
Journal of Differential Equations 185, 97–136 (2002)

doi:10.1006/jdeq.2001.4157
Spatial Heterogeneityof Resourcesversus Lotka^Volterra
Dynamics

V. Hutson1,2

Department of Applied Mathematics, Sheffield University, Sheffield, S3 7RH, United Kingdom

E-mail: v.hutson@sheffield.ac.uk

Y. Lou3

Department of Mathematics, Ohio State University, Columbus, Ohio 43210

and

K. Mischaikow4

Center for Dynamical Systems and Nonlinear Studies, School of Mathematics, Georgia Institute

of Technology, Atlanta, Georgia 30332

Received January 12, 2001

The problem is motivated by a consideration of two phenotypes of a species

in a strongly heterogenous spatial environment. The phenotypes vary in their

diffusion rates and interspecific interactions. The aim is to investigate the relative

strengths of the diffusion and reaction effects. The problem is thus of competing

species type, but there are many questions which arise which are not covered by

standard theory. We investigate, in particular, the stability of the equilibria and the

existence of coexistence solutions with emphasis on cases where the spatial variation

of the environment becomes large. We discuss briefly the implications of our results

for the principle of competitive exclusions and for the question of the evolution of

diffusion discussed in Dockery et al. (J. Math. Biol. 37 (1998), 61–83). # 2002 Elsevier

Science (USA)

Key Words: reaction–diffusion; spatial heterogeneity; coexistence; stability;

competitive exclusion; evolution of diffusion.
1To whom correspondence should be addressed.
2Supported in part by NATO Grant 930149.
3Supported in part by NSF Grant DMS-9801609 and Ohio State University seed Grant.
4Supported in part by NATO Grant 930149 and NSF Grants DMS-9805584 and DMS-

0107396.

97
0022-0396/02 $35.00

# 2002 Elsevier Science (USA)

All rights reserved.



HUTSON, LOU, AND MISCHAIKOW98
1. INTRODUCTION

That ecology and evolution are fundamentally influenced by the spatial
characteristics of the environment is well accepted. As an example of this
one may consider the paradox of diversity. Simple models such as the
Lotka–Volterra system

’uu ¼ uð1� u � bvÞ;

’vv ¼ vð1� cu � vÞ ð1:1Þ

which do not include any spatial component give rise to the principle of
competitive exclusion; ‘‘when two species compete for the same limited
resource one of the species usually becomes extinct’’ [11]. On the other hand,
the common observation is that in a wide variety of habitats a multitudes of
species coexist. This leads to the ‘‘paradox of enrichment’’ [7], which can be
explained away, at least in part, by expanding the model to include spatial
effects. Of course, once spatial components are introduced, dispersal rates
become a central feature [2].

Unfortunately, our understanding of cause and effect in this more general
situation is poor. The reason for this appears to be fourfold. First, the
number of variables in realistic ecological and environmental models are
enormous. Second, spatial heterogeneities occur at all scales of the
environment [9]. Third, obtaining precise data for these variables from field
studies is extremely difficult [14]. Finally, the current mathematical
techniques for handling models which incorporate both spatial and
dynamical properties seem to be inadequate. Given this state of affairs,
the strategy of this paper is to consider an extremely simple model in the
hopes of elucidating some basic biological principles and identifying some
fundamental mathematical issues. With this in mind we model space as a
continuous variable rather than as a number of discrete patches. In line with
this, we use the simplest dispersal model consistent with a continuous spatial
variable, namely diffusion.

The range of questions which could be asked even in this greatly
simplified setting is too wide to be accommodated by any single model,
therefore we consider a more specific motivation. How does spatial
heterogeneity of resources affect the balance between competitive strength
and rates of dispersal? To study this we will consider the following system of
reaction–diffusion equations:

@u

@t
¼ mDu þ u½1þ gbðxÞ � u � bv�;

@v

@t
¼ nDv þ v½1þ gbðxÞ � cu � v� ð1:2Þ
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defined on the domain O� ð0;1Þ with zero Neumann boundary conditions:

@u

@n
¼

@v

@n
¼ 0; ð1:3Þ

where @=@n denotes differentiation in the direction of the outward normal.
Since the variables u and v are meant to represent the densities of two
phenotypes of a species it must be assumed that uðx; 0Þ50 and vðx; 0Þ50 for
all x 2 O:

Observe that g50 is the parameter that measures the degree of spatial
heterogeneity: g ¼ 0 leads to a perfectly homogeneous level of resources in
the environment; while large g indicates that these levels vary dramatically.
In order to make sure that we are measuring the effects of the heterogeneity
rather than the total carrying capacity of the environment, we typically
assume that

R
O b ¼ 0:

The dispersal rates of the species are given by m and n: Because of the
symmetry of the model, we can, without loss of generality, assume that

n5m: ð1:4Þ

The final point to be made is that the parameters b and c which come from
the original Lotka–Volterra model indicate the relative strength of
competition. In particular, b > c implies that v is the superior competitor.

As will become clear in a moment, the following functions play a crucial
role in our analysis. Let ũ and ṽ be the unique positive solutions in O
satisfying

mDũ þ ũ ½1þ gbðxÞ � ũ � ¼ 0 ð1:5Þ

and

nDṽ þ ṽ ½1þ gbðxÞ � ṽ � ¼ 0; ð1:6Þ

respectively, together with zero Neumann boundary conditions.
The analysis of this paper begins with the observation that if the local

interaction of the species with the environment is identical, i.e., b ¼ c ¼ 1;
then in the context of spatial heterogeneity in the level of resources slow
dispersal rates are advantageous. More precisely, the following theorem is
true.

Theorem 1.1 (Dockery et al. [3]). Assume that b ¼ c ¼ 1; n > m; g > 0;
and b is not constant. Then,

1. The only equilibria solutions to (1.2) are the semi-trivial solutions ðũ; 0Þ
and ð0; ṽÞ and the trivial solution ð0; 0Þ:
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2. ðũ; 0Þ is a hyperbolic attractor and furthermore is the global attractor

for the set of positive initial conditions.

3. ð0; ṽÞ is unstable.

Clearly, by a simple comparison argument this result remains true for
b51 and c > 1: Intuitively, this means that the faster diffuser is a weaker
competitor, from which it follows immediately that ðũ; 0Þ is stable. The main
interest thus falls on cases where ðb; cÞ does not lie in the semi-infinite strip
ð0; 1� � ½1;1Þ: The use of arguments similar to those presented in [3] allows
us to conclude that the results remain true for small perturbations in b and c;
that is there exists d > 0 (dependent on m; n and g) such that if ðb; cÞ 2
ð0; 1þ dÞ � ð1� d;1Þ; then the conclusions of Theorem 1.1 still hold.

At this point, it is important to contrast this result with that of the
spatially homogeneous model obtained by setting g ¼ 0: As can be seen by
studying the Lotka–Volterra equations (1.1), if b; c > 1 then both ðũ; 0Þ and
ð0; ṽÞ are stable solutions to (1.2), while b; c51 implies they are both
unstable. Furthermore, for b > 1 and c51; ð0; ṽÞ is the global attractor while
ðũ; 0Þ is unstable.

The goal of this paper is to try to understand this dichotomy between the
spatially homogeneous and spatially heterogeneous models. In particular, we are
interested in describing the set of parameter values, m; n; b; c; and g; for which:

1. ðũ; 0Þ is locally stable or unstable;

2. ð0; ṽÞ is locally stable or unstable;

3. existence/nonexistence of coexisting positive steady-state solutions
to (1.2) holds;

4. ðũ; 0Þ or ð0; ṽÞ is the global attractor.

Before considering the precise statements of the mathematical results,
observe that a concrete problem leading to the study of spatial properties of
resources in ecology is that of habitat destruction and the ensuing loss of
species [16]. Obviously, local destruction of a habitat can be viewed as the
introduction of a major heterogeneity in the resources. Therefore, the results
of this paper may give an indication of the relationship between the possible
competitive strengths and dispersal rates of species which persist. A crucial
question in this context is which species will survive and which are driven to
extinction. This has, of course, been studied by many authors (see [15] and
references therein). At the heart of the analysis of [15] is the assumption that
the greater the competitive superiority the lower the dispersal rate of the
species. Given a complicated ecosystem this may be a valid assumption.
However, as is indicated in the analysis of this paper, the spatial
heterogeneity of resources in and of itself has the effect of forcing rapid
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dispersers to be competitively superiority. To put this another way, the slower
diffuser can sustain a penalty, i.e., can be competitively inferior, and still
dominate. This is exactly the opposite relationship to that postulated in [15].

Now consider a scenario in which the habitat destruction is taking place
on a similar time scale as the evolution of the competitive traits. (Given the
time scales on which competitive adaptations have been observed in finches
on the Galápagos Islands this may be a reasonable assumption in some
circumstances [5].) In this case, it is conceivable that the environmental
heterogeneities induced by the destruction itself will have an impact on the
relationship between strength of competition and dispersal rates. Such
changes will in turn influence any analysis of the form described in [15].

We now turn to a more detailed description of the mathematics of this
paper and begin by stating our assumptions:

(H1) O is a bounded open subset of Rm with C2 boundary @O: n; m; g; b

and c are positive constants and n > m:
(H2) b is not constant,

R
O b ¼ 0 (unless explicitly specified to the

contrary), G ¼ fx 2 %OO: bðxÞ ¼ 0g does not intersect with @O; and b 2 C2ð %OOÞ:
(H3) For n ¼ 1; G is a union of finite number of points, denoted by

x1; . . . ; xk; and b0ðxiÞ=0 for 14i4k: For n52; G is a union of finite number
of disjoint C1 closed hypersurfaces in Rm; and rb does not vanish on G:

In the next section, we will consider the question of the stability of ðũ; 0Þ:
This is essentially a question concerning a principle eigenvalue which leads
to the following proposition. Set

cn ¼ � inf
j2H1ðOÞ
j=0

R
O½njrjj2 � ð1þ gbÞj2�R

O ũj2
: ð1:7Þ

Proposition 1.2. ðũ; 0Þ is stable if c > cn; and unstable if c5cn:

Hence, it is interesting to know the qualitative properties of cn in terms of
the parameters m; n and g: For simplicity, we shall fix m and think of cn as a
function of n and g only.

Theorem 1.3. The constant cn satisfies the relation 05cn51; limg!0 cn ¼
1; and limg=n!þ1 cn ¼ 1 (Fig. 1).

