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1. Introduction

In this paper we study the asymptotic behavior of the energy of weak solutions to the Navier–
Stokes equations in R

n , n � 2,

⎧⎪⎨
⎪⎩

∂u

∂t
− �u + (u · ∇)u + ∇p = 0, in R

n × (0,∞),

div u = 0, in R
n × (0,∞),

u(x,0) = a, in R
n,

(N-S)

where u = u(x, t) = (u1(x, t), . . . , un(x, t)) and p = p(x, t) denote the unknown velocity vector and the
pressure of the fluid at point (x, t) ∈ R

n × (0,∞), while a = a(x) = (a1(x), . . . ,an(x)) is a given initial
velocity vector field.
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For the existence of weak solutions of (N-S), Leray [4] constructed a turbulent solution
on R

3 which satisfies the strong energy inequality and he proposed the problem whether or not
limt→∞ ‖u(t)‖L2(R3) = 0 (for the definition of the turbulent solution, see Definition 2.1). Masuda [5]
first gave a partial answer to Leray’s problem and clarified that the strong energy inequality plays an
important role for L2-decay of weak solutions. Kato [3] proved the Lr -decay properties for strong so-
lutions on R

n with small initial data (for the definition of the strong solution, see Definition 2.2). He
also constructed a turbulent solution in R

4. Using the uniqueness criterion for weak solutions given
by Serrin [8], we may identify the turbulent solution with the strong solution after some definite
time.

For L2-decay property of solutions of (N-S), there are many results. Kajikiya and Miyakawa [2]
proved that there exists a weak solution of (N-S) which behaves like the Stokes flow e−t Aa asymptot-
ically, where A denotes the Stokes operator. Later, Wiegner [11] proved that turbulent solutions have
the L2-decay property in Kajikiya and Miyakawa [2]. On the other hand, Schonbek [7] proved that
there exists a weak solution which has the lower bound of L2-decay.

Recently, another aspect of asymptotic behavior of the energy of solutions has been investigated.
Skalák [9,10] proved the asymptotic energy concentration in the following sense:

lim
t→∞

‖Eλu(t)‖2

‖u(t)‖2
= 1 (1.1)

under the assumption that lim supt→∞ ‖A1/2u(t)‖2/‖u(t)‖2 < ∞ for the strong solution of (N-S),
where {Eλ}λ�0 is the spectral decomposition of the Stokes operator A. With the Fourier transfor-
mation, we have Eλu(ξ, t) = χ{|ξ |�√

λ}û(ξ, t), where χ{|ξ |�√
λ} denotes the characteristic function on

the set {|ξ | � √
λ}. Hence the neighborhood near ξ = 0 in the phase space plays an important role for

the behavior of the energy of solutions asymptotically.
The purpose of the present paper is to characterize the set of initial values that causes (1.1). For

this aim, we consider the set of initial data that causes a lower bound of the energy of solutions.
More precisely, we introduce the set

K δ
m,α = {

φ ∈ L2; ∣∣φ̂(ξ)
∣∣ � α|ξ |m for |ξ | � δ

}
(1.2)

for α, δ > 0 and m � 0. The set K δ
m,α is a generalization of the set given by Schonbek [7]. We prove

that if the initial data a belongs to K δ
m,α , then the turbulent solution satisfies the energy concentration

such as (1.1). Furthermore, the explicit convergence rate of u(t) in (1.1) is shown.
In Section 2, we shall give our main results. Section 3 is devoted to preparing some lemmas, some

of which were shown in the previous papers, Schonbek [7], Borchers and Miyakawa [1], Kajikiya and
Miyakawa [2], Wiegner [11] and Kato [3]. However, we give an independent proof. In particular, the
difference of decay rates between the solutions of (N-S) and Stokes flows is clarified, which yields
the lower bound of the L2-decay of the solution of (N-S). In Section 4, we prove main results. In
Appendix A, we introduce the initial values which satisfy the assumption of Theorem 1 and of Theo-
rem 2.

