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Abstract

In this paper, we explain in more details the modern treatment of the problem of group classification 
of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, 
we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the 
group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) 
equations with smaller number of independent variables in order to construct invariant solutions. The group 
classification algorithm and reduction process are illustrated by the example of the generalized Zakharov–
Kuznetsov (GZK) equations of form ut + (F (u))xxx + (G(u))xyy + (H(u))x = 0. As a result, a complete 
group classification of the GZK equations is performed and a number of new interesting nonlinear invariant 
models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solu-
tions for two important invariant models, i.e., the classical and modified Zakharov–Kuznetsov equations, 
are constructed. The algorithmic framework for group analysis of differential equations presented in this 
paper can also be applied to other nonlinear PDEs.
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1. Introduction

One of the most famous two-dimensional generalizations (together with Kadomtsev–
Petviashvili equation) of the Korteweg–de Vries (KdV) equation is given by the Zakharov–
Kuznetsov (ZK) equation

ut + auxxx + buxyy + cuux = 0. (1)

It was first derived by Zakharov and Kuznetsov [41] to describe nonlinear ion-acoustic waves in a 
magnetized plasma. More precisely, they considered a plasma in a strong magnetic field, B = Bẑ, 
with cold ions and hot electrons (Te � Ti ). The ion motions are described by the following 
equations

nt + ∇ · (nu) = 0, ut + (u · ∇)u = − e

mi

∇φ + u × �i,

∇2φ = −4πe(n − ne),

where n is number density of ions, u = (u, v, w) is ion velocity, mi is ion mass, φ is electric 
potential, �i = eB

mic
is scaled magnetic field and ne = exp(

eφ
KTe

).
After introducing the dimensionless variables and approximating the x-component of u by 

the polarization shift these equations look like

nt − (nφtx)x + (nw)z = 0, wt = φtxwx + wwz − φz,

αφxx + φzz = eφ − n.

Now, after a change of independent variables ξ = ε1/2(z − t), η = ε1/2x, τ = ε3/2t assuming a 
solution of the latter equations of the form

n = 1 +
∞∑

j=1

εjnj , φ =
∞∑

j=1

εjφj , w =
∞∑

j=1

εjwj ,

one gets that n1 = φ1 = w1 with φ1 being solution of

φ1,t + φ1φ1,ξ + 1

2
(φ1,ξξξ + (1 + α)φ1,ξηη) = 0

which has the form (1).
In the more realistic situation in which the electrons are non-isothermal, Munro and 

Parkes [25,26] showed that, with an appropriate modified form of the electron number den-
sity proposed by Schamel [33], a reductive perturbation procedure leads to a modified form of 
the Zakharov–Kuznetsov (mZK1) equation, namely
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ut + au1/2ux + buxxx + cuxyy = 0.

One more modification of the Zakharov–Kuznetsov equation is given by Kakutani and 
Ono [21] who have shown that the modified KdV equation governs the propagation of Alfvén 
waves at a critical angle to the undisturbed magnetic field. The presence of the transverse dis-
persion has been physically attributed to the finite Larmor radius effects [14]. The resulting 
two-dimensional equation in this physical context is known as the modified Zakharov–Kuznetsov 
equation (mZK2) [4]

ut + au2ux + uxxx + uxyy = 0.

Here, the sign of a cannot be forced to be definite by scaling considerations and the two signs 
of a correspond to different physical phenomenon. For example, the focusing equation can be 
derived as a model for the evolution of ion acoustic perturbations with a negative ion component, 
while the defocusing equation models the evolution of ion acoustic perturbations in a plasma 
with two negative ion components of different temperature.

In order to encompass as many physical applications as possible, many researchers consider 
dispersive models of the Zakharov–Kuznetsov (dZK) type equations of form [39]

ut + a(un)xxx + b(um)xyy + c(uk)x = 0,

or even the generalized Zakharov–Kuznetsov (GZK) equations

ut + (F (u))xxx + (G(u))xyy + (H(u))x = 0 (2)

with enough smooth functions F(u), G(u) and H(u).
Many mathematical properties such as the stability or transverse instability of solitary-wave 

solutions, initial-boundary value problems, generalized Painlevé formulation, compactons and 
solitons and so on for the special cases of class (2) have been investigated exhaustively by 
many authors [2,4,6,7,10,15,19–21,25,26,32,34,35,37,39]. However, despite of great interest of 
researchers and importance of class (2), very few facts of its Lie symmetry structure and related 
topics are known. Therefore, for the sake of providing more information to understand the mathe-
matical structures of the ZK-like equations, in this paper we will perform detailed group analysis 
for the class of GZK equations (2), where F(u), G(u) and H(u) are arbitrary smooth (analytic) 
functions, FuGuHuu �= 0.

It is known that the Lie group analysis is a systematic and powerful method for handling 
partial differential equations (PDEs) [5,12,28,29]. Moreover, it forms a basis for many useful 
techniques in both pure and applied areas of mathematics, physics, mechanics, etc. For the PDEs, 
admitting symmetry is an essential part of their intrinsic nature. Based on the symmetries of a 
PDE, one can successively consider many other important properties of the equation such as 
integrability, conservation laws and linearizations, reducing equations and invariant solutions, 
fundamental solution and invariant numerical integrators and so on [3,5,9,12,13,23,28,29,36,38]. 
In general, for a single PDE one can directly implement the classical Lie method to compute the 
symmetries. However, for parameterized classes of PDEs (namely, equations containing arbitrary 
constants or functions), one cannot derive all the symmetries by direct usage of this method. One 
will face the so called group classification problem of PDEs, which is the keystone of group anal-
ysis of differential equations. Although this problem has been widely investigated for different 
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subclasses of (2), many of the existing classifications are incomplete. In fact, one can find a huge 
number of recent papers on symmetry analysis of PDEs, including different generalizations of the 
Zakharov–Kuznetsov equation, where the group classification problem is solved incompletely or 
incorrectly and papers studying symmetries of some fixed equations with low physical motiva-
tion. There are also many papers on “preliminary group classification” where authors list some 
cases with new symmetries but do not claim that the general classification problem is solved. In 
many respects this can be explained to two main reasons: (i) many researchers do not incorporate 
the equivalence transformation theory to the classification problem; (ii) overdetermined systems 
of PDEs derived from the invariance criterion of parameterized PDEs under consideration often 
cannot be solved completely.

That is why, in this paper we will describe an algorithmic framework for group classifica-
tion of (systems of) partial differential equations. More precisely, we revise the classical Lie 
method of construction of symmetries of differential equations in more details and write down 
the precise formulation of Ovsiannikov’s algorithm [29] of group classification of a class (of sys-
tems) of differential equations by extending equivalence transformation theory and introducing 
a compatibility method for solving the overdetermined system of PDEs. Moreover, we describe 
a systematic way of reduction of (systems of) partial differential equations to (systems of) equa-
tions with smaller number of independent variables so that we can find all possible invariant 
solutions of (systems of) differential equations. We will illustrate this well-known theoretical 
background and algorithmic framework by the running example of the GZK equations (2).

Therefore, the purpose of this paper is two fold. On the one hand, we explain the modern 
treatment of the problem of group classification of (systems of) PDEs from the algorithmic point 
of view. On the other hand, we perform systematically the complete group classification and 
construct invariant reductions for the GZK equations (2). The rest of this paper is organized as 
follows. In Section 2, we describe the algorithmic framework for group classification of (systems 
of) PDEs and give an exhaustive algorithm of solving such problems. An efficient algorithm of 
constructing optimal systems of subalgebras of Lie symmetry algebras and invariant solutions of 
differential equations is also given. In Section 3, we investigate the equivalence transformations 
of the GZK equations (2). The complete group classification of class (2) is presented in Section 4
by using a compatibility method. Section 5 contains results on optimal systems of subalgebras 
of Lie symmetry algebras of two equations from class (2). Invariant solutions of the equations 
under consideration are also constructed. Finally, some conclusion and discussion are given in 
Section 6.

2. Algorithmic framework for group analysis of differential equations

2.1. Computation of Lie symmetries of differential equations

For construction of symmetries of differential equations we use Lie infinitesimal criterion of 
invariance [28,29].

Consider the system L: L(x, u(p)) = 0 of l differential equations for m unknown functions 
u = (u1, . . . , um) of n independent variables x = (x1, . . . , xn). Here u(p) denotes the set of all 
the derivatives of u with respect to x of order not greater than p, including u as the derivatives 
of the zero order. L = (L1, . . . , Ll) is a tuple of l fixed functions depending on x and u(p).

Let L(k) denote the set of all algebraically independent differential consequences of the sys-
tem L that have, as differential equations, orders not greater than k. Under the local approach, 
the system L(k) is identified with the manifold determined by L(k) in the jet space J (k).
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Each one-parameter group of point transformations that leaves the system L invariant corre-
sponds to an infinitesimal symmetry operator of the form

Q = ξ i(x,u)∂xi
+ ηa(x,u)∂ua .

Here and below the summation over the repeated indices is assumed. The indices i and a run 
from 1 to n and from 1 to m, respectively.

