ +
2π∫

0

ρ2
0dθ − 2A(0)

≤
2π∫

0

(
dρ0

dθ

)2

dθ +
2π∫

0

ρ2
0dθ − 2A(0) .

Using the inequality (66), one gets

2π∫
0

(
∂ρ

∂θ

)2

dθ ≤ 4

3

2π∫
0

(
dρ0

dθ

)2

dθ, ∀ t ∈ [0, T ). (76)

By the estimate (76), we can conclude the following:
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Lemma 4.2. Assume α ∈ [1,2] and the initial smooth convex closed curve X0 satisfies the con-
dition

L(0)

2π
≥
⎛
⎝8π

3

2π∫
0

(
dρ0

dθ

)2

dθ

⎞
⎠

1/2

+ ε (77)

for some ε > 0. Then the solution X(ϕ, t) of the flow (1) is defined on S1 × [0, ∞).

Proof. By the short-time existence theorem, the flow (1) with initial data X0 has a smooth convex 
solution X (ϕ, t) defined on S1 × [0, T ) for some T > 0. For fixed t ∈ [0, T ), choose θ1 so that 
ρ (θ1, t) = L (t) /2π = L (0) /2π and choose θ2 so that ρ (θ2, t) = ρmin (t). By Hölder inequality, 
we have

ρmin (t) − L(0)

2π
=

θ2∫
θ1

∂ρ

∂θ
dθ ≥ −√

2π

⎛
⎝ 2π∫

0

(
∂ρ

∂θ

)2

dθ

⎞
⎠

1/2

, ∀ t ∈ [0, T ),

which, together with the assumption (77) and estimate (76), gives

ρmin (t) ≥
⎛
⎝8π

3

2π∫
0

(
dρ0

dθ

)2

dθ

⎞
⎠

1/2

+ ε − √
2π

⎛
⎝ 2π∫

0

(
∂ρ

∂θ

)2

dθ

⎞
⎠

1/2

≥
⎛
⎝8π

3

2π∫
0

(
dρ0

dθ

)2

dθ

⎞
⎠

1/2

+ ε − √
2π

⎛
⎝4

3

2π∫
0

(
dρ0

dθ

)2

dθ

⎞
⎠

1/2

= ε > 0, ∀ t ∈ [0, T ).

(78)

By Lemma 3.2, the flow solution X(ϕ, t) can be continued beyond time T and is defined on a 
larger time interval [0, T̃ ). By the same argument, we still have ρmin (t) ≥ ε > 0 for all t ∈ [0, T̃ ). 
Hence the solution X(ϕ, t) must be defined on S1 × [0, ∞) due to Lemma 3.3. �
Remark 4.3. There are lots of convex curves satisfying the condition (77). One can construct 
abundant examples by choosing large L and small maxθ∈S1 |dρ0/dθ |. One can also construct 
examples by expanding convex curves according to the unit outward normal flow

{
Xt(ϕ, t) = Nout (ϕ, t) , t > 0

X(ϕ,0) = X0 (ϕ) , ϕ ∈ S1.
(79)

After a long time, one has a convex curve X(·, T ) satisfying (77), because under the flow (79)

we have L (t) = L (0) + 2πt , but the integral quantity 
∫ 2π

0

(
∂ρ
∂θ

)2
dθ is independent of time.

In fact, the condition (77) is sufficient but not necessary to guarantee the global existence of 
the flow (1).
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Fig. 1. ρmin(t) of α = 1.1,1.3 and 1.6 in Example 4.4.

Example 4.4. Let X0(θ) be a convex curve with the support function p(θ) = 80 + 2 cos (2θ) +
0.5 cos (3θ) + 0.1 cos (4θ). Its radius of curvature is

ρ0(θ) = 80 − 6 cos (2θ) − 4 cos (3θ) − 1.5 cos (4θ) .

With the help of MATLAB, one can check that the minimum of ρ0 is 68.5. It does not satisfy 
(77), because

L(0)

2π
−
⎛
⎝8π

3

2π∫
0

(
dρ0

dθ

)2

dθ

⎞
⎠

1/2

= −12.3436 · · · .

But the flow (1) still exists globally if α = 1.1, 1.3 and 1.6. Fig. 1 presents the graph of the 
function ρmin(t) under the flows.

5. Some blow-up examples

In this section, we first take a long narrow ellipse γ0 as the initial curve and use it to demon-
strate intuitively the formation of a singularity in finite time. Then we look at the evolution 
behavior (with the help of MATLAB) of several initial convex curves for the flow (1) and ob-
serve that some flows can blow up in finite time, while the others exist globally on the time 
interval [0, ∞).