2. Results

Before stating our results we introduce some function spaces and give our definition of turbulent
solutions of (N-S). C∞

0,σ denotes the set of all C∞-real vector functions φ with compact support in
R

n such that divφ = 0. Lr
σ is the closure of C∞

0,σ with respect to the Lr -norm ‖ · ‖r ; (·,·) is the inner

product in L2. Lr stands for the usual (vector-valued) Lr -space over R
n , 1 � r � ∞. H1

0,σ is the closure
of C∞

0,σ with respect to the norm ‖φ‖H1 = ‖φ‖2 + ‖∇φ‖2, where ∇φ = (∂φi/∂x j)i, j=1,...,n . When X is
a Banach space, we denote by ‖ · ‖X the norm on X . Cm([t1, t2]; X) and Lr(t1, t2; X) are the usual
Banach spaces, where m = 0,1, . . . , and t1 and t2 are real numbers such that t1 < t2. In this paper we
denote by C various constants.
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Definition 2.1. Let a ∈ L2
σ . A measurable function u defined on R

n × (0,∞) is called a turbulent
solution of (N-S) if

(i) u ∈ L∞(0,∞; L2
σ ) ∩ L2(0, T ; H1

0,σ ) for all 0 < T < ∞;
(ii) the relation

T∫
0

[−(u, ∂φ/∂t) + (∇u,∇φ) + (u · ∇u, φ)
]

dt = (
a, φ(0)

)

holds for almost all T and all φ ∈ C1([0, T ); H1
0,σ ∩ Ln) such that φ(·, T ) = 0;

(iii) the strong energy inequality

∥∥u(t)
∥∥2

2 + 2

t∫
s

∥∥∇u(τ )
∥∥2

2 dτ �
∥∥u(s)

∥∥2
2 (2.1)

holds for almost all s � 0, including s = 0, and all t > s.

We call a function u satisfying the above conditions (i) and (ii) a weak solution of (N-S). We can
redefine any weak solution u(t) of (N-S) on a set of measure zero of the time interval (0,∞) so that
u(t) is weakly continuous in t with values in L2

σ . Moreover, such a redefined weak solution u satisfies
for each 0 � s < t ,

t∫
s

[−(u, ∂φ/∂t) + (∇u,∇φ) + (u · ∇u, φ)
]

dτ = −(
u(t),φ(t)

) + (
u(s),φ(s)

)
(2.2)

for all φ ∈ C1([s, t]; H1
0,σ ∩ Ln), see Prodi [6]. The existence of turbulent solutions for n = 3 and n = 4

was given by Leray [4] and Kato [3], respectively.
Let us define the Stokes operator Ar in Lr

σ . We have the following Helmholtz decomposition:

Lr = Lr
σ ⊕ Gr, 1 < r < ∞,

where Gr = {∇p ∈ Lr; p ∈ Lr
loc}. Pσ denotes the projection operator from Lr onto Lr

σ . The Stokes
operator Ar is defined by Ar = −Pσ � with domain D(Ar) = H2,r ∩ Lr

σ . A2 is nonnegative and self-
adjoint operator on L2

σ . For simplicity, A denotes the Stokes operator Ar if we have no possibility of
confusion. {Eλ}λ�0 denotes the spectral decomposition of the nonnegative self-adjoint operator A.

Let us introduce the definition of strong solution of (N-S).

Definition 2.2. Let n < r < ∞, a ∈ Ln
σ . A measurable function u defined on R

n × (0,∞) is called a
global strong solution of (N-S) if

u ∈ C
([0,∞); Ln

σ

) ∩ C
(
(0,∞); Lr), (2.3)

∂u

∂t
, Au ∈ C

(
(0,∞); Ln

σ

)
, (2.4)

and u satisfies

∂u

∂t
+ Au + Pσ (u · ∇u) = 0, t > 0.
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Now our results read:

Theorem 1. Let 2 � n � 4, and let r > 1 and m � 0 be

(i) for n = 2,

1 < r <
4

3
, 0 � m <

4

r
− 3,

(ii) for n = 3,4,

1 < r <
n

n − 1
, 0 � m <

n

r
− (n − 1).

Suppose that K δ
m,α is the same as (1.2). If a ∈ Lr

σ ∩ L2
σ ∩ K δ

m,α for some α, δ > 0, then for every turbulent
solution u(t) there exist T > 0 and C(n, r,m, δ,α,a) > 0 such that∣∣∣∣‖Eλu(t)‖2

‖u(t)‖2
− 1

∣∣∣∣ � C

λ
t−(n/r−n+1−m) (2.5)

holds for all λ and for all t > T .