The infinitesimal criterion of invariance of the system L with respect to the Lie symmetry 
operator Q has the form

Q(p)L(x,u(p))
∣∣
L(p)

= 0, where Q(p) := Q +
∑

0<|α|�p

ηaα∂ua
α
,

i.e., the result of acting by Q(p) on L vanishes on the manifold L(p). Here Q(p) denotes the 
standard p-th prolongation of the operator Q, coefficient ηaα = D

α1
1 . . .D

αn
n Q[ua] + ξ iua

α,i , op-
erator Di = ∂i +ua

α,i∂ua
α

is the operator of total differentiation with respect to the variable xi , and 
Q[ua] = ηa(x, u) − ξ i(x, u)ua

i is the characteristic of operator Q, associated with ua . The tuple 
α = (α1, . . . , αn) is a multi-index, αi ∈ N ∪ {0}, |α| := α1 + · · · + αn. The variables ua

α and ua
α,i

of the jet space J (r) correspond to the derivatives

∂ |α|ua

∂x
α1
1 . . . ∂x

αn
n

and
∂ |α|+1ua

∂x
α1
1 . . . ∂x

αi−1
i−1 ∂x

αi+1
i ∂x

αi+1
i+1 . . . ∂x

αn
n

respectively.

Example 1. For equations of form (2) we look for the infinitesimal symmetry generator in form

Q = τ(t, x, y,u)∂t + ξ(t, x, y,u)∂x + ζ(t, x, y,u)∂y + η(t, x, y,u)∂u.

(In the above notation (t, x, y) = (x0, x1, x2) and τ = ξ0, ξ = ξ1, ζ = ξ2.) Application of the Lie 
infinitesimal criterion to (2) gives

ηt + ηFuuuuu
3
x + 3ηxFuuuu

2
x + 3ηFuuuuxuxx + 3Fuu(η

xuxx + ηxxux) + ηFuuuxxx

+ ηxxxFu + ηGuuuuuxu
2
y + Guu(η

xu2
y + 2ηyuxuy) + 2ηGuuuuyuxy

+ 2Guu(η
yuxy + ηxyuy) + ηGuuuuxuyy + Guu(η

xηyy + ηyyux)

+ ηGuuuxyy + ηxyyGu + ηHuuux + Huη
x = 0.

One can also verify that the coefficients of the first prolongation of Q look like

ηt = ηt + ηuut − ut (τt + τuut ) − ux(ξt + ξuut ) − uy(ζt + ζuut ),

ηx = ηx + ηuux − ut (τx + τuux) − ux(ξx + ξuux) − uy(ζx + ζuux),

ηy = ηy + ηuuy − ut (τy + τuuy) − ux(ξy + ξuuy) − uy(ζy + ζuuy).

In an analogous way the higher order coefficients can be found.
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Example 2. Consider the Lie symmetries of the ZK equation

ut + auxxx + buxyy + cuux = 0.

Applying the Lie infinitesimal criterion to the above equation we get

ηt + aηxxx + bηxyy + cηux + cuηx = 0.

Substituting the coefficients of the prolongation of the operator Q into the above equation and 
splitting it with respect to the unconstrained variables, we obtain the system of determining 
equations

τt = 3ξx, τx = 0, τy = 0, τu = 0;
ξt = cη + 2cuξx, ξxx = 0, ξy = 0, ξu = 0;
ζt = 0, ζx = 0, ζy = ξx, ζu = 0;
ηuu = 0, ηt + aηxxx + bηxyy + cuηx = 0.

The general solution of this system is

τ = c1 + c2t, ξ = 1

3
c2x + c3t + c4, ζ = 1

3
c2y + c5, η = −2

3
c2u + 1

c
c3,

where c1, . . . , c5 are arbitrary constants. Therefore the most general infinitesimal symmetry gen-
erator has the form

Q = (c1 + c2t)∂t +
(1

3
c2x + c3t + c4

)
∂x +

(1

3
c2y + c5

)
∂y +

(
− 2

3
c2u + 1

c
c3

)
∂u

As c1, . . . , c5 are arbitrary constants, we conclude that the maximal Lie invariance algebra of the 
equation under consideration is 5-dimensional and is spanned by the following generators

〈∂t , ∂x, ∂y, 3t∂t + x∂x + y∂y − 2u∂u, ct∂x + ∂u〉.

Example 3. Consider the Lie symmetries of the modified ZK1 equation:

ut + au
1
2 ux + buxxx + cuxyy = 0.

Application of the Lie infinitesimal criterion to the above equation gives

ηt + 1

2
aηu− 1

2 ux + aηxu
1
2 + bηxxx + cηxyy = 0,

or, multiplying it by two for convenience,

2ηtu
1
2 + aηux + 2aηxu + 2bηxxxu

1
2 + 2cηxyyu

1
2 = 0.
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Substituting the coefficients of the prolongation of the operator Q into the above equation, we 
obtain the system of determining equations

τx = 0, τy = 0, τu = 0, τt = 3ξx, τtt = 0;
ξy = 0, ξu = 0, ξxx = 0, ξxt = 0;
ζt = 0, ζx = 0, ζu = 0, ζy = ξx;
ηxu = 0, ηyu = 0, ηuu = 0, aη − 2u

1
2 ξt + 4auξx = 0,

ηt + au
1
2 ηx + bηxxx + cηxyy = 0.

Its general solution is

τ = c1 + c2t, ξ = 1

3
c2x + c3, ζ = 1

3
c2y + c4, η = −4

3
c2u,

where c1, . . . , c4 are arbitrary constants. Therefore the most general infinitesimal symmetry op-
erator has the form

Q = (c1 + c2t)∂t +
(1

3
c2x + c3

)
∂x +

(1

3
c2y + c4

)
∂y − 4

3
c2u∂u,

that implies that the Lie algebra of infinitesimal symmetry generators can be represented as

〈∂t, ∂x, ∂y, 3t∂t + x∂x + y∂y − 4u∂u〉.

In the completely similar way, for the modified ZK2 equation:

ut + au2ux + uxxx + uxyy = 0

application of the Lie infinitesimal criterion gives ηt + ηxxx + gηxyy + 2hηuux + hηxu2 = 0. 
Substituting the coefficients of the prolongation of the operator Q into the above equation, we 
obtain the system of determining equation

τx = 0, τy = 0, τu = 0, τt = 3ξx, τtt = 0;
ξy = 0, ξu = 0, ξxx = 0, ξxt = 0;
ζt = 0, ζx = 0, ζu = 0, ζy = ξx;
ηxu = 0, ηyu = 0, ηuu = 0, 2aηu + a(τt − ξx)u

2 − ξt = 0,

ηt + au2ηx + ηxxx + ηxyy = 0.

General solution of the above system supply us with the four-dimensional Lie algebra of in-
finitesimal symmetry generators

〈∂t , ∂x, ∂y, 3t∂t + x∂x + y∂y − u∂u〉.
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As in the above example it appears that in the most of cases computation of symmetries for a 
single equation is an algorithmic and simple exercise, which can be easily done by direct com-
puting or by many standard mathematical software such as MAPLE, MATHEMATICA, MuLie 
and so on. In contrast to this, for parametric classes of differential equations, an exhaustive inves-
tigation of symmetries is usually a very difficult task, that requires to solve the so-called group 
classification problem.

2.2. Group classification of classes of differential equations

One of the most famous problems of group analysis of differential equations is the group 
classification which is one of the symmetry methods used to choose physically relevant models 
from parametric classes of systems of (partial or ordinary) differential equations [29]. The pa-
rameters can be constants or functions of independent variables, unknown functions and their 
derivatives. Solving this problem is interesting not only from mathematical point of view, but 
is also important for applications. In physical models there often exist a priori requirements to 
symmetry groups that follow from physical laws (in particular, from the Galilei or relativistic 
theories). In such cases the natural choice for the first try of modeling equation is the equation 
satisfying the following property. The modeling differential equation has to admit a group with 
certain properties or the richest symmetry group among the possible ones.

Exhaustive consideration of the problem of group classification in (its classical formulation) 
for a parametric class L of systems of differential equations includes the following steps:

1. Finding the group G∩ of local transformations that are symmetries for all systems from L.
2. Construction of the group G∼ (the equivalence group) of local transformations which trans-

form L into itself.
3. Description of all possible G∼-inequivalent values of parameters that admit maximal invari-

ance groups wider than G∩.

Following S. Lie, one usually considers infinitesimal transformations instead of finite ones. In 
such a way the problem of group classification can be simplified to a problem for Lie algebras 
of vector fields (infinitesimal generators of symmetry groups). Thus the group classification in 
a class of differential equations is reduced to integration of an overdetermined system of par-
tial differential equations with respect to both coefficients of infinitesimal symmetry operators 
and arbitrary elements. That is why it is much more complicated problem than finding the Lie 
symmetry group of a single differential equation.

