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The problem is motivated by a consideration of two phenotypes of a species
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1. INTRODUCTION

That ecology and evolution are fundamentally influenced by the spatial
characteristics of the environment is well accepted. As an example of this
one may consider the paradox of diversity. Simple models such as the
Lotka—Volterra system

u=u(l —u—bv),
v=0v(1l —cu—v) (1.1)

which do not include any spatial component give rise to the principle of
competitive exclusion; “when two species compete for the same limited
resource one of the species usually becomes extinct” [11]. On the other hand,
the common observation is that in a wide variety of habitats a multitudes of
species coexist. This leads to the “paradox of enrichment” [7], which can be
explained away, at least in part, by expanding the model to include spatial
effects. Of course, once spatial components are introduced, dispersal rates
become a central feature [2].

Unfortunately, our understanding of cause and effect in this more general
situation is poor. The reason for this appears to be fourfold. First, the
number of variables in realistic ecological and environmental models are
enormous. Second, spatial heterogeneities occur at all scales of the
environment [9]. Third, obtaining precise data for these variables from field
studies is extremely difficult [14]. Finally, the current mathematical
techniques for handling models which incorporate both spatial and
dynamical properties seem to be inadequate. Given this state of affairs,
the strategy of this paper is to consider an extremely simple model in the
hopes of elucidating some basic biological principles and identifying some
fundamental mathematical issues. With this in mind we model space as a
continuous variable rather than as a number of discrete patches. In line with
this, we use the simplest dispersal model consistent with a continuous spatial
variable, namely diffusion.

The range of questions which could be asked even in this greatly
simplified setting is too wide to be accommodated by any single model,
therefore we consider a more specific motivation. How does spatial
heterogeneity of resources affect the balance between competitive strength
and rates of dispersal? To study this we will consider the following system of
reaction—diffusion equations:

% = pAu+u[l + yp(x) — u — bv],
% = vAv + o[l + yB(x) — cu — v] (1.2)
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defined on the domain Q x (0, o) with zero Neumann boundary conditions:

ou Ov

= 0, (1.3)
where 0/0n denotes differentiation in the direction of the outward normal.
Since the variables u and v are meant to represent the densities of two
phenotypes of a species it must be assumed that u(x, 0)>0 and v(x, 0) >0 for
all x e Q.

Observe that y>0 is the parameter that measures the degree of spatial
heterogeneity: y = 0 leads to a perfectly homogeneous level of resources in
the environment; while large y indicates that these levels vary dramatically.
In order to make sure that we are measuring the effects of the heterogeneity
rather than the total carrying capacity of the environment, we typically
assume that [, f = 0.

The dispersal rates of the species are given by p and v. Because of the
symmetry of the model, we can, without loss of generality, assume that

v p (1.4)

The final point to be made is that the parameters b and ¢ which come from
the original Lotka—Volterra model indicate the relative strength of
competition. In particular, b > ¢ implies that v is the superior competitor.

As will become clear in a moment, the following functions play a crucial

role in our analysis. Let # and ¢ be the unique positive solutions in Q
satisfying

uAd+ a1 + yp(x) —ad]=0 (1.5)
and
VAT + 0[1 4+ yp(x) — 6] =0, (1.6)

respectively, together with zero Neumann boundary conditions.

The analysis of this paper begins with the observation that if the local
interaction of the species with the environment is identical, i.e., b=c =1,
then in the context of spatial heterogeneity in the level of resources slow
dispersal rates are advantageous. More precisely, the following theorem is
true.

TaeoreM 1.1 (Dockery et al. [3]). Assume that b=c=1,v>pu, y>0,
and f is not constant. Then,

1. The only equilibria solutions to (1.2) are the semi-trivial solutions (i, 0)
and (0, 9) and the trivial solution (0,0).
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2. (@,0) is a hyperbolic attractor and furthermore is the global attractor
for the set of positive initial conditions.

3. (0,9) is unstable.

Clearly, by a simple comparison argument this result remains true for
b<1 and ¢ > 1. Intuitively, this means that the faster diffuser is a weaker
competitor, from which it follows immediately that (i7, 0) is stable. The main
interest thus falls on cases where (b, ¢) does not lie in the semi-infinite strip
(0,1] x [1, 00). The use of arguments similar to those presented in [3] allows
us to conclude that the results remain true for small perturbations in » and ¢,
that is there exists 6 >0 (dependent on u, v and y) such that if (b,c) €
(0,1 +9) x (1 — 9, 00), then the conclusions of Theorem 1.1 still hold.

At this point, it is important to contrast this result with that of the
spatially homogeneous model obtained by setting y = 0. As can be seen by
studying the Lotka—Volterra equations (1.1), if b,¢ > 1 then both (iZ,0) and
(0,0) are stable solutions to (1.2), while b,c<1 implies they are both
unstable. Furthermore, for » > 1 and ¢ < 1, (0, 9) is the global attractor while
(@, 0) is unstable.

The goal of this paper is to try to understand this dichotomy between the
spatially homogeneous and spatially heterogeneous models. In particular, we are
interested in describing the set of parameter values, y, v, b, ¢, and 7, for which:

1. (&,0) is locally stable or unstable;
2. (0,9) is locally stable or unstable;

3. existence/nonexistence of coexisting positive steady-state solutions
to (1.2) holds;

4. (i1,0) or (0,9) is the global attractor.

Before considering the precise statements of the mathematical results,
observe that a concrete problem leading to the study of spatial properties of
resources in ecology is that of habitat destruction and the ensuing loss of
species [16]. Obviously, local destruction of a habitat can be viewed as the
introduction of a major heterogeneity in the resources. Therefore, the results
of this paper may give an indication of the relationship between the possible
competitive strengths and dispersal rates of species which persist. A crucial
question in this context is which species will survive and which are driven to
extinction. This has, of course, been studied by many authors (see [15] and
references therein). At the heart of the analysis of [15] is the assumption that
the greater the competitive superiority the lower the dispersal rate of the
species. Given a complicated ecosystem this may be a valid assumption.
However, as is indicated in the analysis of this paper, the spatial
heterogeneity of resources in and of itself has the effect of forcing rapid
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dispersers to be competitively superiority. To put this another way, the slower
diffuser can sustain a penalty, i.e., can be competitively inferior, and still
dominate. This is exactly the opposite relationship to that postulated in [15].

Now consider a scenario in which the habitat destruction is taking place
on a similar time scale as the evolution of the competitive traits. (Given the
time scales on which competitive adaptations have been observed in finches
on the Galapagos Islands this may be a reasonable assumption in some
circumstances [5].) In this case, it is conceivable that the environmental
heterogeneities induced by the destruction itself will have an impact on the
relationship between strength of competition and dispersal rates. Such
changes will in turn influence any analysis of the form described in [15].

We now turn to a more detailed description of the mathematics of this
paper and begin by stating our assumptions:

(H1) Q is a bounded open subset of R” with C? boundary Q. v, u, 7, b
and ¢ are positive constants and v > p.

(H2) p is not constant, [, =0 (unless explicitly specified to the
contrary), I' = {x € Q: (x) = 0} does not intersect with 6Q, and € C*(Q).

(H3) For n=1, T is a union of finite number of points, denoted by
X1,..., X, and B'(x;)#0 for 1 <i<k. For n>2, I is a union of finite number
of disjoint C' closed hypersurfaces in R", and VB does not vanish on T

In the next section, we will consider the question of the stability of (i, 0).
This is essentially a question concerning a principle eigenvalue which leads
to the following proposition. Set

o~ inf JalIVOP = (147807

peH'\(Q) o tig?
@#0

: (1.7)

PROPOSITION 1.2. (@, 0) is stable if ¢ > ¢y, and unstable if ¢ < cy.

Hence, it is interesting to know the qualitative properties of ¢, in terms of
the parameters y, v and y. For simplicity, we shall fix 4 and think of ¢, as a
function of v and y only.

THEOREM 1.3.  The constant cy satisfies the relation 0 <cy <1, lim,_ cx =
1, and lim, ), , o, cx = 1 (Fig. 1).

The analysis of the stability of (0, 7) is considerably more delicate and will
be dealt with in Section 3. Of course, this too is a problem involving a
principle eigenvalue and hence

g JaltlVel — (49897

o kW
¢

by = (1.8)

plays an important role.
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1'v

FIG. 1. A typical graph of ¢4 For ¢ > ¢, (&,0) is stable.