Theorem 2. Let n � 5, and let r > 1 and m � 0 be

1 < r <
n

n − 1
, 0 � m <

n

r
− (n − 1).

Then there exists γ > 0 such that if a ∈ Lr
σ ∩ Ln

σ ∩ K δ
m,α for some α, δ > 0 and if a satisfies ‖a‖n � γ ,

then there exists a unique global strong solution u(t) with the following property. There exist T > 0 and
C(n, r,m, δ,α,a) > 0 such that ∣∣∣∣‖Eλu(t)‖2

‖u(t)‖2
− 1

∣∣∣∣ � C

λ
t−(n/r−n+1−m) (2.6)

holds for all λ and for all t > T .

Remark 3. Skalák [10] proved energy concentration (1.1) under the assumption
lim supt→∞ ‖A1/2u(t)‖2/‖u(t)‖2 < ∞. From the assumption of Theorem 1 and of Theorem 2, we
can show that limt→∞ ‖A1/2u(t)‖2/‖u(t)‖2 = 0. On the other hand, our advantage seems to char-
acterize the set of initial data which causes an energy concentration. Moreover, we get the explicit
convergence rate of (1.1). We introduce the set K δ

m,α of initial data that causes (1.1), especially, causes
the lower bound of the L2-decay of the solutions of (N-S). (See also Schonbek [7].)

Remark 4. It seems to be an interesting question whether the similar energy concentration occurs in
exterior domains where the Poincaré inequality does not hold. For that purpose, we need to obtain
the lower bound of ‖u(t)‖2 as t → ∞, which will be discussed in the forthcoming paper.

3. Preliminaries

Lemma 3.1. Let n � 2, and let r be

(i) for n = 2, 1 < r < 2,
(ii) for n � 3, 1 < r � n/(n − 1).

If a ∈ Lr
σ ∩ L2

σ then every turbulent solution u(t) of (N-S) lies in Lr
σ for all t > 0.



T. Okabe / J. Differential Equations 246 (2009) 895–908 899
Proof. For each ϕ ∈ C∞
0,σ we put φ(τ ) = e−(t−τ )Aϕ . We substitute φ for the test function in (2.2) and

obtain

(
u(t),ϕ

) = (
u(s), e−(t−s)Aϕ

) −
t∫

s

(
u · ∇u, e−(t−τ )Aϕ

)
dτ (3.1)

for all t > s � 0. Since u(t) is weakly continuous and uniformly bounded with respect to t , by the
Hölder inequality we have

∣∣(u(0), e−t Aϕ
)∣∣ = ∣∣(a, e−t Aϕ

)∣∣
� ‖a‖r

∥∥e−t Aϕ
∥∥

r′

� ‖a‖r‖ϕ‖r′ . (3.2)

First, we consider the case n = 2. Let 1 � q � r. By the Hölder and the Gagliardo–Nirenberg inequali-
ties we have

∣∣(u · ∇u, e−(t−τ )Aϕ
)∣∣ �

∣∣(u · ∇e−(t−τ )Aϕ, u
)∣∣

� ‖u‖2
2q

∥∥∇e−(t−τ )Aϕ
∥∥

q′

� ‖u‖2/q
2 ‖∇u‖2−2/q

2 (t − τ )−(1/r′−1/q′)−1/2‖ϕ‖r′

� ‖a‖2/q
2 (t − τ )−(1/q−1/r)−1/2‖∇u‖2−2/q

2 ‖ϕ‖r′ . (3.3)

Noting that 1 − q/r + q/2 < 1, we obtain

t∫
0

‖∇u‖2− 2
q

2 (t − τ )
−( 1

q − 1
r )− 1

2 dτ �
( t∫

0

‖∇u‖2
2 dτ

) 1
q′ ( t∫

0

(t − τ )−1+ q
r − q

2 dτ

) 1
q

< Ct‖a‖2/q′
2 ,

where constant Ct depends on t , which implies

∣∣∣∣∣
t∫

s

(
u · ∇u, e−(t−τ )Aϕ

)
dτ

∣∣∣∣∣ � Ct‖a‖2/q
2 ‖a‖2/q′

2 ‖ϕ‖r′ . (3.4)

So (3.2), (3.4) and (3.1) with s = 0 yield by duality,

∥∥u(t)
∥∥

r = sup
ϕ∈Lr′

σ

|(u(t),ϕ)|
‖ϕ‖r′

� ‖a‖r + Ct‖a‖2
2.