Below we present the classical algorithm of group classification restricting ourselves, for sim-
plicity, to the case of one differential equation of the form

Lθ(x,u(n)) = L(x,u(n), θ(x,u(n))) = 0. (3)

Here x = (x1, . . . , xl) denotes independent variables, u is a dependent variable, u(n) is the set of 
all the partial derivatives of the function u with respect to x of order no greater than n, including u
as the derivative of zero order. L is a fixed function of x, u(n) and θ . θ denotes the set of arbitrary 
(parametric) functions θ(x, u(p)) = (θ1(x, u(p)), . . . , θk(x, u(p))) satisfying the conditions

S(x,u(p), θ(q)(x,u(p))) = 0, S = (S1, . . . , Sr ). (4)
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These conditions consist of r differential equations on θ , where x and u(p) play the role of 
independent variables and θ(q) stands for the set of all the partial derivatives of θ of order no 
greater than q . In what follows we call the functions θ(x, u(p)) arbitrary elements. Sometimes 
this set is additionally constrained by the non-vanish condition S′(x, u(p), θ(q)(x, u(p))) �= 0
with another tuple S′ of differential functions. Denote the class of equations of form (3) with the 
arbitrary elements θ satisfying the constraint (4) as L|S .

Example 4. For the class (2) of the generalized Zakharov–Kuznetsov equation, in the above no-
tation p = 0, the set of arbitrary elements θ(x, u(p)) consists of functions F , G and H satisfying 
system of differential equations

Ft = 0, Fx = 0, Gt = 0, Gx = 0, Ht = 0, Hx = 0, (5)

and system of inequalities

Fu �= 0, Gu �= 0, Huu �= 0. (6)

Note 1. The main idea of group classification process is very straightforward. Technically we 
work with class (3) like it is an equation. To find its symmetries, one just applies Lie’s criterion 
and writes down the determining equations. This will give conditions on θ that must be satisfied 
to guarantee that the equation admits non-trivial symmetries. These conditions are usually for-
mulated as a system of differential equations on θ . In the simplest cases these equations can be 
easily solved directly. In more difficult situation, as it was proposed by Ovsiannikov [29], one is 
forced to use equivalence transformations to analyze, simplify and solve. Below we concentrate 
on a rigorous formulation of group classification algorithm for such less trivial case.

Let the functions θ be fixed. Each one-parameter group of local point transformations that 
leaves equation (3) invariant corresponds to an infinitesimal symmetry operator of form

Q = ξa(x,u)∂xa + η(x,u)∂u.

The complete set of such groups generates the principal group Gmax = Gmax(L, θ) of equa-
tion (3). The principal group Gmax has a corresponding Lie algebra Amax = Amax(L, θ) of 
infinitesimal symmetry operators of equation (3). The group G∩ of local transformations that 
are symmetries for all systems is

G∩ = G∩(L,S) =
⋂

θ :S(θ)=0

Gmax(L, θ)

with the corresponding Lie algebra of form

A∩ = A∩(L,S) =
⋂

θ :S(θ)=0

Amax(L, θ).

Let G∼ = G∼(L, S) denote the point transformations group preserving the form of equations 
from L|S (group of equivalence transformations). In other words, G∼ maps any equation from 
class L|S to an equation (possibly, another one) from the same class.



JID:YJDEQ AID:8082 /FLA [m1+; v1.212; Prn:20/10/2015; 8:43] P.10 (1-29)

10 D.-j. Huang, N.M. Ivanova / J. Differential Equations ••• (••••) •••–•••
Note 2. Sometimes one considers a subgroup instead of the complete equivalence group, e.g., 
subgroup of scalar transformations or of continuous transformations of the complete equiva-
lence group. This is because the group of continuous transformations can be easily found using 
infinitesimal method, and to find the complete equivalence group one needs to apply more cum-
bersome and sophisticated direct method of construction of equivalence transformations.

Note 3. In the simplest cases it is possible to solve the group classification problem without 
explicit construction of equivalence group. Indeed, one can simply apply Lie’s method to the 
general equation and obtain arbitrary elements for which the symmetry group is non-trivial. How-
ever, in cases when equations under consideration have more or less difficult nonlinear structure, 
it is impossible to solve determining equations (that often are very cumbersome and complicated) 
without extensive use of equivalence transformations (see [18] and references therein for more 
details and examples).

Example 5. To find the connected component of the identity of the equivalence group G∼ of 
class (2), i.e., the subgroup of continuous equivalence transformations, we have to investigate 
Lie symmetries of the system that consists of equation (2) and additional conditions (5) subject 
to (6). In other words we must seek for an operator from G∼ in the form

X = τ∂t + ξ∂x + ζ∂y + η∂u + π∂F + ρ∂G + θ∂H (7)

using the infinitesimal invariance criterion applied to the system

ut + (F (u))xxx + (G(u))xyy + (H(u))x = 0,

Ft = Fx = Fy = 0, Gt = Gx = Gy = 0, Ht = Hx = Hy = 0, (8)

subject to conditions (6). Here u, F , G and H are considered as differential variables: u on the 
space (t, x, y) and F , G, H on the extended space (t, x, y, u). The coordinates τ , ξ , ζ and η of 
the operator (7) are sought as functions of t , x, y and u while the coordinates π , ρ and θ are 
sought as functions of t , x, y, u, F , G, H .

The problem of group classification consists in finding all possible inequivalent cases of ex-
tensions of Amax, i.e. in a listing all G∼-inequivalent values of θ that satisfy equation (4) and the 
condition Amax(L, θ) �= A∩.

In the approach used here group classification is application of the following algorithm due to 
Ovsiannikov [29]:

1. From the infinitesimal Lie invariance criterion [28,29] we find the system of determining 
equations for the coefficients of the infinitesimal generator Q. It is possible that some of 
the determining equations do not contain arbitrary elements and therefore can be integrated 
immediately. The equations containing arbitrary elements explicitly are called classifying 
equations.

2. We decompose the determining equations with respect to all unconstrained derivatives of 
arbitrary elements. This gives a system of partial differential equations for coefficients of the 
infinitesimal operator Q only. Solving this system yields the algebra A∩ of point transfor-
mations that are symmetries for all equations from L|S .
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3. To construct the equivalence group G∼ of the class L|S one has to investigate the point sym-
metry transformations of system (3), (4), considering it as a system of partial differential 
equations with respect to θ with the independent variables x, u(n). If we restrict ourselves 
to studying the connected component of the identity in G∼, (i.e., finding continuous equiv-
alence transformations only), the Lie infinitesimal method of finding symmetries of this 
system can be applied. To find the complete equivalence group (including discrete transfor-
mations) one has to use the direct method.

4. If Amax is an extension of A∩ (i.e. in the case Amax(L, θ) �= A∩), then the classifying equa-
tions define a system of non-trivial equations for arbitrary elements θ . Depending on their 
form and number, we obtain different cases of extensions of A∩.

Note 4. To integrate completely the determining equations often it is necessary to investigate 
a large number of different cases of extensions of A∩. There exist different methods allow-
ing to avoid cumbersome enumeration of possibilities in solving the determining equations. To 
solve determining equations for the coefficients of symmetry generators of Zakharov–Kuznetsov 
equations we use a method which involves the investigation of compatibility of the classifying 
equations [27,31].

The result of application of the above algorithm is a list of equations with their Lie invariance 
algebras. The problem of group classification is assumed to be completely solved if

1. the list contains all possible inequivalent cases of extensions;
2. all equations from the list are mutually inequivalent with respect to the transformations 

from G∼;
3. the obtained algebras are the maximal invariance algebras of the respective equations.

Such list may include equations being mutually equivalent with respect to point transformations 
which do not belong to G∼. Knowing such additional equivalences allows to simplify essentially 
further investigation of L|S . Constructing them sometimes is considered as the fifth step of the 
algorithm of group classification. Then, the above enumeration of requirements to the resulting 
list of classification can be completed by the following step:

4. all possible additional equivalences between the listed equations are constructed in explicit 
form.

See, e.g., [31] for more details.
When the symmetry group is known, a wide range of applications becomes available, e.g., 

construction of invariant solutions of nonlinear equations. Indeed, group analysis is one of very 
few systematic methods known for deducing exact solutions of nonlinear partial differential 
equations.

2.3. Invariant solutions of differential equations

Although Lie symmetry analysis does not help to construct general solutions of systems 
of nonlinear PDEs it often gives an approach to deduct wide classes of solutions being in-
variant with respect to different subgroups of the Lie symmetry group. Roughly speaking, the 
main theorem on invariant solutions [28,29] claims that all solutions invariant with respect to 
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r-parametric group of symmetries (with some restrictions on the form of the algebra) of the 
given n-dimensional system can be obtained by solving a system of differential equation with 
n − r independent variables. In particular, if r = n − 1, invariant solutions can be constructed via 
solving a system of ordinary differential equations.

Example 6. Generalized Zakharov–Kuznetsov equations (2) are three-dimensional. Therefore, to 
reduce an equation of form (2) to ordinary differential equation we have to use two-dimensional 
subalgebras of its symmetry algebra. Reduction of (2) with respect to one-dimensional symmetry 
algebras provides us with the two-dimensional reduced equations. Note, that the reduction with 
respect to the three-dimensional subalgebras leads to algebraic equations.