FIG. 2. The graph of by. For b > b, (0,0) is stable.

ProrosiTioN 1.4. (0, 0) is stable if b > by, and unstable if b<b, (Fig. 2).

Again, we are interested in the qualitative properties of b,. It follows from
Theorem 1.1 that by > 1, and clearly lim,_ b5+ = 1. Furthermore, we shall
show that the following holds.

THEOREM 1.5. lim, ), by = 1.

The implications of Theorems 1.3 and 1.5 are noteworthy. Consider for
example a fixed b>1 but not too large and treat y as a free parameter.
Increasing y, which is equivalent to increasing the spatial heterogeneity,
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leads to the destabilization of (0,8). This is not surprising in view of
Theorem 1.1. However, as 7y increases further, (0, 7) regains its stability.

Since by ~ 1 for large and small y, there is a maximal value for by. It
seems to be a difficult problem to obtain further detailed information, for
example the number of local maxima and the location and values of the
maxima. Some asymptotic results concerning this are presented in Section 3.

In Section 4, we turn our attention to the problem of coexistence. In
particular, we are interested in understanding whether spatial heterogeneity
of resources can lead to coexistence. Propositions 1.2 and 1.4 along with the
fact that (1.2) is a monotone system [13] immediately gives rise to the
following result.

THEOREM 1.6. If b<b, and ¢ <cy, then there exists a stable coexistence
equilibrium to (1.2).

This theorem is yet another example of how spatial effects can overcome
the paradox of enrichment. In particular, in the Lotka—Volterra model,
b>1 and c¢<1 always leads to the extinction of u. However, in the case of
(1.2) we have coexistence at these parameter values as long as b<b, and
€< Cy.

Of course, it is also interesting to understand coexistence in terms of the
diffusion parameters. In Section 4, an analysis is presented of the bifurcation
from (0,7) as b passes through by, the results being summarized in Fig. 3.
There exists d € (0,v) such that for u>d, an unstable branch of solutions
bifurcates off, but for u<d, at least a pair of solutions is produced by the
bifurcation.

vl llullz

[ T

I

O<p<d d<p <v

FIG. 3. Typical bifurcation diagrams for different ranges of u. Note that for the range
0<pu<d, the bifurcating branch is initially stable.
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The final section of the paper deals with the global dynamics of
the system. Our primary interest is in determining the domains of attraction
of the semi-trivial solutions (#,0) and (0,7) and in discovering when
each of these solutions is a global attractor. Since (1.2) is a monotone
system, the answers to these questions follow from understanding the
existence of interior equilibria. Using this we shall prove the following two
theorems.

Let

2 ={(b,c)e Ri: (i1,0) is the global attractor of (1.2)}. (1.9)

In the more interesting case b > ¢, one observes that (b, ¢) € £ implies that
the superior competitor, in the sense of the reaction system, is incapable of
surviving because of the spatial heterogeneity of the resource.

THEOREM 1.7. If y/v —» 400, then ¥ — (0, 1] x [1, +00).

On the other hand, if /v — 0 and y — +o00, the set X can be arbitrarily
large. More precisely, we have

THEOREM 1.8. For all ¢> 0, there exists C(e) >0 large, independent of
v, v, b, ¢, such that if min{y,v/y} = C(e), then

0,671 x [6,4+00) = Z. (1.10)

2. STABILITY OF (#,0) AND RELATED MATTERS

In view of Proposition 1.2, the stability of the semi-trivial equilibrium
(#1,0) is completely determined by cy. After proving this proposition, we
establish some basic estimates which yield the shape of the graph of ¢, as a
function of y—see Fig. 1.

Proof of Proposition 1.2. Recall that ¢, is given by (1.7). By the
definition of ¢y, 3¢, > 0 such that

0

=5 =o. @2.1)

0Q

VA@, + (1 + 9f — cxtl)p,, = 0 in Q,

For the stability of (i, 0), consider the linear eigenvalue problem

op
1 50

vAp + (1 + 7y — cl)p = — 110, >0 in Q, =0. (2.2
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It follows from (2.1) and (2.2) that

fQ UPQy

2.3
fQ PPy ’ @3)

1= (¢ — ¢x)

and this proves Proposition 1.2. 1

We begin our analysis of the shape of ¢, by describing its behavior in the
neighborhood of y = 0. With this in mind let {&;(x)};°, be an orthonormal
collection of eigenfunctions for —A on Q, with corresponding eigenvalues
0=Ag<h < - <A<, e,

AL+ 48 =0 in Q, % =0. (2.4)
on |
Expanding f in terms of &;, one obtains
BOx) = aiéi(x) (2.5)

i=1
in the L? sense, where ay = 0 since [, f = 0.
PROPOSITION 2.1. cy(y) <1 for any y >0, and c+(y) = 1 + 29> + o(y?) for
0<y < 1 where

o0

=@l )% T

it (1 + /uu)

Proof. 1t follows from the comparison principle for eigenvalues that
cx(y)<1 for any y#0. For 0<y < 1, since lim,_¢ cx(y) = 1,

ex(y) = 1+ ey + ey + 0(y?), (2.6)

and it is clear from the previous remark that ¢; = 0. By definition (1.7) of ¢,
we need to consider the following eigenvalue problem with ¢ >0 on Q:

VAQ + [1 + yB(x) — ctilop =0 in Q, 8_(0 =0. 2.7)
on |50
Again, for 0<y < 1, we have
¢ =1+79; + 770y + 0(?), (28)

i =14 70; + 720, + o(%). (2.9)
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By comparison of the powers of y we see that

pAO, — 0, = —B  in Q, Wl _ 0, (2.10)

on |5
,uAHz — 02 = 61(01 — ﬁ) in Q, 66702 =0, (211)

LAF")

VA =0, —f  inQ 22 _o (2.12)

on |

. 0
VAQy = 0+ ¢+ @y(0 — f)  in Q, % —0. (213
aQ
By (2.10) we have
0= & (2.14)
— 1+ An
From (2.10) and (2.12),

¢1(x) = % 01, (2.15)

and from (2.13) and (2.11), respectively,

/chz/gw—e])wl —/992 (2.16)

and

/Qezzfgelw—el). (2.17)

It follows from (2.15) to (2.17) that

Q:ﬁ(% —1) /Q(ﬁ—el)el. (2.18)

Using (2.5) and (2.14) we get

:)O (li;L[
p=0r=3 (2.19)
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Thus from (2.18) and (2.19),

_ i £
Q| (v 1)/92 Z (1+A,~u)z1+iju) $iéj

Understanding ¢, for large values of y is more difficult, therefore for
simplicity, we fix 4 and think of ¢4 as functions of v and y only.

ProposITION 2.2. (1) O0<cye<]1;
(if) 1im, s oo €5 = 0;
7—>+00
(i) limy /o = 1.

Proof. (1) The inequality cx<1 is proved in Proposition 2.1. Letting
¢ = 11n (1.7), we see that

_—h+p -

T X

which implies that ¢, >[Q|/ [, 7> 0.

(i) Let ¢, be the (unique) solution of (2.1) such that maxg ¢, =1 and
@4 > 01in Q. We show that ¢, —» 1 asv/y > +o0 and y — +o0: rewrite (2.1)
as

(2.20)

1 7 , 8
A(p*+(p*< +Xﬁ—c*31>:o in Q, %

- =0. (221
v oy YV

0Q

By (1.5) and the Maximum Principle [12], ||d]|,, <1 + y maxg 8. Therefore,
by (2.21) and standard elliptic regularity [4], ¢, » ¢ in C '(Q), where A =
0in Q, maxg ¢ = 1, ‘g—(npbg = 0. Hence ¢, — 1 in cl(Q).

Now dividing (2.1) by y and integrating over Q, we have

c*/gw*f/gqo*gw) (222)

By Proposition A.1 in Appendix A, i#/y — . (x). Passing to the limit in
(2.22), since fQ p=0and ¢, — 1, we see that ¢, > 0asy - coand v/y — 0.
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(iii) We first establish the following assertion.

