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Abstract

We consider the Cauchy problem for the Green–Naghdi equations with viscosity, for small initial data. 
It is well-known that adding a second order dissipative term to a hyperbolic system leads to the existence 
of global smooth solutions, once the hyperbolic system is symmetrizable and the so-called Kawashima–
Shizuta condition is satisfied. In a previous work, we have proved that the Green–Naghdi equations can be 
written in a symmetric form, using the associated Hamiltonian. This system being dispersive, in the sense 
that it involves third order derivatives, the symmetric form is based on symmetric differential operators. In 
this paper, we use this structure for an appropriate change of variable to prove that adding viscosity effects 
through a second order term leads to global existence of smooth solutions, for small data. We also deduce 
that constant solutions are asymptotically stable.
© 2016 Elsevier Inc. All rights reserved.

Keywords: Green–Naghdi equations; Viscosity; Small solutions; Symmetric structure; Energy equality; Global existence

1. Introduction

The Green–Naghdi system is a shallow water approximation of the water waves problem 
which models incompressible flows. The vertical and horizontal speeds are averaged vertically. 
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Moreover, vertical acceleration is supposed too small to be considered [13]. In other words, 
Green–Naghdi equations is one order higher in approximation compared to the Saint-Venant 
(called also isentropic Euler) system [3]. To obtain the latter system, not only the vertical accel-
eration but also the vertical speed are neglected. This leads to a hyperbolic system of equations 
whereas the Green–Naghdi equation is dispersive due to the term αh2ḧ defined below. In this 
work, we focus on the Green–Naghdi type equation with a second order viscosity:{

∂th + ∂x(hu) = 0,

∂t (hu) + ∂x(hu2) + ∂x(gh2/2 + αh2ḧ) = μ∂x(h∂xu)
(1)

We assume that h(x, t) > 0, α and μ are strictly positive and g is the gravity constant. The 
unknown h represents the fluid height and u its average horizontal speed. Moreover, the material 
derivative (̇) is defined by (̇) = ∂t () + u∂x().

Remark 1.1. Let us note that the α = 0 case gives us the Saint-Venant system. We can also 
learn more about the derivation of the system in [21,1,15] for (μ, α) = (0, 13 ), and in [7] for 
(μ, α) = (0, 14 ).

It is worth remarking that (1) admits the following energy equality [11,7],

∂tE + ∂x (u(E + p)) = μu∂x(h∂xu), (2)

where

E(h,u) = gh2/2 + hu2/2 + αh3(∂xu)2/2,

and

p(h,u) = gh2/2 + αh2ḧ.

Then, we can check that (1) admits a family of relative energy conservation equalities given by

∂tEhe,ue + ∂xPhe,ue = μ(u − ue)∂x(h∂xu), (3)

where

Ehe,ue (h,u) = g(h − he)
2/2 + h(u − ue)

2/2 + αh3(∂xu)2/2, (4a)

and

Phe,ue (h,u) = uEhe,ue (h,u) + (u − ue)p(h,u) − gh2
e

2
u. (4b)

This family is parametrized by (he, ue) ∈ R
2 with he > 0.

Remark 1.2. Let us assume that α = 0. Then, E(h, u) and Ehe,ue (h, u) are convex entropies for 
Saint-Venant system.

The dissipative term μ∂x(h∂xu) considered here in the right hand side of (1), is presented 
in [12] and some other references, as the viscosity for Saint-Venant system. Indeed, Saint-
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Venant system with this viscosity is derived in [12] from the Navier–Stokes equations under 
the shallow water assumption. On the one hand, this term is stabilizing for the hyperbolic Saint-
Venant system. On the other hand, Green–Naghdi equation is a higher order approximation of 
the water waves problem and contains Saint-Venant system in addition to some dispersive terms. 
Therefore, we are interested to learn more about the role this viscosity plays on Green–Naghdi 
equations. Following the result of this work, we see that the dispersion does not cancel the stabi-
lizing effect of the viscosity.

The aim of this paper is to study the stability of equilibriums based on the symmetric structure 
of the system. The intuition comes from the Kawashima–Shizuta works on hyperbolic–parabolic 
systems [24,17] and Hanouzet–Natalini and Yong [14,26] on entropy dissipative symmetric 
hyperbolic equations. All these results have been proved using the symmetric structure of hy-
perbolic systems. In particular, Saint-Venant system with friction can be treated by the general 
result obtained in [14,26] whereas Saint-Venant system with viscosity fits the general frame con-
sidered in [24,17].

The notion of symmetric structure and of Godunov systems has been extended to some dis-
persive systems in [18]. In particular, the Green–Naghdi equations enter in this framework and 
then can be written under a symmetric structure which is recalled in Subsection 1.1. We show in 
this work how this structure enables us to extend the techniques used in [17,14,26] for symmetric 
hyperbolic equations to the dispersive Green–Naghdi equations.

Remark 1.3. The order of the dissipative term μ∂x(h∂xu) plays a very important role in this 
work. Indeed, we can prove the global existence for small initial data only if the dissipative term, 
considered in the right hand side of (1), is a second order term with respect to u. For instance, 
we are not able to generalize the results presented in Section 2, if we replace the dissipative term 
μ∂x(h∂xu) with a friction type term such as −κu for some κ > 0. Likewise, if we consider a 
fourth order dissipation such as −μ∂2

x (h∂x(h∂xu)) /4 (suggested in [7]) instead of the second 
order μ∂x(h∂xu), the estimates we find are not sufficient to conclude the global existence.

In all this work, partial derivatives with respect to x of any differentiable function f are 
presented by ∂xf . The differential of the application F at U is symbolized by DUF(U). The 
adjoint of the operator A is denoted by A�.

1.1. Symmetric structure

Following Li’s notations in [21], we use the unknown U = (h, m) defined by a Sturm–
Liouville operator called L:

m = hu − α∂x(h
3∂xu) = Lh(u).

Let us note that Lh :Hs(R) → H
s−2(R) is an isomorphism if h is strictly positively bounded by 

below and s ≥ 2. Therefore, System (1) can be written under

∂tU + ∂xF (U) = Q(U),

where

F(U) =
(

hL−1
h (m)

mL−1(m) − 2αh3(∂ L−1(m))2 + g
h2 − g

h2

)
, (5)
h x h 2 2 e
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and

Q(U) =
(

0
μ∂x(h∂xu)

)
(6)

Based on the structure presented in [21], it is easy to check that the unknown U enables us to 
write (1) under a Hamiltonian structure where the Hamiltonian Hhe,ue is defined by the integral 
of the relative energy i.e. by

Hhe,ue :=
∫
R

Ehe,ue .

This unknown presents also another advantage. In fact, we can recover the physical variable 
V = (h, u) from U using the interesting change of variable V = (h, δmHhe,ue (U)), where δm

denotes the variational derivative with respect to m.1 This consideration, as suggested in the 
following theorem, enables us to symmetrize the system in the physical variable with a diagonal 
locally definite positive operator (see Appendix A for more details).

Theorem 1.4. (See [18].) Let Ve = (he, ue) be a constant solution of (1) with he > 0. Let also 
s ≥ 2 be an integer. Then, as long as the solution V = (h, u) remains close to Ve for the usual 
norm of Hs(R) ×H

s+1(R), the system is equivalent to the following symmetric form:

A0(V )∂tV +A1(V )∂xV =
(

0
μ∂x(h∂xu)

)
(7)

where

A0(V ) = DV U�(V )
(
δ2
UH

)
DV U(V )

=
(

g − 3αh(∂xu)2 0
0 Lh

)
(8)

is a positive definite operator and

A1(V ) = DV U�(V )
(
δ2
UH

)
(DUF(U))DV U(V )

=
(

gu − 3αhu(∂xu)2 gh − 3αh2(∂xu)2

gh − 3αh2(∂xu)2 hu + 2α∂x(h
3∂xu) − α∂x(h

3u)∂x − αh3u∂2
x

)
(9)

is a symmetric one.

Proof. Let us consider the conservative form

∂tU + ∂xF (U) = Q(U).

1 We have

δhHhe,ue (U) = g(h − he) − u2 − u2
e

2
− 3

2
αh2(∂xu)2,

and
δmHhe,ue (U) = u − ue.
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Obviously, we have

DV U(V )∂tV + DUF(U)DV U(V )∂xV = Q(U).

Then, acting DV U�(V ) 
(
δ2
UHhe,ue

)
on the system and considering the fact that Q(U) is an in-

variant vector of DV U�(V ) 
(
δ2
UHhe,ue

)
, we get the result (See Appendix A for more details). �

Let us note that A0(V ) and A1(V ) are linear second order differential operators. Therefore, 
they can be decomposed as

A0(V ) =A0
0(V ) +A1

0(V )∂x +A2
0(V )∂2

x (10)

A1(V ) =A0
1(V ) +A1

1(V )∂x +A2
1(V )∂2

x (11)

where the expressions of symmetric matrix Aj
i (V ) for i, j ∈ {0, 1, 2} are given by

A0
0(V ) =

(
g − 3αh(∂xu)2 0

0 h

)
, A1

0(V ) =
(

0 0
0 −3αh2∂xh

)
, A2

0(V ) =
(

0 0
0 −αh3

)
,

A0
1(V ) =

(
gu − 3αhu(∂xu)2 gh − 3αh2(∂xu)2

gh − 3αh2(∂xu)2 hu + 2α∂x(h
3∂xu)

)
, A1

1(V ) =
(

0 0
0 −α∂x(h

3u)

)
,

A2
1(V ) =

(
0 0
0 −αh3u

)
.

Remark 1.5. The definite positivity of a real matrix is equivalent to its coercivity. However, 
this fact does not necessary hold true for definite positive operators i.e. some definite positive 
operators are not coercive. It is important to point out that, as illustrated in Section 3, one of 
the keys which lets us generalize the hyperbolic methods to our symmetric system is actually the 
coercivity of A0(V ) for the convenient norm. This means that we would not be able to generalize 
the method if A0(V ) was definite positive but not coercive.

We can also remark that the symmetric structure suggested in this section is similar to the 
structure used in [16] to study the local well-posedness of the Green–Naghdi equations without 
viscosity.