Next we consider the case n � 3. Since 2 < 2r′/(r′ −2) < 2n/(n −2), by the Hölder and the Sobolev
inequalities we have
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∣∣(u · ∇u, e−(t−τ )Aϕ
)∣∣ � C‖ϕ‖r′ ‖u‖2r′/(r′−2)‖∇u‖2

� C‖ϕ‖r′ ‖u‖1−n/r′
2 ‖u‖n/r′

2n/(n−2)‖∇u‖2

� C‖ϕ‖r′ ‖u‖1−n/r′
2 ‖∇u‖1+n/r′

2

� C‖ϕ‖r′ ‖a‖1−n/r′
2 ‖∇u‖1+n/r′

2 . (3.5)

Since

t∫
0

‖∇u‖1+n/r′
2 dτ � t1/2−n/2r′

( t∫
0

‖∇u‖2
2 dτ

)1/2+n/2r′

,

we have with some constant Ct

∣∣∣∣∣
t∫

s

(
u · ∇u, e−(t−τ )Aϕ

)
dτ

∣∣∣∣∣ � Ct‖a‖2
2‖ϕ‖r′ .

So the same argument as the case n = 2 can be applied. The proof of Lemma 3.1 is complete. �
Lemma 3.2. Let n � 2 and put v(t) = e−t Aa. If a ∈ L2

σ ∩ K δ
m,α , then v(t) satisfies

∥∥v(t)
∥∥

2 � Ct− 1
2 (m+ n

2 ) (3.6)

for all t � 1, where C depends on m,n, δ,α.

Proof. By Plancherel’s theorem and changing variables we have

∥∥v(t)
∥∥2

2 = ∥∥v̂(t)
∥∥2

2 �
∫

|ξ |�δ

e−2t|ξ |2 |â|2 dξ

� α2
∫

|ξ |�δ

e−2t|ξ |2 |ξ |2m dξ

= α2
∣∣Sn−1

∣∣ δ∫
0

e−2tρ2
ρ2m+n−1 dρ

= α2|Sn−1|
(2t)−(m+n/2)

√
2t δ∫

0

e−s2
s2m+n−1 ds

� Ct−(m+n/2),

where we put

C = α2|Sn−1|
2m+n/2

√
2 δ∫

0

e−s2
s2m+n−1 ds.

This completes the proof of Lemma 3.2. �
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Lemma 3.3. There is a constant C depending only on n such that

∥∥Eλ Pσ [u · ∇v]∥∥ � Cλ(n+2)/4‖u‖2‖v‖2 (3.7)

holds for all λ > 0 and for all u, v ∈ H1
0,σ with u · ∇v ∈ L2 .

The proof is given by Kajikiya and Miyakawa [2].
The following lemma is originally proved by Wiegner [11]. However, we here give an independent

proof which is based on the spectral decomposition of A.

Lemma 3.4. Let 1 < r < 2 and a ∈ Lr
σ ∩ L2

σ . We put v(t) = e−t Aa. Then every turbulent solution u(t) of (N-S)
has the following property:

∥∥u(t) − v(t)
∥∥

2 =

⎧⎪⎨
⎪⎩

O (t−(n/r−n/4−1/2)), n( 1
r − 1

2 ) < 1,

O (t−(n/4+1/2) log t), n( 1
r − 1

2 ) = 1,

O (t−(n/4+1/2)), n( 1
r − 1

2 ) > 1,

as t → ∞.

