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Abstract

In this article, the authors characterize the Morrey spaces as well as their preduals via quadratic functions
related to the Taylor remainder of the kernel of the Riesz potential. As applications, the authors obtain some
strong capacitary inequalities, which are then used to study the regularity of the duality/weak solution to
the fractional Laplace equation with measure data.
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1. Introduction and main results

Consider the n-dimensional Euclidean space R" equipped with the Euclidean distance and
the n-dimensional Lebesgue measure. It is known that the Morrey space LP*(R") with (p, 1) €
(0, 00) x (—o00, n] was introduced by Morrey [21] and then used to study the regularity of so-
lutions to some quasi-linear elliptic partial differential equations, where L”*(R") comprises all
Lebesgue measurable functions f on R” satisfying

1/p

”f”LI")‘(R”) = sup r)‘_” / |f(Z)|de < 00,
(x,r)eR” x (0,00)
B(x,r)

where B(x,r) :={y € R": |y — x| < r} is the Euclidean ball with center x and radius r. In
particular, when A = n, the space L?"*(R") is just the Lebesgue space LP (R"), that is,
1/p

1 f o = / ()] dx

The predual of Morrey spaces was discussed in [3]. For any given (p, A) € (1, 00) x (0, n),
the space HP**(R") consists of all Lebesgue measurable functions f on R” such that
1/p
I N epr ey :=igf /If(x)lp[w(X)]l_” dx < 00, (L.D)
R}l

where the infimum is taken over all non-negative functions w on R” satisfying that

o0

ool 13, :=/H,§°_‘j({x eR": ()| > 1)) dr <1. (12)
0
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Here and hereafter, for any given o € (0, n), the symbol ’H,((fo)(E ) denotes the «-th order Haus-

dorff capacity of a subset £ C R", which is defined by setting

HC(E) := inf Zr;" : EC U B(xj,rj) withx; e R" and r; € (0, 00)
J J

Based on [5, Theorem 7], the norm || - || gp.» gy can be defined equivalently in the way that the
infimum in (1.1) is taken over all non-negative functions w € A{(R") satisfying (1.2), where
A1 (R™) denotes the classical Muckenhoupt weight class consisting of all non-negative Lebesgue
measurable functions on R” such that

1 —1
[w]a,®r) == sup — /a)(x) dx |:ir1f a)(x)i| < 00.
BCR", Bisaball | | Bl J xeB

According to [3], we have
(HPH®")" = L7 R, (13)

where p’ denotes the conjugate index of p, thatis, 1/p+1/p’ = 1.
For any (p, ) € (1, 00) x (0, n), notice that || - || . (g is @ norm, especially it satisfies the
Minkowski inequality:

If 4+ &llgpi@ny < 1f Il gpsgey + 1181 o @y vV f. g€ HP*RY). (1.4)

Though this can not be obviously seen from the definition of | - || g p.».(gny, but we can utilize [26,
Theorem 4.3] and the fact

11 ooy = SUp {( £ 8) = g € HPR), Nigll sy < 1) (15)

in [3, Theorem 2.3] to derive that

1/ oy =sup {(f )+ g € LY R, gl pyrsgeny < 1] (16)

while the latter easily implies (1.4).

Equivalent characterizations of H”*(R") with any given (p, 1) € (1, 00) x (0,n) are es-
tablished in [3, Theorem 3.3]. In particular, H”-*(R") coincides to the Zorko space Z”*(R")
introduced in [41, Proposition 5], as well as the Kalita space in [14, Theorem 1]. For any given
(p, 1) € (1,00) x (0, n), it is known that C2°(R") (that is, the space of all infinitely differentiable
functions on R” with compact supports) is not dense in L?-*(R") (see, for example, [11,36]), but
it is dense in HP*(R") (see [3]).

Nowadays, Morrey spaces and their preduals as well as their usual companion, namely, the
Riesz potential operator, have been studied intensively in many literatures and found wide appli-
cations in analysis, geometry and partial differential equations; see, for instance, [1,4,6,17,19,20,
33].
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Recall that, for any given « € (0, n), the Riesz potential operator 1, on R" is defined by the
Fourier transform as follows:

LfE) =y@QriE)™fE), VEeR",

"2 (a/2)

where y (@) 1= T5=5 75

with I'(-) being the usual gamma function and
Fer= [ rweitan, vier",
Rn

Based on [35,32], the operator I, maps S'(R")/P(R") onto S’'(R")/P(R"), where S’(R")/
P(R™) stands for the Schwartz distribution class S’(R") modulo the polynomial space P(R").
It is known that S’'(R")/P(R") is topologically equivalent to S. (R") (see, for example, [40,
Proposition 8.1], [22, Theorem 6.28] and [27, Theorem 3.1]). For any sufficiently smooth func-
tion f which is small at infinity, one has (see Stein [29, p. 117])

Iaf(X)=/|y—x|°’_"f(y)dy, VxeR"
RV[

Assume that o € (0, n) is a non-integer and M the largest integer less than «. For any r €
(0, 00) and x, y € R", define

Pry@) =lx+ry*" = > e DPIx T n ! (1.7)
BEZL, |BI=M

which is indeed the Taylor remainder of the kernel of the Riesz potential. Here and hereafter, for
any multi-index 8 := (B, ..., By) € Z'} := (Z1)" with Z, :=NU {0} and N:={1,2,...}, we
use the following notation

1Bl:=3"_1Bjs

Bl = H;leﬁj!,

DB 5:3)[311 _..3)‘?::<i)ﬂl...( 8 )ﬁn,
0x1 00Xy

xP = H’/’.:le’ if x=(1,...,x,) €eR".

If f is sufficiently smooth and small at infinity, then it makes sense to define

2 1/2
x
dr "
Ty f(x) = |pr,y * f(x)|dy T2 , VxeR", (1.8)
0 1B@O,.1

here and hereafter, 6n denotes the origin of R". Such a quadratic operator Ty arises from the
Riesz potential operator I, and originates essentially from Stein [28]. Its current version was
studied by Dahlberg [7] and then used to study the regularity of Riesz potentials on Lebesgue
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spaces. Another pioneer work regarding 7, for the special case M = 0 was due to Strichartz [31].
For any f in L°(R") (that is, the set of all bounded functions with compact supports), it was
proved in [7, Theorem 3] (see also [31, Theorem 2.3]) that 7, f is pointwisely well defined on
R" and

ITe fllLr@ny < CllLfllzr @y, VfeLZR", (1.9)

for some positive constant C independent of f, so that T, can be extended to a bounded oper-
ator on L”(R") via a standard density argument. Starting from this, Dahlberg [7, Theorem 3]
characterized L?(R") for any given p € (1, co) via T, and then obtained

I Te fllLr@ny ~ ILf e @y vV feLlRY), (1.10)

with the positive equivalence constants independent of f. It should be mentioned that the bound-
edness of T, on mixed-norm Lebesgue spaces was obtained in [2] and then used to establish
the capacitary inequalities for the Besov capacity. One of the main aims in this article is to ex-
tend (1.10) to the setting of Morrey spaces and their preduals; see Theorems 1.1 and 1.2 below,
respectively.

Through this article, we always restrict the index « € (0, n) to be a non-integer. Indeed, the
fact [@] < a < || + 11is necessary for the below treatment of the kernel p;. . For the case when
a € (0, n) is an integer, the definition of T}, in (1.8) needs to be changed accordingly, perhaps
with the kernel p,, in (1.7) replaced by higher order differences. For example, when a = 1, with
Dr,y(x) in (1.7) redefined by setting

Pryx) == x +ry|* " +x —ry|*T" = 2/x|*7", Vre(0,00), Vx, y e R,
Strichartz [31, Theorem 2.3] obtained the boundedness of the corresponding operator 7, on
Lebesgue spaces. In this article, we will not pursue the case when « € (0, n) is an integer.

Let us emphasize more on the definition of 7y f in (1.8). Indeed, if f is a nice function, for
example, f is in the Schwartz class S(R"), then one may easily observe that

Pryxf)=IafG+ry)— > DI fx)BY. ¥re(0,00), Vx, yeR".
BEZL, |BI<M

This identity fails for general functions f € Upe(1,00) L7 (R"), since I, f might be infinite every-

where on R”. For instance, when p € (n/«, 00), if we take € € (0, — n/p] and consider the
function

f) =1+ xDPE, VxeR",

then f € L?(R"), but, for any x € R”",

Lf(0) = / = Y[ |y dy = / QIyDE P dy = oo,
[y|>1+4|x] ly|>1+|x]|
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However, for general f € U,e(1,00)LP (R"), it is proved in Lemma 2.1 below that p,. , * f(x) is
well defined for almost every x € R” and [ B@®,.1) |pr,y * f(x)|dy has an upper bound irrelevant
tor € [€, 1 /€] (but, relevant to x and €), where € € (0, 1). So it makes sense to understand (1.8)
as follows:

e ) 12
. dr

Tof = lgl% / / |pry * fldy e , Vfe U LP(R"). (1.11)
’ ¢ | B@O.1) pe(l,00)

Such a new understanding of 7, directly gives that 7,, maps L”(R") continuously into L?”(R");
see Lemma 2.1 below.