CLAaM. For any ¢ € (0,1), consider the linear eigenvalue problem

vAp + (1 +yp—di) = 19 inQ, 0>0in Q. (223)

4
| =0,
on |ag

Then there exist ci, ¢z, both positive and independent of v and vy, such that if
v/y<c, we have 11 < — (1 — &)cpy<O.

Recall that A; can be characterized as

JolVIVol* + (=1 — 9B + éi)g?]

1 = inf . (2.24)
! peH! fQ (P2
@ #0
By Proposition A.1 in Appendix A,
i u 1/3
-<pi(x)+c (> (2.25)
Yy v
provided that y is sufficiently large. Hence by (2.24),
B — P + [LEIVel + (33 —1)e?
b _Ja@ =P+ BIVoP +@®' Dot

Y fQ 902

for any ¢ € H'(Q), ¢ #0. Let ¢ be chosen in the following way: ¢ >0, ¢ %0
and supp ¢ = {xe€Q: f(x)>0}. Then it is easy to see that there exist ¢,
¢3 > 0 such that if v/y<ci, 41/y< — c2(1 — ¢é). This proves the assertion.

We now show that (iii) follows from our assertion. For any &> 0, let
¢=1—¢ From (2.1) and (2.23),

i /Q 0u = (cx — (1 — 8)) /Q Hp0s. (227)

By our assertion, there exists ¢;(¢) > 0 such that if y/v=c(e), then 1, <O0.
This implies that ¢, =1 — ¢ if y/v= ¢ (). But ¢, <1 from (i). Hence ¢, — 1 if
7/v = 400. |

Remark 2.3. Parts (i) and (iii) hold for [,$>0, but (i) only
holds for [, =0. In fact, if [, >0, part (ii) fails. More precisely, if
fQ B > 0, then there exists some positive constant ¢z such that ¢, > c¢3 for any
y and v.
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3. THE STABILITY OF (0, 9)

In this case, the stability is determined by b, (defined by (1.8)).
Theorem 1.5 states that lim,;,_,, b« = 1, but this result is much harder to
prove than the analogous result for c.. The reason is that we have to
show that b,<1+¢ for sufficiently large y/v. This is equivalent to
establishing a lower bound for a linear eigenvalue problem and a lower
bound is usually harder to find than an upper bound (used in the case of the
estimate of ¢4). Since the proof of Proposition 1.4 is almost identical to that
of Proposition 1.2, we omit it. Similarly, the proof of the following
proposition which characterizes b, for y &~ 0 is essentially the same as that
of Proposition 2.1.

PROPOSITION 3.1.  by(y)>1 for any 7> 0, and by(y) = 1 + byy* + 0(y?)
for 0<y < 1 where

Next we turn to the proof of Theorem 1.5, i.e., by — 1 as y/v > +00. As
in the proof of Proposition 2.2(iii), Theorem 1.5 follows from an estimate
for a certain principal eigenvalue /1, in this case defined by Eq. (3.1). In fact
it suffices to show that 4; > 0, but we present a stronger result, which is itself
of interest and scarcely more difficult to prove. In the rest of this section,
c1, ¢, ... will denote positive constants independent of v and 7.

THEOREM 3.2. Let 11 be the principal eigenvalue for the problem

op

—uAp —[1+yB—bilp = Lo in Q,
on |50

=0. (3.1)

Then given b > 1, there exist positive constants cy, ¢y such that iy =cyy*3v'/3
fory/v=c.
Proof.

Step 1. Let x, satisfy ¢(x,) = maxg ¢ > 0, where ¢ is given by (3.1). Then
there exist ¢3 and ¢4 such that if y/v>c;, we have

1/3
dist(x,, T) < cq G) , (3.2)

where I' = {x e Q: B(x) = 0}.
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To prove this assertion, we first observe that
1+ yp(x,) — bilx,) + 4, =0. (3.3)

There are two cases in the proof of (3.3): x, € Q or x, € 0Q. If x, € Q,from
the Maximum Principle, Ap(x,)<0, and (3.3) follows from (3.1). If x, € 0Q
and (3.3) fails, by the continuity of § and &, there exists a small open ball
denoted by B such that B = Q, BN oQ = {x,} and 1+ pp(x)— bi(x) +
A1<0in B. By (3.1), Ap > 0 in B. The Hopf Boundary Lemma implies that
% (x,) > 0, which contradicts 22|, = 0. Hence (3.3) holds.

By Proposition A.1,

- 1/3

apr-a(t) (34
Y Y

By (3.3) and (3.4), we have

1/3

v ;L

bmm)ﬁmK%G>+$. (3.5)
We claim that there exist ¢; and c¢g such that if y/v>c¢s, then

J1<cgy*3v!/3. To prove this assertion, observe that A; can be charac-

terized by

JolulVel* — (1 +7B — bﬁ)wz].

A1 = inf (3.6)
1 oell fQ ®?
@#0
Choose the following test function ¢:
0 if f(x)<0 or dist(x, 1“)22(%)1/3’
) ()" dist(x, T if B(x)=0 and 0<dist(x,I)<®)"?, .
P(x) = / |
2— (%)1/3dist(x, I) if B(x)=0 and
(5)1/3 <dist(x, 1)< 2(%/')1/3.
By Proposition A.1,
5 NE

Using (3.6)(3.8) we can check that A; <cgy*/3v!/? provided that y/v > 1.
By (3.5) and the previous assertion, we have

1/3
bmm%mmsme). (3.9)
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FIG. 4. Illustration of the choice of coordinates in proof of Step 2.
If f(x;) =0, then

D\ 173
omemG); (3.10)

if f(x,) <0, we have

N
Cm<;> <B(x,)<O. (3.11)

Since V3 does not vanish on I', we see that (3.2) holds provided that y/v > 1.

Step 2. By (3.2), passing to a subsequence if necessary, we may assume
that x, - xo eI as y/v » +o00. After translation and rotation, we may
assume that xy is the origin, the normal to I" at x( is (0,...,0, 1) (Fig. 4), and
near the origin, f(x) = aiﬁ (0)x,, + O(|x[*). Without loss of generality, we
may take %(O) =1.

Choose x, € ' such that |x, — ,| = dist(x,,T). Set x, = %, + (v/7)'/y,.
By (3.2) we see that |y,|<cs. Hence we may assume that y, - y* e R".
Dividing (3.3) by y?/?v!/3, we have

3 s v\1/3
1 NV SN 5+ ) -
2/3y1/3 + (;) B (Xy + <;> yp|—b RTERIE 2“/2/3"1/3. (3.12)

We first show that

o\ 1/3 1/3
(%) %@%gJﬁﬁﬁ (3.13)
b
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as /v — oo, where y* = (»%,...,»*). Recalling that f(X,) = 0 we have
1/3 | 1/3
v op v

%, - L | = — | X+t - . | dt
ﬂ<X, + <y> yy> /0 2 (x, + (y) y,>

13,1 1/3

= (X> / VB %, + l(x) Yy | -y dt.

Y 0 7

Hence there exists ¢, € (0, 1) such that

vy 1/3 1/3 13
0 5o (0) ") <o e2) ) o

= VBO0) - y* = ¥,

since X, — 0, |y,|<cs4, and we have assumed that % 0)=1.
Set

Wi(y) = STETE : (3.14)

We claim that w — w uniformly in any compact subset of R, where w >0
satisfies the following in R™:

{ Aw +w(y, —w) =0, (3.15)

m)y — c2<W@) < Pm) ;. + Cci2.

To prove this, observe that /v satisfies

1 P\ 1/3 . v\ 173 N .
4y2/3v1/3+(5) b xﬁ(;) y|=wl=0 inQ. (.16

AW+

where

1/3
Q= {yeR’”: %+ (f) yeQ}. (3.17)
y
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By Proposition A.1, we have

: 1/3
(é)l/S/ﬁ ()5, + (;) y) — < W)
N 1/3
» (§>1/3ﬁ+ (le + <¥> y) =+ c12. (318)

By applying elliptic regularity on W in any compact subset of R and a
diagonal process, we see that, passing to a subsequence if necessary, w — w
uniformly in any compact subset of R”. Passing to the limit in (3.16) and

(3.18), since
13 1/3
DNICHOEE

(the proof is exactly the same as that of (3.13)), we see that w satisfies (3.15).
Since w =0 and w#0, the Maximum Principle ensures that w > 0 in R™. This
proves our claim.