5.1. Curvature blow-up for an ellipse

Let γ0 be an ellipse given by

γ0 : x2

+ y2

= 1, a � b > 0, (80)

a2 b2
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where a � 0 is sufficiently larger than b > 0 (here we fix b and in the limit we will let a → ∞). 
A straightforward computation shows that the curvature κ0 (θ) of γ0 is, in terms of its outward 
normal angle θ ∈ [0,2π], given by

κ0 (θ) = 1

a2b2

(
a2 cos2 θ + b2 sin2 θ

) 3
2
, max

θ∈[0,2π]
κ0 (θ) = κ0 (0) = a

b2 , θ ∈ S1. (81)

Since κ0 (θ) is uniformly large on some fixed open interval I ⊂ S1 centered at θ = 0, the radius 
of curvature ρ0 (θ) = 1/κ0 (θ) is uniformly small on I . One can also check that ρ′′

0 (θ) is also 
uniformly small on I due to the identities

ρ′
0 (θ) = −3

2
a2b2

(
a2 cos2 θ + b2 sin2 θ

)− 5
2
(
b2 − a2

)
sin 2θ, ρ′

0 (0) = 0

and

ρ′′
0 (θ) = 15

4
a2b2

(
a2 cos2 θ + b2 sin2 θ

)−7/2 (
b2 − a2

)2
sin2 2θ

+ 3a2b2
(
a2 cos2 θ + b2 sin2 θ

)−5/2 (
a2 − b2

)
cos 2θ, ρ′′

0 (0) = 3
b2

a

(
1 − b2

a2

)

where a � b > 0. We now have minθ∈[0,2π] ρ0 (θ) = ρ0 (0) = b2/a > 0, and at the minimum 
point θ = 0 we have ρ′′

0 (0) = 3a−1b2
(
1 − b2a−2

)
> 0.

Recall that under the flow (1), the function v (θ, t) = ρα(θ, t) , v (θ,0) = ρα
0 (θ), satisfies the 

equation

∂v

∂t
= αvp (vθθ + v − λ (t)) , v = v (θ, t) , p = 1 − 1

α
, λ (t) = 1

2π

2π∫
0

vdθ. (82)

We shall see what happens to the equation (82) initially if we use the ellipse γ0 as initial curve 
with a � b > 0. We have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v0 (θ) = ρα
0 (θ) = a2αb2α

(
a2 cos2 θ + b2 sin2 θ

)− 3α
2 , v0 (0) = ρα

0 (0) =
(

b2

a

)α

λ (0) = 1

2π

2π∫
0

v0 (θ) dθ = a2αb2α

2π

2π∫
0

(
a2 cos2 θ + b2 sin2 θ

)− 3α
2 dθ,

(83)

and by

v′
0 (θ) = αρα−1

0 (θ)ρ′
0 (θ) , v′′

0 (θ) = α (α − 1) ρα−2
0 (θ)

(
ρ′

0 (θ)
)2 + αρα−1

0 (θ)ρ′′
0 (θ)

we get (note that ρ′
0 (0) = 0)

v′′
0 (0) = αρα−1

0 (0) ρ′′
0 (0) = 3α

(
b2)α (

1 − b2

2

)
. (84)
a a
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By (83) and (84), the equation (82) at time t = 0 at θ = 0 is

∂v

∂t
(0,0) = αvp (0,0) (vθθ (0,0) + v (0,0) − λ (0)) , p = 1 − 1

α

= α

(
b2

a

)α−1

⎛
⎜⎜⎜⎝

3α
(

b2

a

)α (
1 − b2

a2

)
+
(

b2

a

)α

−a2αb2α

2π

2π∫
0

(
a2 cos2 θ + b2 sin2 θ

)− 3α
2 dθ

⎞
⎟⎟⎟⎠ . (85)

Now it suffices to know the behavior of the integral in (85) when a � 0 is sufficiently large. It 
has been shown in [5] that we have the following asymptotic behavior as a → ∞:

Lemma 5.1. Let a � b > 0 be two constants. If we fix b and let a → ∞, then we have the 
following asymptotic behavior:

2π∫
0

(
a2 cos2 θ + b2 sin2 θ

)−p

dθ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O
(
a−2p

)
, ∀ p ∈ (

0, 1
2

)
,

O
(
a−1 loga

)
, p = 1

2 ,

O
(
a−1

)
, ∀ p ∈ ( 1

2 ,∞)
.