1.2. Outline

We are going to study the global existence of solutions of the viscous Green–Naghdi type 
equations for smooth initial data close to equilibriums. A local well-posedness result is proved 
in Appendix B. Let us also mention that some similar writings as (7) have been used to study the 
local well-posedness of some dispersive systems (see [23] and [9] for instance). Then, we use the 
dissipative character of the viscosity as well as the symmetric structure of the system to prove 
the global existence of the local solution. In fact, the first step of the proof contains some initial 
estimates obtained by taking the scalar product of the sth derivative of the equation with the sth

derivative of the solution. As it is exposed in Subsections 3.1 and 3.2, these estimates are obtained 
by almost the same approach as in the hyperbolic case ([14] and [26]). Then, the second step is 
to estimate the time integral of the norm of the solution. In the case of hyperbolic systems, this 
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estimate is found by using the Kawashima–Shizuta condition. This condition has been introduced 
in [24] as a stability condition for constant solutions. It is based on the existence of a constant 
real matrix such that its product with the definite positive matrix (the one equivalent to A0) 
is skew-symmetric at equilibrium while the symmetric part of its product with the symmetric 
matrix (the one equivalent to A1), added to the right hand side term matrix, gives a definite 
positive matrix. However, in the case of Green–Naghdi system, we have not been able to find 
any operator generalization of the Kawashima–Shizuta condition. Hence, we must use a slightly 
different approach to find a convenient estimate. Indeed, we can find a null diagonal real matrix K
such that KA1(Ve) is a symmetric definite positive matrix for all equilibriums Ve with ue = 0. 
However, KA0(Ve) is not a skew-symmetric operator. Nevertheless, we are able to put some 
non-straightforwardly controllable term under a time integral of a time derivative2 and estimate 
the remaining terms in a convenient manner (see Subsection 3.3). Then, using a symmetry group 
of the system, we can generalize the result to the case of equilibriums Ve with ue �= 0.

This paper is organized on 4 sections. The global existence theorem and its corollaries are 
presented in Section 2. Section 3 contains the steps of the proof. Some perspectives are sug-
gested in Section 4. The advantages of the symmetric structure used in this study are explained 
in Appendix A. So we can see why this symmetric structure is more appropriate than others. 
Appendix B contains the proof of the local well-posedness Theorem 2.1. Appendix C highlights 
one of the other utilities of the symmetric structure. In fact, linear stability of equilibrium of 
non-viscous Green–Naghdi can be proved using this structure.

2. Main results

The local well-posedness of (1) has been studied in [16] and [21] for the case μ = 0. We 
see here that we can prove the local well-posedness of (1), around constant solutions, based on 
the idea used for symmetric hyperbolic systems. To do so, we first note that the set of constant 
solutions of (1) is

{Ve = (he, ue); he > 0, ue ∈ R}.

We may also call these solutions the equilibriums of the system.
We denote the norm associated with the affine space Xs(R) = (Hs(R) +he) × (Hs+1(R) +ue)

by

‖ (f, g) ‖2
Xs =‖ f ‖2

Hs + ‖ g ‖2
Hs+1 .

Moreover, the s-neighborhood of radius δ and center Ve is presented by Bs(Ve, δ) = {V ∈
X

s(R), ‖ V − Ve ‖Xs ≤ δ} for all integer s ∈R.
Let us also denote by C the universal constant of the following Gagliardo–Nirenberg inequal-

ity:

‖ f ‖L∞≤ C ‖ ∂xf ‖
1
2
L2‖ f ‖

1
2
L2 ∀f ∈ H

1(R). (12)

2 The skew-symmetry of KA0 for hyperbolic systems lets us put the non-straightforwardly controllable terms under a 
time derivative. Therefore, we can deal with them by taking the time integral. Although, we are not able here to obtain a 
skew-symmetry KA0, we try to deal with non-straightforwardly controllable terms by a similar idea.
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We are now able to announce the local well-posedness theorem,

Theorem 2.1. Let s ≥ 2 be an integer and consider a constant solution Ve of System (1). Then, 
there exists 0 < δ < he such that for all initial data V0 ∈ Bs(Ve, δ), there exists T > 0 such that 
the system admits a unique solution which belongs to C([0, T ), Xs(R)).

The proof of the theorem is given in Appendix B. The steps of the proof are the same as 
for hyperbolic systems (see [8,5] for instance). However, the necessary estimate to reach the 
final result of each step, is obtained by the same technique used in Section 3.2. In fact, we can 
see again in this part, how the generalized symmetric structure (7) of the system enables us to 
generalize the techniques used for symmetric hyperbolic systems.

An immediate corollary for Theorem 2.1 is the following. It states the positivity of the water 
height for small data and for short times.

Corollary 2.2. Let s ≥ 2 be an integer and consider a constant solution Ve of System (1). Let us 
also consider δ ∈ (0, he

C
) and 0 < T both conveniently small, and V0 ∈ Bs(Ve, δ) such that (1)

admits a unique solution (h, u) ∈ C([0, T ), Xs(R)). Then, for all η0 ∈ (0, inf
x∈Rh0(x)), there exists 

a time T̃ ∈ (0, T ) such that

inf
x∈Rh(t, x) ≥ η0 ∀t ∈ [0, T̃ ]. (13)

Proof. Let us first note that inf
x∈Rh0(x) > 0. This is a consequence of the Gagliardo–Nirenberg 

inequality. Indeed,

‖ h0 − he ‖L∞≤ C ‖ ∂xh0 ‖
1
2
L2‖ h0 − he ‖

1
2
L2 .

Considering the fact that V0 ∈ Bs(Ve, δ) with s ≥ 2 and δ < he

C
, the inequality becomes

‖ h0 − he ‖L∞≤ Cδ < he.

Therefore,

0 < he − Cδ ≤ h0(x) ≤ he + Cδ < 2he ∀x ∈R.

Then, we conclude that

inf
x∈Rh0(x) ≥ he − Cδ > 0.

Let us now fix η0 ∈ (0, infx∈R h0(x)). The unique solution of (1) belongs to C([0, T ), Xs(R)). 
Hence, there exists T̃ ∈ (0, T ) such that

‖ h(t) − h0 ‖Xs ≤ infx∈R h0(x) − η0

C
∀t ∈ [0, T̃ ].

Again, Gagliardo–Nirenberg inequality leads us to

‖ h(t) − h0 ‖L∞≤ inf h0(x) − η0 ∀t ∈ [0, T̃ ].

x∈R
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Then, we have

η0 − inf
x∈Rh0(x) ≤ h(t, x) − h0(x) ∀(x, t) ∈ R× [0, T̃ ],

and finally

η0 ≤ η0 + h0(x) − inf
x∈Rh0(x) ≤ h(t, x) ∀(x, t) ∈R× [0, T̃ ]. �

The main result of this study is the following theorem on the asymptotic stability of equilibri-
ums.

Theorem 2.3. Let us consider an equilibrium Ve = (he, ue) of (1) and s ≥ 2 an integer. Then, 
there exists δ > 0 such that for all initial data V0 = (h0, u0) ∈ Bs(Ve, δ), the solution V exists 
for all time and converges asymptotically to Ve.

In other words, every constant solution Ve = (he, ue) of (1) is asymptotically stable.

Let us remark that we can prove Theorem 2.3 by considering ue = 0. This is due to the fact 
that v = t∂x + ∂u is a infinitesimal generator of a symmetry group of (1). This means that

Vβ = (h(x − βt, t), u(x − βt, t) + β)

is also a solution of (1) for all solution V = (h, u) and all β ∈ R. This fact has been mentioned 
in [20,2] for the case μ = 0. It is easy to check that the second order viscosity right hand side 
does not change this symmetry group. Hence, from now on, all the equilibriums considered in 
this work are of the form

Ve = (he,0).

The key of this study is the following proposition which is a consequence of the primitive 
estimates in Xs and the estimation of the time integral of the Hs−1 norm of hx obtained in 
Section 3. In order to understand this study, let us mention that symbol CS(δ) stands for a function 
of δ, defined by the elements of the set S, which converges to a strictly positive limit while δ
goes to 0. On the other hand, 	S(δ) stands for a function, defined by the elements of the set S, 
which converges to zero while δ goes to 0. Let us also mention that the estimate suggested in 
Proposition 2.4 has a similar structure to the estimate given in Theorem 3.1 of [26].

Proposition 2.4. Let us consider an equilibrium Ve = (he, 0) of System (1), an integer s ≥ 2 and 
δ > 0 such that the system is locally well-posed for all initial data V0 ∈ Bs(Ve, δ). Assume also 
that there exists T > 0 such that the unique local solution V satisfies V (t) ∈ Bs(Ve, δ) for all 
0 ≤ t < T . Then, the following estimate holds true for all t ∈ [0, T ),

(1 − 	{he,α}(δ)) ‖ V (t) − Ve ‖2
Xs +C{he,μ}(δ)

t∫
0

‖ ∂xu ‖2
Hs ≤ C{he,α}(δ) ‖ V (0) − Ve ‖2

Xs

+ 	{he,μ,α}(δ)
t∫

0

‖ ∂xu ‖2
Hs
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Besides, if δ is conveniently small, this inequality leads to

‖ V (t) − Ve ‖2
Xs +C{he,μ}(δ)

t∫
0

‖ ∂xu ‖2
Hs ≤ C{he,α}(δ) ‖ V (0) − Ve ‖2

Xs .

Now, we get the global existence theorem as a result. In fact, we have

Theorem 2.5. Let us consider an equilibrium Ve = (he, 0) of (1) and an integer s ≥ 2. Then, 
there exists ν > 0 such that for all initial data V0 = (h0, u0) ∈ Bs(Ve, ν), the solution V exists 
for all time.

In other words, the equilibrium solutions Ve = (he, 0) of (1) are stable.

Proof. Let us first remark that if δ > 0 is small enough, we have

1 − 	{he,α}(δ) >
1

2
and

C{he,μ}(δ) − 	{he,μ,α}(δ)
1 − 	{he,α}(δ)

> 0.

Let us also assume that δ satisfies the assumptions of Proposition 2.4. Then, as long as V ∈
Bs(Ve, δ), it satisfies

‖ V (t) − Ve ‖2
Xs +C{he,μ}(δ) − 	{he,μ,α}(δ)

1 − 	{he,α}(δ)

t∫
0

‖ ∂xu ‖2
Hs ≤ C{g,he,α}(δ) ‖ V0 − Ve ‖2

Xs

Therefore, while V ∈ Bs(Ve, δ),

‖ V (t) − Ve ‖2
Xs ≤ L(δ) ‖ V0 − Ve ‖2

Xs

where L is a function of δ such that lim
δ→0

L(δ) = l > 0. Setting ν ≤ δ such that L(δ)ν ≤ δ/2, we 

have

‖ V (t) − Ve ‖2
Xs ≤ δ/2, while V (t) ∈ Bs(Ve, δ).

Then, considering the uniqueness of the local solution as well as its continuity for the norm Xs

we have the following conclusion: For V (0) ∈ Bs(Ve, ν), the local solution can not go out from 
Bs(Ve, δ/2) for any time. Therefore, the norm of the local solution does not blow up. Hence, the 
unique local solution exists for all time. �
Corollary 2.6 (Asymptotic stability of equilibriums). Let s ≥ 2 be an integer and consider the 
equilibrium Ve = (he, 0) of (1). Then, there exists δ > 0 such that for all initial data V0 = (h0, u0)

in Bs(Ve, δ), the global solution V (x, t) in Xs(R) of (1) converges asymptotically to Ve. In other 
words, lim

t→∞V (x, t) = Ve for all x ∈ R.