Motivated by [7,31,28], in this article, we obtain the following characterization of Morrey
spaces via the operator Ty,.

Theorem 1.1. Let 1 € (0,n], @ € (0,n) be a non-integer and p € (1, 00). Then there exists a
positive constant C such that, for any f € LP*(R™),

c! Il Lprrey < N T fllpoi@ey < CNF N Lo qey-

The proof of Theorem 1.1 is given in Section 2 below. Notice that Theorem 1.1 for the case
A = n goes back to the result of Dahlberg [7] (see also Strichartz [31] or Stein [28]). But, the
method used in this article is totally different. Recall that the argument used in [7,31,28] strongly
relies on the theory of Fourier transforms and the boundedness of the vector-valued Calderén—
Zygmund operators, which certainly does not work for the setting of Morrey spaces. Due to the
bad structure of the Morrey spaces, instead of the method used in [7,31,28], the proof for the
boundedness of T, on Morrey spaces relies on some quite delicate estimates of the kernel of Ty,
while the converse counterpart needs the construction of a Calderon reproducing formula asso-
ciated to the kernel of 7 in (2. 2), which is a variant of T, but smaller than 7. This operator Ty
in (2.2) looks like a classical Littlewood—Paley operator, but its kernel is obviously not as good
as that of a classical Littlewood—Paley operator. In Section 2.1, we make a great effort to show
that the kernel of Ty is good enough for us to construct a Calder6n reproducing formula needed
in the proof of Theorem 1.1.

In analogy to Theorem 1.1, it is natural to ask the boundedness of 7, on the preduals of
Morrey spaces. Indeed, we have the following conclusion.

Theorem 1.2. Let ) € (0,n), o € (0,n) be a non-integer and p € (1, 00). Then there exists a
positive constant C such that, for any f € HP*(R"),

CUf I grr@ny < N Ta flgra@ny < CILF I ran)-

The proof of Theorem 1.2 is presented in Section 3 below. The upper bound estimate can
essentially be reduced to considering the boundedness of 7, on the weighted Lebesgue space
L?(u) equipped with the norm

1/p

Ifllzr@w = /If(X)I”u(X)dx ; VfeLl,
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whenever p € (1, 00). Here, u is in the Muckenhoupt weight class A,(R"), that is, u is a non-
negative Lebesgue measurable function on R” with its A, (R")-weight constant

p—1

1 __1
[u]Ap(Rn) = sup —/u(x)dx —/u(x) =T dx < 0.
Bisaball of R? | | Bl J ]

Such weighted estimates usually follow from the sharp maximal function estimates of 7y f (see
Lemma 3.1 below). The lower bound estimate relies on the Calderdn reproducing formula as that
used in the proof of Theorem 1.1.

For any a, A € (0,n) and p € (1, 00), the Riesz-type capacity R, p ;. (E) of an arbitrary set
E C R" is defined by setting

R p(E) =it {1 £, gyt £ 2 0and o f 215},

here and hereafter, we use 1g to denote the characteristic function of the set E. When 0 < o <
A <nand p > A/a, it follows from Adams and Xiao [3, Theorem 7.4] that

/ [Raps(ix €R™: 1o f )] > D] Y7 dt S flgroey, ¥ f € HPFRD),
0

where the implicit positive constant is independent of f. As an application of Theorem 1.2, we
establish the following regularity result for the Riesz potential I, (H”*), which has an advantage
over the aforementioned result of [3, Theorem 7.4] in the sense that p in Theorem 1.3 below can
be as close as to 1.

Theorem 1.3. Let 1 € (0,n), o € (0,n) be a non-integer and p € (1, 00). Then there exists a
positive constant C such that, for any f € C°(R"),

o
[ Rapills € 1 f 1> 1) dt” < CULFIG
0

Indeed, the proof of Theorem 1.3 is almost trivial under the assumptions o + A > n and
pE [Hﬁ, 00); see Remark 4.4 below. Thus, we only need to show Theorem 1.3 for any given

(1, o0) ifa+A<n,

J S A (1.12)
(1,7> ifoa+A>n.
a+Ar—n

For such a p, any f € HP*(R") ensures that the set {x € R" : |I, f(x)| = oo} has both zero
Ra, p.1-capacity and Lebesgue measure; see Remark 4.3 below.

Applying Theorem 1.3, we immediately obtain the following restricting result for I, (H "),
and then the regularity of the duality solution to the fractional Laplace equation.
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Corollary 1.4. Let 1 € (0,n), « € (0,n) be a non-integer and p € (1, 00). Suppose that | is a
non-negative Radon measure on R".

(i) The following two assertions are equivalent:
(a) There exists a positive constant C such that

M(E)SCRa,p,A(E)a VECR"

(b) There exists a positive constant C such that, for any f € HP*(R"),

oo 1/p

Mo fllp ey = / p(x €R": Lo f )] > Ndi? | < Clf lprn)
0

(1) Assume further that 0 < o <2 <n and u has compact support. Under the assumption of (a)
or (b) in (i), if the fractional Laplace equation

—A)iy =
{( VU= g (1.13)

lil’n|x‘_>oo u(x) =0

has a duality solution u in the sense of

1
/u(x)¢>(x)dx = —/Ia¢(x)du(x), V¢ eCIR,
V(W)Rn

Rll
then
ue U LY (R
(P, M) e(GEg,00)x(0,n)
with
el 71 oy < Clsupp ]/,
730r(%) . . ,
where y (o) = ——=52-, C is a positive constant independent of wand 1/p+ 1/p’ = 1.

(55

For Corollary 1.4(i), observe that (b) follows directly from Theorem 1.3 and (a). Conversely,
forany 0 < f € HP*(R") satisfying I, f > 1g, we use (b) to conclude that

WE) = e gny = Ma FU]p guy < CONF N enys

which implies (a) via taking the infimum over all such f. Here, C is the same constant as in (b)
of Corollary 1.4(i).

To obtain Corollary 1.4(ii), we apply Corollary 1.4(i) and the Holder inequality to derive that,
for any ¢ € C°(R"),
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1
/u(X)¢>(X)dx =—— /Ia¢(x)du(X)

: y(a)
|supp | /7'
<P i .
= ]/(Oé) || a‘t’”Lﬁ(R)
Clsupp u|'/?'
< ————— ol grawny
v(@) D

which, together with the density of CZ°(R") in HP*(R") as well as (1.5), implies u € LP,*A(R”)
with the desired norm estimate. Again, here C is the same constant as in (b) of Corollary 1.4(i).

Remark 1.5.

(i) When o € (1,2) and u is a non-negative Radon measure with compact support in R”, it was
proved in [15, Theorem 1.1] that the duality solution u of the fractional Laplace equation
exists uniquely and satisfies

_ q
/Iu(x)l"dx+//||”(x) U e dy <00, Vball BCRY,

x — y|n+q —24a

n+2—o
n+l—o*

cause now the solution u proves locally LP'(R™) integrable with

whenever 1 < g < Thus, Corollary 1.4(ii) partly improves [15, Theorem 1.1], be-

n+2—a« n
<
n+l—a n—o

<p <oo,

where 1/p+1/p' = 1.
(i) Notice that u is a duality solution to (1.13) if and only if u is a weak solution to (1.13) in the
sense of

/( A)Tu@)(x)dx = /fp(X)du(x) Vo € I, (CPR).
R}l

This can be seen by using the idea in [23, Proposition 2.9]. To be precise, observe that u is a
weak solution to (1.13) if and only if

/(—A)%M(X)Iad)(x)dx =/Ia¢(X)dM(X), Ve CORM).

R» R7
Using the Fubini theorem and the fact 1, (—A) Su= y (a)u in S’ (R™), we obtain

/( A)Tu(x) Iy (x) dx —/1 (—A)Tu(x)p(x) dx = V(a)/M(X)¢(X)dx
Rn

that is, u is a weak solution to (1.13) if and only if it is a duality solution to (1.13).
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The organization of this article is as follows.

Section 2 mainly deals with the proof of Theorem 1.1. The non-density of C2°(R") in Mor-
rey spaces brings many difficulties when we consider the boundedness of operators on Morrey
spaces. The reader may find various methods to overcome this deficit; see, for example, [24,25].
In this article, with a new understanding of 7, as in (1.11), we prove that T, f is well defined
almost everywhere on R” whenever f € L? (R") with p € (1, 00) (see Lemma 2.1 below), which
leads to the well definedness of 7,, on Morrey spaces. Combining this and a delicate estimate,
we obtain the boundedness of 7;, on Morrey spaces in Section 2.2, which gives the upper bound
estimate of Theorem 1.1. In Section 2.3, we obtain the lower bound estimate of Theorem 1.1
via the Calder6n reproducing formula and the boundedness of the Littlewood—Paley operator on
LP*(R") (see Theorem 2.4 below). For this part, we need some hard analysis on the kernel of
Ta (see Proposition 2.2 below), which is a variant of 7, and smaller than Ty, so that we can use
the idea from [39, Lemma 2.1] to build a Calder6n reproducing formula associated to the kernel
of T, (see Proposition 2.3 below).