The analysis of the stability of ð0; ṽÞ is considerably more delicate and will
be dealt with in Section 3. Of course, this too is a problem involving a
principle eigenvalue and hence

bn ¼ � inf
j2H1

j=0

R
O½mjrjj2 � ð1þ gbÞj2�R

O ṽj2
ð1:8Þ

plays an important role.
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FIG. 1. A typical graph of cn: For c > cn; ðũ; 0Þ is stable.
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FIG. 2. The graph of bn: For b > bn; ð0; ṽÞ is stable.

HUTSON, LOU, AND MISCHAIKOW102
Proposition 1.4. ð0; ṽÞ is stable if b > bn and unstable if b5bn (Fig. 2).

Again, we are interested in the qualitative properties of bn: It follows from
Theorem 1.1 that bn > 1; and clearly limg!0 bn ¼ 1: Furthermore, we shall
show that the following holds.

Theorem 1.5. limg=n!þ1 bn ¼ 1:

The implications of Theorems 1.3 and 1.5 are noteworthy. Consider for
example a fixed b > 1 but not too large and treat g as a free parameter.
Increasing g; which is equivalent to increasing the spatial heterogeneity,
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leads to the destabilization of ð0; ṽÞ: This is not surprising in view of
Theorem 1.1. However, as g increases further, ð0; ṽÞ regains its stability.

Since bn � 1 for large and small g; there is a maximal value for bn: It
seems to be a difficult problem to obtain further detailed information, for
example the number of local maxima and the location and values of the
maxima. Some asymptotic results concerning this are presented in Section 3.

In Section 4, we turn our attention to the problem of coexistence. In
particular, we are interested in understanding whether spatial heterogeneity
of resources can lead to coexistence. Propositions 1.2 and 1.4 along with the
fact that (1.2) is a monotone system [13] immediately gives rise to the
following result.

Theorem 1.6. If b5bn and c5cn; then there exists a stable coexistence

equilibrium to (1.2).

This theorem is yet another example of how spatial effects can overcome
the paradox of enrichment. In particular, in the Lotka–Volterra model,
b > 1 and c51 always leads to the extinction of u: However, in the case of
(1.2) we have coexistence at these parameter values as long as b5bn and
c5cn:

Of course, it is also interesting to understand coexistence in terms of the
diffusion parameters. In Section 4, an analysis is presented of the bifurcation
from ð0; ṽÞ as b passes through bn; the results being summarized in Fig. 3.
There exists %dd 2 ð0; nÞ such that for m > %dd; an unstable branch of solutions
bifurcates off, but for m5 %dd; at least a pair of solutions is produced by the
bifurcation.
d  <      < µ νµ
0 < < d

_
_

* *

||u||2

0 1 b b 0 1 b b

||u||2

FIG. 3. Typical bifurcation diagrams for different ranges of m: Note that for the range

05m5 %dd; the bifurcating branch is initially stable.
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The final section of the paper deals with the global dynamics of
the system. Our primary interest is in determining the domains of attraction
of the semi-trivial solutions ðũ; 0Þ and ð0; ṽÞ and in discovering when
each of these solutions is a global attractor. Since (1.2) is a monotone
system, the answers to these questions follow from understanding the
existence of interior equilibria. Using this we shall prove the following two
theorems.

Let

S ¼ fðb; cÞ 2 R2
þ: ðũ; 0Þ is the global attractor of ð1:2Þg: ð1:9Þ

In the more interesting case b > c; one observes that ðb; cÞ 2 S implies that
the superior competitor, in the sense of the reaction system, is incapable of
surviving because of the spatial heterogeneity of the resource.

Theorem 1.7. If g=n ! þ1; then S ! ð0; 1� � ½1;þ1Þ:

On the other hand, if g=n ! 0 and g ! þ1; the set S can be arbitrarily
large. More precisely, we have

Theorem 1.8. For all e > 0; there exists CðeÞ > 0 large, independent of

g; n; b; c; such that if minfg; n=gg5CðeÞ; then

ð0; e�1� � ½e;þ1Þ � S: ð1:10Þ

2. STABILITY OF ðũ; 0Þ AND RELATED MATTERS

In view of Proposition 1.2, the stability of the semi-trivial equilibrium
ðũ; 0Þ is completely determined by cn: After proving this proposition, we
establish some basic estimates which yield the shape of the graph of cn as a
function of g}see Fig. 1.

Proof of Proposition 1.2. Recall that cn is given by (1.7). By the
definition of cn; 9jn > 0 such that

nDjn þ ð1þ gb� cnũÞjn ¼ 0 in O;
@jn

@n

����
@O
¼ 0: ð2:1Þ

For the stability of ðũ; 0Þ; consider the linear eigenvalue problem

nDjþ ð1þ gb� cũÞj ¼ �l1j; j > 0 in O;
@j
@n

����
@O
¼ 0: ð2:2Þ
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It follows from (2.1) and (2.2) that

l1 ¼ ðc � cnÞ

R
O ũjjnR
O jjn

; ð2:3Þ

and this proves Proposition 1.2. ]

We begin our analysis of the shape of cn by describing its behavior in the
neighborhood of g ¼ 0: With this in mind let fxiðxÞg

1
i¼0 be an orthonormal

collection of eigenfunctions for �D on O; with corresponding eigenvalues
0 ¼ l05l14 � � �4li4 � � � ; i.e.,

Dxi þ lixi ¼ 0 in O;
@xi

@n

����
@O
¼ 0: ð2:4Þ

Expanding b in terms of xi; one obtains

bðxÞ ¼
X1
i¼1

aixiðxÞ ð2:5Þ

in the L2 sense, where a0 ¼ 0 since
R
O b ¼ 0:

Proposition 2.1. cnðgÞ51 for any g > 0; and cnðgÞ ¼ 1þ c2g2 þ oðg2Þ for

05g � 1 where

c2 ¼
m
jOj

m
n

� 1
� �X1

i¼1

a2
i li

ð1þ limÞ
2
50:

Proof. It follows from the comparison principle for eigenvalues that
cnðgÞ51 for any g=0: For 05g � 1; since limg!0 cnðgÞ ¼ 1;

cnðgÞ ¼ 1þ c1gþ c2g2 þ oðg2Þ; ð2:6Þ

and it is clear from the previous remark that c1 ¼ 0: By definition (1.7) of cn;
we need to consider the following eigenvalue problem with j > 0 on O:

nDjþ ½1þ gbðxÞ � cnũ �j ¼ 0 in O;
@j
@n

����
@O
¼ 0: ð2:7Þ

Again, for 05g � 1; we have

j ¼ 1þ gj1 þ g2j2 þ oðg2Þ; ð2:8Þ

ũ ¼ 1þ gy1 þ g2y2 þ oðg2Þ: ð2:9Þ
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By comparison of the powers of g we see that

mDy1 � y1 ¼ �b in O;
@y1
@n

����
@O
¼ 0; ð2:10Þ

mDy2 � y2 ¼ y1ðy1 � bÞ in O;
@y2
@n

����
@O
¼ 0; ð2:11Þ

nDj1 ¼ y1 � b in O;
@j1

@n

����
@O
¼ 0; ð2:12Þ

nDj2 ¼ y2 þ c2 þ j1ðy1 � bÞ in O;
@j2

@n

����
@O
¼ 0: ð2:13Þ

By (2.10) we have

y1ðxÞ ¼
X1
i¼1

ai

1þ lim
xi: ð2:14Þ

From (2.10) and (2.12),

j1ðxÞ ¼
m
n
y1; ð2:15Þ

and from (2.13) and (2.11), respectively,Z
O

c2 ¼
Z
O
ðb� y1Þj1 �

Z
O
y2 ð2:16Þ

and Z
O
y2 ¼

Z
O
y1ðb� y1Þ: ð2:17Þ

It follows from (2.15) to (2.17) that

c2 ¼
1

jOj
m
n

� 1
� �Z

O
ðb� y1Þy1: ð2:18Þ

Using (2.5) and (2.14) we get

b� y1 ¼
X1
n¼1

ailim
1þ lim

xi: ð2:19Þ
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Thus from (2.18) and (2.19),

c2 ¼
m
jOj

m
n

� 1
� �Z

O

X1
n¼1

aili

1þ lim
xi

 ! X1
j¼1

aj

1þ ljm
xj

 !

¼
m
jOj

m
n
� 1

� �Z
O

X1
i¼1

X1
j¼1

aiajli

ð1þ limÞð1þ ljmÞ
xixj

¼
m
jOj

m
n

� 1
� �X1

i¼1

a2
i li

ð1þ limÞ
2
50: ]

Understanding cn for large values of g is more difficult, therefore for
simplicity, we fix m and think of cn as functions of n and g only.

Proposition 2.2. (i) 05cn51;

(ii) limn=g!þ1
g!þ1

cn ¼ 0;

(iii) limg=n!þ1 cn ¼ 1:

Proof. (i) The inequality cn51 is proved in Proposition 2.1. Letting
j ¼ 1 in (1.7), we see that

�cn4
�
R
Oð1þ gbÞR

O ũ
¼

�jOjR
O ũ

; ð2:20Þ

which implies that cn5jOj=
R
O ũ > 0:

(ii) Let jn be the (unique) solution of (2.1) such that max %OO jn ¼ 1 and
jn > 0 in %OO: We show that jn ! 1 as n=g ! þ1 and g ! þ1: rewrite (2.1)
as

Djn þ jn

1

n
þ

g
n
b� cn

ũ

g
g
n

	 

¼ 0 in O;

@jn

@n

����
@O
¼ 0: ð2:21Þ

By (1.5) and the Maximum Principle [12], jjũjj141þ gmax %OO b: Therefore,
by (2.21) and standard elliptic regularity [4], jn ! j in C1ð %OOÞ; where Dj ¼
0 in O; max %OO j ¼ 1; @j

@n
j@O ¼ 0: Hence jn ! 1 in C1ð %OOÞ:

Now dividing (2.1) by g and integrating over O; we have

cn

Z
O
jn

ũ

g
¼
Z
O
jn

1

g
þ b

	 

: ð2:22Þ

By Proposition A.1 in Appendix A, ũ=g ! bþðxÞ: Passing to the limit in
(2.22), since

R
O b¼0 and jn!1; we see that cn ! 0 as g ! 1 and n=g ! 1:
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(iii) We first establish the following assertion.