To construct solutions of a system of partial differential equations invariant with respect 
to r-dimensional symmetry algebra spanned by symmetry generators vi = ξ i

j ∂i + ηj∂uj , j =
1, . . . , r , we need to solve a system of r first-order PDEs:

ξ i
jui = ηj , j = 1, . . . , n.

Solution of this system provides us with expressions for n − r new independent variables and 
Ansatz for the dependent variables. Substituting this to the initial system we obtain a system of 
differential equations with n − r independent variables. A detailed example of implementation 
of this method will be given in Section 5.

Note 5. The above mentioned procedure works only if the symmetry algebra satisfies the property 
of transversality. For more details see [28,29].

As we have already noticed, in general “almost every” subgroup of a Lie symmetry group 
corresponds to a class of invariant solutions. Since almost always there exist an infinite number 
of such subgroups, often it is practically impossible to list all invariant solutions. Therefore one 
needs an effective systematic tool of their classification that gives an “optimal system” of such 
solutions, from where one can find all possible invariant solutions.

Any two conjugate subgroups of a Lie symmetry group of a system of PDEs give rise to 
reduced equations that are related by a conjugacy transformation in the point symmetry group of 
the system acting on the invariant solutions determined by each subgroup. Hence, up to the action 
of the point symmetry transformations, all invariant solutions for a given system can be obtained 
by selecting a subgroup in each conjugacy class of all admitted point symmetry subgroups. Such 
a selection is called an optimal set of subgroups [29]. A set of subalgebras of the Lie symmetry 
algebra corresponding to the optimal set of subgroups consists of subalgebras inequivalent with 
respect to the action of adjoint representation of the Lie symmetry group on its Lie algebra.

An effective algorithm of construction of optimal systems of subalgebras of Lie algebras 
is given in [29] (see also a simpler explanation and examples for one-dimensional subalge-
bras in [28]). In Section 5 we illustrate this algorithm by examples of the usual and modified 
Zakharov–Kuznetsov equations.

3. Equivalence transformations of the GZK equations

We start the group classification procedure of class (2) of the GZK equations from investigat-
ing its group of equivalence transformations.
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First, we describe construction of the continuous equivalence transformations. As it is stated 
in Example 5, to reach this goal one has to investigate Lie symmetries of system (8). Application 
of the infinitesimal invariance criterion to system (8) yields the following determining equations 
for τ , ξ , ζ , η, π , ρ and θ :

τx = τy = τu = 0, ξy = ξu = ξxx = 0,

ζt = ζx = ζu = ζyy = 0, ηt = ηx = ηy = 0,

πt = πx = πy = πu = πG = πH = πFF = 0, πF − ηu + τt − 3ξx = 0,

ρt = ρx = ρy = ρu = ρF = ρH = ρGG = 0, ρG − ηu + τt − ξx − 2ζy = 0,

θt = θx = θy = θF = θG = 0, θu − ξt = 0, θH − ηu + τt − ξx = 0. (9)

After easy calculations from (9), we find the coefficients of the infinitesimal operators of contin-
uous equivalent transformations of class (2) have the form

τ = c1 + c5t, ξ = c2 + c6x + c9t, ζ = c3 + c7y, η = c4 + c8u,

π = (c5 − 3c6 − c8)F + c11, ρ = (c5 − c6 − 2c7 − c8)G + c12,

θ = (c5 − c6 − c8)H + c9u + c10.

Then the Lie algebra of the equivalence group G∼ for class (2) is

A∼ = 〈∂t , ∂x, ∂y, ∂u, t∂t + F∂F + G∂G + H∂H , x∂x − 3F∂F − G∂G − H∂H ,

y∂y − 2G∂G, u∂u − F∂F − G∂G − H∂H , t∂x + u∂H , ∂F , ∂G, ∂H 〉.

Now, to recover the formulas for the transformations of variables one needs to solve the so-
called Lie equations (see, e.g., [28,29]). Namely, for any infinitesimal operator X = τ∂t + ξ∂x +
ζ∂y +η∂u +π∂F +ρ∂G +θ∂H the corresponding finite transformations of variables can be found 
from solving the system

dt̃

dε
= τ, t̃ |ε=0 = t,

dx̃

dε
= ξ, x̃|ε=0 = x,

. . .

dH̃

dε
= θ, H̃ |ε=0 = H.

Solving this system for every infinitesimal equivalence generator and gathering all 12 results 
together, we get that the group G∼

cont of continuous equivalence transformations of class (2) is as 
follows:
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t̃ = eε1 t + ε6, x̃ = eε2x + eε5 t + ε7, ỹ = eε3y + ε8, ũ = eε4u + ε9,

F̃ = e−ε1 + 3ε2 + ε4F + ε10, G̃ = e−ε1+ε2+2ε3+ε4G + ε11,

H̃ = e−ε1+ε2+ε4H + e−ε1+ε4+ε5u + ε12.

To find the complete equivalence group of class (2) we use the direct method. More precisely, 
we look for transformations of form

t̃ = t̃ (t, x, y,u), x̃ = x̃(t, x, y,u), ỹ = ỹ(t, x, y,u), ũ = ũ(t, x, y,u)

that relates equations ut + (F (u))xxx + (G(u))xyy + (H(u))x = 0 and ũt̃ + (F̃ (ũ))x̃x̃x̃ +
(G̃(ũ))x̃ỹỹ + (H̃ (ũ))x̃ = 0.

Now we have to express the non-transformed variables in terms of the “tilded” ones and 
substitute them into equation (2). Requiring that the obtained equation belongs to class (2) we 
get a polynomial equation with respect to the derivatives of u. Setting to zero its coefficients with 
respect to the unconstrained variables we obtain a system of overdetermined partial differential 
equations, general solution of which gives that the most general form of the transformation from 
the complete equivalence group G∼ of class (2) is

t̃ = ε1t + ε6, x̃ = ε2x + ε5t + ε7, ỹ = ε3y + ε8, ũ = ε4u + ε9,

F̃ = ε−1
1 ε3

2ε4F + ε10, G̃ = ε−1
1 ε2ε

2
3ε4G + ε11, H̃ = ε−1

1 ε2ε4H + ε−1
1 ε4ε5u + ε12,

where ε1, . . . , ε12 are arbitrary constants, ε1ε2ε3ε4 �= 0.
For more details and examples of application of the direct method of finding of equivalence 

transformations see, e.g., [22].

Note 6. As one can see, the only discrete equivalence transformations for class (2) are alternat-
ing of signs of the dependent and independent variables (extended to the arbitrary elements). 
However, for many classes this is not the case, i.e., there can exist non-trivial complicated 
discrete equivalence transformations that can essentially simplify classification problem (see, 
e.g., [16–18] and references therein).

4. Lie symmetries of the GZK equations

We search for infinitesimal generators of Lie symmetries of equations of class (2) in form

Q = τ(t, x, y,u)∂t + ξ(t, x, y,u)∂x + ζ(t, x, y,u)∂y + η(t, x, y,u)∂u.

From the infinitesimal invariance criterion we obtain the following system of the determining 
equations for the coefficients of the infinitesimal generators:

τx = τy = τu = ξy = ξu = ζt = ζx = ζu = ηuu = 0,

(ηxGu)u = 0,

ηt + Fuηxxx + Guηxyy + ηxHu = 0,

(Fuηx)u − Fuξxx = 0,
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Table 1
Group classification of class (2).

N F(u) G(u) H(u) Amax

1. ∀ ∀ ∀ A∩ = 〈∂t , ∂x , ∂y 〉
2. uk gum hun A∩ + 〈(k + 2 − 3n)t∂t + (k − n)x∂x + (m − n)y∂y + 2u∂u〉
3. uk gum hu lnu A∩ + 〈(k − 1)t∂t + (2ht + kx − x)∂x + (m − 1)y∂y + 2u∂u〉
4. uk gum h lnu A∩ + 〈(k + 2)t∂t + kx∂x + my∂y + 2u∂u〉
5. lnu gum hun A∩ + 〈(3n − 2)t∂t + nx∂x + (n − m)y∂y − 2u∂u〉
6. lnu gum hu lnu A∩ + 〈t∂t + (x − 2ht)∂x − (m − 1)y∂y − 2u∂u〉
7. lnu gum h lnu A∩ + 〈2t∂t + my∂y + 2u∂u〉
8. eku gemu henu A∩ + 〈(k − 3n)t∂t + (k − n)x∂x + (m − n)y∂y + 2∂u〉
9. eku gemu hu2 A∩ + 〈kt∂t + (kx + 4ht)∂x + my∂y + 2∂u〉