Section 3 is devoted to the proof of Theorem 1.2. In Section 3.1, we use the Hardy—Littlewood
maximal function to dominate the sharp maximal function of T, f when f € C2°(R"). This again
needs some quite delicate estimates regarding p,,, * f. In Section 3.2, we present the bound-
edness of T, on H”*(R"), which can be attributed to the corresponding weighted estimates
and then the aforementioned sharp maximal function estimates. In Section 3.3, we obtain the
lower bound estimate of Theorem 1.2, via using both the Calder6n reproducing formula built in
Proposition 2.3 below and the boundedness of the Littlewood—Paley operator on H?” AR (see
Theorem 2.4 below).

Section 4 focuses on the proof of Theorem 1.3. In Section 4.1, we first establish the mono-
tonicity and a variant of the subadditivity as well as a capacitary weak-type inequality (see
Lemmas 4.1 and 4.2 below) of the Riesz-type capacity R, p,x, and then prove a differentia-
tion theorem for Ry, p 5 (see Lemma 4.5 below). With these and an idea from the proof of [7,
Theorem 1], in Section 4.2, we establish the boundedness of I, from H?*(R") to the Lebesgue
space L” with respect to Ry, 1.

Throughout this article, we always adopt the following notation. Let

N:={1,2,...}, Z:={0,£1,£2,...} and Z4 :=NU {0}.

We always use C or ¢ to denote a positive constant which is independent of the main parameters,
but it may vary from line to line. The symbol f < g (resp., f 2 g) means f < Cg (resp., f >
Cg) for a positive constant C, and f ~ g amounts to f 2 g = f. We also use the following
convention: If f <Cg and g =h or g < h, we then write f < g~h or f < g < h, rather than
f<Sg=hor f <g<h. Foranys eR,denote by |s] the largest integer not greater than s, and
by [s] the smallest integer greater than or equal to s. We always use 6,, to denote the origin of R".
For any set E C R”, the symbol fE represents IIT\ /, - the symbol 1 its characteristic function

and EC := R™\E.Forany p € (1, 00), let p’ be the conjugate index of p, thatis, I/p+1/p = 1.
2. Proof of Theorem 1.1
This section mainly deals with the proof of Theorem 1.1. To be precise, Section 2.1 concerns a

detailed analysis for the kernel of 7; Section 2.2 gives the upper bound estimate of Theorem 1.1
and Section 2.3 shows the lower bound estimate of Theorem 1.1.
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2.1. Analysis for the kernel of T,

This section gives some preliminaries but important results regarding the operator T;, as well
as its kernel.

Denote by M the Hardy-Littlewood maximal operator on R", that is, for any locally inte-
grable function # on R” and for any x € R",

B>x, B is aball of R

Mu(x) = sup ][|u(z)|dz.
B

Lemma 2.1. For any r € (0,00) and y € B(()n, 1), define py,y as in (1.7), with a € (0, n) being
a non-integer and M := |« . Let f € L? (R™) with any given p € (1, 00). Then

(1) there exists a positive constant C, independent of r, y and f, such that

1pry* fOOI < Cré M f(x+ry) + Mf(x)1, VxeR";

(ii) pry * f is well defined almost everywhere on R";
(iii) Ty f asin (1.11) is well defined and hence T, bounded on LP (R™).

Proof. From the boundedness of M on L?(R") with any given p € (1, 00), (ii) follows directly
from (i).

Observe that (iii) is actually a consequence of (ii) and (1.9). Indeed, from (ii), it follows that
{fgl/g[fB(()ml) |pry * f(X)] dy]zrﬁga }1/2 is well defined for almost every x € R”, as it is point-

wise bounded by M f(x) + M2 f(x), up to a positive constant multiple. Because p € (1, oo0) and
f e LP(R"), we take a sequence { f}}jeny C CZ°(R") such that lim;j_. fj = f both in L”(R")
and almost everywhere on R”. Then the Fatou lemma implies that, for any € € (0, 1) and x € R”",

- 1/2
1/e 2 !
dr
|pr,y * f(x)|dy 1420
¢ [B©O.D
1/2
1/e ? !
=11 [ |pesctim ppe|ay |
£ |B@O.1
e 2 1/2
o dr
51}ril)1oréf |pr.y * fj ()| dy P12
¢ [B@s1)
) 1/2
o0
o dr
glin_l)gf |pry * fi(X)|dy 1+ 2a
0 1B@©..1

Please cite this article in press as: L. Liu et al., New characterizations of Morrey spaces and their preduals with
applications to fractional Laplace equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.10.020




YJDEQ:9590

12 L. Liu et al. / J. Differential Equations eee (eeee) see—eee
=liminf 7y f; (x). 2.1
Jj—00
Meanwhile, by (1.9) and the Fatou lemma, we have

<liminf || T, f;llrr®ey S Hminf || £l e ®ey ~ | £l Le (7Y
LP (R j—o00 j—o00

liminf 7y, f;
j—o0o

Combining the last two formulae implies that 7, f as in (1.11) is well defined in L?(R") and
hence almost everywhere on R", with

172
e 2 /
. dr
1 To fllLr ey = 8111}) |pry * fldy T
¢ LBO.D Lr @)
12
1/e 2 /
< liminf dy | -4
<limin \pry* fldy | g
e B(0,,1) LP(RY)
S lleny.

Thus, we conclude the proof of (iii).

It remains to show (i). Let f € LP(R") with any given p € (1, 00). Fix r € (0,00) and y €
B(6,,, 1). For any x € R", we consider the ball B := B(x, 3r) and define f] := f1p and f; :=
Sf1pc. It follows that

Pr,y * f= Pr,y * f + Dry * 1.

For the first part p;.y, * f1, we write

|Pry * fi(x)] < / |pry(x — I f(2)|dz

|z—x|<3r

< / I — 24 Py F () d

|z—x|<3r

+ Y Pyt / = 2“7 F () dz.
BEZL,|BI=M lz—x|<3r

Notice that

=z )] dz < / = 24 Py (@) dz

|z—x|<3r |x—z+ry|<4r
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o0
=y / =2+ ry* " f @) dz
j=02*/'+1r§|x—z+ry|<2*j+2r
o
Sy @i / |f(@)ldz

j=0 |x—z4ry|<2=/*2r

SrEMf(x+ry)

and
o0
/ e —z* P f)ldz <)y / e —2[*" Pl f2)ldz
lz—x|<3r jzo2f«f+]r5|x7z|<2*1+2r
o

<Y @Iyl / 1f(@)ldz
J=0 [x—z]<2=/+2r

Sre P IMEf ().

Consequently, we have

| pr,y * S1)] Sr“[/\/lf(x +ry) + Mfx)l,

as desired.
Now we deal with the second part p, y * f>. When |x — z| > 3r, by the Taylor theorem, we
have

M+1 a—n—(M+1) <rM+l a—n—(M+1)
~Y 9

|pry(x —2)I' S sup [ry|" " x —z+0ry| lx — z|

0€(0,1)

which further implies that

|pry * f2(0)] < / |pry(x = 2| f(2)|dz

|z—x|>3r

~

< rM+1 / |x _Z|(¥7n7(M+])|f(Z)|dZ

|x—z|>3r

00
Sy / x — 2" M £ ()| dz
j:12/'r§\xfz|<2f+1r
00
S FMA+1 Z(zjr)o{—n—(M—H) / | f(2)|dz
j=1 |x—z|<2/+1r

SrofMf(x).
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Combining the estimates for the two parts p;, y * f1(x) and p,y * f2(x), we obtain (i) and
hence complete the proof of Lemma 2.1. O

Fixing a non-integer « in (0, n), instead of the operator T, we consider the following smaller
one

2 1/2
o
~ 1 dr n
Ty f(x):= prr Dry * f(x)dy - , VxeR". 2.2)
0 B(0,.1)

Here and hereafter, we assume that f is a suitable function so that ﬁx f makes sense. Of course,
based on Lemma 2.1, one can take f € Upe(1,00)L” (R"). For any r € (0, 00) and x € R", let

1
K, (x) . / Pry(x)dy. (2.3)
B(Ou,1)
Then

) 1/2

~ 2dr "

To f(x) = K, f(x)] - , Vx eR",
0

For any r € (0, 00), y € B(0p, 1) and & € R" \ {0,,}, we use (1.7) and [29, p. 117] to derive that

Pry@® =y@Q@m)~ g™ [ 3" epferinf )|,

BeZ, |BI<M

which gives

GO EpACUC / N yPEmireP (BT | dy. 24)

Irél” T
5G.1) Bzl Bl<

More properties of the kernel K, are presented in the following proposition.