(86)

By (86), we have

a2αb2α

2π

2π∫
0

(
a2 cos2 θ + b2 sin2 θ

)− 3α
2

dθ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
(
a−α

)
, ∀ α ∈ (

0, 1
3

)
,

O
(
a− 1

3 loga
)

, α = 1
3 ,

O
(
a2α−1

)
, ∀ α ∈ ( 1

3 ,∞)
,

which, together with (85), implies

∂v

∂t
(0,0) = O

(
a1−2α

)
(∀ α > 0) −

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
(
a1−2α

)
, ∀ α ∈ (

0, 1
3

)
,

O
(
a

1
3 loga

)
, α = 1

3 ,

O (aα) , ∀ α ∈ ( 1
3 ,∞)

.

(87)

By (87), for α ≥ 1/3, if a � 0 is sufficiently large, we will have (∂v/∂t) (0,0) � 0, which 
will force vmin (t) (with vmin (0) = (

b2/a
)α

) to drop to 0 in short time and a singularity can occur. 
In view of this, at least for α ≥ 1/3, we can make the following conjecture:

Conjecture 5.2. For α ≥ 1/3, there exists an ellipse γ0 such that under the flow (1) it develops a 
singularity in finite time. Moreover, the larger a and α are, the faster the blow-up will occur.

Remark 5.3. However, for 0 < α < 1/3, we are not sure if (∂v/∂t) (0,0) will become sufficiently 
large negatively for a � 0. We have no conclusion in this situation. See Conjecture 5.8 also.
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Table 1
Some simulation results of the flow (1) with an ellipse γ0.

α simulation time ω minv status

0.5 2.46 × 10−5 −2.5225 × 10−4 blows up
0.4 7.438×10−5 −8.7495 × 10−4 blows up
0.3 2.48312×10−4 −1.2 × 10−3 blows up
0.2 0.01 0.1471 not blow up

Fig. 2. The functions vmin(t) with initial ellipse γ0.

There some numerical simulations which support the Conjecture 5.2 and the Remark 5.3. Let 
γ0 be an ellipse (80) with a = 80 and b = 0.1. The simulation results of the flow (1) with initial 
γ0 are shown in Table 1 and Fig. 2, where vmin(t) := min{v(θ, t)|θ ∈ S1}.

Remark 5.4. The above solutions of the PDEs are calculated by discretization method, so they 
may perform a little different from the continuous solutions. If vmin(t) > 0 then the computation 
has no problem. Usually, if the flow blows up at time t0, there is a very short time interval (t0, t1)
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in which vmin(t) < 0. After the time t1, the solution in some cases of α becomes complex with 
imaginary part.

5.2. More numerical examples

Let X0 (θ) be a convex curve parameterized by the outward normal angle θ with the support 
function given by p (θ) = 10 + cos (2θ) + cos (3θ) − 0.25 cos (4θ). Its radius of curvature is

ρ0 (θ) = p (θ) + d2p

dθ2 = 10 − 3 cos (2θ) − 8 cos (3θ) + 3.75 cos (4θ) .

With the help of MATLAB, one can compute the minimum of ρ0(θ), which is 0.065. So X0 is 
a smooth convex closed curve in the plane. Let X0(θ) evolve according to the flow (1). In the 
following we shall use the above ρ0 (θ) as the initial data in equation (9). We know that the flow 
(1) blows up if the function ρmin(t) = minθ∈S1 ρ0 (θ, t) drops to 0 in finite time.

Example 5.5. Let α be 2, 3, or 4. With the help of MATLAB, one can compute the solution 
ρ(θ, t) to (9), respectively. Then the function ρmin(t) can be determined (see Fig. 3 (a), (b), (c)). 
These three flows all blow up in finite time.

The blow-up time for α = 2, 3, and 4 is t ≈ 5.5 ×10−4, 3.2 ×10−5, 2.2 ×10−6 respectively. 
It follows from the numerical computation that the bigger α is, the faster the flow blows up.

Example 5.6. Let α be 0.5, 1, or 1.73. It follows from computations that these three flows all 
exist globally, because ρmin(t) > 0. The functions ρmin(t) are presented in Fig. 4. For α = 1.73, 
ρmin(t) is decreasing initially and then becomes increasing as time proceeds. More examples 
show that ρmin(t) is increasing if α < 1.

Remark 5.7. The flow (1) with α = 1 has been studied by [10]. The authors proved that X(·, t)
converges to a finite circle if the flow exists globally on the time interval [0, ∞). In [11], using 
the idea of parallel curves, the author proved that for some initial curve X0, the curvature κ does 
blow up in finite time.

The above blow-up examples indicate that a 1/κα-type non-local flow does not always exist 
globally for all initial convex closed curves. Given an initial convex curve, it seems that the 
smaller α > 0 is, the longer the flow (1) lasts. In view of this, we make the following conjecture:

Conjecture 5.8. Let X0 ⊂ R2 be a smooth convex closed curve. If α > 0 is small enough, then 
the length-preserving flow (1) with initial curve X0 will exist on the time interval [0, ∞).
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