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Abstract

This paper is concerned with the effects of nonlinear diffusion on global solvability and stabilization in a
variety of models which generalizes the following prototype

ne+u-Vn=v-m"1vn) = V. (nVec) — pn,
ct+u-Ve=Ac—c+p,
pr+u-Vp=~Ap—pn,

ur+VP=Au+ n+p)Vop,

V-u=0

with a given function ¢ € W2(Q), where @ C R? is a general bounded domain with smooth boundary.
Based on an energy-type argument combined with maximal Sobolev regularity theory, we conclude that if

37

m> —,
33

an associated initial-boundary value problem admits at least one globally bounded weak solution which
stabilizes toward the spatial homogeneous equilibrium (7, Poo, Poo, 0) in the sense that

In(, 1) —noollLr()+llc, t)_pOOI|W1~00(Q)+ oG, l)—Poo”WI,OO(Q)"‘“M(', DL —> 0 ast— o0
for any p > 1, where noo := ﬁ {Jano— o p0}+ and poo = ﬁ {Jqro— ano}+.
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1. Introduction

We consider the following chemotaxis-Stokes system

n4+u-Vo=V.(Dn)Vn) —V.nVc)—pn, xe,t>0,

¢+u-Ve=Ac—c+p, xe, t>0,
pr+u-Vo=Ap—pn, xeR, t>0, (1.1)
ur+VP=Au+ n+p)Veo, xe, t>0,
V.-u=0, xe, t>0,

which describes the process of coral fertilization occurring in ocean flow, where the unknown
functions n, ¢, p and u represent the density of sperm, the concentration of the chemical signal
expelled by egg gametes, the density of eggs, and the velocity field of the ambient ocean flow,
respectively. As shown in the experiments [4,5,21,22], the chemical signal can induce certain
oriented motion of spermatozoid toward egg gametes, which is referred as chemotaxis and plays
an enhanced role during the period of fertilization.

In the case when both sperms and eggs, which are transported by a known fluid velocity field
u, enjoy the same density i.e. n = p, and when the evolution of ¢ is approximated by an elliptic
equation under the assumption that the diffusion of the signal is much faster than that of the
gametes, system (1.1) with D =1 is reduced to the original model as follows

{n,+u~Vn=An—xV~(nVc)—nq, xe, t>0, (1.2)

0=Ac+n, xeQ, t>0.

Mathematical analysis has shown the temporal decay of the total mass f]R2 n for both the super-
critical case g > 2 and the critical case g =2 ([13,14]).

If the transport of both the gametes and the chemical signal is also under the effects of an
unknown solenoidal velocity field # whose evolution is governed by a (Navier—)Stokes equation,
then system (1.2) becomes

nt+u~Vn=An—XV~(nVc)—;m2, xe, t>0,

c;+u-Ve=Ac—c+n, xe, t>0, (13)
ur+xkWw-Vyu=Au—VP+nVe, xe, t>0, ’
V-u=0, xe, t>0.

System (1.3) with ¥ = 0 was proposed and studied in [7], where the authors constructed a global
weak solution without any smallness restriction on initial data in the spatially two-dimensional
context.

In more realistic case when the densities of sperms and eggs are not identical all the time, i.e.,
n # p, system (1.3) turns into
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n+u-Vo=An—xV-nVc)—pn, xe,t>0,
pr+u-Vp=Ap—pn, x e, t>0, (1.4)
0=Ac+ p, xe, t>0,

where the reaction —pn shows the consumption of the gametes caused by the contact of sper-
matozoid and egg in the process of fertilization. For system (1.4), similar conclusions as that
derived for system (1.2) are proved in the three dimensional setting, and the achieved temporal
decay properties therein are measured with higher regularity, i.e., L?(R"Y) with any p > 1 for
N = 2,3 [3]. With p replaced by p — ﬁ fQ p on the right-hand side of the c-equation, Espejo et
al. [6] have showed the influence of the increasing chemical signal on the dynamic behavior of
the gametes in the spatially two-dimensional case.

If one takes into account the transport of the chemical signal through the fluid flow whose
velocity field is modeled by an incompressible (Navier—)Stokes equation, then system (1.4) can
be extended to the following version, that is

n+u-Vo=An—V-(nVce) — pn, xeQ, t>0,
¢t +u-Ve=Ac—c+p, xeQ, t>0,
pr+u-Vp=Ap—pn, x e, t>0, (1.5)
U +kWw-VYu=Au—VP+mn+p)Vep, x€,t>0,
V-u=0, xe, t>0,

which with k = 1 was firstly investigated in [8] for global classical solvability and stability in
two-dimensional bounded domain. In the spatially three dimensional context, whether for initial
value problems or for initial-boundary value problems associated with (1.5), the construction
of global solutions and even the detection of spatially homogeneous equilibria need to rely on
appropriate smallness restrictions on initial data [3,9,17,20] or on certain nonlinear dampening
mechanism, such as saturation effects of gametes [17,20], signal-dependent sensitivity [16] or
slow p-Laplacian diffusion [18].

In this paper, our intentions are to explore how strong the dampening effects exerted by the
porous medium type nonlinear diffusion of spermatozoid can prevent the occurrence of collapse
to system (1.1) and to detect the convergence of the global solutions as time goes to infinity. In
order to state our main results precisely, let us specify the evolution problem by considering (1.1)
together with the initial data conditions

n(x,0) =no(x), c¢(x,0) =co(x), p(x,0)=po(x) and u(x,0) =uo(x), xe€, (1.6
as well as the boundary conditions

on dc  dp
=—=—=0and u=0, xe€92, r>0, (1.7)
dv  Jdv  Jv

where  C R3 is a bounded domain with smooth boundary, and moreover, the initial data in (1.6)
fulfill

no(x) € CH() for certain ¢ > 0 with ng >0 in €,
co(x) € Who°(Q) with ¢y >0 in €,

po(x) € Wh°(Q) with po >0 in €, and

uo € D(A%) for some « € (3, 1),

(1.8)
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where A stands for the Stokes operator whose domain is defined as D(A) := W22(Q; RY) N
Wol’z(Q; R3) (N L2 (Q; R3) with L2 (Q; R?) := {w € L*(2; R?)|V - = 0} [23]. Apart from that,
the function D in (1.1) is assumed to satisfy

DecC?

loc

([0, o)) ﬂc}oc((o, o)) and D(s) > Cps™ ! foreach s >0 (1.9)
with certain ¢ € (0, 1), Cp > 0 and m > 1. As for the given function ¢, we suppose that it fulfills
b€ Wr(Q). (1.10)

Here and in the sequel, we abbreviate @ := ﬁ fQ o for w € LY(Q).
Within the context of these hypothesis, our main results with regard to global solvability and
stabilization can be formulated as follows.

Theorem 1.1. Ler 2 C R3 be a bounded domain, and let (1.9) be valid with some

37
—. 1.11
m> == (L.11)
Then for given ¢ satisfying (1.10) and each (ng, co, po, ug) complying with (1.8), one can find a
quadruple of functions fulfilling

n e L®(2 x (0,00)) N C2([0, 00): (Wy 2 (2)*). ]

¢ € MNgs1 L0, 00); WH(2) N €22 x [0, 00) N (2 x (0, 00)),

p €Myt L0, 00); WH () N CO(2 x [0,00) N CHUR x (0,00)),

u € L¥(2 x (0, 00); RN L2, (10, 00); Wy * (2 R¥) M L2 (2 R) N CAURQ x [0, 00); RY),

(1.12)

such that (n,c, p,u) solves problem (1.1), (1.6), (1.7) in the sense of Definition 7.1. Further-
more, for each p > 1 the solution (n, c, p, u) stabilizes to the spatially homogeneous equilibrium
(Noos Poos Poo, 0) in accordance with

In(, 1) —nocllr@) + llcC, 1) = poollwioc (@) + 10, 1) = poollwioo @y + I, DLy — 0

ast — oo (1.13)

With neg 1= Ilﬁl {ano—fQ,oo}+ and peo 1= I]ﬁl {pro—ano}+.

To the best of our knowledge, for chemotaxis-fluid systems modeling coral fertilization, there
is few rigorous mathematical results on large time behavior of the solutions under the effects
of porous medium type diffusion. From this point of view, our results can be referred as an
enrichment in this respect.

The core of our analysis lies in combining an energy-based reasoning with maximal Sobolev
regularity theory appropriately. More precisely, we rely on a Lyapunov quasi-energy functional
to establish some basic a priori estimates (see Sect. 3), which makes it possible to improve the
regularity of the component n properly by means of a first bootstrap iteration (see Sect. 4). With
this as a starting point, a second recursive reasoning based on maximal Sobolev regularity ar-
guments enables us to derive the desired estimates, so as to achieve the further regularity of the
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solutions by virtue of some well-established reasonings (see Sects. 4—6). The compactness pro-
vided by the further regularity underlies both the verification of global solvability by a standard
extraction procedure and the detection of the spatially homogeneous equilibria that the solutions
eventually approach by an Ehrling-type argument (see Sects. 7-8).

2. Preliminaries
Due to the presence of nonlinear diffusion D, it is essential to investigate the regularized

problems of (1.1), (1.6) and (1.7) at first. In accordance with the regularization procedures used
in [29,30], we can introduce the following approximate variants of (1.1), (1.6) and (1.7)

Ner +ite - Vg =V - (Dg(ng)Vng) =V - (nng/(ns)vce) — peFe(ne), xeQ, t>0,
Cet +Ug - Vg = Acg — Ce + e, xe, t>0,
Per +itg - Ve = Ape — pe Fe(ng), x €, t>0,
Ugt + VPe = Aug + (ng + p)Vo, x€eR, t>0,
V-u, =0, xeQ, t>0,
aanugz%:%:Q ug =0, x €08, t >0,
ne(x,0) =no(x), c:(x,0)=co(x), pe(x,0)=po(x), ue(x,0)=up(x), xe.
(2.1)
Here, the family of functions (D¢)s¢(0,1) satisfies
D, e C2([0, 00)) such that D.(s) > & foreach s >0 andall ¢ € (0, 1), and that 2.2)
D(s) < D.(s) < D(s) +2e foreach s >0 andall € € (0, 1). ’
Moreover, for each ¢ € (0, 1), (F;)ge(0,1) 18 defined as
)
F.(s) ::/ﬂs(o)da, s>0 (2.3)
0
with (9c)ec(0.1) C (10, 00)) fulfilling
. . 1 .2
0<9.<1in [0,00), %, =1 in [0, -] and ¥, =0 in [—, 00), 2.4)
£ £

and thus (2.3) implies

F. e C*®([0,00)), 0<Fy(s)<s and 0 < be(s) <1 forall s >0 andeach €€ (0,1) (2.5)
as well as

Fe(s) — s forany s >0 and F.(s) — 1 forany s >0 as ¢ — 0. (2.6)

In the framework of the reasoning in [31, Lemma 2.1], which is based on a combination of

the maximal principle and the fixed point arguments, the local solvability of (2.1) as well as an
extensible criterion can be established by a suitable adaption.
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Lemma 2.1. Let ¢ € (0, 1) and Q C R? be a bounded domain, and let (1.10) be valid. Then for
(no, co, po, o) satisfying (1.8), there exist a maximal existence time Tyax ¢ € (0, +00] as well as
functions ng, ce, pe, Ue, Pe fulfilling ng > 0, c. >0, pe > 0 and

ng € CO(S__2 x [0, Tiax,e)) m C2,1(S_72 x (0, Tmax,e)):

¢ € CO(2 x [0, Tnax,£)) N C>1 (R % (0, Tinax,£)) (N L= ([0, Trnax); W(2)),

Pe € CO({2 x [0, Tmax,s)) m C2,1(g_2 x (0, Tmax,e)) ﬂ L ([0, Tmax,s); Wl’q(Q))’ 2.7)
Ug € CO(Q x [0, Tinax,e); RS) m c*! (Q x (0, Tinax,e); R3)1

P e CLO(S_2 x (0, Thmax,e))

with some q > 3 and o € (%, 1), such that the functions make up the unique solution of (2.1). In
addition, if Timax,e < 00, then

e, Dllzoe () + llee G D llwracgy + 10eCo D llwragy + 1A% D12 — 00 (2.8)

as t — Tmax.e.
The presence of the reaction term — p, F (n,) along with the nonnegativity of n, and p, im-
plies some basic but crucial estimates which follow from integration by parts and the maximal

principle.