Claim. For any c̃ 2 ð0; 1Þ; consider the linear eigenvalue problem

nDjþ jð1þ gb� c̃ũÞ ¼ �l1j in O;
@j
@n

����
@O
¼ 0; j > 0 in %OO: ð2:23Þ

Then there exist c1; c2; both positive and independent of n and g; such that if

n=g4c1; we have l14� ð1� c̃Þc2g50:

Recall that l1 can be characterized as

l1 ¼ inf
j2H1

j=0

R
O½njrjj2 þ ð�1� gbþ c̃ũÞj2�R

O j2
: ð2:24Þ

By Proposition A.1 in Appendix A,

ũ

g
4bþðxÞ þ c3

m
g

	 
1=3

ð2:25Þ

provided that g is sufficiently large. Hence by (2.24),

l1
g
4

R
Oðc̃bþ � bÞj2 þ

R
O½

n
g jrjj2 þ ðc3ð

m
g Þ

1=3 � 1
g Þj

2�R
O j2

ð2:26Þ

for any j 2 H1ðOÞ; j=0: Let j be chosen in the following way: j50; jc0
and supp j � fx 2 O : bðxÞ > 0g: Then it is easy to see that there exist c1;
c2 > 0 such that if n=g4c1; l1=g4� c2ð1� c̃Þ: This proves the assertion.

We now show that (iii) follows from our assertion. For any e > 0; let
c̃ ¼ 1� e: From (2.1) and (2.23),

�l1

Z
O
jjn ¼ ðcn � ð1� eÞÞ

Z
O

ũjjn: ð2:27Þ

By our assertion, there exists c1ðeÞ > 0 such that if g=n5c1ðeÞ; then l150:
This implies that cn51� e if g=n5c1ðeÞ: But cn51 from (i). Hence cn ! 1 if
g=n ! þ1: ]

Remark 2.3. Parts (i) and (iii) hold for
R
O b50; but (ii) only

holds for
R
O b ¼ 0: In fact, if

R
O b > 0; part (ii) fails. More precisely, ifR

O b > 0; then there exists some positive constant c3 such that cn5c3 for any
g and n:
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3. THE STABILITY OF ð0; ṽÞ

In this case, the stability is determined by bn (defined by (1.8)).
Theorem 1.5 states that limg=n!1 bn ¼ 1; but this result is much harder to
prove than the analogous result for cn: The reason is that we have to
show that bn41þ e for sufficiently large g=n: This is equivalent to
establishing a lower bound for a linear eigenvalue problem and a lower
bound is usually harder to find than an upper bound (used in the case of the
estimate of cn). Since the proof of Proposition 1.4 is almost identical to that
of Proposition 1.2, we omit it. Similarly, the proof of the following
proposition which characterizes bn for g � 0 is essentially the same as that
of Proposition 2.1.

Proposition 3.1. bnðgÞ > 1 for any g > 0; and bnðgÞ ¼ 1þ b2g2 þ oðg2Þ
for 05g � 1 where

b2 ¼
n
jOj

n
m

� 1

	 
X1
i¼1

a2
i li

ð1þ linÞ
2
> 0:

Next we turn to the proof of Theorem 1.5, i.e., bn ! 1 as g=n ! þ1: As
in the proof of Proposition 2.2(iii), Theorem 1.5 follows from an estimate
for a certain principal eigenvalue l1; in this case defined by Eq. (3.1). In fact
it suffices to show that l1 > 0; but we present a stronger result, which is itself
of interest and scarcely more difficult to prove. In the rest of this section,
c1; c2; . . . will denote positive constants independent of n and g:

Theorem 3.2. Let l1 be the principal eigenvalue for the problem

�mDj� ½1þ gb� bṽ �j ¼ lj in O;
@j
@n

����
@O
¼ 0: ð3:1Þ

Then given b > 1; there exist positive constants c1; c2 such that l15c2g2=3n1=3

for g=n5c1:

Proof.
Step 1. Let xg satisfy jðxgÞ ¼ max %OO j > 0; where j is given by (3.1). Then

there exist c3 and c4 such that if g=n5c3; we have

distðxg;GÞ4c4
n
g

	 
1=3

; ð3:2Þ

where G ¼ fx 2 O : bðxÞ ¼ 0g:
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To prove this assertion, we first observe that

1þ gbðxgÞ � bṽðxgÞ þ l150: ð3:3Þ

There are two cases in the proof of (3.3): xg 2 O or xg 2 @O: If xg 2 O; from
the Maximum Principle, DjðxgÞ40; and (3.3) follows from (3.1). If xg 2 @O
and (3.3) fails, by the continuity of b and ṽ; there exists a small open ball
denoted by B such that B � O; %BB \ @O ¼ fxgg and 1þ gbðxÞ � bṽðxÞ þ
l150 in %BB: By (3.1), Dj > 0 in B: The Hopf Boundary Lemma implies that
@j
@n
ðxgÞ > 0; which contradicts @j

@n
j@O ¼ 0: Hence (3.3) holds.

By Proposition A.1,

ṽðxgÞ
g

5bþðxgÞ � c5
n
g

	 
1=3

: ð3:4Þ

By (3.3) and (3.4), we have

bbþðxgÞ � bðxgÞ4c6
n
g

	 
1=3

þ
l1
g
: ð3:5Þ

We claim that there exist c7 and c8 such that if g=n5c7; then
l14c8g2=3n1=3: To prove this assertion, observe that l1 can be charac-
terized by

l1 ¼ inf
j2H1

j=0

R
O½mjrjj2 � ð1þ gb� bṽÞj2�R

O j2
: ð3:6Þ

Choose the following test function j:

jðxÞ ¼

0 if bðxÞ40 or distðx;GÞ52ðng Þ
1=3;

ðgn Þ
1=3distðx;GÞ if bðxÞ50 and 04distðx;GÞ4ðng Þ

1=3;

2� ðgnÞ
1=3distðx;GÞ if bðxÞ50 and

ðng Þ
1=34distðx;GÞ42ðngÞ

1=3:

8>>>>><
>>>>>:

ð3:7Þ

By Proposition A.1,

ṽ

g
4bþ þ c9

n
g

	 
1=3

: ð3:8Þ

Using (3.6)–(3.8) we can check that l14c8g2=3n1=3 provided that g=n � 1:
By (3.5) and the previous assertion, we have

bbþðxgÞ � bðxgÞ4c10
n
g

	 
1=3

: ð3:9Þ



Γν

Ωxn

0x

Γ

(x 1,...,xn−1)

FIG. 4. Illustration of the choice of coordinates in proof of Step 2.
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If bðxgÞ50; then

04bðxgÞ4c11
n
g

	 
1=3

; ð3:10Þ

if bðxgÞ40; we have

�c10
n
g

	 
1=3

4bðxgÞ40: ð3:11Þ

Since rb does not vanish on G; we see that (3.2) holds provided that g=n�1:
Step 2. By (3.2), passing to a subsequence if necessary, we may assume

that xg ! x0 2 G as g=n ! þ1: After translation and rotation, we may
assume that x0 is the origin, the normal to G at x0 is ð0; . . . ; 0; 1Þ (Fig. 4), and
near the origin, bðxÞ ¼ @b

@xm
ð0Þxm þ Oðjxj2Þ: Without loss of generality, we

may take @b
@xm

ð0Þ ¼ 1.
Choose x̃g 2 G such that jxg � x̃gj ¼ distðxg;GÞ: Set xg ¼ x̃g þ ðn=gÞ1=3yg:

By (3.2) we see that jygj4c4: Hence we may assume that yg ! yn 2 Rm:
Dividing (3.3) by g2=3n1=3; we have

1

g2=3n1=3
þ

g
n

� �1=3
b x̃g þ

n
g

	 
1=3

yg

 !
� b

ṽðx̃g þ ðng Þ
1=3ygÞ

g2=3n1=3
5

�l1
g2=3n1=3

: ð3:12Þ

We first show that

g
n

� �1=3
b x̃g þ

n
g

	 
1=3

yg

 !
! yn

m ð3:13Þ
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as g=n ! 1; where yn ¼ ðyn
1 ; . . . ; y

n
mÞ: Recalling that bðx̃gÞ ¼ 0 we have

b x̃g þ
n
g

	 
1=3

yg

 !
¼
Z 1

0

@b
@t

x̃g þ t
n
g

	 
1=3

yg

 !
dt

¼
n
g

	 
1=3Z 1

0

rb x̃g þ t
n
g

	 
1=3

yg

 !
� yg dt:

Hence there exists tg 2 ð0; 1Þ such that

g
n

� �1=3
b x̃g þ

n
g

	 
1=3

yg

 !
¼rb x̃g þ tg

n
g

	 
1=3

yg

 !
� yg

!rbð0Þ � yn ¼ yn

m;

since x̃g ! 0; jygj4c4; and we have assumed that @b
@xm

ð0Þ ¼ 1:
Set

w̃ðyÞ ¼

ṽ x̃g þ
n
g

	 
1=3

y

 !

g2=3n1=3
: ð3:14Þ

We claim that w̃ ! w uniformly in any compact subset of Rm; where w > 0
satisfies the following in Rm:

Dw þ wðym � wÞ ¼ 0;

ðymÞþ � c124wðyÞ4ðymÞþ þ c12:

(
ð3:15Þ

To prove this, observe that w̃ satisfies

Dw̃ þ w̃
1

g2=3n1=3
þ

g
n

� �1=3
b x̃g þ

n
g

	 
1=3

y

 !
� w̃

" #
¼ 0 in Og; ð3:16Þ

where

Og ¼ y 2 Rm: x̃g þ
n
g

	 
1=3

y 2 O

( )
: ð3:17Þ
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By Proposition A.1, we have

g
n

� �1=3
bþ x̃g þ

n
g

	 
1=3

y

 !
� c124 w̃ðyÞ

4
g
n

� �1=3
bþ x̃g þ

n
g

	 
1=3

y

 !
þ c12: ð3:18Þ

By applying elliptic regularity on w̃ in any compact subset of Rm and a
diagonal process, we see that, passing to a subsequence if necessary, w̃ ! w

uniformly in any compact subset of Rm: Passing to the limit in (3.16) and
(3.18), since

g
n

� �1=3
b x̃g þ

n
g

	 
1=3

y

 !
! ym ð3:19Þ

(the proof is exactly the same as that of (3.13)), we see that w satisfies (3.15).
Since w50 and wc0; the Maximum Principle ensures that w > 0 in Rm: This
proves our claim.

Claim. If g=n � 1; then l15� c13g2=3n1=3; where c13 > 0 is independent

of g and n:

This follows easily from (3.2) and (3.3) for we have

�l1
g

4
1

g
þ bðxgÞ4

1

g
þ c14

n
g

	 
1=3

: ð3:20Þ

Step 3. We can now establish Theorem 3.2. To this end, we argue by
contradiction: assume that our assertion l15c2g2=3n1=3 fails. By passing to a
subsequence if necessary, we may assume that l1=ðg2=3n1=3Þ ! �c15 for some
c1550: Now passing to the limit in (3.12), we have

yn

m � bwðynÞ5c1550: ð3:21Þ

However, (3.21) contradicts the following assertion.