Proof. We use a similar logic to the one used in [26] for symmetric entropy dissipative hyper-
bolic systems satisfying the stability condition. We first take the x derivative of the first equation 
of (1), the time integral on [t1, t2] and consider the L2 norm. This leads us to
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‖ ∂xh(t2) − ∂xh(t1) ‖L2=‖
t2∫

t1

∂xx(hu) ‖L2 . (14)

Therefore,

‖ ∂xh(t2) − ∂xh(t1) ‖L2≤ |t2 − t1|
(

sup
t1≤t≤t2

‖ ∂xx(hu) ‖L2

)
.

Considering the fact that ‖ ∂xx(hu) ‖L2 is bounded by Proposition 2.4, there exists C̃ > 0 such 
that we have for all t1, t2 positive,

| ‖ ∂xh(t1) ‖H1×L2 − ‖ ∂xh(t2) ‖L2 | ≤‖ ∂xh(t2) − ∂xh(t1) ‖L2≤ C̃|t2 − t1|.

This means that t �→‖ ∂xh(t) ‖L2 is Lipschitz continuous. On the other hand, it is L2 ([0,∞)) ac-
cording to the estimate of the same proposition together with Proposition 3.12 of Subsection 3.3. 
Therefore, ‖ ∂xh(t) ‖L2 converges to 0 at the limit t → ∞.

Let us now consider the second equation of (1) which writes [9] also

ut = −u∂xu −L−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
.

Again, we derivate with respect to x, take the [t1, t2] time integral and consider its L2 norm:

‖ ∂xu(t2) − ∂xu(t1) ‖L2=‖
t2∫

t1

∂x

(
−u∂xu −L−1

h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

))
‖L2 .

Therefore,

‖ ∂xu(t2) − ∂xu(t1) ‖L2

≤ |t2 − t1|
(

sup
t1≤t≤t2

‖ ∂x

(
−u∂xu −L−1

h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

))
‖L2

)
.

Considering the fact that ‖ ∂x

(
mL−1

h (m) − 2αh3(∂xL−1
h (m))2 + g

2 h2 − μh∂xu
)

‖L2 is bounded, 
the Lipschitz continuity of t �→‖ ∂xu(t) ‖L2 is concluded. This together with the fact that 
t �→‖ ux(t) ‖L2 is square integrable (according to the estimate of Proposition 2.4), leads to

lim
t→∞ ‖ ∂xu(t) ‖L2= 0.

We just now need to consider Gagliardo–Nirenberg inequality

‖ V (t) − Ve ‖L∞×L∞≤ C ‖ ∂xV (t) ‖
1
2
L2×L2‖ V (t) − Ve ‖

1
2
L2×L2 .

Then, considering the facts that ‖ V (t) − Ve ‖
1
2
L2×L2 is bounded by 

√
δ and ‖ ∂xV (t) ‖

1
2
L2×L2

converges to 0, the uniform convergence of V (x, t) to Ve is concluded. �



JID:YJDEQ AID:8306 /FLA [m1+; v1.227; Prn:30/03/2016; 14:21] P.11 (1-35)

D. Kazerani / J. Differential Equations ••• (••••) •••–••• 11
Remark 2.7. In addition to the asymptotic stability of constant solutions, the question of de-
cay rates naturally arises. This point has been studied in [25] for linear symmetric systems of 
hyperbolic–parabolic type, by means of Fourier techniques in the frame of an energy method. 
Then, the result is used in [17] for the linearized symmetric hyperbolic–parabolic system to ob-
tain a polynomial decay rate for the non-linear equation. The study of decay rates of linearized 
Green–Naghdi equations with viscosity, seems to be necessary to obtain a decay rate for the 
non-linear system and beyonds the scope of this work.

3. A priori estimates

The goal of this part is to obtain some a priori estimates of (1) similar to the estimate obtained 
in [14,26,24,17] for hyperbolic systems. To do so, we use the Hamiltonian dissipation to find a 0th

order estimate. We then take the �th order derivative of the symmetric equation and consider the 
scalar product with the �th order spatial derivative of the solution for all 1 ≤ � ≤ s. Then, using 
the properties of the operators A0(V ) and A1(V ), especially the coercivity of A0(V ) and their 
symmetry, we get a �th order estimate for the solution V ∈ Bs(Ve, δ). Then, in Subsection 3.3, 
we get an estimation of 

∫ T

0 ‖ ∂�
xh ‖2

L2 for all 1 ≤ � ≤ s which together with the first estimates 
leads us to Proposition 2.4. These estimates are obtained by acting a hollow real matrix on the 
system. The equilibrium Ve we consider in all this section is of the form Ve = (he, 0) and s is an 
integer equal or greater than 2.

3.1. Estimate in X0

System (1) admits a X0 estimation which is obtained by using the dissipation of the inte-
gral Hhe,0 of the relative energy Ehe,0 defined in Section 1. In fact, the following proposition 
holds true.

Proposition 3.1. Let δ, t > 0 be small and V0 ∈ Bs(Ve, δ) such that System (1) admits a unique 
solution (h, u) ∈ C([0, t], Xs(R)), with h uniformly in time, strictly positively bounded by be-
low.3 Then,

‖ u(t) ‖2
H1≤ Hhe,0(h0, u0)

min{infx∈R h(t)/2, α infx∈R h3(t)/2} , (15)

and

‖ h(t) − he ‖2
L2≤ 2

g
Hhe,0(h0, u0) (16)

Proof. We take the spatial integral of the both sides of the relative energy equality (3) with 
ue = 0. On the other hand, (h, u) ∈ (Hs(R) +he) ×H

s+1(R) and s ≥ 2. Therefore, an integration 
by part leads us to the dissipation of the Hamiltonian Hhe,0:

d

dt
Hhe,0(h,u) = −μ

∫
R

h(∂xu)2 ≤ 0.

3 The existence of such δ and t is guaranteed by Theorem 2.1 and Corollary 2.2.
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In other words,

Hhe,0(h(t), u(t)) −Hhe,0(h(0), u(0)) = −μ

t∫
0

∫
R

h(∂xu)2 ≤ 0. (17)

Thus,

Hhe,0(h(t), u(t)) ≤ Hhe,0(h(0), u(0)). (18)

On the other hand, Hhe,0 is defined by

Hhe,0(h,u) =
∫
R

g(h − he)
2/2 + hu2/2 + αh3(∂xu)2/2,

and h is strictly positively bounded by below. Therefore,

g

2
‖ h(t) − he ‖2

L2 +
(

inf
x∈Rh(t)

)
‖ u ‖2

L2 +α

(
inf
x∈Rh(t)

)3

‖ ∂xu ‖2
L2≤Hhe,0(h(t), u(t)).

This together with (18) gives us the inequalities of the proposition. �
Let us also remark that the Hamiltonian Hhe,0 is locally X0-quadratic on Ve, in the sense that 

the following relation is satisfied for s ≥ 2 and δ > 0 small:

C{he,α}(δ) ‖ V − Ve ‖2
X0≤Hhe,0(h,u) ≤ C{he,α}(δ) ‖ V − Ve ‖2

X0 ∀V ∈ Bs(Ve, δ).

This together with the dissipation equality (17) of Hhe,0 gives us the following 0th order 
estimate around equilibriums.

Proposition 3.2. Let s ≥ 2 be an integer and Ve be an equilibrium of (1). Let us also assume that 
there exist δ, T > 0 such that the solution V of the system satisfies

V (t) ∈ Bs(Ve, δ) ∀t ∈ [0, T ).

Then, the following estimate holds true for such time:

‖ V (t) − Ve ‖2
X0 +C{he,μ,α}(δ)

t∫
0

‖ ∂xu ‖2
L2≤ C{he,α}(δ) ‖ V (0) − Ve ‖2

X0 . (19)

3.2. Estimate in Xs

The main objective of this part is to obtain a convenient a priori estimate of �th order, for 
all integer � ∈ [1, s]. This is done by a similar strategy as for hyperbolic systems. This analogy
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works here due to the structure of differential operators A0 and A1. More precisely, the operator 
A0 writes

A0(V ) =
(

g 0
0 h

)
+

(−3αh(∂xu)2 0
0 0

)
+

(
0 0
0 −α∂x(h

3∂x•)

)
. (20)

Likewise, A1(V ) writes

A1(V ) =
(

gu gh

gh hu

)
+

(−3αhu(∂xu)2 −3αh2(∂xu)2

−3αh2(∂xu)2 2α∂x(h
3∂xu)

)
+

(
0 0
0 −α∂x(h

3u∂x•)

)
. (21)

Indeed, the first term of the right-hand sides of (20) and (21) gives the hyperbolic part of the 
system i.e. the part which corresponds to Saint-Venant system. Therefore, it can be treated exactly 
as in [17]. The other terms need a specific treatment but they are not an obstacle to the result. 
On the one hand, this is due to the fact that the space of local well-posedness for u, is one order 
higher in regularity compared to the case of the hyperbolic Saint-Venant system. On the other 
hand, the conservative structure of the last term of (20) and (21) plays an important role in the 
treatment of the third order terms of (1), responsible for dispersion. For this reason, all along this 
subsection, different terms of operators A1

0∂x and A2
0∂

2
x (resp. A1

1∂x and A2
1∂

2
x ), introduced by 

(10) (resp. by (11)), are matched together to form the conservative term presented in the last part 
of the right hand side of (20) (resp. (21)).

We start the computations by taking the �th derivative of (7) with respect to the spatial variable, 
taking the scalar product with ∂�

xV and integrating on [0, T ) ×R:

T∫
0

∫
R

∂�
x(A0(V )∂tV ) · ∂�

xV +
T∫

0

∫
R

∂�
x(A1(V )∂xV ) · ∂�

xV = μ

T∫
0

∫
R

∂�+1
x (h∂xu)∂�

xu (22)

Then, using basic computations and the Leibniz formula, we remark that4∫
R

∂�
x(A0(V )∂tV ) · ∂�

xV = 1

2

d

dt

∫
R

A0(V )∂�
xV · ∂�

xV − 1

2

∫
R

(
A0

0t +A1
0t ∂x +A2

0t ∂
2
x

)
∂�
xV · ∂�

xV

+
�∑

i=1

(
�

i

)∫
R

(
A0

0i +A1
0i∂x +A2

0i∂
2
x

)
∂t ∂

�−i
x V · ∂�

xV,

where, Aj

0i is another notation for ∂i
x(A

j

0(V )), the ith spatial derivative of Aj

0(V ), for all j ∈
{0, 1, 2} and for any i ∈ N.

On the other hand, the integration by part and the symmetry of A1 imply that∫
R

∂�
x(A1(V )∂xV ) · ∂�

xV =
(

� − 1

2

)∫
R

(
A0

1x +A1
1x∂x +A2

1x∂
2
x

)
∂�
xV · ∂�

xV

+
�∑

i=2

(
�

i

)∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂�−i+1
x V · ∂�

xV .