10. u gemu henu A∩ + 〈3nt∂t + nx∂x + (n − m)y∂y − 2∂u〉
11. u gemu hu2 A∩ + 〈4ht∂x + my∂y + 2∂u〉
12. uk g lnu hun A∩ + 〈(k − 3n + 2)t∂t + (k − n)x∂x − ny∂y + 2u∂u〉
13. uk g lnu h lnu A∩ + 〈(k + 2)t∂t + kx∂x + 2u∂u〉
14. uk g lnu hu lnu A∩ + 〈(k − 1)t∂t + (2ht + kx − x)∂x − y∂y + 2u∂u〉
15. lnu g lnu hun A∩ + 〈(3n − 2)t∂t + nx∂x + ny∂y − 2u∂u〉
16. lnu g lnu h lnu A∩ + 〈t∂t + u∂u〉
17. lnu g lnu hu lnu A∩ + 〈t∂t + (x − 2ht)∂x + y∂y − 2u∂u〉
18. eku gu henu A∩ + 〈(k − 3n)t∂t + (k − n)x∂x − ny∂y + 2∂u〉
19. eku gu hu2 A∩ + 〈kt∂t + (kx + 4ht)x∂x + 2∂u〉
20. u gu hu2 A∩ + 〈3t∂t + x∂x + y∂y − 2u∂u, 2ht∂x + ∂u〉
21. u u−1/3 u−1/3 A∩ + 〈6t∂t + 2x∂x + 3u∂u, cos 2y∂y + 3u sin 2y∂u, sin 2y∂y − 3u cos 2y∂u〉
22. u −u−1/3 −u−1/3 A∩ + 〈6t∂t + 2x∂x + 3u∂u, cos 2y∂y + 3u sin 2y∂u, sin 2y∂y − 3u cos 2y∂u〉
23. u −u−1/3 u−1/3 A∩ + 〈6t∂t + 2x∂x + 3u∂u, e2y(∂y − 3u∂u), e−2y(∂y + 3u∂u)〉
24. u u−1/3 −u−1/3 A∩ + 〈6t∂t + 2x∂x + 3u∂u, e2y(∂y − 3u∂u), e−2y(∂y + 3u∂u)〉
Here g = ±1, h = ±1.

2(ηyGu)u − Guζyy = 0,

ηFuu + (τt − 3ξx)Fu = 0,

ηGuu + (τt − ξx − 2ζy)Gu = 0,

3(ηxxFu)u + (ηyyGu)u + ηHuu − ξxxxFu + (τt − ξx)Hu − ξt = 0. (10)

Solving this system up to the equivalence group G∼ we obtain the complete group classifica-
tion of class (2) that presented in Table 1.

Proof. To obtain the classification result we need to solve the system of determining equa-
tions (10). Integrating the equations that do not contain arbitrary elements we get

τ = τ(t), ξ = ξ(t, x), ζ = ζ(y), η = η1(t, x, y)u + η0(t, x, y). (11)

Splitting the rest of the system (10) with respect to the arbitrary elements and their non-
vanishing derivatives gives the equations τt = 0, ξt = ξx = 0, ζy = 0 and η = 0 for the coeffi-
cients of the operators from A∩ of (2). As a result, we get case 1 of Table 1.
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As one can see, for any symmetry operator, equations ηFuu + (τt − 3ξx)Fu = 0 and ηGuu +
(τt − ξx − 2ζy)Gu = 0 give some equations (not greater than 3 each) on F and G of the general 
form

(au + b)Fuu + cFu = 0, (au + b)Guu + f Gu = 0,

where a, b, c and f are constants. Solving this system up to G∼, we obtain the following different 
values of F(u) and G(u): F(u) = uk , F(u) = eku or F(u) = lnu modG∼ and G(u) = gum, or 
G(u) = gemu or G(u) = g lnu modG∼. Therefore, to complete the classification we have to 
consider all possible combinations of the values of F(u) and G(u). We attempted to present our 
calculations in reasonable detail so that verification would be feasible.

(I) F = uk and G = gum mod G∼, where m �= 0, g = ±1. Substituting F , G and (11) into the 
rest of the equations (10) yields

η1
x = ξxx = 0, (m − 1)η0

x = (m − 1)η0
y = (k − 1)η0

x = 0, (m − 1)η0 = (k − 1)η0 = 0,

2mη1
y − ζyy = 0, (k − 1)η1 + (τt − 3ξx) = 0, (m − 1)η1 + (τt − ξx − 2ζy) = 0. (12)

From the last three equations of this system we can get two classifying conditions:

(k − 1)η1
y = 0, (3m + 1)η1

y = 0, (13)

which can be decomposed into four cases:

(i) k �= 1,m �= −1

3
; (ii) k �= 1,m = −1

3
; (iii) k = 1,m �= −1

3
; (iv) k = 1,m = −1

3
.

(i) For this case equations (12) and (13) imply η1
x = η1

y = ξxx = η0 = 0. Hence, the equation 
for H in (10) looks like μuHuu + νHu + ω = 0, where μ, ν, ω = const. Therefore, H(u) must 
take one of the following three values: H(u) = hun or H(u) = hu lnu or H(u) = h lnu modG∼, 
where h = ±1. Substituting these three values in (10) and solving the obtained equations, we get 
cases 2, 3 and 4 respectively.

(ii) From k �= 1 and (12) and (13) we obtain η1
x = η1

y = ξxx = η0 = 0 that leads to the subcases 
of the previously obtained cases 2, 3 and 4.

(iii) With the restriction m �= 1, we have again η1
x = η1

y = ξxx = η0 = 0. This also leads to the 
subcases of cases 2, 3 and 4.

If m = 1, then from (12) and (13) we have η1
x = η1

y = ξxx = 0. Thus, from the equation for 
H(u) we deduce that it takes one of the following three values: H(u) = hun or H(u) = hu lnu or 
H(u) = h lnu modG∼, where h = ±1. Solving the rest of equations (10) and (12) with H(u) =
hun, we can find that the only extension case corresponds to the values n = 2 and is tabulated as 
case 20. The values H(u) = hu lnu and H(u) = h lnu give the classification cases 3 and 4 with 
k = m = 1 respectively.

(iv) After obvious simple computations, we get cases 21–24.
(II) F = uk and G = gemu modG∼, where m �= 0, g = ±1. Substituting F , G and (11)

into (10) we derive
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η1 = ξxx = 0, η0
x = η0

t = η0
yy = 0, k(k − 1)η0 = 0,

η0
y − ζyy = 0, τt − 3ξx = 0, mη0 + (τt − ξx − 2ζy) = 0,

η0Huu + (τt − ξx)Hu − ξt = 0. (14)

If k �= 1, then η0 = 0. Therefore, H = const that contradicts with the assumption Hu �= 0. If 
k = 1, then the last equation of system (14) looks like μHuu + νHu + ω = 0 with respect to H , 
where μ, ν, ω = const. Thus, H(u) must take one of the following two values: H(u) = henu or 
H(u) = hu2 modG∼, where h = ±1. Substituting these two values into system (14) and solving 
the obtained equations we get cases 10 and 11 respectively.

(III) F = uk and G = g lnu mod G∼, where g = ±1. System (10) takes now the form

η1
t = η1

x = η1
y = ξxx = 0, η0 = 0, ζyy = 0,

(k − 1)η1 + τt − 3ξx = 0, −η1 + (τt − ξx − 2ζy) = 0,

η1uHuu + (τt − ξx)Hu − ξt = 0. (15)

The last equation of system (15) looks like μuHuu + νHu + ω = 0 with respect to H , where 
μ, ν, ω = const. Thus, H(u) must be of one of the following three values: H(u) = hun or 
H(u) = h lnu or H(u) = hu lnu modG∼, where h = ±1. Solving system (15) for these three 
values of H , we can obtain cases 12, 13 and 14 respectively.

(IV) F = eku and G = gum mod G∼, where m �= 0, g = ±1. From (10) we derive

η1 = 0, ξxx = η0
t = η0

x = η0
y = 0, ζyy = 0, m(m − 1)η0 = 0,

kη0 + τt − 3ξx = 0, τt − ξx − 2ζy = 0,

η0Huu + (τt − ξx)Hu − ξt = 0. (16)

The fourth and the last equations of system (16) imply m = 1, or H = const mod G∼ which 
contradicts with the assumption that Hu �= 0. Thus, H(u) must take one of the following two 
values: H(u) = henu or H(u) = hu2 modG∼, where h = ±1. Substituting these values of H
into system (16) and solving it, we obtain cases 18 and 19 respectively.

(V) F = eku and G = gemu mod G∼, m �= 0, g = ±1. From (10) we derive

η1 = 0, ξxx = η0
t = η0

x = η0
y = 0, ζyy = 0,

kη0 + τt − 3ξx = 0, mη0 + τt − ξx − 2ζy = 0,

η0Huu + (τt − ξx)Hu − ξt = 0. (17)

The last equation of system (17) looks like μHuu + νHu + ω = 0 with respect to H , where 
μ, ν, ω = const. Thus, up to G∼, H(u) must take one of the following two values: H(u) = henu

or H(u) = hu2, where h = ±1. Now from system (17) we obtain easily cases 8 and 9.
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(VI) F = lnu and G = gemu mod G∼, m �= 0, g = ±1. From (10) we derive

η0 = 0, ξxx = η1
t = η1

x = η1
y = 0, ζyy = 0,

−η1 + τt − 3ξx = 0, (m − 1)η1 + τt − ξx − 2ζy = 0,

η1uHuu + (τt − ξx)Hu − ξt = 0. (18)

The last equation of system (18) looks like μuHuu + νHu + ω = 0 with respect to H , where 
μ, ν, ω = const. Thus, H(u) must take one of the following three values: H(u) = hun or H(u) =
hu lnu or H(u) = h lnu modG∼, where h = ±1. Solving now system (18) we obtain cases 5, 6 
and 7 respectively.