Claim. For any b > 1; ym � bwðyÞ50 for any y 2 Rm:
We argue by contradiction: suppose not, by (3.15) we see that given b > 1;

ym � bwðyÞ is bounded from above in Rm: Hence we may assume that

sup
Rm

ðym � bwðyÞÞ ¼ a50: ð3:22Þ

Therefore there exists a sequence fyðkÞg1k¼1 such that yðkÞ
m � bwðyðkÞÞ ! a;

where yðkÞ ¼ ðyðkÞ
1 ; . . . ; yðkÞ

m Þ: It is easy to see that fyðkÞ
m g1k¼1 is bounded from
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below; on the other hand, since wðyÞ5ðymÞþ � c12; fyðkÞ
m g1k¼1 is bounded

from above. Hence, we may assume that yðkÞ
m ! ŷ 2 R1: Set

wðkÞðyÞ ¼ wðy1 þ y
ðkÞ
1 ; . . . ; ym�1 þ y

ðkÞ
m�1; ymÞ: ð3:23Þ

Then wðkÞ satisfies (3.15) as well. By elliptic regularity and a diagonal
process, wðkÞðyÞ ! ŵðyÞ (in C2) in any compact subset of Rm; and ŵ still
satisfies (3.15). By the Maximum Principle, ŵ > 0 in Rm: Since yðkÞ

m �
bwðyðkÞÞ ! a; wðyðkÞÞ ¼ wðkÞð0; . . . ; 0; yðkÞ

m Þ; yðkÞ
m ! ŷ; we see that

ŷ � bŵð0; . . . ; 0; ŷÞ ¼ a50: ð3:24Þ

Also, since ym � bwðkÞðyÞ4a; passing to the limit we see that

sup
Rm

ðym � bŵðyÞÞ4a: ð3:25Þ

In other words, the function ym � bŵðyÞ attains its maximum at ð0; . . . ; 0; ŷÞ:
Hence Dðym � bŵðyÞÞjy¼ð0;...;0;ŷÞ40: That is, Dwð0; . . . ; 0; ŷÞ50: Note that ŵ

satisfies (3.15), i.e., Dŵ þ ŵðym � ŵÞ ¼ 0: As ŵ > 0 in Rm; we see that
ŷ4ŵð0; . . . ; 0; ŷÞ: By (3.24) we have

bŵð0; . . . ; 0; ŷÞ4bŵð0; . . . ; 0; ŷÞ þ a ¼ ŷ4ŵð0; . . . ; 0; ŷÞ: ð3:26Þ

Since ŵð0; . . . ; 0; ŷÞ > 0; we have b41; which contradicts the assumption
b > 1: This proves our claim, which in turn yields Theorem 3.2. ]

Remark 3.3. (i) The assumption
R
O bðxÞ dx ¼ 0 is unnecessary in

Theorem 3.2. Note that Proposition A.1 in the appendix does not requireR
O b ¼ 0 either.

(ii) The proof of Theorem 1.5 depends crucially on condition (H3),
which is used in the construction of a sub-solution. However, there are some
grounds for supposing that the result may be true even if a weaker condition
replaces the restriction that rb does not vanish on G: For in the special case
when O � R; it is possible to relax this condition and assume a condition on
b00 at a zero of b: We leave open the question of generalizing this result to
higher dimensions.

To understand the following results, it is helpful to discuss the
‘‘shadow’’ problem obtained by letting n ! 1: For fixed g; since

R
O b ¼ 0;

ṽ ! 1 uniformly as n ! 1: Therefore, it is plausible that, at least
for any compact set of g; bnðg; nÞ is close to bnðg;1Þ; where bnðg;1Þ is
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defined by

bnðg;1Þ ¼ � inf
j2H1

j=0

R
O½mjrjj2 � ð1þ gbÞj2�R

O j2
: ð3:27Þ

We are interested in the connection/difference between bnðg; nÞ and bnðg;1Þ
for n � 1: It turns out that, as shown in the next few results, bnðg; nÞ �
bnðg;1Þ for g ¼ oð

ffiffiffi
n

p
Þ; but bnðg; nÞ behaves differently from bnðg;1Þ if g5

Oð
ffiffiffi
n

p
Þ: A detailed description of bnðg; nÞ is given by Theorem 3.4 and

Proposition 3.5.
In the following, we write bn as bnðg; nÞ to denote its dependence on g

and n: We also need to assume
R
O bðxÞ dx ¼ 0 from now on. The caseR

O bðxÞ dx > 0 is quite different.

Theorem 3.4. Let jn be the unique solution of �Djn ¼ b in O; @j
n

@n
j@O ¼ 0

and
R
O jnðxÞ dx ¼ 0: Then

(i) lim
n!þ1

max05g51 bnðg; nÞffiffiffi
n

p ¼
max %OO bjOj1=2

2jjrjnjj2
:

(ii) If gn ¼ gnðnÞ satisfies bnðgn; nÞ ¼ max05g51 bnðg; nÞ; then

lim
n!þ1

gnffiffiffi
n

p ¼
jOj1=2

jjrjnjj2
:

To establish Theorem 3.4, we need some preliminary results about
qualitative properties of bnðg; nÞ:

Proposition 3.5. The following hold:

(i) limg2=n!0þ bnðg; nÞ=bnðg;1Þ ¼ 1;

(ii) 8Z > 0; 9kðZÞ > 0 large, independent of g and n; such that if Z
ffiffiffi
n

p
4g

4n=Z; then

1

kðZÞ
4

g2

n
bnðg; nÞ

bnðg;1Þ
4kðZÞ: ð3:28Þ

To prove Proposition 3.5, we need the following two lemmas which are
also useful in Section 5.

Lemma 3.6. 9c17 and c18 > 0; independent of g and n; such that if minfn=g;
gg5c17; then
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1� c18
g
n
4ṽðxÞ41þ c18

g2

n
8x 2 %OO: ð3:29Þ

Proof. Set

%vv ¼ 1þ c19
g2

n

	 

1þ

g
n
jn

� �
: ð3:30Þ

We claim that for large c19 which is independent of g and n; %vv is a super-
solution of (1.6) provided that n=g; g are sufficiently large. By direct
calculation,

n
g
D%vv þ %vv

1

g
þ b�

%vv

g

	 

¼ 1þ c19

g2

n

	 

g
n

�c19 þ bjn �
1

g
jn 1þ 2c19

g2

n

	 
�

�
1

n
ðjnÞ2 1þ c19

g2

n

	 
�
: ð3:31Þ

Set c19 ¼ jjbjnjj1 þ 1: Then we have

n
g
D%vv þ %vv

1

g
þ b�

%vv

g

	 

4 1þ c19

g2

n

	 

g
n

�1þ c20
g
n
þ

1

n
þ

g2

n2
þ

1

g

	 
� �
40

provided that minfn=g; gg � 1: This shows that %vv is a super-solution of (1.6)
and

ṽ4%vv ¼ 1þ c19
g2

n

	 

1þ

g
n
jn

� �
41þ c18

g2

n
: ð3:32Þ

We now find a sub-solution
%
v of (1.6). Let jn be the unique solution of

Djn ¼
Z
O
bjn � bjn;

Z
O
jn ¼ 0;

@jn

@n

����
@O
¼ 0: ð3:33Þ

Set

%
v ¼ 1þ

g
n
jn þ

g2

n2
jn: ð3:34Þ
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Then by direct calculation,

n
g
D
%
v þ

%
v

1

g
þ b� %

v

g

	 


5
g
n
ðDjn þ bjnÞ � c21

1

n
þ

g
n2

þ
g2

n3
þ

g2

n2

	 


¼
g
n

Z
O
bjn � c21

1

g
þ

1

n
þ

g
n2

þ
g
n

	 
� �

¼
g
n

Z
O
jrjnj2 � c21

1

g
þ

1

n
þ

g
n2

þ
g
n

	 
� �
50 ð3:35Þ

provided that minfg; n=gg � 1; where the last equality follows from
R
O bjn

¼
R
O jrjnj2: This implies that

%
v is a sub-solution and ṽ5

%
v51� c18g=n:

Lemma 3.7. 8Z > 0; 9c22ðZÞ > 0 large, independent of g and n; such that if

Z
ffiffiffi
n

p
4g4n=Z; then

1

c22ðZÞ
g2

n
4ṽðxÞ4c22ðZÞ

g2

n
8x 2 %OO: ð3:36Þ

Proof. We first show that jjṽjjL1ðOÞ4c24ðZÞg2=n for some c24ðZÞ which is

independent of g and n: Set v̂ ¼ jOj�1
R
O ṽ:

Claim 1. jjṽ � v̂jj14c25ðZÞðg=nÞjjṽjj1:

To prove this assertion, rewrite the equation for ṽ as

�Dðṽ � v̂ Þ ¼ f :¼ g
n ṽð1g þ b� ṽ

gÞ in O;
@
@n
ðṽ � v̂ Þj@O ¼ 0:

(
ð3:37Þ

Multiplying (3.37) by ṽ � v̂ and integrating, since
R
Oðṽ � v̂Þ ¼ 0; by the

Hölder inequality and the Poincaré inequality we see that jjṽ � v̂jjW 1;2ðOÞ4
cn25jjf jj2: By the Sobolev Embedding Theorem, the Lp estimates [4] and
standard bootstrap arguments, we have jjṽ � v̂jj14c26jjf jj1: By the
Maximum Principle, jjṽ=gjj14c27: Hence jjf jj14c28ðZÞðg=nÞjjṽjj1; from
which it follows that jjṽ � v̂jj14c25ðZÞðg=nÞjjṽjj1: This proves Claim 1.