CLAaM. If p/v > 1, then A1 = — c139*/*v!/3, where ¢13 > 0 is independent
of y and v.

This follows easily from (3.2) and (3.3) for we have

—a 1 1 1/3
T < B <+ e (V) . (3.20)
y Y y y

Step 3. We can now establish Theorem 3.2. To this end, we argue by
contradiction: assume that our assertion A; > ¢,7%/3v!/3 fails. By passing to a
subsequence if necessary, we may assume that 4, /(y*3v!/3) — —¢;5 for some
c15=0. Now passing to the limit in (3.12), we have

Vi — bw(y*) =150, (3.21)

However, (3.21) contradicts the following assertion.

Cram. For any b> 1, y,, — bw(y)<O0 for any y € R™.
We argue by contradiction: suppose not, by (3.15) we see that given b > 1,
Vm — bw(y) is bounded from above in R™. Hence we may assume that

sup(y,, — bw(y)) = a=0. (3.22)
RH‘I

Therefore there exists a sequence {y*}2°, such that y© — bw(y(k)) - a,

m

where y® = (.., y®) It is easy to see that {yV)}2 | is bounded from

mn m



114 HUTSON, LOU, AND MISCHAIKOW

below; on the other hand, since w(y)= (), — ci2, {yﬁ,’f)}zozl is bounded
from above. Hence, we may assume that y% — y e R!. Set

wO) = wor + 8, v+ 5 L. (3.23)

Then w®) satisfies (3.15) as well. By elliptic regularity and a diagonal
process, w®(y) - (y) (in C?) in any compact subset of R™, and i still
satisfies (3.15). By the Maximum Principle, >0 in R”. Since y% —
bw(y®) - a, w(y®) = wk(0,...,0,y%), y& - 5 we see that

m

F— b(0,....0,5) = a>0. (3.24)
Also, since y,, — bw®)(y)<a, passing to the limit we see that

sup(ym — bw(y)) <a. (3.25)
Rm

In other words, the function y,, — bW (y) attains its maximum at (0, ...,0, y).
Hence A(ym — bw(»)ly—,..0,5 <0. That is, Aw(0,...,0,y)>0. Note that w
satisfies (3.15), i.e., AW+ w(y,, —w)=0. As w>0 in R”, we see that
7<w(0,...,0,7). By (3.24) we have

B0, . ..,0,5) <bW(0,...,0,5) +a=y<it(0,...,0,5).  (3.26)

Since w(0,...,0,7)>0, we have b<1, which contradicts the assumption
b > 1. This proves our claim, which in turn yields Theorem 3.2. 1

Remark 3.3. (i) The assumption [, f(x)dx =0 is unnecessary in
Theorem 3.2. Note that Proposition A.1 in the appendix does not require
Jo B = 0 either.

(i) The proof of Theorem 1.5 depends crucially on condition (H3),
which is used in the construction of a sub-solution. However, there are some
grounds for supposing that the result may be true even if a weaker condition
replaces the restriction that V§ does not vanish on I'. For in the special case
when Q < R, it is possible to relax this condition and assume a condition on
B at a zero of . We leave open the question of generalizing this result to
higher dimensions.

To understand the following results, it is helpful to discuss the
“shadow” problem obtained by letting v — co. For fixed 7, since [, =0,
# — 1 uniformly as v — co. Therefore, it is plausible that, at least
for any compact set of vy, b.(y,v) is close to b«(y, 00), where by(y,00) is
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defined by

ba00) — — inf JalkIVF = (L5 7H6)

peH! fQ(/)
@#0

(3.27)

We are interested in the connection/difference between by(y, v) and b.(y, 00)
for v > 1. It turns out that, as shown in the next few results, by(y,v) &
ba(y, 00) for y = o(\/;), but b(y, v) behaves differently from by(y, 00) if y=
O(\/\_)). A detailed description of b.(y,v) is given by Theorem 3.4 and
Proposition 3.5.

In the following, we write b, as b.(y,v) to denote its dependence on y
and v. We also need to assume fQ p(x)dx =0 from now on. The case
Jo B(x) dx >0 is quite different.

THEOREM 3.4. Let ¢* be the unique solution of —Ag* = B in Q, %2 S |BQ 0
and [, @*(x)dx = 0. Then

i im0 <p<o ba(p,v) _ maxg BOI
= NG 29t

(i) Ify* = 9*(v) satisfies bu(y*,v) = maxo<y<oo bu(7,v), then

A

lim = .
V400 \/\—) ||vg0*||2

To establish Theorem 3.4, we need some preliminary results about
qualitative properties of bu(y,v).

ProPosITION 3.5.  The following hold.

(1) limye o0+ ba(p,v)/bx(y, 00) = 1;
(i1) Yn >0, 3k(n) > 0 large, independent of y and v, such that ifn\/;<y
<v/n, then

1 / bx(y,v)
k(n) v by(y,00)

<k(n). (3.28)

To prove Proposition 3.5, we need the following two lemmas which are
also useful in Section 5.

LEmMMA 3.6. ey and c13 > 0, independent of y and v, such that if min{v/y,
v} =ci7, then
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2

|- clg%Sﬁ(x)sl +c18V7 VxeQ. (3.29)
Proof. Set
i y
5= <1 + clg) (1 4+ (/)*). (3.30)
Vv Vv

We claim that for large c¢;9 which is independent of y and v, v is a super-
solution of (1.6) provided that v/y, y are sufficiently large. By direct
calculation,

_ (1 v n2 1 2
EAu+v<—+[5—9> = <1 +C19/—>X{—619+ﬁ(p*——(p*<1 +2c19’—>
i Y ? vy i v

[P '
— (") (1 +c197)]. (3.31)

Set ¢19 = [|f¢*|| + 1. Then we have

v, (1 v 2 19 1
—AU+U<-+/3--)<(1+6’19V—>Z|:—1+Czo<z+—+/—2+—)]<0
Y y y A v ooy oovE oy

provided that min{v/y,y} > 1. This shows that 7 is a super-solution of (1.6)
and

2 2
F<h = <1+c19V—> (1+y(p*)<1+clgy—. (3.32)
v A

v
We now find a sub-solution v of (1.6). Let ¢, be the unique solution of

d
Afp*=/ﬁ¢>*—ﬁq)*, /co*=0, P
Q Q

=5 =o. (3.33)

oQ

Set

v=1+290"+5 o, (3.34)
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Then by direct calculation,

Y 1 oy ¥ 9
2;(A<p*+ﬁ<p*)—c21< +—+5+;>

V[/ﬁw —czl< +1+V+V)]
[/IWI —m( 4= +y+y>} 0 (3.35)

provided that min{y,v/y} > 1, where the last equality follows from [, f¢*
=/ |Vo*°. This implies that v is a sub-solution and 7=v>1 — ¢137/v.

Lemma 3.7. Vy >0, Jexn(n) > 0 large, independent of y and v, such that if
N/ v<y<v/n, then

1 2 2 -
—<v(x)<622(;7)— Vx e Q. (3.36)

cn() v

Proof.  We first show that |[0]|;~(q) < ca4(n)y? /v for some ca4(n) which is
independent of y and v. Set 6 = Q[ [, @.

CLam 1. |6 — 6l < c2s(m (/)8 -

To prove this assertion, rewrite the equation for ¢ as

A Y — £ 2 L -z i
{ AC-0)=f=50G+F~3) inQ (3.37)

(0= 0)lag = 0.

Multiplying (3.37) by ¢ — ¢ and integrating, since [(¢ —¢) =0, by the
Holder inequality and the Poincare inequality we see that || — 0| y12q) <
csllfll,. By the Sobolev Embedding Theorem, the L” estimates [4] and
standard bootstrap arguments, we have ||§— 7| <cxllfllo- By the
Maximum Principle, ||5/7|l <c27. Hence ||f|lo <cas(m(y/v)||8]lo, from
which it follows that ||7 — &||,, < c25(7)(p/v)||]|«- This proves Claim 1.