Lemma 2.2. For each ¢ € (0, 1), we have

d d
. / ne(0=0, & / pe(.1) <0 forall 1 (0, Tmax.e) 2.9)
Q Q
and
/ ne(t) < / no. / pel1) < f po Jorall 1€, Taune) (2.10)
Q Q Q Q
as well as
/ns(wl)—/Pa(',l‘)Z/no—/Po Sforall te (0, Thax.e), (2.11)
Q Q Q Q
los . ) llLe@) < llpollLe)y forall te (0, Tmax.e) (2.12)
and

llce (-, )l Loeo(@) < max{llcollLo), lloollLe@)} i =M. forall te (0, Tmax,e)- (2.13)

Proof. Integrating both n.-equation and p.-equation over €2, we obtain

d d
E/”s(wt)=E/P8('J)=—/Pst(”5) forall re (0, Tmax.e), (2.14)
Q Q Q
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which implies (2.9) thanks to the nonnegativity of p, F.(n;), and thus (2.10) is valid upon inte-
grations of (2.9) over (0, t) for any ¢ € (0, Tax,¢). Moreover, (2.11) is a straightforward result
from integrating (2.14) over (0, ¢) for each ¢ € (0, Trax.¢). As for (2.12), it follows from an appli-
cation of the maximum principle to p.-equation. With (2.12) at hand, we can finally infer (2.13)
from the comparison principle. O

Now, we provide an inequality constructed in [15, Lemma 2.7 iv] which plays a crucial role
in detecting the evolution of fQ |VCC;‘ in the sequel.

Lemma 2.3. For each positive w € C*(Q) satisfying %—‘3 = 0o0n 92, there exist positive constants
ko and My such that

[Aw|? IVol|?Aw S [Vol*
2| —+ | —5— =<—ko [ 0D Inw|” —ko + Mo (2.15)
w w a)

Q Q Q Q Q

3. A quasi-energy structure of (2.1)

For deriving higher regularity properties, which is used as a foundation of the first iterative
bootstrap procedure in the next section, we resort to constructing a quasi-energy functional.

Lemma 3.1. For each ¢ € (0, 1) and any t € (0, Tmax.e), we can find My > 0 and M > 0 such
that

— [ nglnng+—— [ [V +&)2|"<¢ | |Ve|"+ My if —<m=<2, (3.1
dt m2 9
Q Q

—f(nﬁe)’" '+ CD(m_I?)/IV(ners)m ' <;/|ch| +My if m>2 (32

with arbitrary ¢ > 0.

Proof. In view of n.-equation in (2.1), V - u, =0, (1.9) and the nonnegativity of p, F¢(n), we
integrate by parts to obtain

%/”e Inn, Z/lnne (V *(De(ne)Vng) — V- (neFé(ns)Vce) — P Fe(ne)

Q
e Vi) — / pe Fu () (33)
Q
s—CD/(ng+e)""2|Vng|2+fF£<na)Vns-Vcs —fPerms)ln”s
Q Q

for all ¢ € (0, Tax.¢). From (2.12) and the fact that
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1
slns > —— forall s >0, (3.4)
e
we can infer that
2]
— | peFe(ng)Inng < — | peFe(ng)InFe(ng) < THPOHL“’(SZ) (3.5
Q Q

for all # € (0, Thmax.¢)- Invoking Young’s inequality, we also have

Fl(n;)Vng - Vee

—

Q
N |+— (e + )" Ve
4 Nng & Ng ne & Ce (36)
Q
STD f ne + )" 2|Vne|* +¢ / Veel* + +e)t
Q
for all t € (0, Trnax,¢), where ¢ > 0 is arbitrary. In the case when 190 <m< %, we actually have

4(2mm) < 6, and thereby an application of the Gagliardo—Nirenberg inequality along with

(2 10) provides C| > 0 and C, > 0 such that

4(2 m)
/(”e +8)4 am _” (ng +¢)2 || 4(2 42—m)
(€2)

4Q2—m)
m

<c (190 + o0 g e+ 0F )3 o +e03] 3,

9—6m
3m—1

<G, /|V(ng+e)%|2+1 (3.7)
Q

—6m

for all ¢ € (0, Tiax,¢), Where a = 2(3'"(372'”) € (0,1). Since m > % implies 2 o < 1, we

. . 2—m)(3m—1)
employ Young’s inequality once more to derive

9—6m
3m—1

4c2 /(1’15+8)4 2m<4c2 /|V(n€ +8)2| +1

—’;/|V(ng+s)z ?+C; (3.8)
Q

/ns+8)’" 2\Vne > + Cs
Q
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with some C3 > O for all # € (0, Tinax,¢). Whereas for % <m <2, itisclearthat0 <4 —2m <1,
whence the Holder inequality combined with (2.10) entails

1 4—2m
— +¢ <C 3.9
43¢ _/(ng ) =C4 (3.9)
Q

with certain C4 > O for all # € (0, Trax ). Letting Cs := max{C3, C4}, we deduce from (3.8) and
(3.9) that

1
4C2¢

C
/ (ne 462" < =2 / (ne +&)" 2|V, |* + Cs (3.10)
Q Q
for all t € (0, Trax,¢)- Thereupon, a combination of (3.6) and (3.10) implies

/ Cp m—2 2 4

Fo(ne)Vne - Vg < - (ne +&)" 7 7|Vng|” +¢ | [Vee|" +Cs (3.11)
Q Q Q

for all # € (0, Timax,¢). Substituting (3.3) and (3.5) into (3.11), we achieve (3.1) with the choice of

M = @HPOIILOO(Q) + Cs.
Next, for m > 2, we test ng-equation against (m — 1)(n, + €)™~2 and obtain from (1.9) that

% f(ns 4oy = — (m— D)m —2) /(ne 4 £)" 3 Dy ()| Ve
Q Q
+@m—-1D(m— 2)/”8(”8 + 5)m73Fg/(”l£)vns Ve
Q
—(m—1) [ (s + )" % pe Fe ()
& (3.12)
<~ Cpm—)(m-2) /<n€ +6)2 4|V, P
Q
+@m—1)(m — 2)/”8(”8 + 8)m73Fg/(n8)vn8 Ve

Q

—(m—1) / (s + )" 2 pe Fe ()
Q

for all ¢ € (0, Timax.¢), Where in conjunction with (2.5) two applications of Young’s inequality
yield
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(m —1)(m —2) / ne(ne +€)" 3 F.(ng)Vng - Ve
<(m—1)(m—2) /(ns +8)" 2| Vng| - Vg

Cp(m — 1)(m —2) R (m—l)(m—Z)/ 5
< > /(na+8) |Vne| +—2CD Vel

(3.13)

_ _ _1\2 _97\2
<O [ o Hvn P g [ (et + D
2 167C2

for all # € (0, Tmax.¢). Thanks to the nonnegativity of (m — 1) fQ (e +€)" 2 pg Fe(ng), (3.2) thus

follows from (3.12) and (3.13) with M, := %

Aided by the uniform L°°-bounds in (2.13), the integral fQ WLCF‘ generated in the following

detection does not only make it possible to offset the integral appearing on the right-hand side
of both (3.1) and (3.2) but also provides a chance to obtain the spatio-temporal estimates of

ftH_l Jo IVce|* in the sequel. O

Lemma 3.2. For all ¢ € (0, 1) and each t € (0, Tmax¢), it is valid that

Ve |? Ve, |? L3k [ IVe o am, Vel
f| X /I o B f1Valt c/|vue|2+fﬂ+MoMc|sz|
dt Ce ko o Pe

(3.14)
with M. defined as in Lemma 2.2 and ko as well as My provided in Lemma 2.3.

Proof. Due to ¢, > 0 guaranteed by Lemma 2.1, it follows from c,-equation in (2.1) and inte-
gration by parts that

d [ |Vl / Ve - Ve / |Vee|?
— =2 — 5 Cet
dt Ce Ce cz

Q Q Q

Vg
=2 c -V (Ace — ¢ + pe —ue - Vee)
e
Q

|Vee|?
— 2 (Acg — ¢+ pe — s - Vi) (3.15)

2/|Acs|2+ |ch|2 /|Vcs|2 /ch V pe
Ce
Q Q
_/PS|V2C€|2+2/ACS
Cg Ce

Q Q

|Vce|2
-Veg) — 5 (g - V)
CE
Q
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for all t € (0, Tmax,¢)- By Young’s inequality, we obtain

. 2 2
2/ Ve - Vs S/,ngzcd L [ Vel (3.16)

Ce Cg Pe
Q Q Q

for all t € (0, Tmax,¢)- In view of V - u, =0, we integrate by parts again to derive

A Vel Vee - V(g -V
2/ c .VCg)zzfl cel (us.wg)—z/—c"’“ (e Vee)
Ce cZ
Q Q

Ce
Q

Veel? Vee - Vug -V -D%c; -V
22/| ;;| (Mg'VCg)—Z/ Ce Ug Ce _2/ Ug Ce Ce
&

Ce Ce
Q Q

for all t € (0, Timax.¢), Where

v ’ 1 VIV 2
/| 3 (“8'V68>=—f|Vcs|2ug-v-(_)zfu
cg p o

@ Q

&€
Q
ug - D*cy - Veg
) / Mo D7Ce - Vee
Ce

Q

for all ¢ € (0, Tmax.¢), whence again in light of Young’s inequality, we have

A Ve, |? \Y Vu, -V
Zf Cs(ug Ve,) — /| Cel (. ch)__zf ce - (Vug - Veg)

Ce
Q

o IVl
?/ ; /Calwsl (3.17)

o [ Ve |4 4M.
Z/ 2 /IV e
Q

for all t € (0, Thax,¢)- Apart from that, Lemma 2.3 together with (2.13) implies

Ac,|? Ve |2 Ve |
—2/| el +/| ;' Acsg—kofc8|D21nc8|2—ko/| ;' +M0/cs
J Ce J cg c;

Q Q Q

(3.18)

he o |Vee|*
< —ko [ ce|D"Ince|” — ko 3 + MoM_.|2|
&
Q

for all t € (0, Tax.¢). Inserting (3.16)-(3.18) into (3.15), we obtain



12 J. Liu/ J. Differential Equations 269 (2020) 1-55

Ve |2 Ve |? 3k Vee|*

|Vee| +| Ce S—kO/Cs|D 1nc£| __0 | C£|
Ce

& (3.19)

v 2
wl+ [ % + MM 2
&

ko
Q

for all ¢ € (0, Timax,¢), and thus (3.14) can be achieved immediately by dropping the integral
ko fQ c£|D2 Incg |2 thanks to its nonnegativity.
Now, let us detect the evolution of |, p In ps and [, |uc|?, respectively. O

Lemma 3.3. Forany ¢ € (0, 1) and all t € (0, Tax.¢), we have

\V/ 2
_/,06 et [ ps' /no, (3.20)

Q

and moreover, there exists M3 > 0 such that
D m2 10
— = [ |V +e)2 |+ M;3 if —<m<2,
m2 9

d 2 2 Q

i [ 1+ [ 1w < o DD 150, 4 a2
Q Q 6M, 4(m—1) ¢ 3 ’

Q

(3.21)

where M. > 0 is provided by Lemma 2.2.