Claim 2. jjṽjj1
R
Oðṽ=jjṽjj1Þ24c29ðZÞg2=n:
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To prove this assertion, integrate (1.6) and divide it by jjṽjj1: We have

jjṽjj1

Z
O

ṽ

jjṽjj1

	 
2

¼
Z
O

ṽ

jjṽjj1
þ g

Z
O

ṽ

jjṽjj1
b

¼
Z
O

ṽ

jjṽjj1
þ

g
jjṽjj1

Z
O

ṽ � v̂ð Þb

4 jOj þ
g

jjṽjj1
jjṽ � v̂jj1ðOÞ

Z
O
jbj

4 jOj þ c25

Z
O
jbj

g2

n

4 c29ðZÞ
g2

n
: ð3:38Þ

This proves Claim 2, where the condition
R
O b ¼ 0 and Claim 1 have been

used.
Note that ṽ=jjṽjj1 satisfies

D
ṽ

jjṽjj1

	 

þ

ṽ

jjṽjj1

1

n
þ

g
n
b�

ṽ

g
g
n

	 

¼ 0 in O;

@

@n

ṽ

jjṽjj1

	 
����
@O

¼ 0: ð3:39Þ

Since

1

n
þ

g
n
b�

ṽ

g
g
n

����
����

����
����
1
4c30ðZÞ; ð3:40Þ

by the global Harnack inequality (see [10]), we have

min
%OO

ṽ

jjṽjj1
5c31ðZÞmax

%OO

ṽ

jjṽjj1
¼ c31ðZÞ: ð3:41Þ

It follows from (3.41) and Claim 2 that jjṽjj14ðc29=c231Þðg
2=nÞ; this is the

required upper bound on ṽ:
Next, we show that min %OO ṽ5c32ðZÞg2=n if Z

ffiffiffi
n

p
4g4n=Z: Since (3.41)

implies that min %OO ṽ5c31 max %OO ṽ; it suffices to show that max %OO ṽ5c33g2=n for
some c33 > 0: We shall argue by contradiction: suppose that there exist Z0 > 0;
fðgi; niÞg

1
i¼1 satisfying Z0

ffiffiffiffi
ni

p
4gi4ni=Z0; ni jjṽijj1=g2i ! 0; where ṽi satisfies

niDṽi þ ṽið1þ gib� ṽiÞ ¼ 0 in O;
@ṽi

@n

����
@O
¼ 0: ð3:42Þ
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Set v̂i ¼ jOj�1
R
O ṽi: Integrating (3.42) and dividing it by g2i jjṽijj1=ni; after

some rearrangement we have

ni

g2i

Z
O

ṽi

jjṽijj1
þ

ni

gijjṽi jj1

Z
O
ðṽi � v̂iÞb ¼

ni

g2i
jjṽi jj1

Z
O

ṽi

jjṽi jj1

	 
2

: ð3:43Þ

Dividing (3.42) by ṽi and integrating, we haveZ
O

ṽi ¼ jOj þ gi

Z
O
bþ ni

Z
O

Dṽi

ṽi

¼ jOj þ ni

Z
O

jrṽij
2

ṽ2i
; ð3:44Þ

i.e.,
R
O ṽi5jOj: Therefore jjṽi jj151; which together with ni jjṽijj1=g2i ! 0

implies that ni=g2i ! 0: Passing to the limit in (3.43), we have, as i ! þ1;

ni

gi jjṽi jj1

Z
O
bðṽi � v̂iÞ ! 0: ð3:45Þ

Set wi ¼ ðṽi � v̂iÞ=jjṽi � v̂ijj1: Then wi satisfies

ð ni

gi jjṽi jj1
jjṽi � v̂ijj1ÞDwi þ ṽi

jjṽi jj1
ð1gi

þ b� ṽi

gi
Þ ¼ 0 in O;

@wi

@n
¼ 0 on @O; jjwi jj1 ¼ 1:

(
ð3:46Þ

We consider two different cases:
Case 1: ni=gi ! þ1: For this case, it is easy to see that ṽi=jjṽi jj1 ! 1

uniformly. Moreover, ṽi=gi ! 0 uniformly. To see the last assertion, observe
that ṽi=gi is uniformly bounded by the Maximum Principle. Since gi=ni is
bounded, by (3.42) and elliptic regularity, we see that ṽi=gi is uniformly
bounded in the C2;a norm for some a > 0: Hence, passing to some
subsequence if necessary, we may assume that ṽi=gi ! v0 in C2; where Dv0 ¼
0 in O and @v0

@n
j@O ¼ 0: Hence v0 is a nonnegative constant. If v0 > 0; dividing

(3.42) by g2i and integrating in O; we have
R
O v0ðb� v0Þ ¼ 0; which implies

that v0 ¼ jOj�1
R
O b ¼ 0: Contradiction! Hence ṽi=gi ! 0 uniformly.

If nijjṽi � v̂ijj1=ðgi jjṽijj1Þ ! þ1; then by (3.46), wi ! w and w satisfies

Dw ¼ 0; @w
@n
j@O ¼ 0; jjwjj1 ¼ 1 and

R
O w ¼ 0 since

R
O wi ¼ 0 and jjwijj1 ¼ 1:

However, such w clearly does not exist. If ni jjṽi � v̂i jj1=ðgi jjṽijj1Þ ! 0;
multiplying (3.46) by any C2 function j with @j

@n
j@O ¼ 0; integrating in O; we

have

ni

gijjṽi jj1
jjṽi � v̂i jj1

Z
O

wiDjþ
Z
O

vi

jjṽi jj1
j

1

gi

þ b�
ṽi

gi

	 

¼ 0: ð3:47Þ

Passing to the limit in (3.47), since vi=jjṽijj1 ! 1; ṽi=gi ! 0; gi ! þ1 (because
ni=g2i ! 0 as proved previously and ni > m > 0),we have

R
O bj ¼ 0; z which is

impossible. Therefore we may assume that ni jjṽi�v̂ijj1=ðgi jjṽijj1Þ!a 2 ð0;þ1Þ:
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By standard elliptic regularity we see that wi ! w; where

aDw þ b ¼ 0;

Z
O

w ¼ 0; jjwjj1 ¼ 1;
@w

@n

����
@O
¼ 0: ð3:48Þ

Passing to the limit in (3.45) we have
R
O bw ¼ 0; which is impossible since by

(3.48) we have Z
O
bw ¼ �a

Z
O

w � Dw ¼ a

Z
O
jrwj2 > 0: ð3:49Þ

This completes the discussion of Case 1.
Case 2: ni=gi ! d 2 ð0;þ1Þ: (Note that d > 0 because ni=gi5Z0 > 0:) Since

ni=g2i ! 0; we see that gi ! þ1: For this case, ṽi=gi ! v0; ṽi=jjṽi jj1 !
v0=jjv0jj1; where v0 is the unique solution of

dDv0 þ v0ðb� v0Þ ¼ 0 in O;
@v0

@n

����
@O
¼ 0: ð3:50Þ

As in Case 1, we can show that, passing to a subsequence if necessary,

ni

gi jjṽi jj1
jjṽi � v̂ijj1 ! a 2 ð0;1Þ; ð3:51Þ

and wi ! w; where w satisfies

aDw þ
v0

jjv0jj1
ðb� v0Þ ¼ 0 in O;

@w

@n

����
@O
¼ 0;

Z
O

w ¼ 0: ð3:52Þ

By (3.50) and (3.52) we see that w ¼ tv0 for some t > 0: However, this is
impossible since

R
O w ¼ 0: This contradiction implies that ṽðxÞ5c34g2=n for

any x 2 %OO and some c34 > 0: ]

Proof of Proposition 3.5. Part (i) follows from (1.8) and (3.27) since by
Lemma 3.6, ṽ ! 1 uniformly as g2=n ! 0: Part (ii) follows from (1.8), (3.27)
and Lemma 3.7. ]

Proof of Theorem 3.4. Step 1: lim
g=

ffiffi
n

p
!0

n!þ1

bnðg; nÞ=
ffiffiffi
n

p
¼ 0:

By part (i) of Proposition 3.5,

lim
g=

ffiffi
n

p
!0

bnðg; nÞ
bnðg;1Þ

¼ 1: ð3:53Þ

In particular, bnðg; nÞ=bnðg;1Þ is uniformly bounded if g=
ffiffiffi
n

p
� 1: By the

definition of bnðg;1Þ; it is easy to show that bnðg; nÞ=ð1þ gÞ is uniformly
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bounded for any g50: Therefore, if g=
ffiffiffi
n

p
! 0 and n ! þ1;

bnðg; nÞffiffiffi
n

p ¼
bnðg; nÞ

bnðg;1Þ
bnðg;1Þ
1þ g

1þ gffiffiffi
n

p ! 0: ð3:54Þ

Step 2: lim
g=

ffiffi
n

p
!1

n!þ1

bnðg; nÞ=
ffiffiffi
n

p
¼ 0:

If g=n ! þ1; by Theorem 1.5 we have bnðg; nÞ ! 1; which implies that
bnðg; nÞ=

ffiffiffi
n

p
! 0; hence we may assume that g4n=Z for some Z > 0: Since

g=
ffiffiffi
n

p
! þ1; we apply part (ii) of Proposition 3.5 to see that ðg2=nÞðbnðg; n

Þ=bnðg;1ÞÞ is uniformly bounded. Hence, if g=
ffiffiffi
n

p
! þ1 and n ! þ1;

bnðg; nÞffiffiffi
n

p ¼
g2

n
bnðg; nÞ

bnðg;1Þ

	 

bnðg;1Þ

g

ffiffiffi
n

p
g

! 0: ð3:55Þ

Step 3. In view of Steps 1 and 2, we may assume that n ! þ1 and
g=

ffiffiffi
n

p
! s 2 ð0;þ1Þ:

Claim. ṽ ! 1þ s2jOj�1
R
O jrjnj2 uniformly, where jn is defined as in

Theorem 3.4 and ṽ is defined by (1.6).