Proof. Let w(t) = u(t) − v(t). Since u(t) and v(t) satisfy strong the energy inequality (2.1), we obtain

∥∥w(t)
∥∥2

2 + 2

t∫
s

∥∥∇w(τ )
∥∥2

2 dτ

= ∥∥u(t)
∥∥2

2 + ∥∥v(t)
∥∥2

2 − 2
(
u(t), v(t)

) + 2

t∫
s

[∥∥∇u(τ )
∥∥2

2 + ∥∥∇v(τ )
∥∥2

2 − 2
(∇u(τ ),∇v(τ )

)]
dτ

�
∥∥u(s)

∥∥2
2 + ∥∥v(s)

∥∥2
2 − 2

(
u(t), v(t)

) − 4

t∫
s

(∇u(τ ),∇v(τ )
)

dτ (3.8)

for almost all s � 0, including s = 0, and all t > s. We substitute φ(τ ) = v(τ ) for the test function
in (2.2) and obtain

(
u(t), v(t)

) + 2

t∫
s

(∇u(τ ),∇v(τ )
)

dτ +
t∫

s

(
u(τ ) · ∇u(τ ), v(τ )

)
dτ = (

u(s), v(s)
)

(3.9)

for almost all s � 0, including s = 0, and all t > s, since dv/dt = −Av . Hence (3.8) and (3.9) yield

∥∥w(t)
∥∥2

2 + 2

t∫
s

∥∥∇w(τ )
∥∥2

2 dτ �
∥∥w(s)

∥∥2
2 + 2

t∫
s

(
u(τ ) · ∇u(τ ), v(τ )

)
dτ (3.10)

for almost all s � 0, including s = 0, and all t > s. We estimate the last term in (3.10). Since (u ·
∇v, v) = 0, by the Hölder and the Young inequalities we have
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∣∣(u(τ ) · ∇u(τ ), v(τ )
)∣∣ = ∣∣(u(τ ) · ∇w(τ ), v(τ )

)∣∣
�

∥∥u(τ )
∥∥

2

∥∥∇w(τ )
∥∥

2

∥∥v(τ )
∥∥∞

� Cτ−n/2r
∥∥u(τ )

∥∥
2

∥∥∇w(τ )
∥∥

2‖a‖r

� 1

2

∥∥∇w(τ )
∥∥2

2 + C

2

∥∥u(τ )
∥∥2

2‖a‖2
r τ

−n/r . (3.11)

Hence (3.10) and (3.11) yield

∥∥w(t)
∥∥2

2 +
t∫

s

∥∥∇w(τ )
∥∥2

2 dτ �
∥∥w(s)

∥∥2
2 + C

t∫
s

τ−n/r
∥∥u(τ )

∥∥2
2‖a‖2

r dτ (3.12)

for almost all s � 0, including s = 0, and all t > s. Let λ be any smooth positive function on (0,∞).
From (3.12) and the estimate

∥∥∇w(τ )
∥∥2

2 = ∥∥A1/2 w(τ )
∥∥2

2 =
∞∫

0

ρ d‖Eρ w‖2
2

�
∞∫

λ(τ )

ρ d‖Eρ w‖2
2

� λ(τ )
[∥∥w(τ )

∥∥2
2 − ∥∥Eλ(τ )w(τ )

∥∥2
2

]
,

we obtain

∥∥w(t)
∥∥2

2 +
t∫

s

λ(τ )
∥∥w(τ )

∥∥2
2 dτ

�
∥∥w(s)

∥∥2
2 +

t∫
s

λ(τ )
∥∥Eλ(τ )w(τ )

∥∥2
2 dτ + C

t∫
s

τ−n/r
∥∥u(τ )

∥∥2
2‖a‖2

r dτ . (3.13)

To estimate the term ‖Eλ(t)w(t)‖2 we go back to (2.2). Since Eλϕ ∈ Ln for all ϕ ∈ C∞
0,σ and for all

λ > 0, we may choose φ(τ ) = e−(t−τ )A Eλ(t)ϕ as the test function of (2.2). It follows that

(
Eλ(t)w(t),ϕ

) = (
u(s),φ(s)

) − (
v(s),φ(s)

) −
t∫

s

(
u(τ ) · ∇u(τ ),φ(τ )

)
dτ

= (
w(s), e−(t−s)A Eλ(t)ϕ

) −
t∫

s

(
u(τ ) · ∇u(τ ),φ(τ )

)
dτ (3.14)

for all t > s � 0. By Lemma 3.3 we have

∣∣(u(τ ) · ∇u(τ ),φ(τ )
)∣∣ = ∣∣(Eλ(t) Pσ

[
u(τ ) · ∇u(τ )