Cram 2. I8l [o(5/1181100)* < ca0(m)y? /.
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To prove this assertion, integrate (1.6) and divide it by ||7]|,,. We have

o 2 5 i
~ v = v b u
i [ () = i+ s
B U v 5—
- /Q||ﬁ||oo - 11 /Q(U R

e m@/w

,))2
<M+m/w—
o) Vv
,))2
<enn’ (3.38)

< QI+

This proves Claim 2, where the condition [, f =0 and Claim 1 have been
used.
Note that §/|0]|,, satisfies

A(f’) o lﬂ ”)o in Q,
1191l o 1610 \ v YV

o( @
< =0. 39
on (Ilﬁlloo> ’ G

o

Since

< C30(11), (3.40)

I 0
__;’__ﬁ__X
Vo YV

by the global Harnack inequality (see [10]), we have

0 i
mm =c31(n) max = c31(n). (3.41)

191l 161l

It follows from (3.41) and Claim 2 that ||8]|o, <(c29/c3;)(y*/v); this is the
required upper bound on &.

Next, we show that ming 5> c3(n)y?/v if 7y/v<y<v/n. Since (3.41)
implies that ming 9> c3; maxg 7, it suffices to show that maxg 7> c33)? /v for
some ¢33 > 0. We shall argue by contradiction: suppose that there exist n, > 0,
{5 vi)} 2y satisfying g /vi <y, <vi/no, villillo /77 — 0, where #; satisfies

V,'Aﬁi + 17,(1 + “/lﬁ — 17,) =0 in Q, % =0. (342)
on g



LOTKA-VOLTERRA DYNAMICS 119

Set ¢; = |Q! Jq Ui Integrating (3.42) and dividing it by V2 |5il| 0 / Vi after
some rearrangement we have

~ 2
Uj
(@ — 6)p ||||w/(~ ).(3.43)
7 an,nw /||vl||w/’ R = Wil Jo\ (i

Dividing (3.42) by ¢; and integrating, we have

AB; Vi
/51':|Q|+7i/ﬁ+vi/T:|Q|+vi/| ~2|= (3.44)
Q Q Q Ui Q U

e., Jo0i=1Ql. Therefore |||, >1, which together with Villtillo /77 = O
implies that v;/y? — 0. Passing to the limit in (3.43), we have, as i —> +00,

Vi / B(5: — 6)) — 0. (3.45)
Villille Jo

Set w; = (6; — U)/]|9; — ¥ill- Then w; satisfies

{ (i 15— AW + -+ p -5 =0 inQ

AN
W0 onoQ, [wille =1

(3.46)

We consider two different cases:

Case 1: v;/y; > +o00. For this case, it is easy to see that ;/||7i||, — 1
uniformly. Moreover, §;/7; — 0 uniformly. To see the last assertion, observe
that @;/y; is uniformly bounded by the Maximum Principle. Since y;/v; is
bounded, by (3.42) and elliptic regularity, we see that @;/y; is uniformly
bounded in the C>* norm for some o>0. Hence, passing to some
subsequence if necessary, we may assume that 9;/y; — vg in C2, where Avy =
0in Q and 6”0 loo = 0. Hence vy is a nonnegative constant. If vy > 0, dividing

(3.42) by y, and integrating in Q, we have fg vo(f — v9) = 0, which implies
that vy = |Q|! f f = 0. Contradiction! Hence ;/y; — 0 uniformly.

If vi||; — Gilloo /(ilIBill) = +00, then by (3.46), w; —> w and w satisfies
Aw =0, 2| =0, [wll, =1 and [, w =0 since [, w; =0 and |jw;l|,, = 1.
However, such w clearly does not exist. If v||5; — Gi|lo./(y:llFill0) = O,
multiplying (3.46) by any C? function ¢ with ‘;—jﬂaﬂ = 0, integrating in Q, we

have
. . 1 .
%nﬁi—ﬁinm/wmwf o ( +ﬁ—ﬂ)=o. (3.47)
Vi”viHoo Q QH l”’xy yl yi

Passing to the limit in (3.47), since v;/||Gi|l, = 1, 0i/y; = 0,7; = 400 (because
vi/y? — 0 as proved previously and v; > u > 0), we have Jo Be = 0,z which is
impossible. Therefore we may assume that v;||5;— 0| /(7i]|7illo0) = @ € (0,4-00).
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By standard elliptic regularity we see that w; — w, where

ow

=0. (34
2| =0 (348

aAW+ﬁ:0’ /WZO’ ||M}||OO: 1’
Q oQ

Passing to the limit in (3.45) we have [, fw = 0, which is impossible since by

(3.48) we have
/ pw = —a/ w-Aw = a/ IVw]? > 0. (3.49)
Q Q Q

This completes the discussion of Case 1.

Case 2: v;i/y; » d € (0,400). (Note that d > 0 because v;/y; =1, > 0.) Since
vi/y? —> 0, we see that y; - +o00. For this case, 0;/y; = vo, 0i/|[Gillc —
vo/|lvoll > Where vy is the unique solution of

6170

dAvy + vo(ff —v9) =0 in Q, -—
on

=0. (3.50)
oQ

As in Case 1, we can show that, passing to a subsequence if necessary,

Vi L
———|10; — Fill, = a€(0,00), (3.51)
illBilloo

and w; — w, where w satisfies

ow

aAw—i—vio(ﬁ—vo)zo in Q —
llvollo on

=0, /w:Q (3.52)
Q

oQ

By (3.50) and (3.52) we see that w = vy for some t > 0. However, this is
impossible since fQ w = 0. This contradiction implies that #(x)> c34y*/v for
any x € Q and some ¢34 >0. 1§

Proof of Proposition 3.5. Part (i) follows from (1.8) and (3.27) since by
Lemma 3.6, & — 1 uniformly as y?/v — 0. Part (ii) follows from (1.8), (3.27)
and Lemma 3.7. 1

Proof of Theorem 3.4. Step 1: hmy/\ﬂﬁo bu(y,v)//v = 0.

v—+400

By part (i) of Proposition 3.5,

b*(ya V) =1

im = 3.53

In particular, by(y,v)/b«(y,00) is uniformly bounded if y/ \/; < 1. By the
definition of by(y, 00), it is easy to show that bu(y,v)/(1 + y) is uniformly
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bounded for any y>0. Therefore, if y/\/; — 0 and v - 400,

b*(% V) b*('}/’, V) b*(ya OO) 1 + ’))

Vv o) Ty
Step 2: lim}v/\/;ﬂo bu(y,v)/1/v = 0.

Vv—+400

- 0. (3.54)

If y/v > 400, by Theorem 1.5 we have by(y,v) — 1, which implies that
ba(y, v)/\ﬂ — 0; hence we may assume that y<v/yn for some 5 > 0. Since
V/\/‘_’ — +00, we apply part (i) of Proposition 3.5 to see that (y/v)(b«(y, v
)/b4(y, 00)) is uniformly bounded. Hence, if //\/1_) — +00 and v > +00,

Vv v bu(y,00) Yoo

Step 3. In view of Steps 1 and 2, we may assume that v — +00 and

7/\/v = 5 €(0,400).

(3.59)

CLam. & — 1+ 52Q7" [ IVo** uniformly, where @* is defined as in
Theorem 3.4 and v is defined by (1.6).

By Lemma 3.7 we see that there exists ¢ > 0, independent of v and y, such
that ¢<d(x)<1/c for any x € Q. Since v —» +00 and y/v — 0, by standard
elliptic regularity, & — v uniformly, where v is some positive constant. To
establish the claim it is thus enough to show that

1+—/v *2 3.56
0l V™. (3.56)

Set ¢ =1|Q|! fg v. We first prove the following estimate: dc¢ >0,
independent of v and y, such that

O 1
e <A/ — Bl e < (3.57)
To show (3.57), we rewrite (1.6) as

. q
(Vi — UII%)A<H~_AH )+U(\/;U~)+\;;[fﬁ:0 in Q. (3.58)

If \/Y][§ — dll, — 0, multiplying (3.58) by any ¢ € C*(Q) such that 22|, =
0, and integrating over Q, we have

(Volls - unm)/HN_ <p+f/v(1—ﬁ)<p+ - [ pro—0. @9
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Passing to the limit in (3.59), we get [, fp =0 for any ¢ € C*(Q) and
loa = 0, which is clearly impossible. Hence \/;Hﬁ— U]l 0.
If /|6 — 8|, = +00, by (3.58) we see that (¢ — 6)/||5 — 4], — ¥, where
Y satisfies Ay = 0 in Q, %lm =0, de/ =0, ||¥|l, = 1. However, such a ¢
does not exist. This proves (3.57).