By Lemma 3.7 we see that there exists c > 0; independent of n and g; such
that c4ṽðxÞ41=c for any x 2 %OO: Since n ! þ1 and g=n ! 0; by standard
elliptic regularity, ṽ ! %vv uniformly, where %vv is some positive constant. To
establish the claim it is thus enough to show that

%vv ¼ 1þ
s2

jOj

Z
O
jrjnj2: ð3:56Þ

Set v̂ ¼ jOj�1
R
O ṽ: We first prove the following estimate: 9c > 0;

independent of n and g; such that

c4
ffiffiffi
n

p
jjṽ � v̂jjL1ðOÞ4

1

c
: ð3:57Þ

To show (3.57), we rewrite (1.6) as

ð
ffiffiffi
n

p
jjṽ � v̂jj1ÞD

ṽ � v̂

jjṽ � v̂jj1

	 

þ

ṽð1� ṽÞffiffiffi
n

p þ
g ffiffiffi
n

p bṽ ¼ 0 in O: ð3:58Þ

If
ffiffiffi
n

p
jjṽ � v̂jj1 ! 0;multiplying (3.58) by any j 2 C2ð %OOÞ such that @j

@n
j@O ¼

0; and integrating over O; we have

ð
ffiffiffi
n

p
jjṽ � v̂jj1Þ

Z
O

ṽ � v̂

jjṽ � v̂jj1
Djþ

1ffiffiffi
n

p Z
O

ṽð1� ṽÞjþ
g ffiffiffi
n

p Z
O
bṽj ¼ 0: ð3:59Þ
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Passing to the limit in (3.59), we get
R
O bj ¼ 0 for any j 2 C2ð %OOÞ and

@j
@n
j@O ¼ 0; which is clearly impossible. Hence

ffiffiffi
n

p
jjṽ � v̂jj1Q0:

If
ffiffiffi
n

p
jjṽ � v̂jj1 ! þ1; by (3.58) we see that ðṽ � v̂Þ=jjṽ � v̂jj1 ! c; where

c satisfies Dc ¼ 0 in O; @c
@n
j@O ¼ 0;

R
O c ¼ 0; jjcjj1 ¼ 1: However, such a c

does not exist. This proves (3.57).
By (3.57), we may assume that, passing to some subsequence if necessary,ffiffiffi
n

p
jjṽ � v̂jj1 ! t 2 ð0;1Þ: Again by (3.58), we may assume that ðṽ � v̂Þ=jjṽ �

v̂jj1 ! c; where c satisfies

tDcþ s%vvb ¼ 0 in O;
@c
@n

����
@O
¼ 0;

Z
O
c ¼ 0: ð3:60Þ

By the definition of jn; we have c ¼ ðs%vv=tÞjn: Now integrating (1.6), after
some rearrangement we find thatZ

O
ṽð1� ṽÞ þ

g ffiffiffi
n

p ð
ffiffiffi
n

p
jjṽ � v̂jj1Þ

Z
O
b

ṽ � v̂

jjṽ � v̂jj1
¼ 0: ð3:61Þ

Passing to the limit in (3.61), we have

%vvð1� %vvÞjOj þ st
Z
O
bc ¼ 0: ð3:62Þ

Since c ¼ ðs%vv=tÞjn; from (3.62)

%vv ¼ 1þ
s2

jOj

Z
O
bjn ¼ 1þ

s2

jOj

Z
O
jrjnj2; ð3:63Þ

which proves (3.56) and thus the claim.
Step 4. We show that lim

g=
ffiffi
n

p
!s

n!þ1

bnðg; nÞ=
ffiffiffi
n

p
¼ f ðsÞ; where

f ðsÞ :¼
ðmax %OO bÞs

1þ ðjOj�1
R
O jrjnj2Þs2

: ð3:64Þ

Recall that

bnðg; nÞffiffiffi
n

p ¼ � inf
j=0

j2H1

R
O½

mffip
n
jrjj2 � ð 1ffip

n
þ gffip

n
bÞj2�R

O ṽj2
: ð3:65Þ

Since ṽ ! 1þ s2jOj�1
R
O jrjnj2; n ! þ1 and g=

ffiffiffi
n

p
! s; we see that

bnðg; nÞ=
ffiffiffi
n

p
! f ðsÞ uniformly in n and g=

ffiffiffi
n

p
: For 04s5þ1; it is easy to

check that f attains the maximum max %OO bjOj1=2=ð2jjrjnjj2Þ at
s ¼ jOj1=2=jjrjnjj2: This proves both parts (i) and (ii) of the theorem. ]
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Remark 3.8. If
R
O bðxÞ dx > 0; then Theorem 3.4 fails. More precisely, ifR

O b > 0; then there exists some positive constant c such that bn4c for any g
and n:

Remark 3.9. It would be interesting to know whether for any n > m;
bnðg; nÞ has a unique local maximum (which would then be the global
maximum) for 04g51: It would also be interesting to know the rate of
decay of bnðg; nÞ as g ! 1:

4. COEXISTENCE OF POSITIVE STEADY STATES

In this section, we shall discuss the coexistence of positive steady states to
(1.2). Theorem 1.6 is concerned with the case where both semi-trivial steady
states ðũ; 0Þ and ð0; ṽÞ are unstable, i.e., b5bn and c5cn; respectively. Since
Theorem 1.6 follows from Propositions 1.2, 1.4 and the fact that (1.2) is a
monotone system (see, e.g., [13]), we omit its proof. Of course in addition, if
b > bn and c > cn; a (not necessarily stable) coexistence state also exists. If
15b5bn and c > 1; from Propositions 1.2 and 1.4, ðũ; 0Þ is stable and ð0; ṽÞ is
unstable. However, it is interesting to note that nonetheless ðũ; 0Þmay not be
the global attractor for the interior; as can be seen from Fig. 3 there will be
both stable and unstable coexistence states if m and g are small enough. This
follows from Theorem 4.1, and the main purpose of this section is to prove
Theorem 4.1 and give some applications to the coexistence of steady states.
Throughout this section, we shall assume that b ¼ c > 1 and use b as the
bifurcation parameter.

By the local bifurcation theorem [1], positive steady states of (1.2)
bifurcate from ðu; vÞ ¼ ð0; ṽÞ at b ¼ bn:Moreover, all positive steady states of
(1.2) near ðu; v; bÞ ¼ ð0; ṽ; bnÞ can be represented as

ðuðsÞ; vðsÞ; bðsÞÞ ¼ ðsjþ Oðs2Þ; ṽ þ scþ Oðs2Þ; bn þ slð0Þ þ Oðs2ÞÞ ð4:1Þ

for 05s � 1; where j; c satisfy

mDjþ ½1þ gbðxÞ � bnṽ�j ¼ 0 in O;
@j
@n

����
@O
¼ 0; ð4:2Þ

nDcþ cð1þ gb� 2ṽÞ ¼ bnṽj in O;
@c
@n

����
@O
¼ 0: ð4:3Þ

It is crucial to determine the sign of lð0Þ; which will in turn yield the
bifurcation direction and stability of solution branch near ðu; v; bÞ ¼ ð0; ṽ;
bnÞ: The following result gives a complete understanding of lð0Þ when
05g � 1: In general, determining the sign of lð0Þ is a difficult problem.
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Theorem 4.1. There exists %dd 2 ð0; nÞ depending only on n; b and O; and
%gg > 0 depending on m; n; b and O such that if 05g4%gg; signðlð0ÞÞ ¼ signðm� %ddÞ:

Proof. As g ! 0; we know that ṽ ! 1; bn ! 1 and j ! 1: Therefore, it
is easy to check that c ! �1 as g ! 0: Consider henceforth the range 05
g � 1; and recall that bn ¼ 1þ b2g2 þ Oðg3Þ: Also

j ¼ 1þ gj1 þ g2j2 þ oðg2Þ; ð4:4Þ

c ¼ �1þ gc1 þ g2c2 þ oðg2Þ; ð4:5Þ

ṽ ¼ 1þ gy1 þ g2y2 þ oðg2Þ; ð4:6Þ

where y1; y2; j1; j2; c1 and c2 are given by

nDy1 � y1 ¼ �b in O;
@y1
@n

����
@O
¼ 0; ð4:7Þ

nDy2 � y2 ¼ y1ðy1 � bÞ in O;
@y2
@n

����
@O
¼ 0; ð4:8Þ

mDj1 ¼ y1 � b in O;
Z
O
j1 ¼ 0;

@j1

@n

����
@O
¼ 0; ð4:9Þ

mDj2 ¼ y2 þ b2 þ j1ðy1 � bÞ in O;
@j2

@n

����
@O
¼ 0; ð4:10Þ

nDc1 � c1 ¼ j1 þ b� y1 in O;
@c1

@n

����
@O
¼ 0; ð4:11Þ

nDc2 � c2 ¼ y1j1 � y2 þ b2 � bc1

þ 2y1c1 þ j2 in O;
@c2

@n

����
@O
¼ 0: ð4:12Þ

By using (4.1) and the equation for u; we find that

lð0Þ
Z
O

ṽj2 ¼ �
Z
O
j2ðjþ bncÞ: ð4:13Þ
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For g � 1; direct calculation givesZ
O
j2ðjþ bncÞ ¼ g

Z
O
ðj1 þ c1Þ

þ g2
Z
O
ðj2 þ c2 � b2 þ 2j2

1 þ 2j1c1Þ þ oðg2Þ: ð4:14Þ

Integrating (4.11) we haveZ
O
ðc1 þ j1 þ b� y1Þ ¼ 0: ð4:15Þ

Since
R
Oðb� y1Þ ¼ 0; it follows that

R
Oðj1 þ c1Þ ¼ 0: That is, the first term

on the right-hand side of (4.14) vanishes. It remains to calculate the second
term: integrating (4.12) we getZ

O
ðj2 þ c2Þ ¼

Z
O
ð�y1j1 þ y2 � b2 þ bc1 � 2y1c1Þ: ð4:16Þ

From (4.7) and (4.9),

j1ðxÞ ¼
n
m
y1; ð4:17Þ

and from (4.10) and (4.8), respectively,Z
O

b2 ¼
Z
O
ðb� y1Þj1 �

Z
O
y2 ð4:18Þ

and Z
O
y2 ¼

Z
O
y1ðb� y1Þ: ð4:19Þ

It follows from (4.14), (4.16), (4.18) and(4.19) that

�sign½lð0Þ� ¼ sign

Z
O
ðy1j1 þ 3by1 � 3y21 � 2bj1

�
þ bc1 � 2y1c1 þ 2j2

1 þ 2j1c1Þ
�
: ð4:20Þ

Multiplying (4.7) by c1; multiplying (4.11) by y1; subtracting them and
integrating, we have Z

O
bc1 ¼

Z
O
ð�y1j1 þ y21 � by1Þ: ð4:21Þ
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It follows from (4.20) and (4.21) that

�sign½lð0Þ� ¼ sign

Z
O
ðy1 � j1Þðb� y1 � j1 � c1Þ

� �
: ð4:22Þ

By (4.11), j1 þ c1 ¼ nDc1 � ðb� y1Þ: ThereforeZ
O
ðy1 � j1Þðb� y1 � j1 � c1Þ

¼
Z
O
ðy1 � j1Þ½2ðb� y1Þ � nDc1�

¼ 1�
n
m

	 
Z
O
y1½2ðb� y1Þ � nDc1� ðby ð4:17ÞÞ

¼ 1�
n
m

	 
Z
O
ðb� y1Þð2y1 þ c1Þ ðby ð4:11ÞÞ: ð4:23Þ

By (4.11) and (4.17) we have

nDc1 � c1 ¼ bþ
n
m
� 1

	 

y1 in O;

@c1

@n

����
@O
¼ 0; ð4:24Þ

which becomes on using (4.7),

c1 ¼ �y1 þ
n
m
� 1

	 

ðnD� 1Þ�1y1: ð4:25Þ

In (4.23) substitute for ðb� y1Þ from (4.7). Then from (4.22), (4.23), and
(4.25)

sign½lð0Þ� ¼ sign

Z
O
jry1j2 þ

n
m
� 1

	 
Z
O
ry1 � rw

� �
; ð4:26Þ

where w satisfies

nDw � w ¼ y1 in O;
@w

@n

����
@O
¼ 0: ð4:27Þ

Claim.
R
O ry1 � rw50:

To prove our assertion, by (2.5) and (4.7) we have

y1 ¼
X1
i¼1

ai

1þ lin
xi ð4:28Þ
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in the L2 sense. By (4.27) it is easy to check that

w ¼ �
X1
i¼1

ai

ð1þ linÞ
2
xi: ð4:29Þ

Therefore Z
O
ry1 � rw ¼ �

X1
i¼1

a2
i li

ð1þ linÞ
3
50: ð4:30Þ

Set

%dd ¼ n 1�
Z
O
jry1j2

�Z
O
ry1 � rw

� ��
2 ð0; nÞ: ð4:31Þ

We see that lð0Þ50 where 05m5 %dd; and lð0Þ > 0 when %dd5m5n: This proves
Theorem 4.1. ]

Remark 4.2. Similar bifurcation analysis can be carried out for the
general case c ¼ ð1� ZÞ þ Zb; where Z is any fixed positive number and b is
still the bifurcation parameter. Note that to avoid technicality we only
discuss the case Z ¼ 1 in Theorem 4.1.