]
, e−(t−τ )Aϕ

)∣∣
= ∥∥Eλ(t) Pσ

[
u(τ ) · ∇u(τ )

]∥∥
2

∥∥e−(t−τ )Aϕ
∥∥

2

� Cλ(t)(n+2)/4
∥∥u(τ )

∥∥2‖ϕ‖2. (3.15)
2
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Since w(t) is weakly continuous in L2
σ and ‖w(t)‖2 is bounded with respect to t , we have by (3.14)

and (3.15) with s = 0 that

∥∥Eλ(t)w(t)
∥∥

2 � Cλ(t)(n+2)/4

t∫
0

∥∥u(τ )
∥∥2

2 dτ . (3.16)

Hence (3.13) and (3.16) yield

∥∥w(t)
∥∥2

2 +
t∫

s

λ(τ )
∥∥w(τ )

∥∥2
2 dτ

�
∥∥w(s)

∥∥2
2 + C

t∫
s

λ(τ )(n+4)/2

( τ∫
0

∥∥u(σ )
∥∥2

2 dσ

)2

dτ + C

t∫
s

τ−n/r
∥∥u(τ )

∥∥2
2‖a‖2

r dτ . (3.17)

In (3.17) we put

y(t) = ∥∥w(t)
∥∥2

2,

g(t, s) = C

[ t∫
s

λ(τ )(n+4)/2

( τ∫
0

∥∥u(σ )
∥∥2

2 dσ

)2

dτ +
t∫

s

τ−n/r
∥∥u(τ )

∥∥2
2 dτ

]
,

and obtain

y(t) − g(t, s) +
t∫

s

λ(τ )y(τ )dτ � y(s) (3.18)

for a.e. s ∈ (0, t). We now want to apply Gronwall’s lemma to (3.18) with respect to s. Consider the
function h(s) = ∫ t

s λ(τ )y(τ )dτ , which is almost everywhere differentiable in (0, t) with h′ ∈ L∞((δ, t))
for small δ > 0. From (3.18) we have

h′(τ ) = −λ(τ )y(τ ) � −λ(τ )
[

y(t) + h(τ ) − g(t, τ )
]
. (3.19)

Let H � 0 be a solution of the equation H ′(τ ) = λ(τ )H(τ ). Multiplying (3.19) by H and then integrat-
ing over [s, t], we have

(
H(t) − H(s)

)
y(t) � H(s)h(s) +

t∫
s

H ′(τ )g(t, τ )dτ , (3.20)

since h(t) = 0. Applying (3.18) to the right-hand side in (3.20) and integrating by parts, we obtain

H(t)y(t) � H(s)y(s) −
t∫

H(τ )
∂ g

∂τ
(t, τ )dτ , (3.21)
s



904 T. Okabe / J. Differential Equations 246 (2009) 895–908
since g(t, t) = 0. Now choose λ(τ ) = mτ−1, m > 0, so that H(τ ) = τm . Since (3.21) holds for almost
every s � 0 and since y(s) is bounded, by taking m sufficiently large we can pass the limit s → 0 in
(3.21) to obtain

tm
∥∥w(t)

∥∥2
2 � C

[
tm−n/2−2

t∫
0

( τ∫
0

∥∥u(σ )
∥∥2

2 dσ

)2

dτ + tm−n/r

t∫
0

∥∥u(τ )
∥∥2

2 dτ

]
. (3.22)

Now we note that the turbulent solution of (N-S) becomes the strong solution of (N-S) after some
definite time. So by the energy inequality and by the decay estimate proved by Kato [3], for each
turbulent solution u(t), the estimate

∥∥u(t)
∥∥

2 � Ct−n(1/r−1/2)/2

holds, if the initial data a ∈ Lr
σ ∩ L2

σ , 1 < r < 2.
First we consider the case n(1/r − 1/2) < 1. Since ‖u(τ )‖2

2 � Cτ−n(1/r−1/2) , (3.22) yields

∥∥w(t)
∥∥2

2 � Ct1+n/2−2n/r .