(VII) F = lnu and G = g lnu mod G∼, where g = ±1. Substituting F , G and (11) into (10)
we derive

η0 = 0, ξxx = η1
t = η1

x = η1
y = 0, ζyy = 0,

−η1 + τt − 3ξx = 0, −η1 + τt − ξx − 2ζy = 0,

η1uHuu + (τt − ξx)Hu − ξt = 0. (19)

Similar to (VI), from the last equation of system (19) we obtain that H(u) must take one of 
the following three values: H(u) = hun or H(u) = h lnu or H(u) = hu lnu mod G∼, where 
h = ±1. These values correspond to cases 15, 16 and 17 respectively.

The problem of group classification of class (2) is completely solved. �
Note 7. Although equations (2) with Huu = 0 are of low physical interest, below for completeness 
we adduce the result of their symmetry classification.

If Huu = 0, equation (2) is equivalent to

ut + (F (u))xxx + (G(u))xyy = 0. (20)

Result of group classification of class (20) (up to the restriction of the equivalence group G∼ of 
class (2) to H(u) = 0) is presented in Table 2.

5. Exact solutions

In this section we construct exact solutions for some special forms of the GZK equations (2)
by means of the classical Lie method and Ovsiannikov’s method. We first give a detailed classifi-
cation of optimal systems of subalgebras of the Lie algebra of the equations under consideration. 
Then we reduce the (2 + 1)-dimensional equations to (1 + 1)-dimensional equations or ordinary 
differentiate equation or algebraic equation according to the subalgebras system and the corre-
sponding ansatz. Solving the reduced equations, we can finally obtain exact invariant solutions 
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Table 2
Group classification of class (20).

N F(u) G(u) Amax

1. ∀ ∀ A∩
0 = 〈∂t , ∂x , ∂y, 3t∂t + x∂x + y∂y 〉

2. uk gum A∩
0 + 〈(k + 2)t∂t + kx∂x + my∂y + 2u∂u〉

3. lnu gum A∩
0 + 〈2t∂t + my∂y + 2u∂u〉

4. eku gemu A∩
0 + 〈kt∂t + kx∂x + my∂y + 2∂u〉

5. u gemu A∩
0 + 〈my∂y + 2∂u〉

6. uk g lnu A∩
0 + 〈(k + 2)t∂t + kx∂x + 2u∂u〉

7. lnu g lnu A∩
0 + 〈t∂t + u∂u〉

8. eku gu A∩
0 + 〈kt∂t + kx∂x + 2∂u〉

9. u gu−1/3 A∩
0 + 〈2y∂y − 3u∂u, y2∂y − 3yu∂u〉

10. u gu A∩
0 + 〈u∂u, ϕ∂u〉

Here g = ±1, ϕ = ϕ(t, x, y) is an arbitrary solution of ϕt + ϕxxx + gϕxyy = 0.

of the original equation. Below, we illustrate this algorithm by two examples: the modified and 
classical Zakharov–Kuznetsov equations.

5.1. Modified Zakharov–Kuznetsov equation

Consider the modified Zakharov–Kuznetsov equation of form

ut + uxxx + guxyy + hu2ux = 0. (21)

It is shown above that equation (21) is invariant with respect to a realization of four-dimensional 

symmetry algebra A
1
3 , 1

3
4,5 spanned by the following operators

v1 = ∂t , v2 = ∂x, v3 = ∂y, v4 = t∂t + 1

3
x∂x + 1

3
y∂y − 1

3
u∂u.

The commutation relations of the symmetry operators are given by

[vi , vj ] v1 v2 v3 v4
v1 0 0 0 v1

v2 0 0 0 1
3 v2

v3 0 0 0 1
3 v3

v4 −v1 − 1
3 v2 − 1

3 v3 0

Since L1 has zero center, we can directly apply Ovsiannikov’s method of classification of 
subalgebras [29]. Namely, construction of optimal system of one-dimensional subalgebras we 
start from taking a non-zero vector

a4v4 + a3v3 + a2v2 + a1v1
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and considering its image under the action of adjoint representations adduced in the following 
table.

Ad v1 v2 v3 v4
v1 v1 v2 v3 v4 − εv1

v2 v1 v2 v3 v4 − 1
3 εv2

v3 v1 v2 v3 v4 − 1
3 εv3

v4 eεv1 e
1
3 ε

v2 e
1
3 ε

v3 v4

Note 8. Without going to the theoretical details we recall that the adjoint representation of a Lie 
group G on its Lie algebra L can be reconstructed from the infinitesimal adjoint action adL on 
itself by means of the following formula

Ad(exp(εv))w =
∞∑

n=0

εn

n! (adv)n(w) = w − ε[v,w] + ε2

2
[v, [v,w]] − · · · .

Here v and w are elements of the Lie algebra L, exp(εv) is the one-parameter subgroup of G

corresponding to the infinitesimal v. For more details we refer the reader to [28].

Then we try to choose the values of parameters in the adjoint actions in order to simplify pos-
sible forms of the class of subalgebras that our vector belongs to. Different possibilities arising 
under this procedure give us the classes of inequivalent one-dimensional subalgebras. In such a 
way we find an optimal system of 1-dimensional subalgebras:

〈v1 + εv2 + εv3〉, 〈v2〉, 〈v3 + av2〉, 〈v4〉, 〈v1〉.

Here and below ε = 0, ±1, a, b = const.
An excellent detailed explanation and examples of classification of one-dimensional subalge-

bras of Lie algebras can be found in the textbooks [28,29]. (Inequivalent subalgebras of all real 
2-, 3- and 4-dimensional Lie algebras were classified in [30].)

Constructing optimal system of two-dimensional subalgebras, we can suppose immediately 
that one of the basis vectors of two-dimensional subalgebra is taken from the previously obtained 
optimal system of one-dimensional subalgebras. Then we try to choose the parameters in the 
adjoint actions in order to simplify possible forms of the second basis and not to “spoil” the 
first one. It is possible that some of the basis vectors of the already classified one-dimensional 
subalgebras do not belong to any of the two-dimensional subalgebras.

After construction of all two-dimensional subalgebras for all basis vectors of the optimal sys-
tem of one-dimensional subalgebras, we have to consider the action of inner automorphisms to 
order and simplify them, similarly to what we have already done for one-dimensional subalge-
bras. As a result we get an optimal system of two-dimensional subalgebras of the Lie symmetry 
algebra:

〈v1, v2〉, 〈v1, v3 + av2〉, 〈v2, v3〉 〈v3, v1 + εv2〉, 〈v1 + εv3, v2 + av3〉,
〈v1, v4〉, 〈v4, v3 + av2〉, 〈v4, v2〉.
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An optimal system of three-dimensional subalgebras can be constructed by means of ex-
tension of the two-dimensional subalgebras completely similarly to the above extension of 
the one-dimensional subalgebras to the two-dimensional ones. Note, that over R there exist 
three-dimensional algebras (all isomorphic to 〈e1, e2, e3〉, where [e1, e2] = e3, [e2, e3] = e1, 
[e1, e3] = −e2) that do not contain two-dimensional subalgebras. However, the symmetry algebra 
L1 is solvable, therefore, all its three-dimensional subalgebras contain two-dimensional subalge-
bras and we can directly extend the above classification to construction of the three-dimensional 
subalgebras.

In such a way we get an optimal system of 3-dimensional subalgebras of L1 that consists of

〈v1, v2, v3〉, 〈v2, v3, v4〉, 〈v1, v4, v3 + av2〉, 〈v1, v2, v4〉.

As one can easily check, the obtained optimal systems coincide with those adduced in [30].
Now we consider reductions of equation (21) with respect to the obtained inequivalent subal-

gebras.

Reductions with respect to 1-dimensional subalgebras
We try to reduce equation (21) with respect to a subalgebra generated by a Lie symmetry of 

the form

τ(t, x, y,u)∂t + ξ(t, x, y,u)∂x + ζ(t, x, y,u)∂y + η(t, x, y,u)∂u,

where τ , ξ , ζ and η are known functions. In order to derive the desired similarity reductions, we 
need to solve a partial differential equation of form

τut + ξux + ζuy = η.

The solution of this equation contains three independent integrals which provide the general 
solution in the form

u = μ(t, x, y,w(p, z)), p = p(t, x, y), z = z(t, x, y), (22)

where μ is known function and v, p, z are arbitrary functions in their arguments. Formula (22)
defines the Ansatz that maps (21) into a partial differential equation with two independent vari-
ables p and z, and w being the dependent variable.