By (3.57), we may assume that, passing to some subsequence if necessary,
\/;Hﬁ— Ul — 7 €(0,00). Again by (3.58), we may assume that (¢ — 6)/||¢ —
Ul — ¥, where  satisfies

o
on

_ . oy
A + sop = Q —
TAY + 5o =0 inQ -

0, — 0. 3.60
) /Qw (3.60)

By the definition of ¢*, we have y = (sv/7)p*. Now integrating (1.6), after
some rearrangement we find that

A — 8y + (i — & 0-0
JRCELE Tl | b= =0 ce

Passing to the limit in (3.61), we have

aafmm+m/ﬁ¢:o (3.62)
Q
Since ¥ = (sv/7)@*, from (3.62)
5—1+ﬁ/ﬁq’*—l+i/lv<ﬂ*lz (3.63)
19 Jo Q[ Jo ' '

which proves (3.56) and thus the claim.
Step 4. We show that limy )\ fims bi(y,v)/\/v = f(s), where

V—>+400
(maxg B)s

5) = . (3.64)

N L+ Q" [ [Ve*P)s?
Recall that
barv) . a5Vl — (4 Pe’]
= — inf = . (3.65)
\/\_; ¢#0 fQ vy
peH'

Since & — 1+ Q" [,IVo**, v > +0o and y/y/v > 5, we see that
bx(y,v)/\/v = f(5) uniformly in v and 7/,/v. For 0<s< + 00, it is easy to
check that f attains the maximum maxg [3|Q|1/ 2 /Q|IVe*|l,) at
s = |Q|1/2/||V(p*||2. This proves both parts (i) and (ii) of the theorem. 1
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Remark 3.8. If [, f(x)dx >0, then Theorem 3.4 fails. More precisely, if
Jo B> 0, then there exists some positive constant ¢ such that b, <c¢ for any y
and v.

Remark 3.9. Tt would be interesting to know whether for any v > u,
b«(y,v) has a unique local maximum (which would then be the global
maximum) for 0<y <oo. It would also be interesting to know the rate of
decay of b.(y,v) as y —» o0.

4. COEXISTENCE OF POSITIVE STEADY STATES

In this section, we shall discuss the coexistence of positive steady states to
(1.2). Theorem 1.6 is concerned with the case where both semi-trivial steady
states (i7,0) and (0, §) are unstable, i.e., b <b, and ¢ < cy, respectively. Since
Theorem 1.6 follows from Propositions 1.2, 1.4 and the fact that (1.2) is a
monotone system (see, e.g., [13]), we omit its proof. Of course in addition, if
b > by and ¢ > ¢y, a (not necessarily stable) coexistence state also exists. If
1 <b<byand ¢ > 1, from Propositions 1.2 and 1.4, (i, 0) is stable and (0, ) is
unstable. However, it is interesting to note that nonetheless (7, 0) may not be
the global attractor for the interior; as can be seen from Fig. 3 there will be
both stable and unstable coexistence states if 4 and y are small enough. This
follows from Theorem 4.1, and the main purpose of this section is to prove
Theorem 4.1 and give some applications to the coexistence of steady states.
Throughout this section, we shall assume that b = ¢>1 and use b as the
bifurcation parameter.

By the local bifurcation theorem [1], positive steady states of (1.2)
bifurcate from (1, v) = (0, 0) at b = by. Moreover, all positive steady states of
(1.2) near (u,v,b) = (0, 7, bs) can be represented as

(u(s), v(s), b(s)) = (s@ + O(s?), 7 + sy + O(s?), by + s4(0) + O(s*))  (4.1)

for 0<s < 1, where ¢, y satisfy

. 0
pA@ + 1+ pB(x) — bydlp =0 in Q, @l — 0, 4.2)
on |0
. . oy
VAY + Y1 +9f —20) = buBlp  in Q, —| =0. (4.3)
on |50

It is crucial to determine the sign of A(0), which will in turn yield the
bifurcation direction and stability of solution branch near (u,v,b) = (0,7,
bs). The following result gives a complete understanding of A(0) when
0<y < 1. In general, determining the sign of A(0) is a difficult problem.
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THEOREM 4.1.  There exists d € (0,v) depending only on v, B and Q, and
7 > 0 depending on u, v, § and Q such that if 0 <y <7y, sign(4(0)) = sign(u — d).

Proof. Asy — 0, we know that ¥ —» 1, b, — 1 and ¢ — 1. Therefore, it
is easy to check that y - —1 as y — 0. Consider henceforth the range 0 <

7 < 1, and recall that by = 1 + byp> + O(y*). Also

@ =140, + 770, + (%),
Y= =149+, + o),

7= 1470, +9°0, 4+ o(y?),

where 0y, 02, ¢, ¢, ¥, and Y, are given by

0
VAO; — 0, = - inQ, ] =0,
on |q
00
VAOy — 0, = 0,0, — )  inQ, —2| =0,
on |5
. 0
:uAﬁolzgl—ﬁ an, /qpl:()’ % 70’
Q n {0
. 0
pAQy = 02 + by + (0 — ) in Q % —0,
LFe}
. 0
VAY, = =@ + -0 in Q, % =0,
n 1
VAY, — Yy =019 — 02+ by — By,
0
+201 + @, in Q, Ny =0.
on |a

By using (4.1) and the equation for u, we find that

X0) /Q 60> = — /Q 90 + ba)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

4.11)

(4.12)

(4.13)
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For y < 1, direct calculation gives

/ 0> (@ + by) 27/(901 + V)
Q Q
T2 /Q(q;z + iy — by + 207+ 2014)) + 0(y?).  (4.14)

Integrating (4.11) we have

Since [,(f — 01) =0, it follows that [,(¢, + ) = 0. That is, the first term
on the right-hand side of (4.14) vanishes. It remains to calculate the second
term: integrating (4.12) we get

/(% L) = /(femol L0y bt By 200, (416)
Q Q
From (4.7) and (4.9),
P(x) = Y 01, (4.17)
U

and from (4.10) and (4.8), respectively,

/szz/g(ﬁ—el)wl—/gez 4.18)

and

/Qezzfgelw—el). (4.19)

It follows from (4.14), (4.16), (4.18) and(4.19) that

—sign[A(0)] = sign [ /Q (010, + 350, — 307 — 2B9,
+ By = 2000 + 207 + 2019)]. (4.20)

Multiplying (4.7) by ¢, multiplying (4.11) by 0,, subtracting them and
integrating, we have

/ By = / (010, + 02 — BOy). @.21)
Q Q
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It follows from (4.20) and (4.21) that

~sign[4(0)] = sign [ /Q O —o)B—0— o —up|. @22
By (4.11), ¢ + ¥, = vAY; — (B — 6)). Therefore
/Q(ol B 01— oy — )
- /Q (0 — D208 — 01) — vAy]
_ (1 —”) / 0128 — 0) — vAY,]  (by (4.17)
H Q
- (1 - 3) / B 00020, +y)  (by @11).  (423)
) Ja

By (4.11) and (4.17) we have

VAY, — Y =p+ (V - 1)01 in Q, W =0, 4.24)
K n
which becomes on using (4.7),
W, = —0, + <V . 1)(vA — 1) le,. (4.25)
u

In (4.23) substitute for (f — 0;) from (4.7). Then from (4.22), (4.23), and
(4.25)

sign[4(0)] = sign { /Q VO + G - 1> /Q vo, ~VW}, (4.26)

where w satisfies

ow

VAW —w = 04 in Q, —
on

= 0. (4.27)
oQ

CLamm. [, V0, - Vw<O.

To prove our assertion, by (2.5) and (4.7) we have

00
ai
0, = E , 4.28

! 1 1 + /l,'V il ( )
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in the L? sense. By (4.27) it is easy to check that

W= — — & 4.29
; (1 + 2v)? ¢ (4.29)
Therefore
o Al
VO, -Vw=— i <. 4.30
/Q : ; (1 + 4v)° (430)
Set

a_'v/ {1 /|v91|2// Vo, -VW} € (0,v). 4.31)
Q Q

We see that (0) <0 where 0< u<d, and A(0) > 0 when d <y <v. This proves
Theorem 4.1. 1

Remark 4.2. Similar bifurcation analysis can be carried out for the
general case ¢ = (1 — n) + nb, where 5 is any fixed positive number and b is
still the bifurcation parameter. Note that to avoid technicality we only
discuss the case n = 1 in Theorem 4.1.