Proof. Upon integration by parts, we derive from p.-equation in (2.1), V - u, = 0 and the non-
negativity of [, Fe(n,)p, that

Peln pp = /lnps : (Aps — peFe(ng) —ue - Vps) - f Fe(ng)pe

dt
Q Q Q

IV pel”

=—- P - Fe(ng)peInps — Fe(ng)pe

Q ¢ Q Q

IV pel”

=- — - Fe(ng)pe In pe

Pe 2

for all t € (0, Thax,¢), Where from (3.4), (2.5) and (2.10), we can infer that

1 1 1
_/Fa(ns)pslnpsf_/Fs(ng)f_/nsf_/n()
e e e
Q Q Q

Q

for all t € (0, Thax,¢), and thus (3.20) holds.
Next, according to the reasoning of [32, Lemma 3.5], a standard testing procedure with u, as
a testing function applied to u.-equation in (2.1) entails
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= / ue? + / Vie|? = / (e + po)tts - Vo (322)

for all 7 € (0, Thax.¢). Due to W2(Q) < L%(Q) in the three-dimensional context, we can find
C1 > 0 satisfying

litell oy < CillVitell 2y (3.23)

for all ¢ € (0, Tax.¢)- It follows from the Holder inequality, (3.23), Minkwoski’s inequality,
Young’s inequality, (2.12) as well as (£ 4+ 1)* < 2(£2 4 n?) for all £ > 0 and > 0 that

/(”8 + pelitg - Vo

Q
<llueli s IVPliLe@)llne + psI|L5 @
<CillVuell 2 IVl =@ leell g )+ e +el g )
3.24
Lo CHVHI2 i ) (3:24)
2II uelle(Q) f(llpslng(Q)+Ilns+8I|Lg(m)
1 2
<31 Vuel g + CHIVO 0 ) (ol (o I Fells )
1 5
Vu +C?|Vo|? 2 onlQ1F + CEIVOI coron e + &2
<5 IVuel72 ) + CHIVEl (@ P01 T @) |21 + CTIVS ey e e

for all t € (0, Tipax.¢)- For 5 1 <m<2,we have = < 5 < 6, which allows for an application of
the Gagliardo—Nirenberg inequahty along with (2 10) to provide C3 > 0 and C3 > 0 such that

2
lne +ell” 6 —||(na+8)2||'"72
L3(Q) S

()

4
m—2 m

<G (IIV(ng +6) 3 5, Nne +)% ||2“’"(g;> +lme+o% 2 (m>

L
3m—1

/|V(ns+s)%|2+1 (3.25)

forall ¢ € (0, Tmax,s), Where 3m1_ <lduetom > 5 Therefore by Young’s inequality, we have
m2
Ine +ell® §€1/|V(ns+€)2| +Cy (3.26)
L5(Q)
Q

1

for all # € (0, Tinax.e)> Where 1 > 0 is arbitrary and Cy := C4(¢1) > 0. With ¢y := Vol
1o

i - B, substituting (3.26) into (3.24) yields
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ko

1 2
/(ne + pelus - Vo < EHVMe”Lz(Q) + M,

(o
2 [vee+oifres G
Q

with Cs := Cf||V¢II%OQ(Q)(C4 + ||,00||%00(Q)|Q|%) for all ¢ € (0, Tmax.¢), and thereby it follows
from (3.22) and (3.27) that

ko Cp m 2
—/Iugl2 fIVus|2_6M W/|V(ng+s)2| +2Cs (3.28)
Q

for all ¢ € (0, Tmax.¢). Whereas for m > 2, it is clear that - 1 < 3= 6 < 6, whence again by
the Gagliardo—Nirenberg inequality, we obtain

m— l

2 1
Ine el —||(ns+e)’"
LS LS(m 1) (Q)
2

m—1
L m m—1 (Q)

< Co |7+ | g e+ o

4
A [
Lm—T1(Q)

1 6m—11
m—1"6m—7

<Cy /|V(ng+e)’"*‘|2+1 (3.29)
Q
for all ¢ € (0, Tipax,¢)- Since m > 2 implies 0 < ﬁ . 66’:’n__171 < 1, we make use of Young’s

inequality to derive

112
||ng+e||ig(mscz/|V(ng+e>"’ "N°+Cs (3.30)
Q

with & = CZV% . lzk—/?,,r . szzl(nm:l? and Cg := Cg(£) > 0 for all ¢ € (0, Tiax.e), which
22

along with (3.26) implies

ko Cp(m—2)
12M,  4(m

[0+ poue 90 = 51901 +
Q

/|V<ng+e)m 'P+Co (331

for all ¢ € (0, Trax.e), Where Cy := C§||v¢||2m(9)(cg + 1 ,00||ioo(9)|§2|%). Combining (3.22)
with (3.31), we attain

d ke Cp(m—2
Ef|u8|2+/|wg|25 6 0o ol )/|V( e+ o)+ 20y (3.32)
Q Q

M, 4(m

for all t € (0, Tmax,s). As a consequence of (3.28) and (3.32), (3.21) is valid by a choice of
M3 :=max{2Cs, 2Co}.

Now, the quasi-energy structure mentioned above can be constructed by collecting Lem-
mas 3.1-3.3, which yields the following estimates. O
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Lemma 3.4. Let m > % Then one can find C > 0 independent of € € (0, 1) such that

/|V68|2+/|u8|25C forall t € (0, Tmax.e) (3.33)
and
r+1
m2 10
141 141 141 |V(ne +&)2|" for 5 <m=2

f/|ch|4+f/|Vps|2+//|ws|2+ L
rQ rQ r Q

//|V(ng+8)m_1|2 for m>2
r Q

<C foreach te (0, Tnaxe—1). (3.34)

ko
2||co|\Loo(Q)

Proof. In the case when 19—0 <m <2, we pick ¢ = in Lemma 3.1 and deduce from

Lemmas 3.1-3.3 that

d Ve |? 6M,
dr /nelnne+/@+2/pslnpe+—0/|ue|2

Vee|? Lk vc4 Vo2 M.
/|V(ng+e> i +/' e Of' o [EE 2 [ivup 639)

0

Q

6M . M3
ko

2
<M+ MoM_.|2| + z/no-i-
Q

for all ¢ e (0, Timax.¢) with M3 > 0 as given in Lemma 3.3. Similarly, for m > 2, Lemma 3.1 with

.= 2— together with Lemmas 3.2 and 3.3 entails
leol} so g
Ve 2
/(”£+€)m Ty /' el +2/pgln,og
C m—2 Ve k Ve 4 \Y
D( )\/‘V(ng‘i_g)m 1‘ +/| £| K0 | 8| | Ps /|V 8|
Pe
2 6M . M;3
SM2+MOMC|Q|+E no + . (3.36)
0

Q

for all ¢ € (0, Tax,¢)- Choosing M := max{l 2"[2) C“;’Zﬂ 1%) ,i) - My + My + MM || +

Zan + SMc M3} we infer from (3.35) and (3.36) that
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16
d Ve |2
— /nglnne—i—/' el +2/p€lnp8+
dt Ce
Q Q Q
(3.37)
1 m 2 |VC€|2 |ch|4 |V108|2 2
+—1 [ [Vae+o2| + + —+ + [ I Vitel
M Ce c; Pe
Q Q Q Q Q
<M
for all t € (0, Thax,¢), and that
d vV
o f(ns+ )"+ f +2/pglnps
Q
(3.38)
m—1 |ch|2 |ch|4 |Vps|2
M V(e + )" 2+ |v e?

Q

<M
for all ¢ € (O, Tmax ¢), respectively. In light of (2.10), the facts that £In§ < 5&3 forall £ >0,
< 1dueto X < m <2, we invoke the Gagliardo—

andthat—< 3— <6aswellas 0 < 3—
Nlrenberg inequality and Young’s inequality to attain

3 [
nelnng 55 ng

Q Q
loe+o% "
=g I+l

()
10

m 6m 3Im
< (1w - G o+ o 1ED v 0,20) "

2
3m—1

f|V(ng+s)%|2+1
§C2/|V(ng+e)%}2+cz+1

with some C; > 0 and Cy > 0 for all 7 € (0, Thnax.¢). Likewise, we can find positive constants C3
and C4 fulfilling

[ s
ps]npsfi Pe

Q Q
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1 10

3
= lpZ1 "
(3.40)

110

\v/ 2
|V pel s

for all ¢ € (0, Tmax,e). Whereas for m > 2, another application of the Gagliardo—Nirenberg in-
equality along with Young’s inequality provides C5 > 0 and Cg > O such that

[oeror o+ s

<Cs <UV(ng +e)" |

o)

I IHW( (A
§C6/|V(ng+8)m_l|2+c6 (3.41)
Q

for all t € (0, Thax,¢)- In addition, thanks to u, = 0 on 9€2, we have the Poincaré inequality

f uel? < C / Vue P (3.42)
Q Q

with certain Cp > 0 for all 7 € (0, Tinax.c)-
Now, we define

|Veel? 6M,
g:(t) = nelnng + +2p:Inp; + (1)
Ce ko
Q

forall t € (0, Thax,¢) and

Ve 2 Vet | Vpel?
|Vl +| :l +| 55' +|Vu8|2}(-,t)

& Ce e

he(t) :=/ {|V(ng o)+
Q

for all t € (0, Trax.¢), as well as

Ce

Ve |? 6M.,
Y (1) :=/{<ns+s>’"—1+ﬁ+zpslnpe " 2}(-,0
0
Q

for all ¢ € (0, Tmax.e), and
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Vel Vet [Vpel?
Vel +| el +| el +|Vu8|2}(-,t)

Ce Cg Pe

ze(t) = / {!V(ns o)

Q
for all ¢ € (0, Tinax.¢)- Collecting (3.39)—(3.42), we can obtain Cg > 0 and Cy > 0 such that
8e(t) < Cshy (1) + Cs
for all 7 € (0, Tinax.¢), as well as
Ye(t) < Coze(t) + Co

for all ¢ € (0, Tmax.¢), which in conjunction with (3.37) and (3.38) entails that

1 1
gs(t)+ gg(t)+ e =5 M =Cuo (3.43)

for all t € (0, Thax,¢), and that

1 1
Ve (1) + TMC ys(t)+ e =Co (3.44)

for all ¢ € (0, Tinax.¢)- Therefore, by an ODE comparison argument, we achieve

8e(t) < Cyp:=max{ sup g:(0),2MCsC1p}
£€(0,1)

for all ¢ € (0, Tmax.¢), and

Ye(t) < Cr2 :=max{ sup y:(0),2M CyC1o}
e€(0,1)

for all ¢ € (0, Tmax,e), Which combined with (2.13) implies (3.33). In the final, (3.34) follows

directly from (2.13) by integrating (3.43) and (3.44) over (¢,¢ + 1) for any 7 € (0, Tpax.e — 1),
respectively. O

4. A priori estimates for n,
4.1. Preparation for iterations

In this portion, we aim to clarify the relationship between the regularity index of n, and that
of V¢, by means of a similar procedure as performed in [30, Lemma 4.1], which is regarded as

a recursion formula for iterations in the sequel.