Finally, we give some applications of Theorem 4.1 to the coexistence of
steady states of (1.2).

Theorem 4.3. Set

L ¼ fb ¼ c > 1: ð1:2Þ has a coexistence positive steady stateg: ð4:32Þ

Then L*ðbn;þ1Þ: Moreover, if g � 1 and 05m4 %dd; 9
%
b 2 ð1; bnÞ such that

L*½
%
b;þ1Þ; and (1.2) has at least one stable positive steady-state solution for

any b 2 ½
%
b; bnÞ:

Remark 4.4. It is interesting to note that when
%
b5b5bn; ð0; ṽÞ is

unstable and ðũ; 0Þ is stable. However, for g � 1 and m4 %dd5n; ðũ; 0Þ is not

the global attractor and surprisingly, there could be stable steady states for
this range of b:

Proof of Theorem 4.3. We know that solutions bifurcate from ðu; v; bÞ ¼
ð0; ṽ; bnÞ: By standard global bifurcation techniques we can show that there is a
global branch of steady states connecting ð0; ṽ; bnÞ and ðu1; v1;1Þ for some
u1; v1: This in particular implies that L*ðbn;þ1Þ: When g � 1 and 05m4 %dd

we know that lð0Þ50 (Theorem 4.1). By the standard local bifurcation theorem
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[1] and exchange of stability of ð0; ṽÞ at b ¼ bn; we see that 9
%
b 2 ð1; bnÞ such that

(1.2) has at least one stable solution for
%
b4b5bn: This together with the global

bifurcation argument implies that L*½
%
b;þ1Þ: Since these bifurcation

techniques are rather standard, we do not give the details here. ]

5. THE GLOBAL ATTRACTIVITY OF ðũ; 0Þ

Consider the set

S ¼ fðb; cÞ 2 R2
þ: ðũ; 0Þ is the global attractor of ð1:2Þg: ð5:1Þ

By Theorem 1.1, [3], we know that S*ð0; 1� � ½1;þ1Þ: Theorem 1.7 is a
direct consequence of (5.1), Proposition 1.2, Theorem 1.3, Proposition 1.4
and Theorem 1.5.

To prove Theorem 1.8, the following preliminary results are needed.

Lemma 5.1. 9c1 > 0 and c2 > 0; independent of g and n; such that if

minfg; n=gg5c1; then bnðg; nÞ5c2 minfg; n=gg:

Proof. We start by noting that

lim
g!1

bnðg;1Þ
g

¼ max
%OO

b: ð5:2Þ

The proof of (5.2) is essentially the same as in [8].
To establish Lemma 5.1, we argue by contradiction. Since bnðg; nÞ51; we

may suppose that there are sequences fgig
1
i¼1; fnig

1
i¼1 such that gi ! þ1;

ni=gi ! þ1; and bnðgi; niÞ=minfgi; ni=gig ! 0:
If g2i =ni ! 0; part (i) of Proposition 3.5 implies that bnðgi; niÞ=bnðgi;1Þ! 1:

Noting that

bnðgi; niÞ
minfgi; ni=gig

¼
bnðgi; niÞ

gi

! 0; ð5:3Þ

we see that bnðgi;1Þ=gi ! 0 as gi ! þ1; which contradicts (5.2). Therefore,
we may assume that g2i =ni5c3 for some c3 > 0: Since gi=ni ! 0; (ii) of
Proposition 3.5 implies that

g2i
ni

bnðgi; niÞ
bnðgi;1Þ

5c4 > 0: ð5:4Þ

By (5.2) and (5.4), we see that gibnðgi; niÞ=ni5c > 0; which contradicts the
following assertion.

Claim. bnðgi; niÞgi=ni ! 0:
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To prove this assertion, observe that if g2i 4ni; then

bnðgi; niÞgi

ni

4
bnðgi; niÞ

gi

¼
bnðgi; niÞ

minfgi; ni=gig
! 0; ð5:5Þ

if g2i 5ni; then

bnðgi; niÞgi

ni

¼
bnðgi; niÞ

minfgi; ni=gig
! 0: ð5:6Þ

This finishes the proof of Lemma 5.1. ]

Corollary 5.2. There exist c5 > 0 and c6 > 0; independent of g and n;
such that if minfg; n=gg5c5 and b4c6 minfg; n=gg; then ð0; ṽÞ is unstable.

Proof. This follows from Lemma 5.1 and Proposition 1.4. ]

Lemma 5.3. Suppose that ð0; ṽÞ is unstable, and (1.2) has a positive steady-

state solution with parameters ðb̂; ĉÞ: Then for any 05c5ĉ; (1.2) has at least

one positive steady-state solution with parameters ðb̂; cÞ:

Proof. The system is competitive, and we may therefore use the sub-
super-solution method, see [6]. Denote by ðû; v̂Þ the positive steady-state
solution of (1.2) with ðb; cÞ ¼ ðb̂; ĉÞ: Since ð0; ṽÞ is unstable, the following
linear eigenvalue problem:

mDjþ jð1þ gb� b̂ṽÞ ¼ �l1j; j > 0;
@j
@n

����
@O
¼ 0 ð5:7Þ

has a solution with l150: Set

ð %uu;
%
uÞ ¼ ðû; djÞ; ð%vv;

%
vÞ ¼ ðṽ; v̂Þ: ð5:8Þ

It is easy to check that %uu >
%
u provided that d > 0 is sufficiently small, and

%vv5
%
v since we have v̂4ṽ: Moreover, if d is small, one can check that ð %uu;

%
uÞ;

ð%vv;
%
vÞ are super-sub-solutions of (1.2) with ðb; cÞ ¼ ðb̂; cÞ for any 05c4ĉ: This

implies that for any c5ĉ; (1.2) with b ¼ b̂ has a positive steady-state
solution. ]

Corollary 5.4. 9c5 > 0 and c6 > 0; independent of g and n; such that if

minfg; n=gg5c5; b̂5c6 minfg; n=gg; and (1.2) has a positive steady-state

solution with ðb; cÞ ¼ ðb̂; ĉÞ; then (1.2) has at least one positive steady-state

solution for b ¼ b̂ and any c such that 05c5ĉ:
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Proof. This follows from Corollary 5.2 and Lemma 5.3. ]

Lemma 5.5. 8Z > 0; 9c7ðZÞ > 0 and c8ðZÞ > 0; independent of g; n; b and c;
such that if minfg; n=gg5c7ðZÞ; c5Z; and b4c8ðZÞminfg; n=gg; then (1.2) has

no positive steady-state solution.

Proof. We argue by contradiction: suppose that 9Z0 > 0 and sequences
fbig; fcig; fgig; fnig; fuig; fvig such that ci5Z0; gi ! þ1; ni=gi ! þ1;
bi=minfgi; ni=gig ! 0; and ðui; viÞ are positive solutions of

mDui þ uið1þ gib� ui � biviÞ ¼ 0 in O;

niDvi þ við1þ gib� ciui � viÞ ¼ 0 in O;
@ui

@n
¼ @vi

@n
¼ 0 on @O:

8><
>: ð5:9Þ

We may assume that ci ¼ Z0: For otherwise, by Corollary 5.4, we may use
the parameters ðb; c; n; gÞ ¼ ðbi; Z0; ni; giÞ and work with the corresponding
solutions ðui; viÞ of (5.9).

Step 1: vi=jjvijj1 ! 1 uniformly. Set ji ¼ vi=jjvi jj1: Then ji satisfies

Dji þ ji

1

ni

þ
gi

ni

b� Z0
gi

ni

ui

gi

�
gi

ni

vi

gi

	 

¼ 0;

@ji

@n

����
@O
¼ 0: ð5:10Þ

By the Maximum Principle, jjui jj14kgi and jjvi jj14kgi for some k

independent of i: By elliptic regularity, ji ! j in C1ð %OOÞ; where j satisfies
Dj ¼ 0; @j

@n
j@O ¼ 0; jjjjj1 ¼ 1: Hence j ¼ 1; i.e., ji ! 1 uniformly.