Proposition 2.2. For any r € (0, 00), let K, be as in (2.3) with its Fourier transform given in
(2.4). When r = 1, write K, simply by K. Then

(i) K, (&) = K(r&) for any £ e R"\ {0,}; ~
(ii) there exist small positive constants c, o1 and oy such that |K (§)| > c on the annulus {§ €
R": 01 <[§] < o2);

Please cite this article in press as: L. Liu et al., New characterizations of Morrey spaces and their preduals with
applications to fractional Laplace equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.10.020




YJDEQ:9590

L. Liu et al. / J. Differential Equations eee (eeee) eee—eee 15
(iii) K is infinitely differentiable on {§ € R" : o1 < |&| < 02} and, for any multi-index g € 7",
IDPR@®I<C,  VielteR" o1 <5l <o),

where C is a positive constant depending on o1, o and f.

Proof. Notice that (i) follows directly from the expression (2.4), and (iii) is a consequence of (ii)
and the continuity of D? K outside of the origin.

It remains to prove (ii). By (2.4), it suffices to find small positive constants o1 and o2 such
that the absolute value of the function

F&):= / ATVE— N YPerief By | dy,  VEeR

- n
@) pe. |BI=M

has a positive lower bound on {§ € R" : 01 < |&] < 02}.

For any y € Z! satisfying |y| < M, using the expression of F, we do simple calculation and
obtain D” F(0,) = 0. For the case y := (y1, ..., yu) € Z' such that |y| > M + 1, by parity, one
has

- " o
DY F(0,) = / Qriy) dy = if some y; is odd,

[a non-zero real number if each y; is even.
B(0,,1)

Take L := M + 1 when M is odd and L := M + 2 when M is even. Then L is always even. As
L —1isoddand L —2 < M, one has

DYF(0,) =0, VyeZ with|y|<L—1.

For the moment, fix y := (y1, ..., ¥») € Z with |y| = L and every y; being an even number.
Then the sign of DY F(0,) is determined only by the parity of L/2, because

DY F(0,) = Q)b (=1)E/? / yyardyy - dy,

B(0,,1)

and || B@,.1) yi’l ceeyimdyy -+ dy, > 0. For simplicity, below we consider only the case L/2 is

even, in which case DY F ((3,,) > (. By this and the continuity of DY F, we know that there exist
constants cg, o € (0, 00), uniformly in y, such that

DYF() > cy> 0, VEc{EeR": || <o) (2.5)
Fix & := (&, ...,&,) € R" such that |£| < 0. By symmetry, we may as well assume that every

& >0 and & = max|<;<, & so that & < |§| < /n&;. Applying the Newton-Leibniz formula
L-times, we obtain
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& 111 1
F(El,---,én)=/ / "'/3)6,170,52,..-,Sn)dtdtl--~dtL—1
0 0 0

+Z ‘BJIC‘]‘F(O,&,.-.,&)E{(I

=71+ 7.
By (2.5) and the fact that L is even, we have

&1 1L—1

L L
ZI>CO// /dtdt1~~dtL,lzc0%> (|‘§|/\/_) .

L!

For the case n = 1, the term Z; is the linear combination of derivatives of F up to order L — 1 at
the origin, which is zero.

Let us consider the case n > 2. For any k; € {0, ..., L — 1} such that k; is odd, we observe
that

afl‘F(O,éz,...,énF /(2niy1)k‘ez”"z7=”-"§"dy1--'dyn=0
B(0,.1)

and hence

1
Z, = Z kl'afllF(o,gz,...,Sn)Sf‘

k1€{0,...,L—1}
ki even

Now, fixing k1 € {0, ..., L — 1} such that k; is even, we then estimate 8)151' F(@0,&,...,§). Ap-
plying the Newton—Leibniz formula L — k| times, we have

& Lk ~1 1
91 F (0, ez,...,sn)=/ / /aL GOk B0, 1, & ... E) dedir - dip gy
0 0 0
L—ki—1

+ Z k,af;;a!:;F(o,o,&,...,s,»s;‘z

=:721+7.

Since both k| and L — k; are even, we deduce from (2.5) that

& 1L—ki—1 1 gL—kl
Zo1> v | dtdty - dtp—g -1 = co—2—— >0
2,1_CO/ / / 1 L—k;—1 CO(L—kl)!_
0 0 0
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As in the discussion for Z,, the summation in Z; 5 is non-zero only for those kp being even.
Therefore, we have

Z»> = a non-negative number

L ak ko ok
+ E E Tk ‘3x§3x,‘F(0,0,$3,.-.,En)éllgzz.
{0, ... L—1) ko€{0,.... L—ky—1) 2L
k1 even kp even

In the case n = 2, we find that Z; can be written as a non-negative number plus a linear combi-
nation of derivatives of F up to order L — 1 at the origin, while the latter is equal to zero. This
shows that Z, > 0 when n = 2.

In general, we repeat the above argument to treat the terms like

02951 F (0,083 ... )

with both k> and kj being even, then we finally obtain

Z» = a non-negative number

1 k ki f ek k
+ Z Z Wf’xﬁ"'axiF(On)él'"'Sn".
ki€{0,..,L—1}  kn€{O,....L—ky_j—1} n
ki even ky, even

This implies that Z; is a non-negative number. Invoking the estimate of Z;, we conclude that, for
any & € R” satisfying |§| <o,

L
F) zco%.

Let 0> := o and o1 be an arbitrary number in (0, ). Then, when o1 < |§| < 02, we have | F ()| >

L
co%, which is as desired. This concludes the proof of (ii) and hence of Proposition2.2. O

Combining Proposition 2.2 and the argument from the proof of [39, Lemma 2.1], we obtain a
Calder6n reproducing formula invoking the kernel K.

Proposition 2.3. Let 01, 02 and K be as in Proposition 2.2. Then there exists ¢ in the Schwartz
class S(R") having the following properties:

(i) there exist 03, a4 € (0, 00) such that o1 < 03 < 04 < 0 and
supp ¢ C {§ € R" : 03 < |&] < 0u};
(ii) there exist c, o5, o6 € (0, 00) such that o3 < 05 < 0g < 04 and

|6(£)| > ¢ whenever o5 < |£| < 06;
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(iii) forany & e R"\ {0,},
/ (VE)¢(F$) — =
0

(iv) for any f in S(R") (resp., in S'(R"), or in L (R™) with any given p € [1, 00)),

7 dr
[Kexor =g

0

in S(R") (resp., in S'(R"), or in LP(R") with any given p € [1,00)), where ¢,(-) :=
r¢(r=1) for any r € (0, 00).

Proof. Choose g € S(R") such that g >0, supp g C {§ e R" : 03 < || < 04} and (&) > ¢}
whenever o5 < |€| < gg, Where ¢ is a positive constant and 03, 04, 05, 0 are as in the statement
of the proposition.

For any & € R”", define F(§) := fo 2§ )%. Then F is a bounded function, F has a positive

lower bound on R" \ {6,,}, and F(t&) = F (&) for any ¢ € (0, 00) and & € R". Define

3®)
hE) =25,  VYEeR
() F &) §e

Clearly, supp h C {§ € R" : 03 < |§| < 04} and h has a positive lower bound on {§ € R" : 05 <
|| < 06}. Moreover, for any & € R" \ {0, }, one has

7 dr ooE(r&') dr 1 OOA dr
/Wé)T ‘/ FGe) T FG) /WE)T =1
0 0

0

Let ¢ be a function such that $3= h/I?. Since supp h C {£ e R": 03 < |§]| < o4} and K has
a positive lower bound on a bigger annulus {£ € R" : 01 < |£] < 03}, it follows that (’ﬁ\ is well
defined on R". By Proposition 2.2(iii), it is easy to see | that ¢ enjoys properties (i), (ii) and (iii).

From Proposition 2.2(iii) again, we deduce that qb is infinitely differentiable on {§ € R" :
03 < |&| < o4}, which contains supp ¢ This implies that qb € C(R") C S(R"). Consequently,
¢ € S(R™).

Finally, (iv) follows from a standard argument (see, for example, [9, Appendix] or [38,
Lemma 2.1]) and the already proved properties of ¢. This finishes the proof of Proposi-
tion 2.3. O

Using the Schwartz function ¢ constructed in Proposition 2.3, one can introduce the
Littlewood—Paley g-function G as follows:

172

7 d
G(f)(x) = /|¢,*f(x)|27”  VreR"
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which is well defined for any sufficiently smooth function f. In particular, it is well known that
G is bounded on L?(R") for any given p € (1,00) (see, for example, [34, (3.8)]). The next
proposition concerns the boundedness of the operator G on Morrey spaces and their preduals.

Theorem 2.4. Let (p, A) € (1, 00) x (0, n). Assume that ¢ € S(R") satisfies (i) and (ii) of Propo-
sition 2.3. Then the operator G is bounded on both LP*(R") and HP*(R").