Lemma4.1. Letm > 1, p, > 1 and q > 2 fulfill

pszq<m—1+%)—<m @1
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Then for each L > 0 there exists C = C(p, p«,q, L) > 0 such that if for certain ¢ € (0, 1), both

/nf* )<L Sorall t € (0, Tmax.e) 4.2)
Q
and
t+1
/ / [Vee (o, t)|2q <L Sforall t € (0, Timax.e) 4.3)
t
are valid, then we have
/né’(-, 1)<C SJorall t € (0, Tmax.s)- 4.4)
Q

Proof. It follows from a direct computation that 2g(m — 1 + %) —(m-1+ 2%) =2q —

Dim—1)+ 2%(q — 1) > 3(m — 1), which allows for a hypothesis that p > max{p,,m — 1}
without loss of generality. In light of (1.9), (2.2), (2.5) as well as the nonnegativity of n, and p,,
we test ng-equation by pn? ~! and make use of Young’s inequality to obtain

[ n==pr =D f De(ne)n? 2|V, |* + p(p — 1) f n?~'F/(ne)Vn, - Ve,
Q

- p/ﬂeng_lFe(ns)

Q

<—Cpp(p—1) / P73 Ve P+ p(p — 1) / n{T R () Vne - Vee 5

- —CDP(”_ D /n’"+”‘3|wg|2+ —p(p_ D /n"—’"“|vc£|2

2CDP(P—1)/‘ rp=l
(m+p —1)?

p(p— )/ p-mtl |y, 2

for all t € (0, Tmax.¢), Where by the Holder inequality,

q—=1
q
(p—m+1)--44
/ n?= Ve, |2 < / ne b / Ve | (4.6)
Q Q

Q

_=

holds for all # € (0, Tryax.¢). In the case when (p —m +1) - qu] < p«, the Holder inequality along
with (4.2) provides C1 > 0 such that
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q—1

q

1
/ n L “.7)

Q

for all ¢ € (0, Tmax.¢)- If, inversely, (p —m + 1) - % > ps, then from the assumption p >
max{p,, m — 1} and the fact that qul <2 dueto g > 2, we deduce that

2(p—m+1). q_ _ 2q
p+m—1 q—17"qg—

<4 <6.
1

2q(p—m+1)

This implies Wh3(Q)— L@ G tm1 (Q)— L P+m rm=T (), whereupon combining with (4.2), we
employ the Gagliardo—Nirenberg inequality to obtain C; > 0 and C3 > 0 such that

q—1

T _1 . 2(p—m+])
(p—m+1)- 745 R =
3 =|[Ne 2g(p—m+1)
L @=Dp+m=1) (Q)
Q
—1 , 6lg(p—m—+1—ps)+px] 1 2(p—m+1)
< lv 2 arm—-pt || A “) =1
=C2| Vg N e
L“(R2) Lp+m—l (Q) 4.8)
pm—1 2(p—m+l])
7 p+m—
+C2 ng ‘ 2px
L ptm—1 (Q)
_1 . Slg(p—m+1—ps)+px]
1 AP M .~ P )T Pk]
<C3’ v o BpEnDpl o
— &
L2(Q)

for all 7 € (0, Thax.e) With a : 3(;’3;” m‘j[]q)([g’( p"gnl 11)’*);1]’*] € [0, 1]. In conjunction with (4.6)

and (4.8), an application of Young’s inequality entails

1

6lg(p—m+1=psx)+pxl
Lp 1)/ P Ve, |2 <C4{HV"H’; ]’ SatwEbepl } /ch |2

LX)

_q
it 2Cop(p = 1) HV” pm= ‘ Sgipmt]—pultpel i !
= (m+p—1)2 ¢ L2©)
+Cs / Vel 4.9)
Q

“(m+p—1)2 L2(Q)

+ Csf |V |2
Q

6[g(p—m+1—px)+pxl
C _ 1 p+m 1 2LLZT — Pa)T Pkl
_Copp—1 H GDBGE-D=p
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with C4 > 0 and Cs > 0 for all # € (0, Tinax,e), Where the third inequality follows from the fact
1
that (& + )T <271 (£9-T 4 na-T) forall £ > 0 and 5 > 0. Since
6lg(p—m+1— ps)+ psl _
(g —DB(p+m—1)— pl
6 Px
= —R2gm—-—1+—=7)—(m
(@~ DB +m—1)—p.l {" ! 3
<0

by (4.1), we again make use of Young’s inequality to obtain

D+m— 6lg(p—m+1—ps)+psx] e
CDp(p_l) {H % (‘1‘]*1,7)[3(;+mfl)t;*] +1} < b= ) CDP(P_D /' p+ !

(m+p—1)7 L2(Q) “(m+p—172
(4.10)
2Cpp(p—1)
(m+p—1)72
for all ¢ € (0, Tmax.¢). Collecting (4.5), (4.9) and (4.10), we derive
C _ 1 p+m 1 2C _ 1
L[y 4 CoPP )2/‘ <CS/|Vc8|2‘1+4Dp(p ) @.11)
dt m+p-—1) m+p-—1)
Q Q
for all t € (0, Tmax.e)- Recalling m > 1 and p > max{p,,m — 1}, we can see that ZZ*_I <

p+2m - < 2 < 6, which warrants the embedding W!?(Q) — L7 (Q) — L T (Q),
whence another application of the Gagliardo—Nirenberg inequality together with (4.2) provides
positive constants Ce and C7 such that

ptm—1 20
P _ 0] p+m—1
f”le =g 2p
o Lp+m—1(Q)
ptrm—1 bZ—p ptm—1,(1=b)- ptm—1 2p
s p+m—1 p+m Pprm—1 || ptm—1 412
§C6‘Vna 2 ) ‘ns : ) 2px + Ce¢||ns 2 2p« ( )
L=(S2) L ptm—T1 () L ptm—1 ()
pm=1  p.—20__
T
§C7‘Vna : 21' 4Gy
L4(2)
. 3(p+m—1)(1-£%)
with b = L e (0,1) for all 1 € (0, Tmaxe). Due to b - —22— =

(g—=DB(p+m—1)—ps«] p+m—1

8(p—p-) < 2, we apply Young’s inequality to (4.12) and have

3(p—ps)+H2ps+3(m—1)
Q Q

for all ¢ € (0, Tmax.¢). This along with (4.11) implies

2
+2C

p+m—1

Vng 2
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d Cop0 [y o [ s s Ao

— <C Ve |9+ ——— 4.13

i Crmtp—1) =S Ve G Ty G
Q Q

for all t € (0, Thax,¢)- From (4.3), we deduce that

t+1 41
4Cpp(p—1) // 2  4Cpp(p—1)
Cs [ Ve + ————= 1 <C Ve 2+ —2EE
/ 5/' Sl (m+p_1)2 5 | 8| (m+p_1)2
t Q t Q
4Cpp(p—1)
<CsL+ —"F"——
T p—1)2

for all # € (0, Tiax,e — 1), and thus letting z(t) := [, n? (-, 1) and g(t) := Cs [, |Veo (-, )% +
mi(fl_)lz), we infer from (4.13) and [24, Lemma 3.4] that there exists Cg > 0 such that z(¢) < Cg
for all # € (0, Tinax.¢), Which entails (4.4). O

4.2. The first iteration for L= ((0, Tmax.e); L? (2))-estimates of ne for p < 9(m — 1)

Based on the regularity of V¢, provided in Lemma 3.4, we can achieve the uniform L”-
bounds on n, in (0, Tax,¢) by repeated applications of the iterative criterion (4.1) with fixed
q =2 provided that m > %. As enlightenments for the reasoning herein, the original idea can be
found in precedents [26,30].

Lemma 4.2. Let m > %). Then for each p € [1,9(m — 1)), one can find C(p) > 0 independent
of ¢ € (0, 1) such that

/nf(~, t) <C(p) forall t € (0, Tmax.¢)- (4.14)
Q

Proof. Define a sequence (p;) jen C R fulfilling

2
Djt1 = gpj—i—?a(m—l) forall j e N (4.15)

with the initial term pg := 1, then the hypothesis m > 190 ensures that p; /7 9(m —1) as j — oo.

Thus, for deriving (4.14), it is sufficient to verify the validity of (4.14) with p = p; for each
J € N thanks to an interpolation reasoning. From (2.10), we know that (4.14) holds with p = py,
whereupon by an inductive argument we only need to prove that (4.14) is valid with p = p;14
provided that fQ ng" (-,1) < C1(j) holds with some C;(j) > 0 for j € N. In light of (3.34), this
can be achieved by an application of Lemma 4.1 with p, := p; and ¢ := 2, and thus completes
the proof. O

4.3. An improvement on regularity for Vcg

Observing from Lemmas 3.4, 4.1 and 4.2, one can find that merely relying on the condition
(4.3) with ¢ = 2 might be inadequate for deriving higher regularity on n, so that in view of
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the relationship between p and g as shown in (4.1), it is essential to improve the estimates of
V¢, at first. To achieve this, we need the following two well-established lemmas, where the first
one provided in [28] shows the improved estimates for u, based on known regularity of n, in
the context of 3d-Stokes system, and the second one asserted in [ 18] reveals the spatio-temporal

regularity that V¢, can reach whenever n, has the same regularity as that in the first one.

Lemma4.3. Let N =3, p e[l,00) and q € [1, 0o] be such that

3p

1=53_2p)

3
oD
fr=3

) 3
g <00 ifp>s.
2
Then for all L > 0 there exists C = C(p, q, L) > 0 such that if
lne(,OllLr < L forall t € (0, Tmax.e),
then
||“s(',l‘)||L2q(Q) <C forall t € (0, Timax,e)-

Lemmad4.4. Let N =3, p e[l,00) and q € [1, oo] satisfy

Then for each L > 0 one can find C = C(p, q, L) > 0 such that if

/nf(-, t) <L forall t e (0, Thnaxe),
Q

then

t+1

/ /|vQF45(?ﬁnaute(&iﬁuﬁ—ly
r Q

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

421

Due to the same structure appearing in c-equation of (1.1), the proof of Lemma 4.4 is almost

same as that in [18], so here we omit it.
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4.4. The second iteration for L*°((0, Tmax.e); L? (2))-estimates of ne for any p > 1

Noting that

<3 <17
9(m —1) { =3 formsg, (4.22)
>3 for m > %
we intend to execute the second iteration for m < % as well as m > %, respectively.
Lemma 4.5. Let m > % Then for each p > 1 there exists C(p) > 0 such that
/nf(-, H<C(p) Sorall t € (0, Tmax.c)- (4.23)

Q

Proof. Since m > % implies 9(m — 1) > %, Lemma 4.2 warrants the existence of some p* close

to 9(m — 1) fulfilling p* > % and certain C(p*) > 0 such that

/”f*(, 1) < C(P*) forall ¢ € (0, Thax,e)-
Q

Thus, a combination of Lemmas 4.3—4.4 allows for a choice of arbitrarily large ¢ > 2 in (4.21),
which in conjunction with Lemma 4.1 shows (4.23) holds for any p > 1.

Now, let us consider the more complex case that m < %. Firstly, we try to identify the starting
point for a second iterative argument by developing the regularity achieved in Lemma4.2. 0O

Lemma 4.6. Let 19—0 <m< %, and let p, € [1,9(m — 1)). Then for any p > 1 fulfilling

2Dy

3px
3 ) 4.24)

Px
——(m—-14 =) - -1
P<3_2p*(m +3) (m—1+

and each chosen L > 0 there exists C(p, L) > 0 such that if for certain € € (0, 1)

/nf*(', )<L forall t € (0, Tax.e) (4.25)
Q
holds, then
/nf(~, t)<C(p,L) Sforall t € (0, Tmax.e)- (4.26)

Q

Proof. Abbreviating f(q) :=2q(m — 14+ &) —(m — 1 + 2’3’* ), we can see that f is monotone
increasing with respect to ¢ by computing f'(g) =2(m — 1 + %) > 0 due tom > %. Moreover,

since (4.25) implies the validity of (4.21) for any g < % by Lemma 4.4, we infer from
Lemma 4.1 and the monotonicity of f that (4.26) holds for a]f7 p complying with (4.24).
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As shown in Lemma 4.4 and also in the reasoning of Lemma 4.5, the derivation of (4.4) for
arbitrary p > 1 merely relies on the existence of p, > % fulfilling (4.2). In fact, in the case when

m= %, this can be achieved by an application of Lemma 4.6. O

Lemma 4.7. Let m = % Then one can find p* > % and C(p*) > 0 such that

/ng*(.,z) <C(p*)  forall t € (0, Tmax.e)- 4.27)
Q

Proof. Since 9(m — 1) = % due to m = %, it can be inferred from Lemma 4.2 that for any
p« €1, %) there exists C(py) > 0 such that

/nf*(', t) < C(ps) forall ¢ € (0, Tmax,e)- (4.28)
Q

In particular, if we choose p, := % < %, an elementary calculation entails

84 3
=— >,
pe=t 55 2

3D« D« 2Dy
1By -1 2
{3_2p*(m + 3) (m + 3 )

Therefore, Lemma 4.6 ensures that (4.27) is indeed valid for some p* > %
Whereas for % <m< %, the availability of the condition (4.24) in verifying the existence of
p* > % requires m > % as stated in Theorem 1.1. O

Lemma 4.8. For g—; <m< %, let

3p p 2p 3
= —1+3)—(m—-1+—), R\{=t¢t- 4.29
o(p) 3_2p(m t3)—m—1+-=) pe \{2} (4.29)
Then
(9(m — 1)) >9(m — 1) is equivalent to 7 <m < 7 (4.30)
€ 1 33 6 '

and there exist n1(p) > 0 and A > 1 such that

3
o)z Ap forall pe(90m—1)—m(p), 5). (4.31)
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Proof. Upon an elementary computation, we have

9(9(m— 1)) —9m—1)
_ 2Im—1) 9(m —1) 18(m — 1)
_4(m —1)(33m — 37)
N 7—6m

which shows the validity of (4.30). Now, we abbreviate

o(p):= % for p > 0.