Below in case 1 of the reductions with respect to 1-dimensional subalgebras we consider 
this procedure in details. In the rest of the cases we adduce only the Ansatz, new independent 
variables, the reduced equations and, in some cases, corresponding invariant solutions.

1. 〈v1 + εv2 + εv3〉: We try to construct invariant reduction with respect to the operator Q =
∂t + ε∂x + a∂y . In the framework of the above procedure we look for the first integrals of the 
equation ut + εux + auy = 0. They can be chosen as I1 = u, I2 = y − at and I3 = x − εt . 
Then, the general solution of the above first-order equation has the form F(I1, I2, I3) = 0, where 
F is an arbitrary function of its variables. Expressing now u from the above equation, we get 
the Ansatz u = w(p, z), p = y − at , z = x − εt for the reduction. Substituting this Ansatz to 
the initial equation yields the reduced equation with two independent variables that looks like 
−awp − εwz + wzzz + gwzpp + hw2wz = 0.
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The reduced equation is a (1 + 1)-dimensional nonlinear partial differential equation which is 
difficult to solve. Thus, we turn to find a kind of special solutions, i.e., traveling wave solutions 
of the reduced equation. In order to arrive at this, we perform the traveling wave transformations 
for the reduced equation and employ the standard tanh-function method [11], then we succeeded 
to find some partial solutions and this provides us with the following solutions of the modified 
ZK equation (21) by using the above-mentioned ansatz.

u = A cscφ, u = A secφ, u = A√
2

tanh
φ√
2
, u = A√

2
coth

φ√
2
,

u = A sechφ, u = A cschφ, u = A√
2

tan
φ√
2
, u = A√

2
cot

φ√
2
,

where A =
√∣∣∣ 6(ac1+εc2)

hc2

∣∣∣, φ =
√∣∣∣ ac1+εc2

(c3
2+gc2c

2
1)

∣∣∣(−(ac1 + εc2)t + c2x + c1y), c1, c2 are arbitrary 

constants which satisfy the constrains 6(ac1+εc2)
hc2

> 0, ac1+εc2
c3

2+gc2c
2
1

< 0 for the first five solutions 

and 6(ac1+εc2)
hc2

< 0, ac1+εc2
c3

2+gc2c
2
1

> 0 for the last three solutions. It should be noted that the third to 

the sixth solutions are solitary wave solutions, while the other four solutions are periodic wave 
solutions.

2. 〈v2〉: u = w(t, y), wt = 0 that gives trivial solution u = u(y).
3. 〈v3 + av2〉: u = w(p, z), p = t , z = x − ay, wp + wzzz + a2gwzzz + hw2wz = 0. This 

reduced equation is the well-known modified KdV equations [1], we can construct its solutions 
by inverse scattering method [1] or the tanh function method [11]. Some of its known invariant 
solutions [40] provide us with the following solutions for the modified ZK equation (21):

u = A cscφ, u = A secφ, u = A√
2

tanh
φ√
2
, u = A√

2
coth

φ√
2
,

u = A sechφ, u = A cschφ, u = A√
2

tan
φ√
2
, u = A√

2
cot

φ√
2
,

where A =
√∣∣∣ 6c1

hc2

∣∣∣, φ =
√∣∣∣ c1

c3
2+a2gc3

2

∣∣∣(c1t + c2x − ac2y), c1, c2 are arbitrary constants which 

satisfy the constrains 6c1
hc2

> 0, c1
c3

2+a2gc3
2

< 0 for the first five solutions and 6c1
hc2

< 0, c1
c3

2+a2gc3
2

> 0

for the last three solutions.
4. 〈v4〉: u = t−1/3w(p, z), p = t−1/3y, z = t−1/3x, − 1

3w − 1
3pwp − 1

3zwz +wzzz + gwppz +
hw2wz = 0.

5. 〈v1〉: u = w(x, y), wxxx + gwxyy + hw2wx = 0. By performing traveling wave transfor-
mation and integrating the reduced equation, we can obtain stationary solutions of the modified 
ZK equation (21) of form:

u = w(kx + ly),

where w is implicitly determined by
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∫ √
6(k2 + gl2)

6c2w + 6c1 − hw4
dw = ±(kx + ly) + c0,

where c2, c1, c0, k, l are arbitrary constants.

Reductions with respect to 2-dimensional subalgebras
1. 〈v2, v1〉: leads to the solution u = v(y)

2. 〈v1, v3 + av2〉: u = v(x − ay), (1 + g2)v′′′ + hv2v′ = 0. Integrating this reduced equation, 
we obtain stationary solutions of the modified ZK equation (21) in implicit form:

u = v(ξ),

∫ √
6(1 + g2)

12c2v + 12c1 − hv4
dv = ±ξ + c0, ξ = x − ay,

where c2, c1, c0 are arbitrary constants.
3. 〈v2, v3〉: leads to the solution u = const.
4. 〈v3, v1 + εv2〉: u = v(x − εt), v′′′ − εv′ + hv2v′ = 0. Solving this reduced equation by 

direct integrating, we get an y-independent general solutions of the modified ZK equation (21)
in implicit form:

u = v(ξ),

∫
1√

εv2 + 2c2v + 2c1 − 1
6hv4

dv = ±ξ + c0, ξ = x − εt,

where c2, c1, c0 are arbitrary constants.
5. 〈v1 + εv3, v2 + av3〉: u = v(y − ax − εt), (a3 + ga)v′′′ + εv′ + ahv2v′ = 0. Integrating 

this reduced equation, we find solutions of the modified ZK equation (21) in implicit form:

u = v(ξ),

∫ √
a(a2 + g)

2c2v + 2c1 − εv2 − 1
6ahv4

dv = ±ξ + c0, ξ = y − ax − εt,

where c2, c1, c0 are arbitrary constants.
6. 〈v1, v4〉: u = v(ω)

y
, ω = x

y
, (1 + gω2)v′′′ + 6gωv′′ + 6gv′ + hv2v′ = 0. Integrating the 

equation one time, we obtain

[(1 + gw2)v]′′ + 1

3
hv3 = c0.

Using symbolic computation software MAPLE to solve it for c0 = 0, we obtain a stationary 
solution of the modified ZK equation (21)

u(x, y) = c2

y
√

1 + g(x/y)2
m sn

[
m

(√
36g + 6h arctan(

√
g(x/y))

6
√

g
+ c1

)
,
c2

√−6gh − h2

6g + h

]
,

where m =
√

6g

6g+h−hc2 , c1, c2 are arbitrary constants and sn(·, ·) is Jacobi elliptic sine function.

2
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7. 〈v4, v3 + av2〉: u = t−1/3v(ω), ω = t−1/3(x − ay), (1 + a2g)v′′′ − 1
3ωv′ − 1

3v +hv2v′ = 0. 
Solving this equation, we obtain stationary solution of the modified ZK equation (21):

u = ±
√

−6(1 + a2g)

h

1

x − ay
,

where 6(1+a2g)
h

< 0.
8. 〈v4, v2〉: leads to the solution of form u = v(y).

Reductions with respect to 3-dimensional subalgebras
Since equation (21) is 3-dimensional, its reductions with respect to 3-dimensional subalge-

bras L1 lead to algebraic equations. From invariance of (21) with respect to 〈v1, v4, v3 + av2〉
we obtain that

u = c

x − ay
.

Substituting this expression to (21) we get an algebraic equation on c of form c(6 + 6a2 +
hc2) = 0. Its solutions are

c = 0, c = ±
√−h(a2 + 1)

h
.

It is not difficult to show that all other reductions with respect to 3-dimensional subalgebras 
lead, at most, to the trivial solution

u = u(y).

5.2. Zakharov–Kuznetsov equation

In this subsection we perform reductions of the Zakharov–Kuznetsov equation

ut + uxxx + guxyy + huux = 0. (23)

with respect to 1- and 2-dimensional subalgebras of its maximal Lie symmetry algebra

〈v1 = ∂t , v2 = ∂x, v3 = ∂y, v4 = ht∂x + ∂u, v5 = 3t∂t + x∂x + y∂y − 2u∂u〉.
As the computations are very similar to the ones from the previous subsection, we skip 

all technical details and summarize the results only. (Some of the reduced with respect to 
1-dimensional subalgebras equations together with their solutions can be found also in [24].) 
The table of commutation relations is

[vi , vj ] v1 v2 v3 v4 v5
v1 0 0 0 hv2 3v1
v2 0 0 0 0 v2
v3 0 0 0 0 v3
v4 −hv2 0 0 0 −2v4
v5 −3v1 −v2 −v3 2v4 0
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Then, the corresponding adjoint representations look like

Ad v1 v2 v3 v4 v5
v1 v1 v2 v3 v4 − hεv2 v5 − 3εv1
v2 v1 v2 v3 v4 v5 − εv2
v3 v1 v2 v3 v4 v5 − εv3
v4 v1 + hεv2 v2 v3 v4 v5 + 2εv4
v5 e3εv1 eεv2 eεv3 e−2εv4 v5

An optimal system of 1-dimensional subalgebras can be chosen as

〈v1〉, 〈v2〉, 〈v3 + a2v2〉, 〈v3 + ε1v1〉, 〈v4 + a3v3 + a1v1〉, 〈v5〉.