Proof. The boundedness of G on LP*(R") follows immediately from [37, Corollary 1.5]. It
remains to consider the boundedness of G on H?"*(R").
Let f € HP*(R™). Without loss of generality, we may as well assume that

“f”HPvA(R”) =1

By the definition of || - || z7p. (rn, there exists a non-negative function w satisfying (1.2) and

N F 1 pi-ry < 20 N gpo ey = 2.

Fix 6 € (A/n, 1) and let wy := (Mw'/?)?  Based on the argument in [5, p. 211], we know that
there exists a positive constant ¢, depending only on 6, n and A, such that

wy dAflof))L <cp.

Rﬂ
Let g := cgla)@. Then @y satisfies (1.2) and hence

1/p

1G(  gpr@ny < /[g(f)(X)]p [@ (x)]' 7 dx

Rn

Next, we consider the function u := 5;” ,thatis, u = ¢} _lwé_p . According to the argument
in [8, pp. 140-141], the function wy belongs to A (R"), with [wg]a,®") depending only on n

and 0. Further, applying [8, p. 136, Proposition 7.2(3)], we find that

u= cg_la)é_p € A,(R"),
with [u]a (R depending only on n, 6 and cg. Moreover, it follows from [18, Theorem 1.1]
that the operator norm of G on L” () with u € A,(R") depends only on ¢, n, p and [u] Ap(R1)-

Noticing that @ < wy almost everywhere on R”, we hence have u < w'~” almost everywhere
on R”. Therefore,

1G (N gpr@ey < NGO NLray SN lLra ST lLp@i-r S 1-

This proves that G is bounded on H”-*(IR"), and hence finishes the proof of Theorem 2.4. O
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2.2. The upper bound estimate of Theorem 1.1

Proof of the upper bound estimate of Theorem 1.1. We are about to show that

1 Te fll Lorqeny SN p ey VfeLPMRY).

By homogeneity, we may assume that f € L?*(R") with Il f1lLp.x@rny = 1. Then it suffices to
prove that

" / | Ty f(x)|? dx <1, (2.6)

B(xo,r0)

where the implicit positive constant is independent of xo € R” and r¢ € (0, 00).

Split f = fi1+ f2, where f1 := f1B(x,3r) and f> 1= le(x0,3r0)C' Notice that Lemma 2.1 (iii)
guarantees that T, f is well defined in L”(R") and hence almost everywhere on R”. Moreover,
the boundedness of T,, on L?(R") implies that

A— A— A—
o " / |Te f1(x)]7 dx < Ty n”Tafl”ip(Rn) 5"0 n”fl”zp(]gn) < ”f”ip.x(Rn) S

B(xo,r0)

Thus, the proof of (2.6) reduces to the estimate

o / Ty oI dx S 1,

B(xo,r0)
which follows directly from the claim that
Tu oI Srg /P ¥x € B(xo, ro). @7
To prove (2.7), let M be the largest integer less than « and L := M + 1. For any x € B(xg, r¢),

we write

r 2
0

d
el [| [ [ ee-ared| S

0 LB(Oy.1) le=x1=22r0
- 2

T dr
S/ / / |pry(x —2) f(2)|dzdy T3
0

L B(0,,1) |z—x|=2 max{r,ro}

2
0

dr

70 | B(0,,1) 2r>lz—x|=2r9

=:Y1+Y>.

Please cite this article in press as: L. Liu et al., New characterizations of Morrey spaces and their preduals with
applications to fractional Laplace equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.10.020




YJDEQ:9590

L. Liu et al. / J. Differential Equations eee (eeee) eee—eee 21

For any y € B((),,, 1) and |z — x| > 2max{r, ro}, we have |ry| <r < |x — z|/2, which, together
with the Taylor theorem, implies that

1Pry(x =2 S sup |ryl5x —z +0ry[* " E Srbjx — g2
6e(0,1)

and hence, by the Holder inequality, we further have

|pry(x = DI f(2)dz

|z—x|>2 max{r,ro}

<rt / lx — 27" E | f(2)ldz

|z—x|>2 max{r,ro}

sty / =2 H f (@)l dz

]:12/ max{r,ro}<|z—x|<2/+! max{r,ro}

o0
bY@ maxtr, o) TP fll oo ey
j=1

< rE (max{r, o)) L=P.

Then an easy calculation leads to that

o0
] — 2 dr —2A
Ylﬁ/[rL(maX{r,ro})a L M‘"] T2 N /.
0

To conclude the proof of (2.7), we still need to estimate Y,. For any x € B(xg, o), by the
expression of p;, y(x — z), we have

2
00

B dr
ng/ / / =24y @ldzdy |

70 | B(0,,1) 2r>lz—x|=2ro

‘m _ ot*?’l*|/3| —r
+ 11Z / r / |x Z| |f(Z)|dZ rH’ZO‘
BEZY, IBI<M p, 2r>|z—x|>2rg

=:Y2,0+ Z Y25.
BEZL, |BI<M
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Let us first estimate Y3 0. Since x € B(xp, ro) and r > ry, it follows that

/ =2 Py Q)] dz < / I — 24y f ()] dz

2r>|z—x|>2rg |z—x0|<3r

5 Ia(|f|lB(xo,3r))(x +ry)

and hence

lx —z+ry|* " f(D)|dzdy S / Iy (| f11B(xo.3m)) (x +1y)dy
B(an’])2r>|z—x\22r0 3(6,,,1)

~rt / Ia(|f|13(xo,3r))(w)dw
B(x,r)

N / Io (| f11B(xg,30) (W) dw.
B(xq,3r)

According to [6, Theorem 3.1(i)], the last integral can be estimated as follows:

Lo (1 f 1B, 3r) W) dw S P P F iy 3l oy S 7" HEHP.

B(x0‘3r)

This in turn gives

lx — 24 ry[* 7" f ()| dzdy S re7HP.

B(0p,1) 2r>lz—x|=2rg
Consequently, we have

e ¢]

dr _
< 2(a—A/p) < . 72A/p
Y210/‘\J\/\r r1+2awr0 .

ro

Now we estimate Y g with 8 € Z/ and |8| < M. Observe that

=z Pl fldz s ) / e — 217" Pl (o)) dz

2r>|z—x|>2rg UEN:2Iro<2rhy it oo |- 2|20 rg

SO0 @ PR fll g
{jeN:2/rg<2r}
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Notice that || <M < «a. When o — || — A/p <0, we have

oo

2a—1Bl-r/p) [ 21p_dr ~24/p
Y2,/35r0 /rlﬁlmf,ro .

ro

When o — |8] — A/ p =0, we obtain

o0
2r\? dr
Yz,ﬁﬁ/rm' <lng> e

ro
ero
> 28] 2r\? dr
NZ r In — y1+2a

— ro
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<)@y
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When o — |8| — A/p > 0, we also have

o0

dr _
Yo5 S /V_Z)‘/p— <7, 2,

~

-
ro
Combining all these three cases, we obtain the desired estimate of Y» g.

Altogether, we obtain Yy < ro_ 2/p , which finishes the proof of (2.7) and hence of the upper
bound estimate of Theorem 1.1. O

2.3. The lower bound estimate of Theorem 1.1

In this section, we establish the lower bound estimate of Theorem 1.1, via using both a duality
argument and Theorem 2.4.

Proof of the lower bound estimate of Theorem 1.1. Due to [7, Theorem 3], we only need to
consider the case~k € (0,n). For any non-integer « in (0, n), instead of T,, we consider the
smaller operator 7;, defined in Section 2.1. Then it suffices to prove that

£l 2o ny S 1T f Nl eny: VfeLPMRY). (2.8)
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Fix f € LP**(R"). One may easily verify that Jpn (14 1x D" £(x)|dx < oo, which implies
f € S'(R") in terms of [30, p. 21, Example (3)]. With all the notations same as in Proposition 2.3,
we have

o0
d
f:/Kr*¢r>x<f—r in S'(R").
r
0
From this, it follows that, for any g € CJ°(R") satisfying gl gpr i qmy < 1,

dr
R}
r

o0 d o0 N
(o) = [(Koxoon £ = [Kenfxg)
0 0

where $(-) := ¢ (—-). Further, by the Fubini theorem, the Holder inequality, Theorem 2.4 and
(1.3), we obtain

X
~ dr
[ [ s i s georax
0 R~
0 J 912 o J 172
r ~ r
S A S B AT S
R~ 0 . 0
r oo q1/2 S 1/2
5 ~ o, dr
=< K, * f|° — |y * gl T
L0 - va)‘(R") 0 HI’/')‘(R")
- oo <172
dr
2
S /|Kr * f1 - ||g||Hp"/\(Rn)
L0 - L”')‘(R”)

SNTef s -
Taking supremum over all g € C2°(R") with [|g]l ;7. ®n) = 1, we find that
sup { (/.2 8 € CRM, gl ny = 1} S 1 e fllLoacany: 2.9)
Consequently, applying (1.5) and the density of C2°(R") in H P'2(R™), we conclude that

I fllpp@ny = SUP{(f,g) 1 g€ CP(RM), ||g||Hp’,x(Rn) = 1} S To fllpra ey

which leads to (2.8). This finishes the proof of the lower bound estimate of Theorem 1.1. O
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Remark 2.5. Notice that the lower bound estimate of Theorem 1.2 remains true if we assume
only f € S'(R") and T, f € LP*(R"). Indeed, in this case, the above argument remains valid
and we still have (2.9), which indicates that f induces a bounded linear functional on H P (R™).
In other words, f coincides to an element in (H P/*)‘(JR”))* = LP*(R™). In this sense, we say that
f € LP*(R") and I fllLpr ey < CliTa fllpr ey With the positive constant C independent of f.