From (4.30), it is clear that C{ := o <9 (m— 1)) — 1 > 0, whence a continuity argument warrants

the existence of 1 :=n1(p) > 0 such that 9(m — 1) — n1(p) > 0 and that

@(p)zA:=1+% for all p€<9(m—1)—n1(p),9(m—l)]. (4.32)

Moreover, due to m > 1, another computation shows that

a1y 6 1 3 3
Q(P)—(*G 1) )(m 1)+ 7(3—2p)2>0 forallpeR\{z},

from which and (4.32) we infer that ¢ > A on (9(m — 1) —n(p), %), and thus (4.31) holds.

Next we try to show that in the case when 3 33 <m<g I the index p*in (4.27) can still achieve
over 3 by a second iteration. O

Lemma 4.9. Ler 3 33 <m < g. Then there exist p* > 5 3 and C(p*) > 0 such that

/nf*(-, 1) < C(p*) Sforall t € (0, Tmax.¢)- (4.33)
Q
Proof. Due to m > g;, with o : R\ {3} — R defined as in Lemma 4.8, we derive from an

elementary computation that 9(m — 1) > and that

12 3.1 B 2.
()2t o 2
11 3-2. T 3 3

8
=3(m — 1)+ — (4.34)
11
12

>—.
11
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By choosing
12
= 4.35
poi= 19 (4.35)
without loss of generality, we thus obtain a recursive sequence defined as
pi=opj-0.  jeNy={123 .} (4.36)

Therefore, for some given 0 < C; < min{%, 0 (%) — 1}, from the monotonicity of ¢ in R \ {%}

and an inductive reasoning, we infer that

ci\/
pj> (1 + %) - Po forall jeN,. (4.37)

According to the reasoning of Lemma 4.7, for achieving (4.33) for some p* > %, it is sufficient

for us to find some jp € N such that

8 3

7 <pj < 3 (4.38)
For the interval I := ( - 1 ) since
1 (SRS} <))
og%(l—i- 5 ) og%<l+ 5 )
1 1 ni-w2 n(l+1 )
__3 21 _ -1

ogs (1+9) logz (1+%) m(1+%)  w(1+%)

due to Cy < %, we make sure that there exists at least one integer lying in /, which we denote
by jo. Then recalling (4.35), we have

8 1+c] Jo 16 3
- < — ) ‘po<—<-=.
7 2 PO=11773

This along with (4.37) shows that the p j, we obtain by iteration fulfills (4.38). Thus, in light of
(4.36), Lemma 4.6 warrants that

8
/ Wl (.0<Cy forall 1€, Toawe)
Q

with some C» > 0, from which (4.33) follows in accordance with the reasoning of Lemma 4.7.

With Lemmas 4.7 and 4.9 at hand, we can achieve the same estimates as Lemma 4.5 for

37 7
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Lemma 4.10. Let % <m < % Then for each p > 1 one can find C(p) > 0 such that

/nf(-, H<C(p) Sorall t € (0, Tmax.c)- (4.39)
Q

Proof. From the arguments of Lemma 4.5, we can see that (4.39) is actually implied by the
exploration of some p* > % such that

/ n? (1)< Cp  forall 7€ (0, Tmaxe), (4.40)
Q
which has been verified in Lemmas 4.7 and 4.9 for m = % and % <m< %, respectively. O
5. Global solvability of (2.1)
In light of the arguments established in the precedents [29,30], the uniform L7 (£2)-estimates
of ng in (0, Tyax,¢) allow for further improving on the regularity properties with respect to ¢, p¢

and u,.

Lemma 5.1. Let m > % Then for each q > 1 there exists some C(q) > 0 independent of ¢ €
(0, 1) such that

/ [Vee (-, t)|q <C(g) forall t e (0, Tmax,s) 5.1
Q

and
/ Vo (.01 <C(q)  forall t € (0, Tinax.e) (5.2)
Q

as well as
/|ue(’yt)|q =C(q) SJorall t € (0, Tnax,e)- (5.3)
Q

Moreover, for all € € (0, 1) there exists C > 0 such that
lne(, DHllre@ <C  forall t € (0, Tmax,e) 5.4
and
[A%ue ()]l 2 < C forall t € (0, Tmax.¢) (5.5)

with some fixed o € (0, %).
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Proof. As a direct consequence, (5.3) follows from Lemmas 4.5, 4.10 and 4.3. Based on (2.12),
(2.13), Lemmas 4.5, 4.10 and (5.3), the derivation of (5.1) and (5.2) can proceed along the rea-
soning of [18, Lemma 5.1]. With the aid of (5.1)—(5.3), (5.4) is valid by an application of a
Moser-type iterative technique as established in [1,25]. Therefore, we can finally achieve (5.5)
according to the arguments of [19, Lemma 3.4].

Combining (2.8) with Lemma 5.1, we can obtain the following results on global solvabil-
ity,. O
Proposition 5.2. Let m > % Then (2.1) is globally solvable in the sense that there exists some
C(q) > 0 independent of ¢ € (0, 1) such that

7eC, D llLeo@) + llee C Dllwray + 10 Co D llwra@) + 1A U, Dl 2) < Clg)  (5.6)
forallt € (0, 00).
Proof. Proposition 5.2 results from Lemma 2.1 and Lemma 5.1 immediately. O
6. Further regularity properties

Aided by Lemma 5.1, it is possible for us to explore further regularity properties for
(ng, ce, pe, Ue), which might provide the compactness that is essential whether for the construc-
tion of the global solutions of (1.1), (1.6) and (1.7) by extraction procedures or for the detection
of the convergence of the solutions to some spatial homogeneous equilibrium by an Ehrling-type
argument.

Without reliance on the regularity of the respective initial data, the derivation of the following
Holder continuity is mainly based on maximal Sobolev regularity properties and suitable em-
bedding conclusions. To avoid repetition, readers can refer to [18, Lemmas 5.4-5.6] for detailed
reasoning.

Lemma 6.1. One can find certain p € (0, 1) which allows for existence of some C > 0 indepen-
dent of ¢ € (0, 1) such that

s o Ollenigy <€ forall t>0, 6.1)
and that
||cg||cﬂ(§2x[t’t+1]) <C forall t>0 (6.2)
as well as
loellcnep iy <C  forall 120, (6.3)

and that for each t > 0, we can choose certain C(t) > 0 independent of ¢ € (0, 1) satisfying

IVeellon@xpritp = € (1) forall t>1 (6.4)

as well as
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”V:OSHCM(QX[;JJFH) <C(7) forall t>1. (6.5)

Now, let us provide two time regularity results on n, by means of a standard testing procedure.
Throughout the sequel, we will use the abbreviation M, := sup, (g 1) [I7¢ll L (@x (0,00)) -

Lemma 6.2. Let T > 0. Then one can find C(T) > 0 independent of ¢ € (0, 1) such that

T
0

Moreover, for all € € (0, 1) there exists C > 0 fulfilling
Ine(- 1) —ng(-, S)”(WOZ’Z(Q))* <Clt—s| forall t>0 and s > 0. 6.7)
Proof. Recalling (1.9) and denoting Cy := || D| (0, m,) + 2, for some fixed ¢ € (0, T') and cer-

tain ¢ € C{°(S2), we deduce from n.-equation in (2.1) upon integration by parts and Young’s
inequality that in the case when % <m <2

1 _
E/&n’g”(ut)'w = /n’g" YV (De(ne)Vne — ng Fl(ng)Vee — ngug) — Fe(ne)pe} - ¢
Q Q

=|—(m—1) / n"2 D (ne)| Vel 2o — f n"'De(n)Vn, - Vo
Q Q

+ (m — 1)/n’8"_1Fg(n£) (Vng -Veg) @ +fng"Fé(n£)Vc8 Vo
Q

Q
1 m m—1
+; ngUg - Vo — ng Fe(ng)pso
Q Q

<{Ci(m— 1)fn;”—2|wg|2+cl /n:l—lwm
Q Q

+ (m — 1)/nzl_l|Vn£|'|VC€|+/I12"|VC€|
Q Q

1
+Efn’g"|usl+/n2"pe Nellwioo)
Q Q

<!{ci(m-— 1)/n;"—2|Vng|2+cl(m—1)/n’g’—2|w8|2
Q Q
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Ci m—1
+—— 0"+ Cim=1) | P72 |Vn,)? —/an 2
4(m_1)/8 =1 [ 29 B vl
Q Q Q

1
+/n’§1|Vca|+E/n2"|usl+/nZ’pa Nellwroeo g

Q Q Q
_ CiMpIQl | Mp'im —1)
< 3C _l m 2V 2 n n /V 2
<13Ci(m )/ng Vnel + J0 0+ e Vel
Q Q

Mm
+M2"f|VCsl+ - flusl+M,T/ps el
Q Q Q

for all € € (0, 1), whereas for m > 2,

1 _ _
n—ifatn;"(-,n-so = —(m—l)fn;" ZDsms)anFgo—/nz’ 'De(ns)Vn, - Vo
Q Q Q

+ (m— l)/nZ%lFs/(ng) (Vng -Veg) @ +/n’8"FE/(n8)Vc8 Vo
Q Q

1 _
+Z[”§n“s'v¢_/”? lFa(ns);Oa‘p
Q Q

depeim—1 / 2"V, + Cp / 22|V, |
Q Q

+ (m — 1)/nz’—1|w8|-|ch|+/n;"|wg|
Q Q

1
+an'g"lus|+fn§"ps Nellwie o)
Q Q

<!{cpCim— 1)/n§"’_4|Vn€|2+CDC1(m — 1)/n§'"—4|wg|2
Q Q

Cp 2 2m—4 2
g | CoCin =) [ vn
Q Q

o / 2|Vee?

n C

4CpCy & ¢
Q
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1
+fn;"|wg|+;fn:wusw/n'g’pg Npllwioo

Q Q Q

CpM>"|Q| M? 1
< 3ch1(m—1)/n§m—4|Vng|2+ oM TN | M O — )/|vs|

4C1(m — 1) 4CpC

+M;ln/|ch|
Q

n /Pe '||(/’||W1-00(Q)

Q

for all ¢ € (0, 1), which in conjunction with (3.34) and (5.6) entails (6.6). Next, let

S

H.(s) = f D.(0)do, (6.8)
0
then
Hg(ng) < Cr:= My - (| DllLeo,m,) +2) =M, - Cy (6.9)

in 2 x (0, oo) for all ¢ € (0, 1). Therefore, we integrate by parts and invoke the Holder inequality
to obtain

/atns(" 0-p|= f {V : (Ds(ns)vne - nng,(ns)VCs - ne’/‘s) - Fe(ne)ps} %
Q

Q

= /‘Hs(ns)A(p‘i‘/nng/(ns)vcs'V¢+fnsue‘v¢_/Fs(”s)ps¢
Q

Q Q Q
sCz/|A¢|+Mn/|Vcs|~|V¢|+Mn/|ug|~|W|+Mn/ps|¢|
Q Q Q Q

1
<C3 {IQI2 +IVeel 2@y + luell 2@ + ”Ps“LZ(Q)} llellwz2q)

with C3 := Cp+ M, forall ¢ € (0, 1) and each ¢ > 0, whence in view of (5.6), we can find C4 > 0
such that

|0:m¢ (-, t)”(Wg*z(sz))* <C4 forall e€(0,1) andany ¢ > 0,

which yields (6.7). O
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7. Global boundedness for (1.1), (1.6) and (1.7)

33

Based on Proposition 5.2 and the regularity properties provided in Lemmas 6.1-6.2, we can
construct the global bounded solutions as asserted in Theorem 1.1 in terms of the following

natural notion.