Here and below εi = 0, ±1, ai, bi = const.
An optimal system of 2-dimensional subalgebras is

〈v2, v1〉, 〈v3, v2〉, 〈v3 + ε2v2, v1〉, 〈v4 + ε3v3, v1〉, 〈v4 + a3v3, v2〉,
〈v4 + a1v1, v3〉, 〈v5, v2〉, 〈v5, v1〉, 〈v5, v3 − b2v2〉, 〈v5, v4〉

Reductions with respect to 1-dimensional subalgebras
1. 〈v1〉: u = w(x, y), wxxx + gwxyy + hwwx = 0. With the aid of symbolic computation 

software MAPLE, an invariant solution arising from this case is

w(x,y) = 8

h
(c2

2 + gc2
3) − 12

h
(c2

2 + gc2
3) tanh2(c1 + c2x + c3y),

where c1, c2, c3 are arbitrary constants.
2. 〈v2〉: u = w(t, y), wt = 0, u = w(y)

3. 〈v3 + a2v2〉: u = w(t, z), z = x − a2y, wt + (1 + a2
2g)wzzz + hwwz = 0. This equation is 

the famous KdV equation [1], we can construct its solutions by inverse scattering method [1] or 
the tanh function method [11]. Using some of its invariant solutions [40] we can easily construct 
some exact solutions for the ZK equation (23):

u = A csc2 φ, u = A sec2 φ, u = −A

3
(1 − 3 tanh2 φ), u = −A

3
(1 − 3 coth2 φ),

u = A sech2 φ, u = −A csch2 φ, u = −A

3
(1 + 3 tan2 φ), u = −A

3
(1 + 3 cot2 φ),

where A = − 3c1
hc2

, φ = 1
2

√∣∣∣ c1
c3

2+a2
2gc3

2

∣∣∣(c1t + c2x − a2c2y), c1, c2 are arbitrary constants which 

satisfy the constrains c1
c3

2+a2
2gc3

2
> 0 for the first five solutions and c1

c3
2+a2

2gc3
2

< 0 for the last three 

solutions. It should be noted that the third to the sixth solutions are solitary wave solutions, while 
the other four solutions are periodic wave solutions.

4. 〈v3 + ε1v1〉: u = w(p, x), p = t − ε1y, wp + wxxx + ε2
1gwppx + hwwx = 0. Solving this 

reduced equation by the tanh function method [11], we can obtain the following exact solutions 
of the ZK equation (23):
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u = A csc2 φ, u = A sec2 φ, u = −A

3
(1 − 3 tanh2 φ), u = −A

3
(1 − 3 coth2 φ),

u = A sech2 φ, u = −A csch2 φ, u = −A

3
(1 + 3 tan2 φ), u = −A

3
(1 + 3 cot2 φ),

where A = − 3c1
hc2

, φ = 1
2

√∣∣∣ c1
c3

2+ε2
1gc2

1c2

∣∣∣(c1t + c2x − a2c2y), c1, c2 are arbitrary constants which 

satisfy the constrains c1
c3

2+ε2
1gc2

1c2
> 0 for the first five solutions and c1

c3
2+ε2

1gc2
1c2

< 0 for the last 

three solutions.
5. 〈v4 + a3v3 + a1v1〉: if a1 = 0, then u = x

ht
+ w(t, z), z = a3x

ht
− y, h3t3wt + wzzz(a

3
3 +

ga3h
2t2) + h3t2w + h3t2a3wwz = 0. If a1 �= 0, then u = t

a1
+ w(p, z), z = x − ht2

2a1
, p = a1y −

a3t , 1
a1

− a3wp + wzzz + ga2
1wzpp + hwwz = 0.

6. 〈v5〉: u = t−2/3w(p, z), p = t−1/3y, z = t−1/3x, −2w − pwp − zwz + 3wzzz + 3gwzpp +
3hwwz = 0.

Reductions with respect to 2-dimensional subalgebras
1. 〈v2, v1〉: u = v(y) is a solution.
2. 〈v3, v2〉: u = v(t), vt = 0, therefore, u = const.
3. 〈v3 + ε2v2, v1〉: u = v(x − ε2y), (1 + gε2

2)v
′′′ + hvv′ = 0. Solving this reduced equation 

by direct integrating, we obtain stationary solution of the ZK equation (23) in implicit form:

u = v(ξ),

∫ √√√√ (1 + gε2
2)

2c2v + 2c1 − 1
3hv3

dv = ±ξ + c0, ξ = x − ε2y,

where c2, c1, c0 are arbitrary constants.
4. 〈v4 + a3v3, v2〉: if a3 = 0 then there is no reduction, if a3 �= 0, then u = y

a3
+ v(t), vt = 0

that gives u = y
a3

+ c, where c is an arbitrary constant.
5. 〈v4 + a1v1, v3〉: if a1 = 0, then u = x

ht
+ v(t), v′ + v

t
= 0 that gives u = x

ht
+ c

t
, where c

is an arbitrary constant. If a1 �= 0, then u = t
a1

+ v(x − h
2a1

t2), v′′′ + hvv′ + 1
a1

= 0. Integrating 

this equation one time, we obtain v′′ + 1
2hv2 + 1

a1
ξ = c, where ξ = x − h

2a1
t2.

6. 〈v5, v2〉: u = t−2/3v(ω), ω = t−1/3y, 2v + ωv′ = 0. Solving this equation, we obtain solu-
tion of the ZK equation (23) of form u = c0

y2 .

7. 〈v5, v1〉: u = 1
y2 v(ω), ω = x

y
, (1 + gω2)v′′′ + 12gv′ + 8gωv′′ + hvv′ = 0. Integrating the 

equation one time, we obtain

(1 + gw2)v′′ + 6g(wv)′ + 1

2
hv2 = c0.

Using symbolic computation software MAPLE for c0 = 0, we obtain stationary solution of the 
ZK equation (23) in implicit form:

u = 1

y2
v(ω),

1√
g

arctan(
√

gω) ± 3
∫

1√
9c1 − 36gZ2 − 3hZ3

dZ − c2 = 0, ω = x

y
,

where Z = v + gvω2, c2, c1 are arbitrary constants.
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8. 〈v5, v3 −b2v2〉: u = t−2/3v(ω), ω = t−1/3(x +b2y), 3(1 +gb2
2)v

′′′ −2v−ωv′ +3hvv′ = 0. 
This reduced equation has a solution v = 1

h
ω, thus we obtain a rational solution of the ZK equa-

tion (23): u = x+b2y
ht

.
9. 〈v5, v4〉: u = x

ht
+ t−2/3v(ω), ω = t−1/3y, ωv′ − v = 0 that gives u = x

ht
+ cy

t
, where c is 

an arbitrary constant.

Note 9. In both cases of the modified Zakharov–Kuznetsov equation and of the classical 
Zakharov–Kuznetsov equation, we do not solve all the reduced equations. One of the possible 
ways of constructing their solutions is, again, group analysis. More precisely, one can derive Lie 
symmetries for the reduced partial differential equations with the ultimate goal to construct sim-
ilarity reductions that transform these equations into ordinary differential equations or algebraic 
equations that are easier to solve.

6. Conclusion and discussion

In summary, we have described an algorithmic framework for group classification of (systems 
of) partial differential equations. More precisely, we have revised the classical Lie method of 
construction of symmetries (of system) of differential equations in more details and written down 
the precise formulation of Ovsiannikov’s algorithm of group classification of a class (of systems) 
of differential equations. We also described a systematic way of finding all possible invariant 
solutions of (of systems) of differential equations. All the theory and algorithms were illustrated 
by the running example of the GZK equations (2). Specifically, we performed a complete group 
classification of the class of GZK equations (2) by using the equivalence transformations and the 
compatibility method. The main results of classification are collected in Tables 1–2 where we list 
all inequivalent cases of extensions with the corresponding Lie invariance algebras. It is shown 
that the symmetry algebras of invariant models of form (2), are at most six-dimensional. For 
the classical Zakharov–Kuznetsov (23) and the modified Zakharov–Kuznetsov (21) we construct 
optimal systems of inequivalent subalgebras, corresponding Lie ansätze and invariant solutions.

The present paper should be an inspiration for further investigations of other properties of 
class (2). For example, one can classify the nonclassical (conditional) symmetries. Furthermore, 
one can perform conservation law classification, then to use these results to systematical calcu-
lation of nonlocal symmetries, higher order local and potential conservation laws, nonclassical 
potential solutions and linearizations, etc. Motivated by Craddock and Dooley’s work on the 
equivalence of Lie symmetries and group representations [8], we can also consider the global 
action of the Lie symmetries of the GZK equations (2). We will investigate these subjects else-
where. The algorithmic framework for group analysis of differential equations presented in this 
paper can also be applied to other nonlinear PDEs in mathematical physics.
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