3. Proof of Theorem 1.2

In this section, we show Theorem 1.2. To be precise, in Section 3.1, we use the Hardy—
Littlewood maximal function to dominate the sharp maximal function of 7, f when f €
C°(R™). In Sections 3.2 and 3.3, we prove the upper and the lower bound estimates of The-
orem 1.2, respectively.

3.1. The sharp maximal function of T, f

For any locally integrable function f on R”, its sharp maximal function M* f is defined by
setting

B>x

M f(x) == sup 7[ lf(») — fgldy, VxeR"
B

where the supremum is taken over all balls B of R” containing x and fp := fB f(y)dy.
The main aim of this section is to show the following estimate regarding the sharp maximal
function M*(T, f), which is needed in the proof of the upper bound estimate of Theorem 1.2.

Lemma 3.1. Let @ € (0, n) be a non-integer and o € (1, 00). Then there exists a positive constant
C such that, for any f € C°(R") and x € R",

ME(T, () = C{MF @) + M £ @)+ IMAFID 0177 ]

Proof. Let f € C2°(R") and xo € R”". To obtain the desired estimate for ME(T, f)(x0), we only
need to prove that, for any given ball B C R” containing xg, there exists a constant Cg € R such
that

][|Taf<x> — Caldx S MF(xo) + M f(x0) + IMAFI7) (o)1 3.1)
B

Now we prove (3.1). Define f1 := flgp and f, := f — f1. By Lemma 2.1(iii), we know
that Ty f> is well defined almost everywhere on R”, so there exists some point xp € B such that
T, f>(xp) is finite. Choose

Cp =Ty fo(xB).

We claim that

1T f(x) = To f2(xB)| = |Te f1 ()| + | To f2(x) — T f2(xB)] VxeB. (3.2)
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Indeed, if Ty f (x) > T, f2(xp), then the Minkowski inequality implies Ty, f (x) < Ty f1(x) +
Ty f2(x) and hence

To f(x) = To f2(xB) = To f1 (%) + To f2(x) — T f2(xB) < |To f1 ()] + [ To f2(x) — T f2(xB)];

if Ty, f (x) < Ty f2(xB), then the Minkowski inequality also implies Ty, f2(x) < Ty, f (x) + Ty f1(x)
and hence

To fo(xp) = Ty f(x) < Ty fo(xp) — [Ty fo(x) — Ty f1(0)]
STy f1(O)| + | To f2(x) — To f2(xB)].

Thus, we obtain (3.2).
By (3.2) and Cp =T, f2(xp), we control the left-hand side of (3.1) by

][|Taf1 (0l dx + ][ T f2(x) = T fo(xp) | dx.
B B

Then the boundedness of 7, on L? (R") with o € (1, 00) gives

1/o 1/o

1
7[|Taf1(x>|dxs f|Taf1(x>|”dx < @/m(x)m SIMAF17) (xo)1'Ve.
B B R~

So the proof of (3.1) falls into estimating

][ITafz(x) — Ty f2(xp)| dx S M f(xo) + M? f (x0). (3-3)
B

To show (3.3), we may assume that the radius of B is rg. Notice that, for any x € B and
z € supp fo C (SB)C, we have |z — xg| > 7rg and %|x3 —zl<|x—12z| < %|x3 — z|, which
implies that

either min{|z — x|, |z — x|} = Smax{r,ro} or 5r9=<|z—x|<T7r,

by considering the two cases |z — x| > 7r and |z — x| < 7r, respectively. Therefore,

[Ty f2(x) — Ty f2(xB)]

oo 2 i 1/2

< / / /Ipr,y(x—z)—pr,y(XB—Z)Ilfz(z)ldzdy} m}
0 @O, HR"
cor-

= / / / |Pry(x —2) = pry(xp — 2)|
’ mﬁ"’”min{ufxm,|zfx\}25max{r,ro}
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2 1/2
dr
X |f2(z)|dzdyi| m}

+{7 / / ...dzdyTrf%}l/z

0 (0, 1) Sr0=lz—x|<Tr
=:7Z1(x) +7Z>(x).

In the expression of Z(x), the restriction 5r¢g < |z — x| < 7r forces the integral interval of r to
be r > %ro. Then, to obtain (3.3), we only need to show

Zi(x) SMf(xo) and Zr(x) SMf(x0) + M*f(x0),  V¥xeB.

This is done by the following two parts.
Part 1) Estimation of Z1(x). For any x € B, we have

ro 2
r
zl<x>s{/ [ |pr,y<x—z>||f<z>|dzdy} FIT}

0 "By, 1) lz—x|=5r0
)

_ . 172
r
i |pr,y(x3—z)||f<z)|dzdy} VIT}

0 "B(0,,1) lz=—xpl=5r0

+ / / / |pr,y(x_z)_pr,y(xB —2)]

"0 “B(0,,1) min{lz—x|,|z—xp[}=5r

2 p 1,2
r
X If(z)ldzdy:| m}
=:1711(x) +Z12(x) +Z1 3(x).

Let M be the largest integer less than « and L := M 4- 1. To estimate the term Z; 1, if |[x —z| >
Srg > 5r, then the Taylor theorem gives

1Pry( =S sup [rylFlx — 2+ 0ry|* " St — g2
0e(0,1)
and hence
1Pry(x = DI f(@)]dz Srt / Ix —z[* " F f(2)|dz
lz—x|=5rg |z—x|>5r0

Sty / 2" E f )1z

-2 . .
J 2Jrg<|z—x|<2/*+1rg
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Sty @it / ()] dz

jeN ;
J |z—x|<2/*1rg

sty et [ ped
jeN lz—x0]<2/%2rg

< rLrg_LMf(xo).

This further implies that
Yo 12

d
Z11(6) S 8 E M (x0) / P S MrGo).
0

By an argument similar to that used in the estimation of Z; 1, we also have
Z15(x) S M f(x0).

ForthetermZ; 3,if x, xp € B,z € (8B)B and min{|z — x|, |z — xp|} = 5r > S5rg, then the Taylor
theorem implies that

|Pr,y(x —2)— Pr,y(xB —2)|

<Ix —xpl sup |Vpy(x —z+6(x —xp))]
6e(0,1)

1 :
<2rp sup sup |(¢—n) Z —'(ry)ﬂDﬂ (E_J|$|an1> ‘ )
oe@.Di=s=n IBl=L A €1 E=x—z+0(x—xp)+0ry
< rorL sup |[x —z+6(x —xp) +§’ry|o‘*"*1*L
0e(0,1)
Srort|x — g4,

where 6 € (0, 1) and the last step is due to
X —z2+0(x —xp) +0ry| > |x —z| = 2r0 —r > |x — 2] = 3r ~ |x — zI.

Thus, we have

|pry(x —2) — pry(xp — 2| f(2)|dz

min{|z—x|,[z—xp|}=5r

Srort lx — 2" f (o)l dz
|z—x|>5r
o
Srort Y @iryenmith / |f(@)]dz
j=2

2ir<|z—x|<2/tlr
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Srort Yy @Ineritt / |f(@)ldz

j=2 lz—x0|<2/t2r

S ror®~ M f (x0),

which further implies that
172

o0

d
2120 S oMo | [P F S Mo
r

0]
Combining the estimates of Z; | through Z; 3 gives Z1(x) < M f (xp).
Part 2) Estimation of Z,. For 5rg < |z — x| < 7r, applying the mean value theorem, we obtain
|pr,y(x —2z)— pr,y(xB —2)|

1
< ||x —z4+ry[*" —|xp—z +ry|°l_"‘ + Z _‘rlﬁl ‘|x — @Bl |y — g2 1B
1Bl=M "

<|lx—z+ryl*" —lxp —z4ry*"|

1
+ Z —'r|ﬁ||x—x3| sup |x —z+0(x —xp)|* A

1Bl<m ©- 0e(0,1)
Sl =2y =g =2+ ry [+ Y rorllx — g A
1Bl<M
and hence
o0
Zr(x) S / / llx —z4+ry[*" —|xg —z+ry/*"|
5 (ﬂ)n’l Sro<|z—x|<Tr
7r0 ( ) |X—Z+ry|<4r()
2 1/2

dr
x| f(z)ldzdy T2

) 2 1/2

_ dr
+ / / / dZdy m
5

B(0,,1) Sro=<lz—x|<Tr
[x—z+ry|z4ro

2 1/2

dr
1B —n—|f]-1
+ / / E ror'lx —z|*™" | f(2)|dzdy T
1Bl=M

3ro B0y, 1) Sro=lz—=x]<7r

=:1751(x) +Z22(x) +Z2 3(x).
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To estimate Z 1(x), we observe that

lx —z+ry|* " f(2)|dz

[x—z+ry|<drg

o0
< / = 24y £ () dz
I=0p i+ 1y <x—zryl<2-i+2rg
o0
sy [ el
J=0 =2yl <2-i+2r
SroMf(x+ry).