Definition 7.1. A quadruple of functions (n, ¢, p, u) is called a global weak solution of (1.1),

(1.6) and (1.7), if it complies with

ne L}M(Q x [0, 00)),

ce Ly (Qx]0, oo))ﬂLloc ([0, 00); WL1(Q)),
p € Lp (20, oo))ﬂL,(,c (10, 00); Wh1(2)),
e L) (10, 00); Wyl (2 RY)),

andn>0,c¢>0,p0>0in Q x (0, 00), as well as
H(n), n|Vc|, nlul, clu| and p|u| belong to L}OC(S_Z x [0, 00)),

where H(s) := fg D(o)do,if V - u =0 in the distributional sense, if

_//”’ﬁz—/HOW(',O)=—//H(n)Aw+//nVc-V1p
0 Q Q 0 Q 0 Q
forso- ] o
0 Q 0 Q
fOI‘eaChl/IECOO(QX[O 0)) suchthat =0, if
[ [ewn~[avco=—[[vevu— [ [ers [ [ov
0 Q Q 0 Q 0 Q 0 Q
+//cu-V1p
0 Q

and

/mﬁz /pow( 0)= ]O/Vp-vw—f/pn¢+7/pu-Vw
Q 0 Q 0 Q 0

for each i € Cgo(S_Z x [0, 00)), as well as if in addition

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)
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—/fu-w,—fuow<~,0)=—ffw-vw+f/<p+nw¢-w (7.6)
0 Q 0 @ 0 Q

Q
for each ¥ € C° (S_Z x [0, 00); R3) satisfying V - ¢ =0.

Within this context, the verification of the global solvability of (1.1), (1.6) and (1.7) relies on
standard extraction procedures.

Lemma 7.2. Let m > % Then there exists (¢;)1eN C (0, 1) fulfilling &1 \( 0 as | — o0, a null set
R C (0, 00) and a quadruple of functions (n, c, p, u) such that as ey \( 0

ng —>n a.e. in Q for each t € (0, 00)\R, 7.7
ne—n  in L(Q x (0, 00)), (7.8)
ne—n in c?oc([o, o) (Wg*z(sz))*), (7.9)
ce = c in Cp (2 x[0,00)), (7.10)
Ce Scin L*°((0, 00); Wl’q(Q)) foreach q € (1, 00), (7.11)
Vee — Ve in C. (€2 % [0,00)) (7.12)
pe — p in Cp. (S x [0,00)), (7.13)
De A p in L%((0, 00); Wh4(Q)) for each g € (1, 00), (7.14)
Vpe = Vp in C. (€2 % [0,00)), (7.15)
ug —u in Cp. (S x[0,00)), (7.16)
e - u in L (Q x (0, 00)), (7.17)

and
Vug — Vu in L, (S x [0, 00)). (7.18)

In addition, n, c, p and u make up a global weak solution of (1.1), (1.6) and (1.7) in the sense of
Definition 7.1.

Proof. Thanks to the embedding W32(Q) — W!>(Q), Lemma 6.2 implies that (3;n)¢c(0.1)
is bounded in L? ([0, 00); (W3'2(S2))*). Moreover, (3.34) along with (5.4) shows the bound-

loc
edness of (n7")ee(0,1) in L}, ([0, 00); (W!2(Q))). Therefore, according to Aubin-Lions lemma
[27], we can extract (¢7);eN C (0, 1) fulfilling &; N\ 0 as I — oo such that n! — »™ is valid a.e.
in Q2 x (0, 00) as ¢ = g \ 0 with certain nonnegative function n defined on €2 x (0, c0), and thus
(7.7) results from Fubini—Tonelli theorem immediately. As direct consequences of (5.4) and (6.7),
respectively, both (7.8) and (7.9) follow from further extractions. By means of Arzela—Ascoli the-
orem, we can infer (7.10)—(7.18) from the regularity properties achieved in Lemmas 3.4, 5.1 and

6.1.
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Recalling (1.9), we can see clearly that (7.1), (7.2) and the divergence-free property of u are
valid from (7.7)—(7.18), and whereafter the derivation of (7.3)—(7.6) proceeds along standard
testing procedures. [

8. Stabilization. Proof of Theorem 1.1
8.1. Basic decay properties

By an elementary observation, one can see that the presence of the reaction term prn in (1.1)
implies natural decay properties with respect to the quantities nc and V¢, which is viewed as the
cornerstone in detecting the convergence of each component as time goes infinity. Throughout the
remaining parts, we will suppose that m > % and that (n, ¢, p, u) represents the global solutions
established in Lemma 7.2 without special instructions.

Lemma 8.1. There exist some ¢4 € (0, 1) and C > 0 fulfilling

o
//ngcS <C forall €€ (0,¢,) (8.1)
0 Q
and
o
// |Vps|> <C  forall €0, (8.2)
0 Q
as well as

o
//wcgﬁ <C forall €€ (0,es). (8.3)
0 Q

Proof. For M,, > 0 defined as in Section 6, we can find certain &, € (0, 1) sufficiently small such
that M, < é, whence it can be inferred from (2.4) that F,(n.) = n, over 2 x (0, co) provided
that € € (0, &4). Upon an integration of p,-equation in (2.1) over €2, we have

t
/pg(-,t)+//pgng=/p0 forall ¢ € (0,&,) and any ¢ > 0,
Q 0 Q Q

and thereby (8.1) holds. With p, as a testing function, an application of a standard testing proce-
dure to p.-equation entails

t t
! 20+ v 2L F L2 for all 0
5 | Pl [V e =5/ r Pe a(”s)_z py forall €€ (0, )
0 Q 0 Q

Q Q Q

and any ¢ >0,
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which implies (8.2). In view of c.-equation in (2.1), (2.13) and (2.14), we deduce from integration
by parts and Young’s inequality that

EE (ce — Pe) —/(Cs — Pg) - (Cer — Per)

/(Cs Pe) - (Ace — Ce + pe —Ug - Ve + |Q|/ Pehe)

/|Vce| —/(cs 5’ —/(cg ) (Be — pe)
|Q| /Psns :08/,08”8
< - /|ch|2——/(cg pe)* + = f(pg pe)* + 3/ /pgng
Q
s—/chP—5/@8—@3)%5/(@—ps)2+Mc/pgng
Q Q Q Q

for all € € (0, &) and any ¢ > 0, whence along with the nonnegativity of [, (c, — p¢)? an appli-
cation of the Poincaré inequality further yields

1
E_f(c*f 7o)’ +f|Vce| /(pg 5+ M, /pgng
P
< [ 1o+ e [ pun
Q Q

for all € € (0, ¢4) and any ¢ > 0. Therefore, upon integrating (8.4) on (0, #) for each ¢ > 0, (8.3)
follows from (8.1) and (8.2). O

(8.4)

8.2. Convergence of spatial averages

As consequences of the uniform boundedness of n and the basic decay information derived
above, we can show the following large time asymptotic properties with respect to the spatial av-
erages of n and p by a similar reasoning as that of [8, Lemma 4.2], nevertheless the convergence
obtained here is in the sense of (0, 00)\R 2t — oo with the null set X provided in Lemma 7.2.

Lemma 8.2. Ler R C (0, 00) be the null set as given in Lemma 7.2. Then

/n(‘,t)—> /no—/po as (0,00)\R>¢t— 0 (8.5)

Q Q Q +
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and

/p(o,t)—> /po—/no as (0,00)\R>¢t— 0. (8.6)

Q Q Q +

Proof. From (7.7) and (7.13), we can infer that there exists (&7);en C (0, &) satisfying &, \( 0
as [ — oo, such that

pshe = pn as € =¢& \(0 ae.in Q foreach ¢ € (0, 00)\N 8.7)

with 8 as provided in Lemma 7.2, whereupon by the dominated convergence theorem

/p8n8—> /pn as e =¢& \(0 foreach ¢ € (0, 00)\R.
Q Q

Thanks to (8.1), this together with Fatou’s lemma implies

/ / o1 < Cy (8.8)
0 Q

with some C; > 0. Similarly, in light of (7.15) and (8.2), another application of Fatou’s lemma

provides C > 0 fulfilling
o0
//IVpI2 <. (8.9)
0 Q

Therefore, according to [33, Lemma 4.2], we can choose () jen, C (0, 00) satisfying #; — 00
as j — oo such that

tj+1

/ /,on—>0 (8.10)
tj Q

and

f /IVpI2—>0 8.11)

as j — oo. Note that
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t+1 £+1 1+
//p"‘//“’ m"*/ [
1+ 1+
//(" p)+|sz| /p /”

Q Q

for all j € N, where invoking the Holder inequality and the Poincaré inequality, we deduce from
the uniform boundedness of n and (8.11) that

t+1 tj+1
/ / (0= p)n| < / 1pC.8) =BG ) 2@ InC. ) L2y ds
1 Q 1j
tji+1
<m0t cp / IV ()l 2y
Lj

1

tj+1 2
<M,|Q|2Cp //lV,o|2 50 as j— oo,

Lj

and thus combining with (8.10) shows that

tj-i-l
/ /p /n —0 as j— oo. (8.12)
tj Q Q

For fQ £0 = fQ no, it is clear from (2.11) that
/pg(-, 1) > /ng(-, t) forall >0,
Q Q
whence by the dominated convergence theorem, we infer from (7.7) and (7.13) that
/,o(-, t) > /n(o, t) foreach t € (0, 00)\R,
Q Q

which together with (8.12) implies

ti+1 2

/ /n —0 as j— oo. (8.13)
Q

I
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In view of (2.9), we see that for all ¢, s € (0, 0o) satisfying t > s

/ns("t)S/ns('vS)

Q Q

holds, whereupon again by (7.7) along with the dominated convergence theorem we have

/n(-,t) f/n(-,s) for all ¢,s € (0,00)\R fulfilling ¢ > s.
Q Q

In light of (8.13), this entails

tj+1 2)2
/n(-,t)f / /n — 0 foreach r € (t; +1,00)\R as j— oo.
Q t; Q

Consequently, (8.5) is achieved for fQ Po > fQ ng. Since the dominated convergence theorem in
conjunction with (2.11) implies

/p(~,t)—/n(-,t)=/po—/no for each ¢ € (0, c0)\R,
Q Q

Q Q

which along with (8.5) yields (8.6). As for the case [, po < [q 10, both (8.5) and (8.6) can be
derived from a similar reasoning. 0O

8.3. Convergence of p

Based on the Holder regularity properties provided by Lemma 6.1, the convergence of the
component p asserted in Theorem 1.1 can be achieved by applications of Lemmas 8.1-8.2.

Lemma 8.3. We have
0= pee in WHR(Q) as 1 — oo. (8.14)

Proof. From (8.9) and the Poincaré inequality, we can find some C; > 0 such that

oo
/ lpC.1) = 5. D2t < C1. (8.15)
0

Since the Holder continuity property presented in (6.3) implies the uniform continuity of 0 <7 —
lp(,t) — p(, t)||Lz(Q), it can be inferred from (8.15) and a standard reasoning as [2, Theorem
1.1] that

loC.t) = pC. D2 — 0 as t— oo,
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which allows for a choice of #' > 0 such that for arbitrary § > 0

1)
o, 1) = pC, D2 < > forall r>1'.

Moreover, in light of (8.6), we can find some ¢ > 0 fulfilling

1

2

_ 82

Ip(-,t)—poo|2=|g2—|2 /p— /po—/no ST for each 7 € (1", 00)\R.
Q Q +

Q

Thereupon, let t, := max{¢’, t”'}, then

/|p(-,t>—poo|2 52f|p<~,t>—ﬁ(-,t>|2+2/|ﬁ<-,t)—poo|2
Q Q Q (8.16)
82 82

=5 + 5= 8% foreach 1 € (1, 00)\R.