We next consider the case n(1/r − 1/2) = 1. Since ‖u(τ )‖2
2 � C(1 + τ )−1 we have

∥∥w(t)
∥∥2

2 � C
[
t−n/2−1(log(1 + t)

)2 + t−n/r log(1 + t)
]

� Ct−n/2−1(log(1 + t)
)2

for large t .
Finally we consider the case n(1/r − 1/2) > 1. Since ‖u(τ )‖2

2 � (1 + τ )−1−β for some β > 0, and
so

∫ ∞
0 ‖u(τ )‖2

2 dτ < ∞, (3.22) gives

∥∥w(t)
∥∥2

2 � C
[
t−1−n/2 + t−n/r]. (3.23)

Since 1 + n/2 < n/r, we obtain the desired result. The proof of Lemma 3.4 is complete. �
Lemma 3.5. Let n � 2, and let r and m be as

(i) 1 < r � 2n/(n + 2), 0 � m < 1,

or

(ii) 2n/(n + 2) < r < 2n/(n + 1), 0 � m < 2n/r − n − 1.

If a ∈ Lr
σ ∩ L2

σ ∩ K δ
m,α for some α, δ > 0, then for every turbulent solution u(t) of (N-S) there exist T > 1 and

constant C such that

∥∥u(t)
∥∥

2 � Ct− 1
2 (m+ n

2 ) (3.24)

for all t � T .

Proof. Let v(t) = e−t Aa. It suffices to show that

lim
t→∞

‖u − v‖2 = 0, (3.25)
‖v‖2
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due to Lemma 3.2. Indeed, under the condition (3.25), there exists T > 1 such that

‖u(t) − v(t)‖2

‖v‖2
� 1

2

for all t > T . Hence by the triangle inequality and Lemma 3.2 we have

∥∥u(t)
∥∥

2 �
∥∥v(t)

∥∥
2 − ∥∥u(t) − v(t)

∥∥
2

= ∥∥v(t)
∥∥

2

(
1 − ‖u(t) − v(t)‖2

‖v(t)‖2

)

� 1

2

∥∥v(t)
∥∥

2

� Ct− 1
2 (m+ n

2 )

for all t � T .
Now it remains to prove (3.25). First we consider the case 1 < r < 2n/(n + 2). The assumption (i)

implies n(1/r − 1/2) > 1 and (m + n/2)/2 < (n/4 + 1/2). Hence from Lemmas 3.2 and 3.4 it follows
that

‖u(t) − v(t)‖2

‖v(t)‖2
� C

t−(n/4+1/2)

t−(m+n/2)/2
→ 0,

as t → ∞.
Next we consider the case r = 2n/(n + 2). Since m < 1 and n(1/r − 1/2) = 1 by the assumption (i),

we have

‖u(t) − v(t)‖2

‖v(t)‖2
� C

t−(n/4+1/2) log t

t−(m+n/2)/2

= C
t(−n/4+1/2)

t−(m+n/2)/2−ε/2

(
log t

tε/2

)

→ 0,

as t → ∞.
Finally we consider the case 2n/(n + 2) < r < 2n/(n + 1). The assumption (ii) implies n(1/r −

1/2) < 1 and (m + n/2)/2 < n/r − n/4 − 1/2. Hence we obtain

‖u(t) − v(t)‖2

‖v(t)‖2
� C

t−(n/r−n/4−1/2)

t−(m+n/2)/2
→ 0,

as t → ∞. The proof of Lemma 3.5 is complete. �
Lemma 3.6. Let 2 � n � 4. Let r and m be as

(i) for n = 2,

1 < r <
4

3
, 0 � m <

4

r
− 3,
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(ii) for n � 3,

1 < r <
n

n − 1
, 0 � m <

n

r
− (n − 1).

If a ∈ Lr
σ ∩ L2

σ ∩ K δ
0,σ , then every turbulent solution u(t) of (N-S) satisfies

‖∇u(t)‖2
2

‖u(t)‖2
2

� O
(
t−(n/r−n+1−m)

)
, (3.26)

as t → ∞.