Similarly, if [x —z 4+ ry| <4rg, then |xp —z+ry| <|x —z+ry|+|xp — x| <4ro+2ry = 6rg
and

/ lxp —z4+ry|* " f(2)]dz < / lxg —z4+ry|* " f(2)|dz

|x—z+ry|<drg |xg—z+ry|<6rg

SrogMfxp +ry).

Since r > %ro implies that B(x,r) U B(xp,r) C B(xg, 5r), we then combine the last two esti-
mates to obtain

_ ) 1/2

o0
dr
Zr1(x) Sry / / Mf(x+ry)+Mf(xp+ry)ldy STy
%rO _B(()n»l)

_ 5 12

d
<re / o / Mf@)ydu+r~" / Mf@adn |
B(x,r) B(xp,r)

i 5 12

d
<re / . / MF () du ﬂ%
B(x¢,5r)

Sro L
< M2 f(x0). (3.4)

Next we estimate Z (x). When |x — z 4 ry| > 4r¢p, we use the fact [x — xp| < 2r¢ and the
mean value theorem to derive that

llx —z4+ryl* " = lxg —z+ry[* | Sro sup |x —z+ry+0(xp —x)* "
0e(0,1)

~rolx —z+ry|* L
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Since o ¢ N, we consider the cases @ € (0, 1) and « € (1, n), respectively. If & € (0, 1), then

/ [l =24 Py = xg — 2+ ry " 1£ ()] dz

Sro<|z—x|<Tr
[x—z+ry|=4ro

<ro / X — 2+ iy F )] dz

[x—z+ry|=4rg

o0
<n Y / X — 24 Py () d

1222fr0§ |x—z+ry|<2/tlrg

sy @ [ i

=2 l—z4ry| <2+ rg

SrgMfx+ry),

which, together with the argument used in (3.4), implies that

Zy5(x) S M? f(x0).

If @ € (1,n), then

|lx =2 +ry*™" = lxp — 2+ ryI*7"| | f(2)]dz

Sro<|z—x|<Tr
|x—z+ry|>4rg

<ro / Ix —z+ry* "N f(2)ldz

|[x—z+ry|<8r

o0
<n Y / X — 24 Py () d

I =002 < x—ztry| <27 F3r

Sy @i [ el

J=0 |x—z4ry|<2=i+3r

Sror® T Mf(x +ry)

and hence
) 1/2
o0
Zr2(x) < r2@-b Mfx+ry)d dr
2.2(%) S 70 YAy 3a
3 B(0,.1)
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) 172
00
dr
< 2(a—1) —n
Sro /r r Mf(u)du T2
%rO B(x0,5r)
2
< M f(x0).

Finally, we consider Z» 3(x). From x, xo € B and 5ry < |z — x| < 7r, we easily deduce
that |z — x| ~ |z — xo| and 2r¢p < |z — xo| < 10r. With this, for any multi-index B satisfying
Bl <M —1<a—1, wehave

lx — 2| f (o)l dz S / |z — x0[* "= £(2)1 dz

Sro<|z—x|<Tr 2rp<|z—xq|<10r

00
< — yaje—n—1Bl1-1 d
N lz — xol |f(2)]dz
]:02*j+3r§|2—x0|<2*/'+4r

00
sy et [ s
j=0

lz—xo| <2~/ +4r

Sre P M f (xo),

which further implies that

2 172
[ d
—n= - r
/ / / Z ror®lix — 21~ 1B1=1) £ ()| dz dy s
3ro LB@®,,1) Sroslz—xI<7r |Bl=M—1
172
o
_ dr
< roMf(x0) / e A
< M f(x0). (3.5)

Likewise, for any multi-index g satisfying || = M > o — 1, we have

Ix —z[* "IN £ (2)) dz

Sro<|z—x|<Tr

< / 1z —xol* " P17 f(2)]dz
|z2—x0|>2r¢
o0

< / |z — x0[* " PI=Y £(2)1 dz

i—1. . .
J 2Jrg<|z—x0|<2/*1rg
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)

<D @I / |f @) dz

j=

—_

lz—x0|<2/*1ry
<rg T PTIM f (xo)

and hence

5 1/2
o0

d
/ / / > rortPlx — Y £ (o) dzdy rlﬁ

Sro LB(@,.1)Sr0=lz—x<7r WPI=M

172
T d
_ r
SrgMamron | [
<M f(xo). (3.6)

Combining (3.5) and (3.6), we obtain Z 3(x) < M f (xo).
Summarizing the estimates of Z 1(x) through Z> 3(x), we conclude that

Zo(x) S M f(x0) + M? f(x0),

as desired.
Altogether, we complete the proof of Lemma 3.1. O

3.2. The upper bound estimate of Theorem 1.2

Denote by M the dyadic Hardy-Littlewood maximal operator, that is, for any f € L lloc R")
and x € R",

Q dyadic, O>x

Maf() =  sup ][If(y)ldy,
o

where the supremum is taken over all dyadic cubes of R” containing x. We need the following
well-known result (see, for example, [8, Lemma 7.10]) : if 1 < pg < p < oo and w € A, (R"),

then there exists a positive constant C such that, for any function f satisfying My f € LP(w) N
LP(w),

IMa fllLr@) < CIME FllLrw)-

Proof of the upper bound estimate of Theorem 1.2. Let f € H”*(R"). By the definition of
I | o2 ey in (1.1), we know that there exists a non-negative function w satisfying (1.2) and

If e @i=ry < 20 f I o ey
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By the argument used in the proof of Theorem 2.4, if we let @y := o 1(/\/la)l/ 99, where ¢
is some positive constant depending only on n, A and 6 € (A/n, 1), then @y satisfies (1.2).
Moreover, one has v := 5;_’7 € A,(R") and [v]Ap(Rn) depends only on cg, n, A and 6. Since
C2°(R") is dense in the weighted Lebesgue space L”(v), it follows that there exists a sequence
{fj}jen C C°(R™) such that

lim f; = f

j—o00

holds true both in L?(v) and almost everywhere on R”.

Applying the reverse Holder inequality in [12, Theorem 2.3] as well as the self-improvement
property of the A,(R")-weight class (see, for example, [8, Corollary 7.6]), we find that there
exists ag € (1, p) sufficiently close to 1 and depending only on [V]A,,(Rn) suchthatv e A, /5 (R")
whenever o € (1, 0g), with [v] Apjo (RY) depending only on cp, n, A and 8. Consequently, from
[10, Theorem 7.1.9(b)], we deduce the boundedness of M on the weighted spaces L?(v) and
LP/? (v), with operator norms depending only on cg, 7, A and 6.

Fix such a 0. For any j € N, applying Lemma 3.1 and [8, Lemma 7.10], we conclude that

1T fillLr ) < IMa(To f)llLrw)
S UM (T f) e o)
SUMF;+ M2 £+ IMA £ e )

S fille -

Notice that v < w! 7 almost everywhere on R”. Therefore,
sup || fillLroy S IF ey ST Lo@i-ry SN pa@ny-
jeN

By (1.11), (2.1) and the Fatou lemma, we obtain

1To fllLro) <

iminfTy /5| <lminflI 7o fllzooy < 1 o),
j—o0 LP(v) j—o00

which further implies that

I/p

1T f 1l zpr ey < /[Taf(X)]”[?t)e(x)]l_p dx = NTa fllerey S NI pr@n)-
RV!

This finishes the proof of the upper bound estimate of Theorem 1.2. O
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3.3. The lower bound estimate of Theorem 1.2

Let (p,A) € (1, 00) x (0,n). According to [5, Section 3.2] (see also [24,25]), the predual of
the Zorko space Z”**(R") is the space

LY R = iclosure of C® (R in LP“*(Rﬂ)} .

Recall that HP*(R") = ZP*(R") with equivalent norms (see [3, Theorem 3.3]). Thus, any f €
HP*(R") satisfies

”f”Hl’)‘([R") ~ Sup{'(f7 g>| -8 € Cfo(Rn)a “g”Lp’,k(Rn) < 1} (37)

with the equivalence constants being positive and independent of f.