4 For sake of simplicity, we use sometimes A1 or A0 instead of A1(V ) or A0(V ).
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We have also

∫
R

∂�+1
x (h∂xu)∂�

xu = −
∫
R

h(∂�+1
x u)2 −

�∑
i=1

(
�

i

)∫
R

(∂i
xh)(∂�−i+1

x u)(∂�+1
x u).

Hence, (22) becomes

∫
R

A0(V )∂�
xV (T ) · ∂�

xV (T ) + 2μ

T∫
0

∫
R

h(∂�+1
x u)2 =

∫
R

A0(V )∂�
xV (0) · ∂�

xV (0)

− 2
�∑

i=1

(
�

i

) T∫
0

∫
R

(
A0

0i +A1
0i∂x +A2

0i∂
2
x

)
∂t ∂

�−i
x V · ∂�

xV

+
T∫

0

∫
R

(
A0

0t +A1
0t ∂x +A2

0t ∂
2
x

)
∂�
xV · ∂�

xV

+ (1 − 2�)

T∫
0

∫
R

(
A0

1x +A1
1x∂x +A2

1x∂
2
x

)
∂�
xV · ∂�

xV

− 2
�∑

i=2

(
�

i

) T∫
0

∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂�−i+1
x V · ∂�

xV

− 2μ

�∑
i=1

(
�

i

)∫
R

(∂i
xh)(∂�−i+1

x u)(∂�+1
x u). (23)

The two following lemmas present two results which are used several times in the rest of this 
section. The first one is on the X0-quadraticity of A0(V ):

Lemma 3.3. There exists δ > 0 such that A0(V ) is quadratic on Bs(Ve, δ). In other words, we 
have for all V = (h, u) ∈ Bs(Ve, δ) and all f = (f1, f2) ∈ X

0(R),

C{he}(δ) ‖ f ‖2
X0≤

∫
R

A0(V )f · f ≤ C{he}(δ) ‖ f ‖2
X0 .

Proof. The expression (8) of A0(V ) leads to

∫
R

A0(V )f · f =
∫
R

(g − 3αh(∂xu)2)f 2
1 + f2Lhf2.

On the other hand, Gagliardo–Nirenberg inequality (12) leads to

‖ h − he ‖L∞≤ Cδ,
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or equivalently to

he − Cδ ≤ h(x) ≤ he + Cδ ∀x ∈ R.

We also apply this inequality to ∂xu to get

‖ ∂xu ‖L∞≤ Cδ,

or equivalently

−Cδ ≤ ∂xu(x) ≤ Cδ ∀x ∈ R.

Thus,

−3αh(∂xu)2 ≥ −3α (he + Cδ) (C2δ2),

and, if δ is conveniently small,

−3αh(∂xu)2 ≥ −g

2
.

Consequently

g ‖ f1 ‖2
L2

2
+ min{he − δ,α(he − δ)3} ‖ f2 ‖2

H1≤
∫
R

A0(V )f · f

≤ g ‖ f1 ‖2
L2 +max{he + δ,α(he + δ)3} ‖ f2 ‖2

H1 . �
The second lemma is on the smallness of the L∞ norm (in time and space) of ∂th and ∂tu and 

some of their spatial derivatives as long as V ∈ Bs(Ve, δ). Actually, the following lemma holds 
true.

Lemma 3.4. Let us assume that the solution V (t) of (1) belongs to Bs(Ve, δ) for all t ∈ [0, T ). 
Then, we have for all 0 ≤ j ≤ s − 2 and all 0 ≤ l ≤ s − 1,

lim
δ→0

V ∈B(Ve,δ)

‖ ∂
j
x ∂th ‖L∞= 0, lim

δ→0
V ∈B(Ve,δ)

‖ ∂l
x∂tu ‖L∞= 0. (24)

Moreover, we have for all 2 ≤ k ≤ s,

‖ ∂k
x ∂tu ‖L2≤ C{he,μ,α}(δ)

(‖ ∂xu ‖Hk + ‖ ∂xh ‖Hk−2

)
. (25)

Proof. The first equation of System (1) gives us ∂th = −h∂xu − u∂xh. Therefore,

‖ ∂
j
x ∂th ‖L∞≤‖

j∑
∂i
xh∂

j−i+1
x u ‖L∞ + ‖

j∑
∂i
xu∂

j−i+1
x h ‖L∞≤ 	{he}(δ)
i=0 i=0
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Likewise, the second equation of the system can be written under the following form,

∂tu = −u∂xu −L−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
. (26)

This form can be obtained by applying A0(V )−1 to (7) and coincides with the form suggested in 
[16,19].

On the other hand, Lh : Hm(R) → H
m−2(R) is bounded for all 2 ≤ m ≤ s. This is due to the 

facts that ‖ h − he ‖Hs ≤ δ and δ is small. Indeed,

‖ Lh(u) ‖Hm−2=‖ hu − 3αh2∂xh∂xu − αh3∂2
xu ‖Hm−2≤ C{he,α}(δ) ‖ u ‖Hm .

Therefore, Lh is a linear bijective bounded application from the Banach space Hm(R) to the 
Banach space Hm−2(R). We now use the Banach theorem (see [6] for instance) to conclude that 
L−1

h :Hm−2(R) → H
m(R) is bounded. Thus, there exists C > 0 such that

‖ ∂�
x∂tu ‖L∞ ≤‖ ∂�

x(u∂xu) ‖L∞ + ‖ ∂�
xL−1

h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
‖L∞

≤ 	(δ) + C ‖ ∂l
xL−1

h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
‖H1

≤ 	(δ) + C ‖ L−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
‖H�+1

≤ 	(δ) + C{he,α}(δ) ‖ ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
‖H�−1

≤ 	(δ) + C{he,α}(δ) ‖ ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
‖Hs−2

≤ 	(δ) + C{he,α}(δ)	{he,α,μ}(δ) ≤ 	{he,α,μ}(δ).

To prove (25), we use similar computations. Indeed,

‖ ∂k
x ∂tu ‖L2 ≤‖ ∂k

x (u∂xu) ‖L2 + ‖ ∂k
xL−1

h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
‖L2

≤
k∑

i=0

‖ ∂k−i
x u ∂i+1

x u ‖L2 + ‖ L−1
h ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
‖Hk

≤ 	(δ) ‖ ∂xu ‖Hk + ‖ ∂x

(
gh2/2 + 2αh3(∂xu)2 − μh∂xu

)
‖Hk−2

≤ 	(δ) ‖ ∂xu ‖Hk +C{he}(δ) ‖ ∂xh ‖Hk−2 + (
	{α,he}(δ) + C{he,μ}(δ)

) ‖ ∂xu ‖Hk−2

≤ C{he,μ,α}(δ)
(‖ ∂xu ‖Hk + ‖ ∂xh ‖Hk−2

)
. �

We are now able to prove the following lemma which is the key step to achieve the appropriate 
�th order estimate.

Lemma 3.5. Let us consider the solution V of (7) and assume that it belongs to Bs(Ve, δ) for 
some δ > 0. Then, the following estimates hold true for all integer 1 ≤ � ≤ s,
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∣∣∣∣∣∣
�∑

i=1

(
�

i

)∫
R

A0
0i∂

�−i
x ∂tV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α,μ}(δ)

⎛
⎝�+1∑

j=1

‖ ∂
j
x u ‖2

L2 +
�∑

j=1

‖ ∂
j
x h ‖2

L2

⎞
⎠ . (27)

∣∣∣∣∣∣
∫
R

A0
0t ∂

�
xV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α,μ}(δ)
(
‖ ∂�

xu ‖2
L2 + ‖ ∂�

xh ‖2
L2

)
. (28)

∣∣∣∣∣∣
�∑

i=1

(
�

i

)∫
R

(
A1

0i∂x + A2
0i∂

2
x

)
∂�−i
x ∂tV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α,μ}(δ)
(

�∑
i=1

‖ ∂i
xh ‖2

L2 + ‖ ∂xu ‖2
H�

)
.

(29)∣∣∣∣∣∣
∫
R

(
A1

0t ∂x + A2
0t ∂

2
x

)
∂�
xV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α,μ}(δ)
(
‖ ∂�+1

x u ‖2
L2

)
. (30)

∣∣∣∣∣∣
∫
R

(
A0

1x +A1
1x∂x +A2

1x∂
2
x

)
∂�
xV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α}(δ)
(
‖ ∂�

xh ‖2
L2 + ‖ ∂�

xu ‖2
H1

)
. (31)

∣∣∣∣∣∣
�∑

i=2

(
�

i

)∫
R

(
A0

1i +A1
1i∂x +A2

1i∂
2
x

)
∂�−i+1
x V · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α}(δ)
(
‖ ∂xh ‖2

H�−1 + ‖ ∂xu ‖2
H�

)
.

(32)

Proof. Let us first prove (27). The expression of A0
0 gives us the following equality for all 1 ≤

i ≤ �, ∫
R

A0
0i∂

�−i
x ∂tV · ∂�

xV = −3α∂i
x(h(∂xu)2) ∂�−i

x ∂th ∂�
xh + ∂i

xh ∂�−i
x ∂tu ∂�

xu.

Therefore,∣∣∣∣∣∣
∫
R

A0
0i∂

�−i
x ∂tV · ∂�

xV

∣∣∣∣∣∣ ≤ ‖ ∂�−i
x ∂tu ‖L∞

2

(
‖ ∂i

xh ‖2
L2 + ‖ ∂�

xu ‖2
L2

)

+ ‖ ∂�−i
x ∂th ‖L∞

⎛
⎝‖ ∂�

xh ‖2
L2 + ‖ 3α∂i

xh (∂xu)2 ‖2
L2 + ‖ 6α

i−1∑
j=0

∂
j
x h ∂xu ∂

i−j+1
x u ‖2

L2

⎞
⎠

≤ max

{‖ ∂�−i
x ∂tu ‖L∞

2
,Che,α(δ) ‖ ∂�−i

x ∂th ‖L∞
}(

‖ ∂xh ‖2
H�−1 + ‖ ∂xu ‖2

H�

)
.

Then, considering (24), the proof of (27) is complete.
We are now going to prove (28). To do so, we should first remark that

∫
A0

0t ∂
�
xV · ∂�

xV = −3α∂t

(
h(∂xu)2

)
(∂�

xh)2 + ht (∂
�
xu)2.
R
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Then,

∣∣∣∣∣∣
∫
R

A0
0t ∂

�
xV · ∂�

xV

∣∣∣∣∣∣ ≤‖ 3α∂t

(
h(∂xu)2

)
‖L∞‖ ∂�

xh ‖2
L2 + ‖ ht ‖L∞‖ ∂�

xu ‖2
L2 .