Now, we try to ensure that (8.16) remains to hold for any ¢ > #,. Thanks to the density of
(t+, 00)\R in (£, 00), there exists (¢;) jeN C (fx, 00)\R such that 7; — 7 as j — 00. Since (8.16)
makes it possible to extract a subsequence (j,)keN Of (¢j)jeN such that p(-, 7)) — poo — 2
in L2(2) as k — 0o, which also indicates that p(-, j,) — Poo —> Zin L2(2) as k — oo because
L?(Q) is a Hilbert space, we conclude from the uniform continuity of 7 = [|p (-, 1) — p(-, 1) | 12
that actually z = p(-, ) — poo, Whence

loC, 1) = pooll 2y < liminf [|p(-, 7)) — pPooll L2(q) <3,
k—o00
which shows
p( 1) — poo — 0 in L*(Q) as 1 — oo. (8.17)
In view of (6.3) and (6.5), there exist some C, > 0 and i € (0, 1) such that
l0¢, ) = poslicringy <Ca - forall £ > 1. (8.18)

Thanks to the embedding CHH(Q) — WLo(Q) — L2(), where the first one is compact, an
application of an Ehrling-type lemma provides some C3 > 0 such that

)
lo(, 1) = Poollwieo(q)y < 2—C2||P(', 1) = poollcrugy + C3llp (1) — poollp2(q)  forall 1> 1y,

where from (8.17) we can pick #* > f, such that

)
1) — <— forall t>1t*,
oG 1) — pooll 2@y < 2C
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and thereby

(=2

8
||p(’t)_p00||Wl°°(Q)§§+§=8 for all ¢ > t*,

as claimed. O
8.4. Convergence of ¢

With the aid of the convergence of p, a standard testing procedure along with an interpo-
lation type argument as Lemma 8.3 can yield the following stabilization of ¢ as declared in
Theorem 1.1.

Lemma 8.4. The solution component c fulfills
€= poo in WHR(Q) as t > oco. (8.19)

Proof. In light of (6.2) and (6.4), it is sufficient for us to verify the convergence in L3(Q) ac-
cording to the reasoning of Lemma 8.3. Testing c.-equation in (2.1) by ¢; — poo, we make use of
Young’s inequality to have

1d 5 2
EE/(CE — Po) +/|ch| :/(Cs — Poo) (—Ce + Pe)
Q Q Q

=— /(cg — poo)* + /(cs — Poo)(Pe — Poc)

Q Q
<_l/(cs_Pw)2+l/(p£_pw)2
- 2 2

Q Q

forall + >0 and € € (0, 1),

whence an ODE comparison argument yields

t

/ (co = poo)> <™ f (co — po) + / e / (s — poo)® forall £>0 and ¢ € (0, 1),
Q Q 0 Q

(8.20)
where by (2.12)

t t

f e =9 / (Pe — Poo)? <(lpoll L) + Poo)? - 1€2] - / e~ 945
Q

0 0
=(lpollLoo(@) + Poo)? - 12| - (1 — &™)
<(lpollLoo(@) + poo)?® - 12| forall >0 and & € (0, 1).
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Thereupon, thanks to the boundedness of fQ (ce — ,000)2 guaranteed by (2.13) as well as the
pointwise continuity properties implied by (7.10) and (7.13), an application of the dominated
convergence theorem to (8.20) entails

t

/(c — o)’ <e! /(co — poo) + / e (=9 /(p — poo)? forall t>0. (8.21)
Q Q 0 Q

Now, we let K := (M. + poo)? - ||, which bounds both [, (c — poo)? and [,(p — poc)? from
above for all + > 0 by (2.12), (2.13), (7.10) and (7.13), then for given § > 0 there exists some
J« € N fulfilling

e Ix K <

W >

In addition, Lemma 8.3 allows for a choice of ¢, > j, sufficiently large such that

t+1 5
/ (p—poo)2§3—, forall t > 1, — j,.
J

*
r Q

Therefore, (8.21) can be rewritten as

1= j

[e=pr = [=p+ [ 0 [0 oo’
Q Q 0 Q
I t—jutk
+) / e () /(p ~ peo)’?
k=131 Q
=y j etk
<Ke '+K / e U Vds + Z /(,0 — Poo)?
0 k=l_j4k—1 Q

—_7. — 7 —t . 8
<Ke ™+ K —e )+ jur
3Jx

. §

<2Ke M+ 4 =

3

<é forall ¢ > t,,
which verifies

C— pPoo—0 in LZ(Q) as t — oo,

and thus (8.19) follows from a similar argument as that of Lemma 8.3. O
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8.5. Convergence of n

Since the presence of degenerate diffusion in n.-equation of (2.1) makes it impossible to
derive the decay information with respect to n, as exhibited in (8.2) and (8.3) for p, and c,,
respectively, we thus turn to resort to a quasi-energy structure being similar as that constructed
in [30] to show that the quantity fQ (ne — noo)?® would keep small during a certain short-time.

Lemma 8.5. There exist some C > 0 and ¢, € (0, 1) such that for all ¢ € (0, ) and each chosen

ty >0
/(ns(',l)—noo)zic' /(ns(-,w—noo)2+/|Vcs(-,r*)|2
Q Q Q

t
+//p8n8+ sup /|Vpe('75)|2 SJorall t € (ty, tx +1).
SE(ts 1 +1)
L Q Q
(8.22)
Proof. Firstly, let us choose certain ¢, € (0,1) sufficiently small such that M, :=

SUP.¢(0, 1) 17l Lo (@x (0,00)) < é then for all ¢ € (0,¢&,), (2.3) together with (2.4) shows
F¢(ng) = ng. Next, testing ng-equation in (2.1) by n, — neo, we have

1d
Sar (ns—noo)2=—/Dg(ns)anF+/ngFg(ns>Vng-ch—/psns(ng—noa
Q Q Q Q
§/n8FE/(n£)Vng Ve, +noo/p5ng forall >0 and € € (0, &,).
Q Q
(8.23)
Let

N

I.(s) == /aFg(o)do, s >0,
0

then upon integration by parts and fQ Acg =0forall r >0,

fn‘gFE/(n,;)Vn‘,3 -Veg =/Vlg(ng) -Veg

Q Q

:_/Ie(ne)Ace

Q

:—/(Ig(ng) —Ig(noo)) Ac, forall >0 and ¢ € (0, ).

Q
(8.24)
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Since (2.5) implies 0 < I/(s) < s, we recall the definition of M, > 0 introduced in Section 6 and
infer from the mean value theorem that

[Ie(ne (x, 1)) — I (noo) | TN oo 0, m,) 16 (X, 1) — N

<M,|ng(x,t) —ne| forall x e Q,r>0 and ¢ € (0, &),

which along with an application of Young’s inequality to the right-hand side of (8.24) shows that

/nng/(ns)vns Ve, an/ [ne —nool - [Ac|
Q

Q
1 , M 5
SE/(ng_noo) +7"/|Acg| forall t >0 and ¢ € (0, &,).
Q Q

Thus, (8.23) can be rewritten as

d
o f(ns — 00)? s/(ns —n00)? + M,%/ |Ace|?
Q Q Q

+2n00/p5n€ forall + >0 and € € (0, &4).
Q

(8.25)

For absorbing the second integral on the right-hand side, we test c.-equation by —Ac; and em-
ploy Young’s inequality to obtain

1 d 2 2 2
E% |Vce| + |Ace| = [ (ue - Vcg)Ace — |Vcs| + Ve - Ve
Q Q Q Q Q
1 1 1 1
55f|Ac8|2+5/|u5|2~|Vc5|2—5/|w5|2+5/|m|2
Q Q Q Q
1 M2
55/|Acg|2+7“/|wg|2
Q Q
1
+§/|Vpg|2 forall >0 and ¢ € (0, &),
Q

that is

d
E/|ch|2+/|Ac€|2§M3/|ch|2+/|Vp5|2 forall t >0 and ¢ € (0,¢,), (8.26)
Q Q Q Q

where we set M, :=supc (g, 1) l4sllc(Gx(0,00)) @ccOrding to Lemma 6.1. It follows from a com-
bination of (8.25) and (8.26) that



J. Liu/ J. Differential Equations 269 (2020) 1-55 45

d
- /(ng —noo)2+M3/ Veol?
Q Q

5/(;18 —noo)2+M3M3/|ch|2+2noo/psn8 (8.27)
Q Q Q

+M3/|Vp5|2 forall >0 and & € (0, &4).
Q
2
Denote y(t) := [o <n5(~, 1) — noo) + M2 [ |Vee (-, )[?, t > 0, then (8.27) yields

Y(t) <Ciy(t)+Cs /psng + / |V,o€|2 forall >0 and € € (0, &)
Q Q

with C1 := max{1, Mf} and Cr ;= max{2nq, M,%}. We thus make use of an ODE comparison to
have

t
y(t) <eC1T () + Co / eC10=) f Pe (- )ne (-, 8) + f IV 0e (-, 5)1?

Ly Q Q

t
<eC1y(8,) + CoeC / / pene+  sup / IV e ey )P
S se(t*,t*-i-l)Q

forall ¢ € (4, 1. + 1) and € € (0, &), which implies (8.22).

Now, let us consider the asymptotic property of n, in two cases. For fQ ng < fQ 00 1.8. N =
0, Lemma 8.2 shows the convergence of n toward n, in LY(©) except for a null set of time,
whereas for fQ no > fQ 0o 1.6. neo > 0, the verification of the convergence to n relies on an
application of L? testing procedure as well as the estimate (8.3) in Lemma 8.1. O

Lemma 8.6. For X C (0, 00) as provided in Lemma 7.2, if [qno < [q po, then

n(-,1) = ne in LY(Q) as (0, o00)\R >t — o0, (8.28)
whereas if [ono> [q po, then

NG 1) — noo in LAQ) as (0, 00)\R 5 1 — 00, (8.29)

Proof. In the case when [, 19 < [, po, it is clear that no, = ‘l—l{fQ no — [o po}+ =0, whence

for X C (0, 00) as given in Lemma 7.2, (8.5) implies

IIH(-,I)IILI(Q)=/n(',t)—>0 as (0,00)\N 37— oo,
Q
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as claimed. O

For fQ ny > fQ po, Lemma 8.5 guarantees the existence of C; > 0 such that for each ¢, > 0
and all ¢ € (0, &4)

/(ng(',t)—noo>2§cl‘ /(ns(.,r*)—noo)2+f|Vce<-,z*>|2

Q Q 2
t
+//p8ng+ sup /|V,0£(‘,S)|2
SE(tx,txt+1)
L Q Q

holds for any ¢ € (#, t, + 1). In view of the convergences ¢, — ¢, p; — p in CIOOC (S_Z x [0, oo))
and Ve, — Ve, Vp, — Vp in C) (2 x [1,00)) as & = g \ 0 by Lemma 7.2 as well as the
boundedness of (n¢ (-, tx) — noo)ee(0,1) by Lemma 5.1, we take & = & ~\ 0 and infer from (7.7)

and the dominated convergence theorem that

/(n(~,t)—noo)2§C1- /(n<~,t*)—nm)2+/|w(-,r*>|2
Q

Q Q
t
+//pn+ sup fIVp(wS)I2
SE(ty,tx+1)
Ly Q Q

for any t, € (1,00) \ X and each t € (t,, t, + 1) \ N. For the sake of estimating the right-hand
side of (8.30) properly, we pick some 6 > max{1, m — 1} and test n,-equation in (2.1) by nge_m

to obtain

(8.30)

1 d _ —m—
ma ngg m+1 = — (29 — m)/nge mn ng(n8)|Vn5|2
Q Q

+ (20 —m) / " Fl(ne)Vne - Ve — / peng’ " Fe(ny)
Q Q

<—(0-m) / n2=m=1 Dy (ne) | Vi, |
Q

+ (20 —m)/nge_mFs’(ng)Vng -Vee
Q

for each r > 0 and all ¢ € (0, 1) thanks to the nonnegativity of fQ pgnge’m F¢(ng). Combining
with (1.9), (2.2) and (2.5), we employ Young’s inequality to have