Finally, we give some applications of Theorem 4.1 to the coexistence of
steady states of (1.2).

THEOREM 4.3.  Set
A={b=c>1:(1.2) has a coexistence positive steady state}.  (4.32)

Then A > (by,+00). Moreover, if y < 1 and 0<,u<a_’, 3b € (1, by) such that
AD[b,+00), and (1.2) has at least one stable positive steady-state solution for
any b e [b, by).

Remark 4.4. 1t is interesting to note that when b<b<by, (0,9) is
unstable and (i, 0) is stable. However, for y < 1 and u<d<v, (&,0) is not
the global attractor and surprisingly, there could be stable steady states for
this range of b.

Proof of Theorem 4.3. We know that solutions bifurcate from (u,v,b) =
(0, 7, bs). By standard global bifurcation techniques we can show that there is a
global branch of steady states connecting (0, 7, b«) and (ux, Voo, 00) for some
Uno, Voo This in particular implies that A D (by, +00). Wheny < 1 and O0<pu<d
we know that 1(0) <0 (Theorem 4.1). By the standard local bifurcation theorem
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[1] and exchange of stability of (0, ) at b = b, we see that 3b € (1, by) such that
(1.2) has at least one stable solution for b <b < b,. This together with the global
bifurcation argument implies that A>[b,+00). Since these bifurcation
techniques are rather standard, we do not give the details here. 1

5. THE GLOBAL ATTRACTIVITY OF (i, 0)

Consider the set
2={(b,c)e Ri: (i1,0) is the global attractor of (1.2)}. (5.1

By Theorem 1.1, [3], we know that X>(0, 1] x [1, +00). Theorem 1.7 is a
direct consequence of (5.1), Proposition 1.2, Theorem 1.3, Proposition 1.4
and Theorem 1.5.

To prove Theorem 1.8, the following preliminary results are needed.

LEmMA 5.1. de¢; >0 and ¢, >0, independent of y and v, such that if
min{% V/V} =cy, then b*(ya V) =0 min{% V/V}

Proof. We start by noting that

. by,

lim bul,20) = max f. (5.2)
=00 Q
The proof of (5.2) is essentially the same as in [8].

To establish Lemma 5.1, we argue by contradiction. Since b.(y,v) =1, we
may suppose that there are sequences {y;};~;, {vi};~, such that y; - +o0,
vi/y; = +00, and by(y;, vi)/min{y;, v;/y;} — 0.

If y?/v; - 0, part (i) of Proposition 3.5 implies that by(y;, v;)/bs(y;, 00) > 1.
Noting that

bs(yi,vi)  bul(yisvi)

- = - 0, 5.3
min{y;, vi/7;} Vi -3)

we see that by(y;, 00)/y; — 0 asy; - +o00o, which contradicts (5.2). Therefore,
we may assume that y7/v;>c; for some c¢3>0. Since y;/v; > 0, (i) of
Proposition 3.5 implies that

2

77 by, vi)

L >0 > 0. 5.4
vi by 00) 4

By (5.2) and (5.4), we see that y,b.(y;, v;)/vi=c >0, which contradicts the
following assertion.

CLAIM.  by(y;, vi)y;/vi = 0.
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To prove this assertion, observe that if y% <v;, then

ba(pis vi)y;: < bs(y;,vi) _ bs(y;,vi) 0: (5.5)
Vi Vi min{y;, v;/7;} ’
if 2 >v;, then

be(yi, vi)y;: _ ba(y;,vi)
Vi min{y;, Vi/Vi}

- 0. (5.6)

This finishes the proof of Lemma 5.1. 1§

COROLLARY 5.2. There exist ¢s >0 and c¢ > 0, independent of v and v,
such that if min{y,v/y} =cs and b<ce min{y, v/y}, then (0,0) is unstable.

Proof. This follows from Lemma 5.1 and Proposition 1.4. 1

LEMMA 5.3.  Suppose that (0, 9) is unstable, and (1.2) has a positive steady-
state solution with parameters (b, ¢). Then for any 0 <c<¢, (1.2) has at least
one positive steady-state solution with parameters (b, c).

Proof. The system is competitive, and we may therefore use the sub-
super-solution method, see [6]. Denote by (i, ¥) the positive steady-state
solution of (1.2) with (b,¢) = (l;,é). Since (0,7) is unstable, the following
linear eigenvalue problem:

R 0
wAp + o(1+9f —b0) = —p,  9>0, | =0 (57
on |50
has a solution with 4; <0. Set
(u,u) = (4, 0¢p), (v,v) = (7, 9). (5.8)

It is easy to check that u > u provided that § > 0 is sufficiently small, and
v>=v since we have <. Moreover, if 0 is small, one can check that (iz, u),
(v, v) are super-sub-solutions of (1.2) with (b, ¢) = (b: ¢) for any 0 <c¢<¢. This
implies that for any c¢<¢, (1.2) with b= b has a positive steady-state
solution. 1

COROLLARY 5.4. dcs >0 and cg > 0, independent of v and v, such that if
min{y,v/y} >cs, b<cemin{y,v/y}, and (1.2) has a positive steady-state
solution with (b,c) = (b: é), then (1.2) has at least one positive steady-state
solution for b = b and any c such that 0<c<¢.
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Proof. This follows from Corollary 5.2 and Lemma 5.3. 1

LEMMA 5.5. Vn >0, de7(n) > 0 and cs(n) > 0, independent of vy, v, b and c,
such that if min{y,v/y} =c:(n), c=n, and b<cg(n) min{y,v/y}, then (1.2) has
no positive steady-state solution.

Proof. We argue by contradiction: suppose that In, > 0 and sequences
(b}, tait, Ay}, i}, {wi}, {vi} such that ¢;=n, y; = +00, vi/y; = +00,
b;/min{y;,v;/7;} — 0, and (u;, v;) are positive solutions of

,uAm + H,(l + '))lﬁ — Ui — b,‘U,‘) =0 in Q,

vilAv; + v;(1 + y;f — ciu; — v;)) = 0 in Q, (5.9)
Ouj __ v __
Si=51=0 on 0Q.

We may assume that ¢; = 7,. For otherwise, by Corollary 5.4, we may use
the parameters (b, c,v,y) = (b, 4y, vi,y;) and work with the corresponding
solutions (u;,v;) of (5.9).

Step 1: vi/||vill = 1 uniformly. Set @; = v;/||vi|l|- Then ¢, satisfies

1y Vi Ui ;U 0p;
A90i+§0i(v+v_ﬁf70 ***** =0, 1
1

=0. (5.10)
i ViVi  ViVi on

oQ

By the Maximum Principle, |lull, <ky; and [jvjl|, <kp; for some k
independent of i. By elliptic regularity, ¢, — ¢ in C'(Q), where ¢ satisfies
Ap =0, g—‘}fbg =0, |lollo = 1. Hence ¢ =1, i.e., ¢; — 1 uniformly.

Step 2: bil||vill~/7; — 0. Observe that v; is a sub-solution of

. ow;
vidlw; + wi(1 + 9y, —w;) =0 in Q, ] 0. (5.11)
on |z
Hence v; <w;. There are two possibilities to consider:
() y?/v; — 0. For this case,
b b (5.12)
7. mindy;, vi/y;}
Since ?/v; — 0, by Lemma 3.6 we see that
»?2
Illo <1+ e1s 2 <k (5.13)
1
for some constant k. Hence

Vi Vi Vi
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(i) 92 /vi= & > 0 for some & > 0. Since &\ /vi<y;<vi/¢, by Lemma 3.7 we
see that ||wl|., <ky?/v;. Hence
bi i b i 1
ol bl _, bi 515
Vi Vi Vi

We claim that b;y;/v; — 0: if 92 <v;, then
biy; sz, b bi

= —=— >0 (5.16)
Vi Vi Vi % min{v;, v;/y;}
if y? >v;, then
by, b;
=— > 0. 5.17
Vi min{v;, v;/y;} ~ .17

Hence bl|vill../7; = 0.