Now, we use (24) to get the result.
The first step to prove (29) is to notice that we have for all 1 ≤ i ≤ �

∫
R

(
A1

0i∂x +A2
0i∂

2
x

)
∂�−i
x ∂tV · ∂�

xV = α

∫
R

(∂i
xh

3) ∂�+1
x u (∂�−i+1

x ∂tu).

Hence we have for all 2 ≤ i ≤ �,∣∣∣∣∣∣
∫
R

(
A1

0i∂x +A2
0i∂

2
x

)
∂�−i
x ∂tV · ∂�

xV

∣∣∣∣∣∣ ≤ ‖ α∂�−i+1
x ∂tu ‖L∞

2

(
‖ ∂i

xh
3 ‖2

L2 + ‖ ∂�+1
x u ‖2

L2

)

≤ ‖ α∂�−i+1
x ∂tu ‖L∞

2

⎛
⎝C{he}(δ)

i∑
j=1

‖ ∂i
xh ‖2

L2 + ‖ ∂�+1
x u ‖2

L2

⎞
⎠ .

Considering (24), we obtain the estimate on the terms where 2 ≤ i ≤ �. It remains to consider the 
case i = 1. This leads to∫

R

(
A1

01∂x +A2
01∂

2
x

)
∂�−1
x ∂tV · ∂�

xV = α

∫
R

(∂xh
3) ∂�+1

x u (∂�
x∂tu).

Therefore,∣∣∣∣∣∣
∫
R

(
A1

01∂x +A2
01∂

2
x

)
∂�−1
x ∂tV · ∂�

xV

∣∣∣∣∣∣ ≤ ‖ α∂x(h
3) ‖L∞

2

(
‖ ∂�

x∂tu ‖2
L2 + ‖ ∂�+1

x u ‖2
L2

)

≤ 	{α,he}(δ)
(
‖ ∂�

x∂tu ‖2
L2 + ‖ ∂�+1

x u ‖2
L2

)
.

We now use (25) and find∣∣∣∣∣∣
∫
R

(
A1

01∂x +A2
01∂

2
x

)
∂�−1
x ∂tV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α,μ}(δ)
(
‖ ∂xh ‖2

H�−2 + ‖ ∂xu ‖2
H�

)
.

In order to prove (30), we first remark that∫
R

(
A1

0t ∂x +A2
0t ∂

2
x

)
∂�
xV · ∂�

xV =
∫
R

3αh2∂th(∂�+1
x u)2.
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Again, using (24), we find∣∣∣∣∣∣
∫
R

(
A1

0t ∂x +A2
0t ∂

2
x

)
∂�
xV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α}(δ) ‖ ∂�+1
x u ‖2

L2 .

To prove (31), we use an integration by part:∫
R

(
A1

1x∂x +A2
1x∂

2
x

)
∂�
xV · ∂�

xV =
∫
R

−α∂2
x (h3u)∂�+1

x u∂�
xu − α∂x(h

3u)∂�+2
x u∂�

xu

=
∫
R

−α∂x

(
∂x(h

3u)∂�+1
x u

)
∂�+1
x u =

∫
R

α∂x(h
3u)(∂�+1

x u)2.

Hence, ∣∣∣∣∣∣
∫
R

(
A1

1x∂x +A2
1x∂

2
x

)
∂�
xV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α}(δ) ‖ ∂�+1
x u ‖2

L2 .

We have also∫
R

A0
1x∂

�
xV · ∂�

xV =
∫
R

∂x

(
gu − 3αhu(∂xu)2

)
(∂�

xh)2 + 2
∫
R

∂x

(
gh − 3αh2(∂xu)2

)
∂�
xh ∂�

xu

+
∫
R

∂x

(
hu + 2α∂x(h

3∂xu)
)

(∂�
xu)2.

Therefore,∫
R

A0
1x∂

�
xV · ∂�

xV =
∫
R

∂x

(
gu − 3αhu(∂xu)2

)
(∂�

xh)2 + 2
∫
R

∂x

(
gh − 3αh2(∂xu)2

)
∂�
xh ∂�

xu

− 2
∫
R

(
hu + 2α∂x(h

3∂xu)
)

∂�
xu ∂�+1

x u.

Then, ∣∣∣∣∣∣
∫
R

A0
1x∂

�
xV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α}(δ)
(
‖ ∂�

xh ‖2
L2 + ‖ ∂�

xh ‖2
H1

)
.

The last estimate (32) is just a consequence of the following fact which holds true for all 
2 ≤ i ≤ �. It is due to the structure of A1

1(V ) and A2
1(V ) together with an integration by part:

∫ (
A1

1i∂x +A2
1i∂

2
x

)
∂�−i+1
x V · ∂�

xV = α

∫
(∂i

x(h
3u)) ∂�−i+2

x u (∂�+1
x u).
R R
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Hence, as long as V ∈ Bs(Ve, δ) and 2 ≤ i ≤ � − 1,∣∣∣∣∣∣
∫
R

(
A1

1i∂x +A2
1i∂

2
x

)
∂�−i+1
x V · ∂�

xV

∣∣∣∣∣∣ ≤ ‖ α∂i
x(h

3u) ‖L∞

2

(
‖ ∂�−i+2

x u ‖2
L2 + ‖ ∂�+1

x u ‖2
L2

)

≤ 	{he,α}(δ)
(
‖ ∂�−i+2

x u ‖2
L2 + ‖ ∂�+1

x u ‖2
L2

)
.

On the other hand,∫
R

(
A1

1�∂x +A2
1�∂

2
x

)
∂xV · ∂�

xV = α

∫
R

(∂�
x(h3u)) ∂2

xu (∂�+1
x u).

Therefore,∣∣∣∣∣∣
∫
R

(
A1

1�∂x +A2
1�∂

2
x

)
∂xV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{α}(δ)
(
‖ ∂�

x(h3u) ‖2
L2 + ‖ ∂�+1

x u ‖2
L2

)

≤ 	{he,α}(δ)
(
‖ ∂xh ‖2

H�−1 + ‖ ∂xu ‖2
H�

)
.

Let us now treat the remaining terms of the left hand side of the estimate. In fact, we have for 
all 2 ≤ i ≤ � − 2,∣∣∣∣∣∣
∫
R

A0
1i∂

�−i+1
x V · ∂�

xV

∣∣∣∣∣∣ ≤ 2 ‖A0
1i ‖L∞

(
‖ ∂�−i+1

x u ‖2
L2 + ‖ ∂�

xu ‖2
L2 + ‖ ∂�−i+1

x h ‖2
L2 + ‖ ∂�

xh ‖2
L2

)

≤ 	{he,α}(δ)
(
‖ ∂�−i+1

x u ‖2
L2 + ‖ ∂�

xu ‖2
L2 + ‖ ∂�−i+1

x h ‖2
L2 + ‖ ∂�

xh ‖2
L2

)
,

since the structure of A0
1 gives us for all integer i ∈ [2, � − 2],

lim
δ→0

V ∈Bs(Ve,δ)

‖A0
1i ‖L∞= 0.

On the other hand,∣∣∣∣∣∣
∫
R

A0
1(�−1)∂

2
xV · ∂�

xV +A0
1�∂xV · ∂�

xV

∣∣∣∣∣∣
≤ max{‖ ∂�

x(gu − 3αhu(∂xu)2) ‖L∞ ,‖ ∂�−1
x (gu − 3αhu(∂xu)2) ‖L∞}

(
‖ ∂xh ‖2

H1 + ‖ ∂�
xh ‖2

L2

)
+ max{‖ ∂�

x(gh − 3αh2(∂xu)2) ‖L∞ ,‖ ∂�−1
x (gh − 3αh2(∂xu)2) ‖L∞}

(
‖ ∂xh ‖2

H�−1 + ‖ ∂xu ‖2
H�−1

)

+
∣∣∣∣∣∣
∫
R

∂x

(
∂�−1
x (hu + 2α∂x(h

3∂xu)) ∂xu
)

∂�
xu

∣∣∣∣∣∣ .
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Therefore,∣∣∣∣∣∣
∫
R

A0
1(�−1)∂

2
xV · ∂�

xV +A0
1�∂xV · ∂�

xV

∣∣∣∣∣∣ ≤ 	{he,α}(δ)
(
‖ ∂xh ‖2

H�−1 + ‖ ∂xu ‖2
H�−1

)

+
∣∣∣∣∣∣
∫
R

∂�−1
x (hu + 2α∂x(h

3∂xu)) ∂xu ∂�+1
x u

∣∣∣∣∣∣
≤ 	{he,α}(δ)

(
‖ ∂xh ‖2

H�−1 + ‖ ∂xu ‖2
H�

)
.

Hence, estimate (32) is totally proved. �
This lemma together with the coercivity of A0 and relation (23) leads us to the following 

propositions.

Proposition 3.6. Let us assume that there exists δ > 0, T > 0 such that the solution V of (1)
satisfies V (t) ∈ Bs(Ve, δ) for all t ∈ [0, T ). Then, we have for all 1 ≤ � ≤ s,

‖ ∂�
x (V (t) − Ve) ‖2

X0 +C{he,μ}(δ)
t∫

0

‖ ∂�+1
x u ‖2

L2 ≤ C{he,α}(δ) ‖ ∂�
x (V (0) − Ve) ‖2

X0

+ 	{he,α,μ}(δ)
t∫

0

‖ ∂xV ‖2
X�−1 .

Then, considering this proposition together with the 0th order estimate of Subsection 3.1, 
we reach the final primary estimate which is given in the following proposition. This estimate 
together with the result of the next part enables us to prove the main theorem.

Proposition 3.7. Let us assume that there exists δ > 0, T > 0 such that the solution V of (1)
satisfies V (t) ∈ Bs(Ve, δ) for all t ∈ [0, T ). Then, we have for such T ,

‖ V (t) − Ve ‖2
Xs +C{he,μ}(δ)

t∫
0

‖ ∂xu ‖2
Hs ≤ C{he,α}(δ) ‖ V (0) − Ve ‖2

Xs

+ 	{he,μ}(δ)
t∫

0

‖ ∂xV ‖2
Xs−1 . (33)

3.3. Estimate on 
∫ t

0 ‖ ∂s
xh ‖2

L2

This part is the final step to prove Proposition 2.4. In fact, we need to find a convenient 
estimate on 

∫ t

0 ‖ ∂xV ‖2
Xs−1 to be able to control the right hand side of (33). This idea has been 

used in [26,14] and [24]. Actually, Estimate (33) has a similar appearance as the estimate found 
in these references for symmetric hyperbolic systems with dissipative terms. Then, they use the 
Kawashima stability condition to control the norm of spatial derivatives of first components of 
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the solution. Let us note that, as in the case of hyperbolic system, we do not need to control the 
norm of second components. This is due to the presence of the second term of the left hand side 
of inequality (33). Therefore, what we need to control in the case of Green–Naghdi equation, is 
the time integral of the norm of the spatial derivative of h. Nevertheless, the main difficulty is the 
generalization of the Kawashima–Shizuta condition. Actually, we have not been able to find any 
operator version of the Kawashima–Shizuta condition for Green–Naghdi equation. However, we 
are going to see that it is possible to find an appropriate upper bound for 

∫ t

0 ‖ ∂s
xh ‖2

L2 by using 
a slightly different technique from the hyperbolic case. To do so, we consider the 2 × 2 hollow 
real matrix K(Ve) defined by

K(Ve) =
(

0 1
−he

g
0

)
. (34)

As we will see further, the reason why we consider this matrix, is the fact that K(Ve)A1(Ve)

is a diagonal real matrix with a strictly positive first component. In other words, there exists a 

matrix of the form B =
(

0 0
0 L

)
with L ≥ 0 such that K(Ve)A1(Ve) + B is definite positive. 