Proof. By the well-known Leray’s structure theorem, every turbulent solution of (N-S) becomes the
strong solution after some definite time. Furthermore, it is shown by Kato [3] that the strong solution
u(t) decays in the same way as the Stokes flow e−t Aa as t → ∞. Since a ∈ Lr

σ ∩ L2
σ for 1 < r < 2, we

have ‖∇u(t)‖2 � Ct−n(1/r−1/2)/2−1/2 for sufficiently large t . Hence by Lemma 3.5, we obtain (3.26). �
4. Proof of main results

4.1. Proof of Theorem 1

As we mentioned above, turbulent solutions of (N-S) become strong solutions after some definite
time. So for the turbulent solution u(t) of (N-S) there exists T∗ > 0 such that u(t) is strong solution
of (N-S) on [T∗,∞). Hence we have the energy identity

d

dt

∥∥u(t)
∥∥2

2 + 2
∥∥A1/2u(t)

∥∥2
2 = 0 (4.1)

for t � T∗ . For any fixed λ > 0, the second term in (4.1) is estimated from below as

∥∥A1/2u(t)
∥∥2

2 =
∞∫

0

ρ d‖Eρu‖2
2 �

∞∫
λ

ρ d‖Eρu‖2
2

� λ

∞∫
λ

d‖Eρu‖2
2 � λ

2

(∥∥u(t)
∥∥2

2 − ∥∥Eλu(t)
∥∥2

2

)
. (4.2)

From (4.1) and (4.2) we have

d

dt

∥∥u(t)
∥∥2

2 + λ
∥∥u(t)

∥∥2
2 � λ

∥∥Eλu(t)
∥∥2

2. (4.3)

Dividing both sides of (4.3) by λ‖u(t)‖2
2, we obtain

d
dt ‖u(t)‖2

2

λ‖u(t)‖2
2

+ 1 �
‖Eλu(t)‖2

2

‖u(t)‖2
2

. (4.4)

On the other hand, by (4.1), we have (d/dt)‖u(t)‖2
2 = −2‖A1/2u(t)‖2

2 = −2‖∇u(t)‖2
2, from which and

(4.4) it follows that

1 − ‖Eλu(t)‖2
2

‖u(t)‖2
� 2

λ

‖∇u(t)‖2
2

‖u(t)‖2
.

2 2



T. Okabe / J. Differential Equations 246 (2009) 895–908 907
Hence by Lemma 3.6, there exists T such that

∣∣∣∣‖Eλu(t)‖2
2

‖u(t)‖2
2

− 1

∣∣∣∣ � C

λ
t−(n/r−n+1−m)

for all t � T . This completes the proof of Theorem 1.

4.2. Proof of Theorem 2

Take γ sufficiently small so that if ‖a‖n � γ there exists a unique global strong solution u(t) of
(N-S) satisfying the following decay properties

∥∥u(t)
∥∥

2 = O
(
t− n

2 ( 1
r − 1

2 )
)
,∥∥∇u(t)

∥∥
2 = O

(
t− n

2 ( 1
r − 1

2 )− 1
2
)
,

as t → ∞. Since the strong solution becomes necessarily the turbulent solution and since Lemma 3.6
does work for n � 5 under the assumption of Theorem 2, we see that the same arguments in the
proof of Theorem 1 can be applied. The proof of Theorem 2 is complete.
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Appendix A. Example of initial values

We can construct the initial values satisfying the assumption of Theorem 1 and of Theorem 2
when the dimension n is even.

Let n = 2k for some k ∈ Z. For each 1 � j � k, we put

M j =
(

0 R2 j
−R2 j−1 0

)
,

where R j = (∂/∂x j)(−�)−1/2 denotes the Riesz operator. Then we set

a =
⎛
⎝ M1 . . . 0

.

.

.
. . .

.

.

.

0 . . . Mk

⎞
⎠

⎛
⎝ e−|x|2

.

.

.

e−|x|2

⎞
⎠ .

With the Fourier transformation, we have

â(ξ) = Ce−|ξ |2/4
(

−i
ξ2

|ξ | , i
ξ1

|ξ | , . . . ,−i
ξ2k

|ξ | , i
ξ2k−1

|ξ |
)

. (A.1)

Since iξ · â(ξ) = 0, we obtain div a = 0.
On the other hand, for any fixed δ > 0, (A.1) yields

∣∣â(ξ)
∣∣ � Ce−δ2/4

for all |ξ | � δ. So it follows that a ∈ K δ
0,α for some α, δ > 0.
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