1 d
Ty pe bl IR m)/n?e‘zwngﬁ +(20 — m>/n§9—mwng| Vel
Q Q Q



J. Liu/ J. Differential Equations 269 (2020) 1-55 47

Cp(20 —m
<—Cp20 —m) / n? 2| Vne|* + % / 2’ 2| Vn,|?
Q Q

20 —m 26—2m+2v 2
2Ch /”8 Veel
Q

Cp(20 —m) 3 M2=2m+2(20 _ )
s—f[n? 2\ Vng|? + —2 T /|Vcs|2
Q Q

for any t > 0 and all ¢ € (0, 1) with M,, introduced as in Section 6, whereupon an integration
over (0, t) yields

t

1 _ Cp(20 —m) -

729_%1/11?9 T+ //n? 2|Vnef?
0 Q

'
20-2m+2 g _
I
20 —m+ 1 2Cp
0 Q

Q

forall t > 0 and € € (0, 1). In view of (8.3), we can find certain ¢, € (0, 1) and C> > 0 such that

e ¢]

/fan§|2§C2 forall € (0, &),
0 Q

which in conjunction with the Poincaré inequality provides some C3 > 0 satisfying
oo
0

1
where y,(t) := {ﬁ o ng(-, t)} “fort>0and ¢ e (0, 1). Since (7.7) together with the domi-
nated convergence theorem implies

1

with y () := [ﬁ fQ n? (., t)}g for t € (0, 00) \ R, we thus make use of Fatou’s lemma with

2
dt < Cz forall € €(0,¢y),
L2(Q)

HONERA0]

2 2

n?( 1) =yl @)

= |0 =y

as e=¢ \(0

L2(Q) L2(Q)

respect to time on (0, 0o) to infer that

o0

[ co=ra

0

2
dt < Cs. 8.31
=6 (8.31)
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In light of (7.7) and (7.13), another application of the dominated convergence theorem to (2.11)
entails that as e = ¢; \( 0

/n(-,t)—/p(',t)zfno—/po for each € (0, 00) \ R,
Q Q

Q Q

which implies

fn(-,t)z/no—/po for each r € (0,00) \ R
Q Q Q

due to the nonnegativity of fQ p (-, t) for all + > 0. Thus, the Holder inequality warrants that in
the case when [, no > [, po

|Q|noo=/no—fp05/n(~,t)§ Q-7 . /n0(~,t) for each 1 € (0, 00) \ R.

Q Q Q Q

This shows neo < y (1) for each ¢ € (0, 00) \ R. From the fact that [£% — ?| > n?~1 . |& — ] for
any £ > 0 and n > 0, it follows that

00 =y @) =y 72@0) - G 1) — y (1)

>n272 n( 1) — y ()

a.e. in 2 for each ¢ € (0, 00) \ R, whence (8.31) implies
o
2
[ In.ty =y @ gtr < s (3:32)
0

with C4 :=n2;% - C3. Recalling (8.5), (8.8) and Lemmas 8.3-8.4, we combine with (8.32) to
infer that for given § > O there exists some ¢’ > 1 large enough such that

oo
8
/ |nC.0) =y )] }20)dt < 2C, (8.33)

t'—1

5|2
/n(~,t) —|Qnee| < LI foreach t e (' —1,00) \ R (8.34)
24C4

Q

and

as well as
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r 8
/ /Pn = 4_C1’ (8.35)
Q

t'—1

and that

1)
/ IVe(, )| < ic forany t >t —1 (8.36)
Q

as well as

8
/|vp(.,z)|25 i forany 7>t — 1. (8.37)
Q

Since for each ¢ > ¢’ (8.33) allows for a choice of certain ¢, = £,(t) € (r — 1, ¢) \ ¥ fulfilling

2 é
f|n(~,t*) —yt)| < C;" (8.38)
Q

we invoke the Cauchy—Schwarz inequality to obtain

0t~ vl =| [ (1) = )

Q

<l [ (neer = ye)

1
2

Q
31L|
< 9
—\ 24C,
and thereby
_ 2 S
/(n(.,t*)—y(t*)) < Sicr (8.39)

Q

Moreover, due to t, € (t — 1,£) \R C (¢’ — 1, 00) \ R, (8.34) entails

/ (m - noo)2 < 248c1 . (8.40)

Q

Collecting (8.38)—(8.40), we have
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[ (ne =) 2 [ (not = ye) 42 [ (v -nc)’

Q Q Q

+2/Gx25_mgzgi%.

Q

(8.41)

Since t € (t,, t. + 1) \ R, it follows from (8.30), (8.35)—(8.37) and (8.41) that

f(n( t)—n )2<C. i+i+i+i =4
’ ©) =" Nac, Tac, a0, A | T
Q

which verifies (8.29) thanks to the arbitrariness of §.

Based on Lemma 8.6, an interpolation type argument in conjunction with the continuity prop-
erty of n attained in Lemma 6.2 enable us to achieve the stabilization of » in the sense asserted
in Theorem 1.1.

Corollary 8.7. For any p > 1, we have

n(-,t) = ne in LP(Q) as t — oo. (8.42)

Proof. Here we only prove (8.42) for [, no < [, po, while for [, no > [q, po the reasoning can
proceed along a similar procedure. In light of the boundedness of €2, it is sufficient to verify the
validity of (8.42) for p > 1. By the Holder inequality and (7.8), we have

r=1 1 p=1 1
I G, DllLr) < G, Dl Ly InC D17 g < Ma” InC, D17 g, forany 10

with M, defined as in Section 6, whence for arbitrary § > 0 (8.28) in Lemma 8.6 warrants the
existence of certain ¢’ > 0 fulfilling

InC,)llLr <8 foreach re (', 00) \ N. (8.43)

Next, we try to show that (8.43) actually holds for any 7 > #’. Due to the density of (¢, 00) \ X in
(t', 00), we can take (tj)jen C (', 00) \ ¥ such that tj — t as j — oo. Since the boundedness
of |[n(-, ;)| Lr (@) guaranteed by (8.43) allows for an extraction of a subsequence (¢, )xeN from
(¢j) jen fulfilling n(-,t;) — z in LP() as k — oo, this implies n(-, ;) — z in (Wg’z(Q))*
as k — 0o, which in conjunction with the generalized continuity property of n with respect to ¢
exhibited in Lemma 6.2 shows the identity between z and n (-, ¢). As a result,

lnC, OllLr@ <liminf|n(, ;) lr @) <6,
k—o00

as desired. O
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8.6. Decay of u

In the final, by means of standard regularity theory and the convergence of p and n, we are
able to detect the asymptotic behavior of u as time goes to infinity.

Lemma 8.8. We have
u(-,t) —>0 in L®(Q) as t — oo. (8.44)

Proof. Throughout the proof, we use P to denote the Helmholtz projection from L?(2) to
L(Q, (€2). Since the set W2%°() lies in the kernel of P, and since nao, poo € R, wWe can rewrite
ug-equation in (2.1) as

et + A =P[(1:(.0) =10V | + P[(0:(.0) = po) V], €@ 120,

whence by variation-of-constants formula, we further have

t
e (o 1) e ug + f e IAP[(1e(,5) = o)V Jds
0

t
+ / e—(t—s)Ap[(ps(., s) — poo)Vd)]ds for any ¢ > 0.
0

Due to D(A%) — L%°(Q2) with some « € (%, 1) by a known embedding result ([11,12]), an

application of the regularized properties of the analytic semigroup (e~'4),>0 ([10,23]) yields
that

1
ey <€ A% g+ [ 4% INP ) = o) Vs

0
1

+ / A% AP (0. 5) — poe) V8 Jds |

LX)
0
<Call A% Aol 12 (8.45)
1
[ =9 eI P[0t = nrv] |, ds
0
t
6 [a=97ee P[0 - V], as
0

for any ¢ > 0 with C| > 0, C; > 0 and certain A > 0. From (1.10) and (5.4), we can infer that
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C2/(t_s) Dt —A(t—s)

Ple.9) =) V9|

LZ(Q)

1 (8.46)
ECZ(Mn + nOO) ||v¢||Loo(Q) |Q| 2 /(t _ s)—(xe—)»(l—s)ds

1
<Co(My +noo) VPl Loo()|2]12 - C3 forany ¢ >0,

where M, = sup,¢( 1) InellLo@x©,00)) has been defined in Section 6 and C3 :=
Joo e *do. Recalling (2.12), the integrability of fé (t — $) e 2= Pl(ps (-, 1) —
P)V@lllp2(q)ds can be also verified through a similar reasoning. Moreover, again based on
(2.12) and (5.4), we make use of the dominated convergence theorem along with (7.7) and (7.13)
to deduce thatas e =&, (0 [[n: (-, 1) —nooll2() = In(- 1) —nooll 12(q) foreach 7 € (0, 00) \ R
and || pg (-, 1) — poollz2() = |P (-, 1) = pocll 12(q) for all £ > 0. Thus, in view of (7.16) and the in-
tegrability warranted by the reasoning of (8.46), we once more apply the dominated convergence
theorem to the right-hand side of (8.45) and infer that

I, Dllze@ <Call A% Yuoll 12

+C2/(t_s) o —)m(l s)

Ploe.9) =)V ]|

ds
L2(Q)

Pt 9 —p)v8]| |

ds forany > 0.
(%)

+ C2 /(t _ s)—ae—A(t—s)
0
(8.47)

In accordance with (14.9) in [10, p.160], the first term on the right-hand side of (8.47) can be
controlled as

Cy
—tA _
A% ugll 2y < pr “Nuollz2(q) forany >0

with some C4 > 0 and € > 0, whereupon for given § > 0 we can find some ¢, > 1 sufficiently
large such that

8
”Aae*fAu()”Lz(Q) < E for any t > t,. (848)

Apart from that, Lemma 8.3 together with Corollary 8.7 also guarantees the existence of t* > t,
such that for arbitrary ¢ > t*

) 1)
neoll 1200y < and  [[p(, 1) — poo)ll 2 <
IAD = 5C,C3 Vol L= q) 2@ = 56,011V ey
(8.49)

I, 1) —

Now, let
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1

1 o
=t (5C2”V¢Ilm<sz><Mn +noo)|sz|7>

OA

and

1

L\ &
bt (5C2||V¢||L°°(Q)(||P0||L°0(sz) +poo)|9|z)

SA

then thanks to (8.49), for any ¢ > 1, we have

ds
LX)

CZ/(t_s) o —)\(l‘ s)

[(n( §) — o)V cb”

t*

SC2 f(t _ s)—ae—)\(l‘—s)

0

/(t ) o _)L(t s)

t*

f t =) % In(, 5) — nooll 2 VPl Lo () ds

[(n( §) — o)V ¢]‘

LZ(Q)

Pl —n)ve]|

LZ(Q)

+ / (t = )% 9 In(-, ) — nooll 20y | VIl vy s

t
<Co |Vl ooy (My + o) |12 (1 — 1) f e M9 s
0

+ G2Vl -

) /(t -5 ME=9) g
S5CC3|| VL)
t*

—A(t—11)

L *\ — —\t
<CIVPllLoe@)(My +noo) 2|12 (8 — t7) -f-(l —e )
+ 2G5Vl i
2C3 Lo(Q) *
@ S5CC3IV@llLo(e)
SA

1
<C2 IVl Loy (My + nso) 2|2 T
5C V@l L) (M, +noo)|R2]2

Similarly, for each ¢ > 1>,

53
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t

C / (t —5) % M=)
0

28
ds < —
L2(Q) 5

Pt = px)V9]

also holds. Consequently, setting #o := max{t1, t2}, we collect (8.47)—(8.49) to derive
lu, ) llLe@) <8 forany > to,
which entails (8.44) thanks to the arbitrariness of § > 0. O
8.7. Proof of Theorem 1.1
The derivation of our main results relies on a combination of the precedent detections.

Proof of Theorem 1.1. The conclusion on global solvability in the weak sense along with the
regularity properties that the solution fulfills in (1.12) has been claimed by Proposition 5.2. The
stabilization exhibited in (1.13) precisely follows from Lemma 8.3, Lemma 8.4, Corollary 8.7
and Lemma 8.8. O
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