This enables us, as in [26,14], to get an upper bound for 
∫ t

0 ‖ ∂s
xh ‖2

L2 . This upper bound is conve-
nient even though, unlike the case of hyperbolic systems, K(Ve)A0(Ve) is not a skew-symmetric 
operator. This is due to the fact that we can extract from K(Ve)A0(V ), a part which plays a quite 
similar role to a skew-symmetric operator such that the norm of the remaining part is controllable 
in a suitable manner. So, let us write (7) under the form

A0(V )∂tV +A1(Ve)∂xV = H(V ), (35)

where H(V ) is defined by

H(V ) = [A1(Ve) −A1(V )] ∂xV +
(

0
μ∂x(h∂xu)

)
. (36)

We then take the action of the operator K(Ve)∂
�−1
x on (35) and take the scalar product with ∂�

xV . 
This leads us to

T∫
0

∫
R

K(Ve)∂
�−1
x (A0(V )∂tV ) · ∂�

xV +
T∫

0

∫
R

K(Ve)A1(Ve)∂
�
xV · ∂�

xV

=
T∫

0

∫
R

K(Ve)∂
�−1
x H(V ) · ∂�

xV,

or equivalently to

T∫
0

∫
R

K(Ve)A1(Ve)∂
�
xV · ∂�

xV =
T∫

0

∫
R

K(Ve)∂
�−1
x H(V ) · ∂�

xV

−
T∫

0

∫
R

K(Ve)∂
�−1
x (A0(V )∂tV ) · ∂�

xV . (37)
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Let us note that

K(Ve)A1(Ve) =
(

ghe 0
0 −h2

e

)
. (38)

Hence,

T∫
0

∫
R

K(Ve)A1(Ve)∂
�
xV · ∂�

xV =
T∫

0

∫
R

(
ghe(∂

�
xh)2 − h2

e(∂
�
xu)2

)

= ghe

T∫
0

‖ ∂�
xh ‖2

L2 −h2
e

T∫
0

‖ ∂�
xu ‖2

L2 . (39)

Gathering (37) and (39), we get

g

T∫
0

‖ ∂�
xh ‖2

L2= he

T∫
0

‖ ∂�
xu ‖2

L2 + 1

he

T∫
0

∫
R

∂�−1
x (K(Ve)H(V ) − K(Ve)A0(V )∂tV ) · ∂�

xV .

(40)

It is now sufficient to give a convenient estimate on the last term of (40). This estimation is 
given in the following lemma.

Lemma 3.8. Let Ve = (he, 0) be an equilibrium (with he > 0) and δ > 0 be small such that 
System (1) admits a local solution V ∈ C0 ([0, T );Xs(R)) for initial data in Bs(Ve, δ). Then, as 
long as V remains in Bs(Ve, δ), we have for all 1 ≤ � ≤ s,∫

R

K(Ve)∂
�−1
x (H(V ) −A0(V )∂tV ) · ∂�

xV =
∫
R

∂t

(
∂�−1
x Lhu · ∂�

xh
)

+ μ∂�
x(h∂xu)∂�

xh

+ R[h,u], (41)

where ∣∣∣∣∣∣
∫
R

R[h,u]
∣∣∣∣∣∣ ≤ 	{he,α}(δ) ‖ ∂xh ‖2

H�−1 +C{he,α}(δ) ‖ ∂xu ‖2
H� . (42)

Proof. First of all, we look at the first term of the left hand side of (41). To do so, we first remark 
that

A1(Ve) −A1(V ) =
(

−gu + 3αhu(∂xu)2 g(he − h) + 3αh2(∂xu)2

g(he − h) + 3αh2(∂xu)2 −hu − 2α∂x(h
3∂xu) + α∂x(h

3u∂x())

)
.

(43)

Thus, the definition (36) of H(V ) leads to
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K(Ve)∂
�−1
x H(V ) · ∂�

xV = μ∂�
x(h∂xu)∂�

xh + ∂�−1
x

(
g(he − h)(∂xh) + 3αh2(∂xu)2∂xh

)
∂�
xh

+ ∂�−1
x

(
heu∂xh − 3αhe

g
hu∂xh(∂xu)2

)
∂�
xu − ∂�−1

x

(
he(he − h)(∂xu) + 3αhe

g
h2(∂xu)3

)
∂�
xu

− ∂�−1
x

(
hu∂xu + 2α∂x(h

3∂xu)∂xu
)

∂�
xh + α∂�

x

(
h3u∂2

xu
)

∂�
xh . (44)

Let us remark here that all of the non-boxed terms of (44) are straightforwardly controllable as 
in (42).

We now consider the second term of the left hand side of (41) and observe that

K(Ve)A0(V ) =
(

0 Lh

−he + 3α
g

heh(∂xu)2 0

)
. (45)

Therefore,

K(Ve)∂
�−1
x (A0(V )∂tV ) · ∂�

xV = ∂�−1
x Lh(∂tu) · ∂�

xh + ∂�−1
x

(
3αhe

g
h(∂xu)2∂th − he∂th

)
∂�
xu.

(46)

Now, we need the following lemma to deal with non-straightforwardly controllable term of the 
right hand side of (46).

Lemma 3.9. Assume that (h, f ) ∈ C0([0, T ], Xs(R)) for some T > 0. Then, we have

Lh∂tf = ∂tLhf − f ∂th + 3α∂x

(
h2∂th∂xf

)
. (47)

We now use the lemma to rewrite (46):

K(Ve)∂
�−1
x (A0(V )∂tV ) · ∂�

xV = ∂t

(
∂�−1
x Lhu · ∂�

xh
)

− ∂�−1
x Lhu · ∂t∂

�
xh

− ∂�−1
x (u∂th) · ∂�

xh + 3α∂�
x

(
h2∂th∂xu

)
∂�
xh + ∂�−1

x

(
3αhe

g
h(∂xu)2ht − heht

)
∂�
xu. (48)

We then use the mass conservation equation, ht = −∂x(hu), to find

K(Ve)∂
�−1
x (A0(V )∂tV ) · ∂�

xV = ∂t

(
∂�−1
x Lhu · ∂�

xh
)

+ ∂�−1
x Lhu · ∂�+1

x (hu)

+ ∂�−1
x (u∂x(hu)) · ∂�

xh − 3α∂�
x

(
h2∂x(hu)∂xu

)
∂�
xh

− ∂�−1
x

(
3αhe

g
h(∂xu)2∂x(hu) − he∂x(hu)

)
∂�
xu. (49)

Considering the fact that all of the non-boxed terms of (49) are straightforwardly controllable as 
in (42), we notice that the form (49) of K(Ve)∂

�−1
x (A0(V )∂tV ) · ∂�

xV is very interesting. This 
is due on the one hand to the fact the non-desirable term g∂�

x(h2/2) ∂�
xh is hidden in the boxed 
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time derivative term ∂t

(
∂�−1
x Lhu · ∂�

xh
)
. Therefore, we can easily deal with this term by a time 

integration. On the other hand, as detailed in the following lemma, this formulation gathers the 
other non-straightforwardly controllable term under the boxed term ∂�−1

x Lhu · ∂�+1
x (hu) which 

is cancellable with the boxed term α∂�
x

(
h3u∂2

xu
)
∂�
xh of (44).

Lemma 3.10. Assume that V ∈ Bs(Ve, δ). Then, we have for all 1 ≤ � ≤ s,

∣∣∣∣∣∣
∫
R

α∂�
x

(
h3u∂2

xu
)

∂�
xh − ∂�−1

x Lhu · ∂�+1
x (hu)

∣∣∣∣∣∣ ≤ 	{he,α}(δ) ‖ ∂xh ‖2
H�−1 +C{he,α}(δ) ‖ ∂xu ‖2

H�

(50)

We just now need to consider (44), (49) together with Lemma 3.10 to complete the proof. �
Proof of Lemma 3.10. We first use an integration by part and the definition of Lh to write∫

R

α∂�
x

(
h3u∂2

xu
)

∂�
xh − ∂�−1

x Lhu · ∂�+1
x (hu) =

∫
R

α∂�
x

(
h3u∂2

xu
)

∂�
xh + ∂�

xLhu · ∂�
x(hu)

=
∫
R

α∂�
x

(
h3u∂2

xu
)

∂�
xh + ∂�

x(hu) · ∂�
x(hu) −

∫
R

α∂�+1
x (h3∂xu) · ∂�

x(hu).

Then, we use a simple development to get

∫
R

α∂�
x

(
h3u∂2

xu
)

∂�
xh − ∂�−1

x Lhu · ∂�+1
x (hu) =

∫
R

α ∂�
xh

⎛
⎝ �∑

j=1

∂
j
x (h3u) ∂

�−j+2
x u

⎞
⎠

+
(
∂�
x(hu)

)2 − α∂�
x(hu)

⎛
⎝ �∑

j=1

∂
j
x (h3)∂

�−j+2
x u

⎞
⎠ − α

∫
R

∂�
x(hu) ∂�+1

x (h3)∂xu . (51)

We now see that the term 
∫
R

∂�
x(hu) ∂�+1

x (h3)∂xu may be the only obstacle to the estimate (50). 
However, we can treat this term as following to get the desired estimate. Indeed, we use the fact 
that5

∂�+1
x (h3) = 3h2∂�+1

x h + [∂�
x,3h2]∂xh,

to write∫
R

∂�
x(hu) ∂�+1

x (h3)∂xu = 3
∫
R

∂�
x(hu) h2 ∂�+1

x (h)∂xu + ∂�
x(hu)

(
[∂�

x, h2]∂xh
)

∂xu.

5 As in [26], symbol [∂�
x , A]U represents the commutator of A ∈ H

s (R) and U ∈H
s−1(R). In other words, we have

[∂�
x ,A]U = ∂�

x(AU) − A∂�
xU.
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Likewise, we have

∫
R

∂�
x(hu) ∂�+1

x (h3)∂xu = 3
∫
R

uh2∂xu ∂�
xh ∂�+1

x h + h2∂xu
(
[∂�

x, u]h
)

∂�+1
x h

+ ∂�
x(hu)

(
[∂�

x, h2]∂xh
)

∂xu.