Step 2: bijjvijj1=gi ! 0: Observe that vi is a sub-solution of

niDwi þ wið1þ gib� wiÞ ¼ 0 in O;
@wi

@n

����
@O
¼ 0: ð5:11Þ

Hence vi4wi: There are two possibilities to consider:
(i) g2i =ni ! 0: For this case,

bi

gi

¼
bi

minfgi; ni=gig
! 0: ð5:12Þ

Since g2i =ni ! 0; by Lemma 3.6 we see that

jjwi jj141þ c18
g2i
ni

4k ð5:13Þ

for some constant k: Hence

bijjvi jj1
gi

4
bijjwijj1

gi

4k
bi

gi

! 0: ð5:14Þ
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(ii) g2i =ni5x2 > 0 for some x > 0: Since x
ffiffiffiffi
ni

p
4gi4ni=x; by Lemma 3.7 we

see that jjwi jj14kg2i =ni: Hence

bijjvi jj1
gi

4
bijjwijj1

gi

4k
bigi

ni

: ð5:15Þ

We claim that bigi=ni ! 0: if g2i 4ni; then

bigi

ni

¼
bi

gi

g2i
ni

4
bi

gi

¼
bi

minfvi; ni=gig
! 0; ð5:16Þ

if g2i 5ni; then

bigi

ni

¼
bi

minfvi; ni=gig
! 0: ð5:17Þ

Hence bi jjvijj1=gi ! 0:

Step 3. 8e > 0; ui=gi5ðb� eÞþ for sufficiently large i: Note that ui satisfies

�mDui ¼ ui 1þ gi b�
bivi

gi

	 

� ui

� �
5ui 1þ gi b�

e
2

� �
� ui

h i
; ð5:18Þ

where the last inequality follows from Step 2, provided that i � 1: Hence
ui5wi; where wi satisfies

mDwi þ wi 1þ gi b�
e
2

� �
� wi

h i
¼ 0 in O;

@wi

@n

����
@O
¼ 0: ð5:19Þ

By Proposition A.1 in the appendix,

wi

gi

5 b�
e
2

� �
þ
�c

m
gi

	 
1=3

: ð5:20Þ

Hence, for sufficiently large i;

ui

gi

5
wi

gi

5ðb� eÞþ: ð5:21Þ

Step 4. Integrating the equation for vi; and dividing it by gi jjvijj1; we have

1

gi

Z
O

vi

jjvi jj1
þ
Z
O

vi

jjvi jj1
b5Z0

Z
O

vi

jjvi jj1

ui

gi

5Z0

Z
O

vi

jjvi jj1
ðb� eÞþ: ð5:22Þ

Passing to the limit in (5.22), as vi=jjvijj1 ! 1 and
R
b ¼ 0; we haveR

Oðb� eÞþ40 for any e > 0; which is obviously a contradiction. This
completes the proof of Lemma 5.5. ]
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Proof of Theorem 1.8. It suffices to check the following for c5e and b4e�1:
(a) ðũ; 0Þ is stable. By (ii) of Proposition 2.2, 8e > 0; 9c1ðeÞ > 0 such that if

minfg; n=gg5c1ðeÞ; then cn5e: Then by Proposition 1.2, if c5e; ðũ; 0Þ is
stable.

(b) ð0; ṽÞ is unstable. 8e > 0; by Lemma 5.1, if minfg; n=gg5maxfc1; 1=
ðc2eÞg; we have b4e�14minfg; n=ggc25bnðg; nÞ; which implies that ð0; ṽÞ is
unstable (Proposition 1.4).

(c) Equation (1.2) has no positive steady-state solution. This follows easily
from Lemma 5.5.

Since (1.2) is a monotone system, we know that (a)–(c) imply that ðũ; 0Þ is
the global attractor for (1.2). ]
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APPENDIX A

Let vðxÞ be the unique positive solution of

dDv þ vð1þ gbðxÞ � vÞ ¼ 0 in O;
@v

@n

����
@O
¼ 0: ðA:1Þ

Proposition A.1. Suppose that (H1)–(H3) hold except that the conditionR
O b ¼ 0 is relaxed. Then 9c1 > 0 and c2 > 0 large such that if g=d5c1 and

g5c1;

v

g
� bþ

����
����

����
����
L1ðOÞ

4c2
d

g

	 
1=3

: ðA:2Þ

Proof. The proof is based on a super-sub-solution method [4], and we
will construct explicit weak super-sub-solutions to (A.1).

Set

%vv

g
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ t1ðdg Þ

2=3
q

þ b

2
þ z x;

d

g
; t2

	 

; ðA:3Þ

where t1 > 0; t2 > 0 are to be determined, and z is defined by

z x;
d

g
; t2

	 

¼

ðdg Þ
1=3 exp½�t2 distðx; @OÞð

g
d
Þ1=3��

�kd0ðdistðx; @OÞÞ if distðx; @OÞ4d0;

0 if distðx; @OÞ5d0;

8><
>: ðA:4Þ
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where d0 > 0 small is chosen such that distðx; @OÞ is C2 as long as
distðx; @OÞ4d0: Here kdð�Þ 2 C2ðR; ½0; 1�Þ and

kdð‘Þ ¼
1; j‘j4d

2
;

0; j‘j > d:

(
ðA:5Þ

The role of z is to ensure @%vv
@n
50 on @O: Define the operator L by setting

Lv ¼
d

g
Dv þ v

1

g
þ b� v

	 

: ðA:6Þ

We need to check that Lð%vv=gÞ40 in O:

L
%vv

g

	 

4

d

g
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ t1ðdg Þ

2=3
q

þ b

2

0
@

1
Aþ

d

g
Dz þ

1

g
%vv

g
�

t1
4

d

g

	 
2=3

: ðA:7Þ

It is straightforward to check that

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ t1ðdg Þ

2=3
q

þ b

2

0
@

1
A4c3 1þ

1

t1=21 ðdg Þ
1=3

0
@

1
A; ðA:8Þ

d

g
Dz

����
����4c4t22

d

g

	 
2=3

; ðA:9Þ

1

g
%vv

g
4c5

d

g
: ðA:10Þ

By (A.7)–(A.10) we see that

L
%vv

g

	 

4

d

g

	 
2=3

�
t1
2
þ c4t22 þ

c3

t1=21

þ ðc3 þ c5Þ
d

g

	 
1=3
" #

40 ðA:11Þ

provided that d=g is sufficiently small and t1 is suitably large. Note that the
choice of t1 depends on t2 at this stage. However, note that on @O; @

@n
ð%vv=gÞ

5t2 � c6 max@O jrbj: By choosing t2 and then t1; we see that %vv=g satisfies
Lð%vv=gÞ40 in O and @

@n
ð%vv=gÞ50 on @O provided that d=g is sufficiently small.

That is, %vv is a super-solution of (A.1) where d=g4c7 for some c7 > 0 small,
where c7 is independent of d and g:

We now construct the sub-solution
%
v of (A.1). Recall that G ¼

fx 2 O : bðxÞ ¼ 0g; and let Gd ¼ fx 2 O : bðxÞ ¼ dg for d > 0 small,
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Dd ¼ fx 2 O : 05bðxÞ5dg: Let hd be the unique solution of

Dhd ¼ 0 in Dd;

hd ¼ 0 on G;

hd ¼ 1 on Gd:

8><
>: ðA:12Þ

Since rb does not vanish on G; 9c8 and c9 > 0 such that c8 distðx;GÞ4
bðxÞ4c9 distðx;GÞ: Then jjrhdjjL1ðDdÞ4c10=d for some positive constant c10
provided that d is sufficiently small. This implies that

hdðxÞ4
c11

d
distðx;GÞ4

c12

d
bðxÞ

for every x 2 %DDd and some constants c11 and c12: Now set

%
v

g
¼

0 if bðxÞ40;

ðdg Þ
1=3h

t3ð
d
g Þ

1=3 if 04bðxÞ4t3ðdg Þ
1=3;

b� ðt3 � 1Þðdg Þ
1=3 �

zðx;ðdg Þ
1=3;t4Þ

2
if b5t3ðdg Þ

1=3:

8>>>><
>>>>:

ðA:13Þ

For bðxÞ40; L
%
v ¼ 0: On G; since @hd

@n1
jG40; where n1 is the outward normal

vector on G as part of the boundary of the domain Dd; we know that
@v
@n1

jG40; which is required to ensure
%
v is a weak sub-solution. For x 2 Dd;

since hd is harmonic, we see that

L %
v

g

	 

¼ %

v

g
1

g
þ b�

d

g

	 
1=3

h
t3ð

d
g Þ

1=3

 !

5 %
v

g
b�

d

g

	 
1=3
c12

t3ðdg Þ
1=3

b

 !

¼ %
v

g
b 1�

c12

t3

	 

50 ðA:14Þ

provided that t35c12: On bðxÞ ¼ t3ðd=gÞ
1=3;

@

@n2

d

g

	 
1=3

h
t3ð

d
g Þ

1=3

�����
�����4 d

g

	 
1=3

jrh
t3ð

d
g Þ

1=3 j4
c10

t3
4

@

@n2
b ¼

@

@n2
%
v

g

	 

;

where n2 is the outward normal vector on @Dd=G :¼ fx: bðxÞ ¼ t3ðd=gÞ
1=3g:

Note that for d=g � 1; @bðxÞ@n2
5c13 > 0 for some small constant c13 and any x

such that bðxÞ ¼ t3ðd=gÞ
1=3: This is due to our assumption @bðxÞ

@n1
50 for any
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x 2 G: This ensures that
%
v=g is a weak solution in the region 04bðxÞ4

t3ðd=gÞ
1=3: Finally, consider the region bðxÞ5t3ðd=gÞ

1=3: By definition (A.6),

L %
v

g

	 

¼

d

g
Db�

d

2g
Dz þ b� ðt3 � 1Þ

d

g

	 
1=3

�
z

2

" #

�
1

g
þ ðt3 � 1Þ

d

g

	 
1=3

þ
z

2

 !
: ðA:15Þ

It is easy to see that, for some constant c15;

d

g
Db5�

d

g
jjDbjjL1ðOÞ; �

d

2g
Dz5� c15t24

d

g

	 
2=3

; ðA:16Þ

b� ðt3 � 1Þ
d

g

	 
1=3

�
z

2
5

1

2

d

g

	 
1=3

; ðA:17Þ

since b5t3ðd=gÞ
1=3 and z4ðd=gÞ1=3: By (A.16)–(A.18), we have

L %
v

g

	 

5

d

g

	 
2=3 t3 � 1

2
� c15t24 �

d

g

	 
1=3

jjDbjjL1ðOÞ

 !
> 0 ðA:18Þ

provided that t3 is suitably large (depending on t4 only); on the other hand,

by choosing t4 suitably large, we have @
%
v

@n
j@O40: This ensures that

%
v is a weak

sub-solution of (A.1) provided that d=g � 1: It is easy to check that if d=g is

sufficiently small,

bþðxÞ � c2
d

g

	 
1=3

4%
v

g
4

%vv

g
4bþðxÞ þ c2

d

g

	 
1=3

ðA:19Þ

for some c2 > 0 large, independent of d and g: Since (A.1) has a unique

solution v; (A.2) follows from (A.19).

Remark A.2. The upper bound bþðxÞ þ c2ðd=gÞ
1=3 seems to be optimal,

while the lower bound bþðxÞ � c2ðd=gÞ
1=3 may be improved to bþðxÞ �

c2ðd=gÞ
1=2 or even bþðxÞ � c2ðd=gÞ

2=3: However, it is unknown whether the
lower bound bþ � c2ðd=gÞ

2=3 holds.
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