Step 3. Ve >0, u;/y; = (p — €),. for sufficiently large i. Note that u; satisfies

—pAu; = u; {1 + Vi(ﬂ _ b;w) _ ul} ;ul{l + Vi(ﬁ — g) — u,}, (5.18)

i

where the last inequality follows from Step 2, provided that i > 1. Hence
u; =>w;, where w; satisfies

=0. (5.19)

AW+ w1 +v,-(ﬁ—§) —w| =0 ing owi
oQ

on

By Proposition A.1 in the appendix,

M (p-3), (%) " (520)
Vi + Vi ' .

Hence, for sufficiently large i,

§>ﬁ>(ﬁ—8)+. (5.21)

i i

Step 4. Integrating the equation for v;, and dividing it by v,||vi||., We have

1 A , A
—/ o +/ - B>no/ - u'>no/ e (522)
Vi Jallvill — Jallvills o llvillso 7; o llvillx

Passing to the limit in (5.22), as v;/|[vill, —» 1 and [f =0, we have
Jo(B—¢€), <0 for any &>0, which is obviously a contradiction. This
completes the proof of Lemma 5.5. 1
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Proof of Theorem 1.8. It suffices to check the following for c>¢ and h<e™!.

(a) (17,0) is stable. By (i) of Proposition 2.2, Ve > 0, 3¢;(g) > 0 such that if
min{y,v/y} =ci(¢), then cx<e. Then by Proposition 1.2, if ¢=¢, (4,0) is
stable.

(b) (0,0) is unstable. Ye >0, by Lemma 5.1, if min{y,v/y} =max{c, 1/
(c26)}, we have h<e™' <min{y,v/y}cy <b«(y,v), which implies that (0, 9) is
unstable (Proposition 1.4).

(¢) Equation (1.2) has no positive steady-state solution. This follows easily
from Lemma 5.5.

Since (1.2) is a monotone system, we know that (a)—(c) imply that (iZ, 0) is
the global attractor for (1.2). 1§
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APPENDIX A

Let v(x) be the unique positive solution of

dAv+ v(1 +yp(x) —v) =0 in Q, o

= =o. (A.1)

o

ProrosiTION A.1.  Suppose that (H1)-(H3) hold except that the condition
fQﬂ = 0 is relaxed. Then 3¢y >0 and ¢y > 0 large such that if y/d>=c, and

y=cr,
A\ /3
<c2(—) . (A2)
LY(Q) 1

Proof. The proof is based on a super-sub-solution method [4], and we
will construct explicit weak super-sub-solutions to (A.1).

Set
VB @+ p d
_ bz <x; : rz>, (A3)

v
Y 2

v
;—/ﬁ

where 71 >0, 7, > 0 are to be determined, and z is defined by

. (D' exp[—1, dist(x, 0Q)(3) '] x
Z(X;;,Tz) = x ks, (dist(x, 0Q)) if dist(x, 0Q) < (A4
0 if dist(x, 2Q)> dy,
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where Jp>0 small is chosen such that dist(x,0Q) is C> as long as
dist(x, 0Q) <y Here ks(-) € C*(R, [0, 1]) and

ké(f): 13 |€|\29 (AS)
0, o] > 9.

The role of z is to ensure §; 20 on 0Q. Define the operator L by setting
d |
Lv=—Av+v|l-+p—v). (A.6)
v v

We need to check that L(7/7)<0 in Q:

_ /g2 dN\2/3 _ 2/3
L<E><dA( F+ni) +ﬂ) dAz+i;) ”(‘1) . (A

v) Ty 2

It is straightforward to check that

(\/ﬁ2+rl(.—‘?)2/3+ﬁ) ( 1 )
A ! <al|ll+—-—1], (A.8)

_|_
2 ‘E:/z(g)lﬁ
2/3

g Az <C4‘C% <d> s (A9)
Y Y

15

1o .4 (A.10)

Yy Y

By (A.7)—(A.10) we see that

- 2/3
()<(6)

) Y
provided that d/y is sufficiently small and 1, is suitably large. Note that the
choice of 7; depends on 7, at this stage. However, note that on 0Q, %(E/y)
=1, — ¢ maxaq [V . By choosing 7, and then t;, we see that §/y satisfies
L(5/y)<0in Q and £(5/7) >0 on 6Q provided that d/y is sufficiently small.
That is, ¥ is a super-solution of (A.1) where d/y<¢; for some ¢; > 0 small,
where ¢7 is independent of d and y.

We now construct the sub-solution v of (A.l1). Recall that I =
{xeQ: p(x)=0}, and let T5={xeQ: f(x)=0} for 06>0 small,

1 d 1/3
5 +C412+ l/2+(C3+C5)< > 1<0 (A.11)
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Ds = {xeQ: 0<pf(x)<o}. Let hs be the unique solution of

Aho‘ =0 in D(;,
hs = 0 on T, (A.12)
hs =1 on Is.

Since Vf does not vanish on I', 3¢g and ¢9 > 0 such that c¢g dist(x, ') <
B(x) < co dist(x, ). Then [|Vhs|| ~p,) < c10/d for some positive constant cjo
provided that ¢ is sufficiently small. This implies that

ci . c
ha(x) <=5 dist(x, ) <= B(x)
for every x € Dy and some constants ¢;; and c;,. Now set

0 if f(x) <0,
o | @ if 0<p <&,

E
Y

(A.13)

)P )
B— (s — DO ——— if pzu@)'.

For p(x)<0, Lv = 0. On T, since %‘fh— <0, where n, is the outward normal
vector on I as part of the boundary of the domain Djs, we know that
aaTU,|F <0, which is required to ensure v is a weak sub-solution. For x € Dy,
since hg is harmonic, we see that

1/3
L g :g l + ﬂ - EZ h d\1/3
Y VAW Y ()
. - <d> e P
y v/ @)

:2/;<1_‘L2>>o (A.14)

Y T3

provided that 73> ¢15. On B(x) = 13(d /)",

o /d\ /3 d\ 3 clo 0 0 (v
I G T <(= Vh S—< =1
ony (“/) 13(%')1/3 ('y) | T3(f7{)1/3| 3 Om b ony (V)

where n, is the outward normal vector on dDs/T = {x: f(x) = r;(d/y)1/3}.

Note that for d/y < 1, aﬁ(':) >3 > 0 for some small constant ¢;3 and any x

n
such that f(x) = 13(d/y)1/3. This is due to our assumption ag}i’f) <0 for any
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x eI'. This ensures that v/y is a weak solution in the region 0<pf(x)<
rg(d/y)m. Finally, consider the region f(x) 27:3(d/y)1/3. By definition (A.6),

1/3
L<9> _apo L pn s ﬁ—(13—1)<§) _Z
V) 2y Y 2

1/3
X G ¥ (- 1)(%) +§> (A.15)

It is easy to see that, for some constant ¢;s,

d d d d\*?
ZAB= — Z|ABI s —— Az> —¢ 12<—> , A.16
. B yll Bll~ @) 2 157 | 5 ( )
1/3 1/3
B— (13 — 1)@) 2l <51) , (A.17)
y 27 2\y

since f=13(d/7)"/? and z<(d/y)"/>. By (A.16)~(A.18), we have

[% d 2/3 T3 — 1 d 1/3
LG)zG) (e G) 1M Al
<V> (V) ( 2 CisTq (V) [1ABIlL 1) >0 ( 8)

provided that 73 is suitably large (depending on 74 only); on the other hand,
by choosing 74 suitably large, we have %bg <0. This ensures that v is a weak
sub-solution of (A.1) provided that d/y < 1. It is easy to check that if d/y is
sufficiently small,

1/3 - 1/3
B - (‘—’) LB o (‘—i) (A.19)
Y vy Y

for some ¢; >0 large, independent of d and y. Since (A.l) has a unique
solution v, (A.2) follows from (A.19).

Remark A.2. The upper bound f_(x)+ ca(d /y)l/ 3 seems to be optimal,
while the lower bound p_(x)— cz(d/y)l/ 3 may be improved to f L(x) -
o(d /y)l/ 2 or even f8 L(x) —ca(d /y)z/ 3. However, it is unknown whether the
lower bound ., — c2(d/y)*”* holds.
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