We just now use an integration by part to get

∫
R

∂�
x(hu) ∂�+1

x (h3)∂xu = −3
∫
R

∂x

(
uh2∂xu

)
(∂�

xh)2 + ∂x

(
(h2∂xu

(
[∂�

x, u]h
))

∂�
xh

+ 3
∫
R

∂�
x(hu)

(
[∂�

x, h2]∂xh
)

∂xu.

Therefore,

∣∣∣∣∣∣α
∫
R

∂�
x(hu) ∂�+1

x (h3)∂xu

∣∣∣∣∣∣ ≤ 	{he,α}(δ) ‖ ∂xh ‖2
H�−1 +C{he,α}(δ) ‖ ∂xu ‖2

H� .

This together with (51) leads to

∣∣∣∣∣∣
∫
R

α∂�
x

(
h3u∂2

xu
)

∂�
xh − ∂�−1

x Lhu · ∂�+1
x (hu)

∣∣∣∣∣∣
≤ 	{he,α}(δ) ‖ ∂xh ‖2

H�−1 +C{he,α}(δ) ‖ ∂xu ‖2
H� . �

The last step to get the estimate of Proposition 2.4 is to give an estimate on the first two terms 
of the right hand side of (41). This is done in the following lemma.

Lemma 3.11. Let V = (h, u) be in C0 ([0, T );Xs(R)) and assume that it belongs to Bs(Ve, δ)
for all t ∈ [0, T ). Then, we have for all 1 ≤ � ≤ s,

‖ μ∂�
x(h∂xu)∂�

xh ‖L1≤ 	{μ}(δ) ‖ ∂xV ‖2
X�−1 +C{μ,he}(δ) ‖ ∂�+1

x u ‖2
L2 +g

2
‖ ∂�

xh ‖2
L2 , (52)

and

t∫
0

∫
R

∂t

(
∂�−1
x Lhu · ∂�

xh
)

≤ C{he,α }(δ)
(
‖ u(t) ‖2

H�+1 + ‖ ∂�
xh(t) ‖2

L2

)

+ C{he,α }(δ)
(
‖ u(0) ‖2

H�+1 + ‖ ∂�
xh(0) ‖2

L2

)
. (53)



JID:YJDEQ AID:8306 /FLA [m1+; v1.227; Prn:30/03/2016; 14:21] P.27 (1-35)

D. Kazerani / J. Differential Equations ••• (••••) •••–••• 27
Proof. The first estimate (52) is a consequence of Leibniz formula and the fact that

∣∣∣∂�+1
x u ∂�

xh

∣∣∣ ≤ 2μ(he + δ)

g

(
∂�+1
x u

)2 + g

2μ(he + δ)

(
∂�
xh

)2
.

To prove (53), we use the definition of Lh to write

∣∣∣∂�−1
x Lhu · ∂�

xh

∣∣∣ =
∣∣∣∂�−1

x (hu) · ∂�
xh − α∂�

x(h3∂xu) · ∂�
xh

∣∣∣ .
Then, the estimate is obtained by very basic computations. Indeed,∣∣∣∂�−1

x (hu) · ∂�
xh − α∂�

x(h3∂xu) · ∂�
xh

∣∣∣ ≤
∣∣∣∂�−1

x (hu) · ∂�
xh

∣∣∣ +
∣∣∣α∂�

x(h3∂xu) · ∂�
xh

∣∣∣
On the other hand, we have∣∣∣∂�−1

x (hu) · ∂�
xh

∣∣∣ ≤ C{he}(δ)
(
‖ u ‖2

H�−1 + ‖ ∂�
xh ‖2

L2

)
,

and ∣∣∣α∂�
x(h3∂xu) · ∂�

xh

∣∣∣ ≤ C{he}(δ)
(
‖ ∂xu ‖2

H�−1 + ‖ ∂�
xh ‖2

L2

)
.

Hence, the lemma is proved. �
We now sum (40) for 1 ≤ � ≤ s. This together with (41) and Lemma 3.11 enables us to give 

an estimation on 
∫ T

0 ‖ hx ‖2
Hs−1 :

Proposition 3.12. Let us assume that there exists T > 0 such that the local solution of (1) satisfies 
V (t) ∈ Bs(Ve, δ) for all t ∈ [0, T ). Then, we have,

t∫
0

‖ ∂xh ‖2
Hs−1 ≤ C{he,μ}(δ)

t∫
0

‖ ∂xu ‖2
Hs +C{he,α}(δ)

(
‖ u(t) ‖2

Hs+1 + ‖ ∂xh(t) ‖2
Hs−1

)

+ C{he,α}(δ)
(
‖ u(0) ‖2

Hs+1 + ‖ ∂xh(0) ‖2
Hs−1

)
. (54)

This proposition together with Proposition 3.7 gives the a priori estimate of Proposition 2.4.

Remark 3.13. In this work, α and μ are supposed to be strictly positive. However, we can use 
the same approach and computations for the viscous Saint-Venant system i.e. for α = 0. In this 
case, the system fits the general framework considered in [17] and our approach, as wall as our 
result, is exactly the same. Indeed, the main difference between the case α = 0 (Saint-Venant 
system) and the case α > 0 (Green–Naghdi system) is the space on which the Hamiltonian Hhe,0
and the operator A0(V ) are quadratic: this space is (Hs(R) + he) ×H

s(R) when α = 0 whereas 
it is Xs(R) when α > 0. As a matter of fact, in both cases, the space of quadraticity of Hhe,0
and A0(V ) is the same as the space on which the system is locally well-posed. For this reason, 
instead of the estimate of Proposition 2.4, we find the following estimate
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(1 − 	{he}(δ)) ‖ V (T ) − Ve ‖2
Hs×Hs +C{he,μ}(δ)

T∫
0

‖ ∂xu ‖2
Hs

≤ C{he}(δ) ‖ V (0) − Ve ‖2
Hs×Hs +	{he,μ}(δ)

T∫
0

‖ ux ‖2
Hs ,

which writes for small δ > 0,

‖ V (T ) − Ve ‖2
Hs×Hs +C{he,μ}(δ)

T∫
0

‖ ∂xu ‖2
Hs ≤ C{he}(δ) ‖ V (0) − Ve ‖2

Hs×Hs .

Remark 3.14. The dissipative right hand side term, μ∂x(h∂xu), plays a very important role to 
obtain the stability result in both hyperbolic and dispersive cases. Indeed, it is well-known that 
equilibriums of Saint-Venant system without any dissipative term, are unstable6 (see [8] for in-
stance). Such an instability result does not exist for the Green–Naghdi equations. However, we 
are not able to prove the global existence result if the dissipative term is absent, i.e. if μ = 0. 
More precisely, the presence of the 

∫ T

0 ‖ ∂xu ‖2
Hs term in the left hand side of the estimate of 

Proposition 2.4 is due to the strict positivity of μ. Therefore, this term disappears if μ = 0. This 
means that the estimate of Proposition 2.4 becomes

(1 − 	{he,α}(δ)) ‖ V (T ) − Ve ‖2
Xs ≤ C{he,α}(δ) ‖ V (0) − Ve ‖2

Xs +	{he,α}(δ)
T∫

0

‖ ∂xu ‖2
Hs .

Hence, ‖ V (T ) −Ve ‖2
Xs is not any longer controlled by the norm of the initial data and the global 

existence for small data can not be concluded.

4. Conclusion and perspectives

During this study, we proved the global existence for small data and the asymptotic stability of 
constant solutions of the Green–Naghdi system with a second order viscosity. This result is ob-
tained by generalizing the technique used for symmetric entropy dissipative hyperbolic equations 
thanks to the generalized symmetric structure of the system. The study of the rate of convergence 
to equilibrium is one of the perspectives of this work. [17].

Let us however recall that the result found in this study can not be generalized by this method 
to the Green–Naghdi system with friction −κu (with κ > 0), without the viscosity μu∂x(h∂xu). 
In fact, in absence of this term, the first estimations are not coherent with the estimation of ∫ t

0 ‖ ∂xh ‖2
Hs−1 , in the sense that there are of one order less than the estimation of 

∫ t

0 ‖ ∂xh ‖2
Hs−1 . 

Furthermore, if we add higher order viscous terms (order 4 or more) such as −μ∂2
x (h∂x(h∂xu)), 

we are not able either to generalize the technique used in this work. In fact, in this latter case, 

6 in the sens that in all neighborhood of constant solutions, there exists an initial data for which a shock is created in a 
finite time.
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the order of the first estimations are always less than the order of the estimates of 
∫ t

0 ‖ ∂xh ‖2
Hs−1 , 

with or without −κu + μu∂x(h∂xu). This means that the order 2 seems to be the only order of 
viscosity, our approach can be used for.

One of the other perspectives of this work is to study, in a general frame, the stability of 
equilibriums of locally-wellposed symmetrizable systems with a convenient friction or viscous 
term. In fact, the main difficulty of this generalization is to find the condition which leads to 
convenient estimates on the time integral of the spatial derivative of the solution. Let us note that 
in the case of hyperbolic systems, there are other equivalent formulations of the Kawashima–
Shizuta condition [24,17] which may be more convenient for the generalization. One of these 
formulations for hyperbolic systems is the emptiness of the intersection of the eigenspaces of the 
symmetric positive definite matrix (the one equivalent to A0) and the symmetric matrix (the one 
equivalent to A1) with the kernel of the viscosity matrix at equilibriums. It is also interesting to 
mention that the Kawashima–Shizuta condition is not sharp for hyperbolic systems (see [22] or 
[4] for instance). A generalization of less sharp conditions may be another way to follow. The 
answer to this question may let us for instance, investigate the stability of equilibriums of 2D 
Green–Naghdi system. Let us recall that A0(V ) in 2-dimensional case is given by [18]

A0(V ) =
⎛
⎝g − 3αh(div(u, v))2 0 0

0 h − α∂x(h
3∂x) −α∂x(h

3∂y)

0 −α∂y(h
3∂x) h − α∂y(h

3∂y)

⎞
⎠

where u (respectively v) represents the vertically averaged x-component (resp. y-component) of 
the speed. In this case, A0(V ) is quadratic near equilibriums, for the norm ‖ . ‖X0 defined by

‖ f ‖2
X0=‖ f ‖2

L2 + ‖ div(f ) ‖2
L2 .

This is also the 0th order norm of the local well-posedness space of the 2-dimensional system [1]. 
Indeed, the symmetric structure is coherent with the well-posedness space.
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Appendix A. Special symmetric structure

In this section, we consider a system of the form

∂tW + ∂xF (W) = 0. (55)

The unknown W is supposed to belong to C([0, T ); X ) for some T > 0 where X is a Banach 
subspace of continuous functions of L2(R, RN) converging to 0 at infinity. We also assume that 
the derivative of all elements of X belongs to X . Additionally, F is not anymore a function of RN

but a smooth application defined from X to X . We also assume that (55) is a general Godunov 
system [10,18]. Therefore there exists a strictly convex functional H defined on a convex subset 
� of X such that δ2H(W)DF(W) is symmetric. Under theses assumptions, System (55) is 
symmetrizable under any change of unknown (see [18] for more details).
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Proposition A.1. Let us consider the decomposition W = (U, V ) of the unknown. Assume also 
that the application

(U,V ) �→ (U, δVH(U, .))

is a diffeomorphism. Then, (55) is written under the unknown w = (U, δVH(W)), as following

A0(w)∂tw +A1(w)∂xw = 0. (56)

Moreover, A0(w) = DwW�(w) δ2
WH(W) DwW(w) is a symmetric definite positive bloc diago-

nal operator and A1(w) = DwW�(w) δ2
WH(W) DWF(W) DwW(w) is a symmetric one.

Proof. Let us set u = U and v = δVH(W). Therefore w = (u, v). It is easy to check that we 
obtain (56) by acting DwW�(w)δ2H(w) on System (55). Let us now remark that

DwW =
(

1 0
DuV DvV

)
,

and

δ2
WH(W) =

(
δ2
UH(W) δ2

V UH(W)

δ2
UVH(W) δ2

VH(W)

)
.

Hence,

A0(w) =(
δ2
UH(W) + δ2

V UH(W) DuV + (DuV )T δ2
UV H(W) + (DuV )T δ2

V H(W) DuV δ2
V UH(W) DvV + (DuV )T δ2

V H(W)DvV

(DvV )T δ2
UV H(W) + (DvV )T δ2

V H(W)DuV (DvV )T δ2
V H(W) DvV

)
.

Then, A0(w) is bloc diagonal considering the fact that

(DvV )T δ2
UVH(W) + (DvV )T δ2

VH(W) DuV = 0.

Indeed, v = δVH(W) and u = U give us

(DvV )T δ2
UVH(W) + (DvV )T δ2

VH(W) DuV = (DvV )T DUv + (DvV )T DV v DuV

= (DvV )T DUv DuU + (DvV )T DV v DuV = (DvV )T (DUv DuU + DV v DuV )

= (DvV )T Duv = 0. �
Let us now add a right hand side term of the following form to (55)

{
∂tU + ∂xF1(U) = 0,

∂tV + ∂xF2(V ) = q(W),
(57)

where q is a smooth application of W and (U, V ) is a decomposition of W satisfying the as-
sumptions of Proposition A.1. Again, we act DwW�(w)δ2H(w) on System (55) to find
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A0(w)∂tw +A1(w)∂xw = G(w),

with

G(w) = (DwW)T δ2
WH(W)Q(W).

We are now going to see that Q(W) = (0, q(W)) is an eigenvector for the eigenvalue 1 of 
(DwW)T δ2

WH(W). In fact, the following proposition holds true.

Proposition A.2. The right hand side term G(w) is equal to Q(W).

Proof. We have by assumptions

G(W) = (DwW)T δ2
WH(W)Q(W) =

(
δ2
V UH q(W) + (DuV )T δ2

VH q(W)

(DvV )T δ2
VH q(W)

)
.

Considering the fact that the first components (associated to U ) of G(W) are the same as the up 
non-diagonal bloc of the operator A0(w) considered in the proof of Proposition A.1 acting on 
q(W), these components vanish. On the other hand,

(DvV )T δ2
VH q(W) = (DvV )T (δ2

VH)T q(W) = (DvV )T (DV v)T q(W)

= (DV v DvV )T q(W) = (DV v (DV v)−1)T q(W) = q(W). �
Appendix B. Local well-posedness

Let us first note that there exists 0 < δ < he such that A0(V ) is invertible for all V ∈ Bs(Ve, δ). 
Then, consider the associated linear problem

⎧⎪⎨
⎪⎩

∂tV +A−1
0 (V )A1(V )∂xV =

(
0

μL−1
h (∂x(h∂xu ))

)

V (0, x) = g0(x)

(58)

where V ∈ C([0, T ]; Xs(R)) and ∂tV ∈ X
s−1(R) for some s ≥ 2 and g0 ∈ X

s(R). It is proved 
in [16] that the problem admits a unique solution V in C([0, T ]; Xs(R)). We now consider the 
following iteration scheme

⎧⎪⎨
⎪⎩
A0(V

k)∂tV
k+1 +A1(V

k)∂xV
k+1 =

(
0

μ∂x(h
k∂xu

k)

)

V k+1(0, x) = gk+1(x)

(59)

where gk+1 = εkV0 � ρ( .
εk ) for some mollifier ρ7 with the positive real set εk = β

2k , with β > 0. 

7 ρ :R → R
+ is infinity derivable compactly supported in the unit ball with 

∫
ρ = 1.
R



JID:YJDEQ AID:8306 /FLA [m1+; v1.227; Prn:30/03/2016; 14:21] P.32 (1-35)

32 D. Kazerani / J. Differential Equations ••• (••••) •••–•••
We initialize the iteration by g0 = V0. We know that (59) admits a unique solution for all positive 
integer k. Let us now assume that V l(t) ∈ Bs(Ve, δ) for all l ≤ k and all t ∈ [0, T ]. This implies 
by triangle inequality that

‖ V l − g0 ‖C([0,T ];Xs )≤ 2δ (60)

for all l ≤ k. We can show that there exists a suitable T > 0 such that the estimate (60) holds 
also true for l = k + 1. In fact, we consider the s̄th derivative of (59), take the scalar product with 
∂s̄+1
x (V k+1 − g0) and we sum over s̄ ∈ {0, . . . , s}. Then, using very similar logics as in 3.2, we 

find for all 0 ≤ t ≤ T ,

‖ V k+1(t) − g0 ‖2
Xs ≤ C{‖g0‖L∞}(δ) ‖ gk+1 − g0 ‖2

Xs +C{‖g0‖L∞ ,μ}(δ)
t∫

0

‖ V k+1(t ′) − g0 ‖2
Xs dt ′

+ C{‖g0‖L∞ ,μ}(δ)t.

Then, Gronwall lemma leads us, for δ small enough, to

‖ V k+1 − g0 ‖2
C([0,T ];Xs )≤ CeλT

(
‖ gk+1 − g0 ‖2

Xs +T
)

,

where C and λ are strictly positive reals independent of k. On the other hand, there exists by 
assumption, ε0 > 0 such that

‖ gk+1 − g0 ‖Xs ≤ ε0 for all k ∈N.

Then, choosing β small enough (therefore ε0 small enough), there exists T > 0 such that the 
condition (60) is satisfied for all l ∈ N. We assume from now that T and β are small enough to 
give us (60) for all positive integer. Then, we consider the s̄th derivative of (59) for iterations k
and k − 1, take the scalar product with ∂s̄+1

x (V k+1 − V k), subtract the two equations and sum 
over s̄ ∈ {0, . . . , s}. Likewise, we get

‖ V k+1(t) − V k(t) ‖2
Xs ≤ γ ‖ gk+1 − gk ‖2

Xs +θ

t∫
0

‖ V k(t ′) − V k−1(t ′) ‖2
Xs dt ′

+ θ

t∫
0

‖ V k+1(t ′) − V k(t ′) ‖2
Xs dt ′

for some convenient positive γ, θ .
Applying the Gronwall lemma, we have for all k ∈ N

‖ V k+1 − V k ‖2
C([0,T ];Xs )≤ eλT

⎛
⎝‖ gk+1 − gk ‖2

Xs +θ

T∫
‖ V k(t ′) − V k−1(t ′) ‖2

Xs dt ′
⎞
⎠ . (61)
0
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Now, we sum (61) on k ∈N. This leads us to

(1 − θT eλT )
∑
k∈N

‖ V k+1 − V k ‖2
C([0,T ];Xs )≤ eλT

∑
k∈N

‖ gk+1 − gk ‖2
Xs .

Then, considering the fact the T is small and the fact that the sum 
∑

k∈N ‖ gk+1 − gk ‖2
Xs is 

convergent, we conclude that the set V k is convergent in C([0, T ]; Xs(R)). The uniqueness 
can be proved by the same way. In fact, we obtain a very similar approximation to (61) for 
‖ V 1 − V 2 ‖Xs considering two solutions V 1(x, t) and V 2(x, t) for the initial conditions V1(x)

and V2(x). Hence, the local well-posedness is proved.

Appendix C. Linear stability of equilibriums of the Green–Naghdi equation

In this part we are going to see another use of the symmetric structure of the Green–Naghdi 
equation. In fact, this structure enables us to prove the linear stability of an equilibrium Ve =
(he, ue) with he > 0, for the system without any dissipative right hand side term. To see this, let 
us consider the solution V ∈ C([0, T ); Xs(R)) of the linearized system

A0(Ve)∂tV +A1(Ve)∂xV = 0, (62)

act ∂�
x on (62) for 0 ≤ � ≤ s, and take the scalar product by ∂�

x(V − Ve):

t∫
0

∫
R

A0(Ve)∂t ∂
�
xV · ∂�

x(V − Ve) +
T∫

0

∫
R

A1(Ve)∂
�+1
x V · ∂�

x(V − Ve) = 0. (63)

Now, considering the facts that

∫
R

A0(Ve)∂t ∂
�
xV · ∂�

x(V − Ve) = 1

2

d

dt

∫
R

A0(Ve)∂
�
x(V − Ve) · ∂�

x(V − Ve),

and

t∫
0

∫
R

A1(Ve)∂
�+1
x V · ∂�

x(V − Ve) = 0,

together with the X0-quadraticity of A0(Ve), we get the following estimate,

‖ ∂�
x(V (t) − Ve) ‖2

X0≤ C ‖ ∂�
x(V (0) − Ve) ‖2

X0, (64)

where C is a strictly positive constant depending only on he, α and g. Hence, we have the fol-
lowing proposition,
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Proposition C.1. Let s ≥ 2 be an integer and consider the initial data V0 ∈ X
s(R). Then, there 

exists C > 0 such that the solution V of (62) satisfies for all time,

‖ V (t) − Ve ‖2
Xs ≤ C ‖ V0 − Ve ‖2

Xs . (65)

This gives us the linear stability of the equilibrium of (1).

Theorem C.2. Let s ≥ 2 be an integer and consider the Green–Naghdi system,

{
∂th + ∂xhu = 0,

∂thu + ∂x(hu2) + ∂x(gh2/2 + αh2ḧ) = 0.
(66)

Then, the equilibrium solutions Ve = (he, ue), with he > 0, are linearly stable for the Xs norm.

Let us note that this theorem can be generalized to all locally well-posed symmetrizable sys-
tem of the form (62) such that A0(Ve) is quadratic.
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