Proof of the lower bound estimate of Theorem 1.2. Let f € H”*(R"). Notice that

HP*®RYc ) L)
veA, (R

implies H?*(R") c &'(R"). With all the notation as in Proposition 2.3, we have
T d
¥ Z/K, wdr v fL inS'@®RY.
r
0
Let 5(-) :=¢(—-). For any g € C°(R") satisfying ”g”LP’MR") <1, we obtain
o o
~ dr
(f.8)= K*d’r*fg Kr*f’(br*g)T,
0 0

which, together with the Fubini theorem and the Holder inequality as well as Theorem 2.4 and
(1.3), implies that

/K * f ¢r*g //IK *f(X)||¢r*g(X)|dx—
0

0 Rll
T dr |’ ar |’
r ~ r
< [| [ikxsr || [@rewr | dx
R~ 0 0
1 1
00 7 00 2
2 d}” ~ 2 d}’
|Krx f]7 — lr * g|° —
r r
0 HP-*(R") 0 Lf’,*)‘(R”)

S Ta fllgro@ny-
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Consequently,

sup {1(£.8)1: g € C2@®"), gl oany = 1} S ITef o ey (3.8)

Combining this and (3.7) gives

1 N api gy S W Ta f 1l o gy

This finishes the proof of the lower bound estimate of Theorem 1.2. O

Remark 3.2. The condition f € HP*(R") in the lower bound estimate of Theorem 1.2 can
be relaxed. For instance, given any f € L'(R") N L>®(R") satisfying T, f € HP*(R"), one
can show that f € HP*(R") and I f 1 rpr @y < CllTa f | p.s-rey With the positive constant C
independent of f.

Indeed, since the assumption f € L'(R") N L°°(R") also implies that f € S'(R"), we still

have (3.8) in this case, so that f induces a bounded linear functional on Lg/’A(R”). Using

the assumption f € L'(R") N L>°(R") as well as the fact that the dual space of Lg/’)‘(R") is
HP*(R™), we know that f coincides to an H?-*(R")-function almost everywhere on R”, that
is, f € HP*(RMY).

4. Proof of Theorem 1.3

In this section, we show Theorem 1.3. In particular, we first establish some basic properties
of the Riesz-type capacity Ry, p 5 in Section 4.1, and then give the proof of Theorem 1.3 in
Section 4.2.

4.1. Properties of the Riesz-type capacity R, p).
We begin with the following properties.
Lemma 4.1. Let o, A € (0,n) and p € (1, 00). Then Ry, p,» has the following properties:

(1) for any subsets E1, E, CR" satisfying E1 C E2, Ra,pa(E1) < R, pi(E2);
(ii) for any sequence {E;} ;e of subsets of R",

1/p

Ra,p,a U Ej =< Z[Ra,p,A(Ej)]l/p-

jeN jeN
Proof. Notice that (i) follows directly from the definition of R, p 1.

To show (ii), we may assume that ) jeN[Ro,, . A(Ej)]l/ P < o0; otherwise, (ii) holds true
trivially. Then, for any ¢ € (0, 00) and j € N, there exists f; > 0 such that I, fj > 1g; and

”f]”I[’{pA(Rn) S Ra,p,A(Ej) + 2_‘/5.

Let f:=sup;cy fj. Clearly, f >0 and Iy f > 1y, yE;. Applying (1.4), we obtain
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1 Noreny < D W Fill ey < ) [Rapi(E)) +277 €77,

J€EN jeN
which further gives
p
Rapi | U Ej | <1150 = | 2_[Rapa(E; NP @ — 1)l
JjeN jeN

Letting € — 0, we obtain (ii). This finishes the proof of Lemma 4.1. O
Next, we show the weak-type capacitary inequality for the Riesz-type capacity Ry, p,i.-

Lemma 4.2. Let a, A € (0, n) and p € (1, 00). Then, for any t € (0, 00) and f € HP*RY),
Rapr (b €R": L fO > ) <t PIF 1D -
Proof. Foranyr e R, let E; :={x e R": I,(|f])(x) >t} and f; := i1 | f1. Then

(@) =t""L,(fHx)>1,  Vxek,.

From this, Lemma 4.1(i) and the definition of Ry, 5, we deduce that

Rapa((x €R": Lo f ()] > 1)) < Rap i (ED) < il oy = PN s ey

which completes the proof of Lemma 4.2. 0O
Remark 4.3. Let o, A € (0,n) and p € (1, 00).

() For any f e HP*(R"), we use Lemma 4.2 to deduce that Rapir{x e R" 1 |l f(x)] =
oo}) =0. That is, I, f is finite outside a set of vanishing Ra,p,;\-capacity on R”.

(ii) Assume further that p satisfies (1.12), which implies (n — a)p’ > A. For such p’, we can
choose p = k/p = € (Ln/a), that is p’ = P ap . Then [19, Theorem 1.1] implies that I,
maps L?(R") continuously into L’ ’)‘(]R"). Thus, for any f € H?*(R") and g € L?(R"),
we have

[Laf> @) = IS da) = 1 1 gpi ey a8l a ey S I Wi ey 181 L5 ey »

where the implicit positive constant is independent of f and g, which further implies that
I, f € LP (R") and hence I, f is finite almost everywhere on R”. Therefore, the set
{x e R": |l f (x)| = oo} has both zero R, p,x-capacity and zero Lebesgue measure.

Remark 4.4. Let o € (0, n) be a non-integer, A € (0,n) and p € (1, c0). Below we only show
Theorem 1.3 for the case p satisfying (1.12), because the proof of Theorem 1.3 is almost trivial

under the assumptions @ + A > n and p € [a+x —., 00). Let us be more precise.
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(i) Consider first the case p = a_‘_ﬁ Applying the Holder inequality (see also [3, Re-

mark 6.3]), we obtain

VxeR"

o f =N F oy 1 = 17" s oy »

The translation invariant property of the norm || - ||, A(RM) leads to that
”|x_.|0t—n ||P — sup rk—n |Z|—)ndz’

! A (TR
LP A (R") (y,r)€R" x(0,00) B0
y.r

which is a finite number independent of x, because

if |y| < 2r, then r*~" / lz| ™ dz <r* " / lz|™*dz < 1;

B(y,r) B(0,3r)
if y] = 2r, then r— / 2| dz~ P / I dz ~ (/) S 1.
B(y,r) B(y,r)

We therefore obtain that |1, f| is pointwisely bounded by a positive constant multi-
ple of || fllgp+@n). Meanwhile, we know from [3, Theorem 6.4(i), Corollary 6.2] that
Ra,p,n(R") < co. Combining the above two facts, we easily obtain the desired estimate
of Theorem 1.3.

(i) To treat the case p > we choose § € (n — A/ p’, «) and consider the function f(x) :=

A
o+A—n’
(14 |x])~ for any x € R". Using (1.6), one can easily show that

I ppiqny =~ sup 1/(1-|-|3C|)_‘Sg(96)dx
]Rﬂ

gl 2 gy <

= s | [ewar Y [ @) e

1

gl e < —
LPAR) Lxl<1 1_12.i—'§|x|<2/'

oo

14y 26
j=1

<1

Meanwhile, by an easy calculation, we obtain
I f(x) > / =y A+ D0 dy = / QlyD* " Pdy=o00, VxeR"
[y]>1+|x] [y|>14]|x]

Combining the last two facts and Lemma 4.2, we conclude that Ry, , 3 (R") = 0, which
further indicates that Theorem 1.3 holds true automatically.
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Finally, we end this section with a differentiation theorem for the Riesz-type capacity Rq, p 1.
where @, A € (0,n) and p € (1, 00).

Lemma 4.5. Let o, 1 € (0,n) and p € (1, 00). For any given f € HP**(R"), it holds
lim ][ o f(x +ey) —Io f(x)|dy=0
e—0
B(0,.1)
outside a set of vanishing Ry, p ).-capacity on R".

Proof. Let f € H”*(R"). Due to Remark 4.3, we may as well assume that I, f is pointwisely
finite on R”. Notice that the desired conclusion of Lemma 4.5 follows directly from

R, p.a x € R": limsup ][ [Iof(x+ey)— Iy f(x)|dy >0 =0.

e—0 K
B(0n,1)

To obtain the above identity, it suffices to show that, for any § € (0, 00),

Ra,p,a x € R": limsup 7[ o f(x+ey)— I, f(x)|dy >§ =0. 4.1)
e—0 .
B(©0,,1)

Indeed, once we have proved (4.1), then Lemma 4.1(ii) implies that

R, pa x € R": limsup ][ [Iof(x+ey)— I, f(x)|dy >0

e—=0
B(0y, 1)

Ra,p,i U x € R": limsup ][ o f(x +ey) — Iy f(x)|dy >277
Jen 0 s
1/py P
S| Rapi [ {5 R : limsup ][ Lo f G+ 83) = L f(0)]dy > 27
JeN . B(©,.1)

=0,
as desired.

It remains to show (4.1). For any given n € (0, 00), by the density of C2°(R") in HP*(R™),
we know that there exists ¢ € C2°(R") such that

If— @l gra@ey <1
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Then we write

][ Lo f (e +89) — I f(O)]dy < ][ la(1f — ) (x + &) dy

B(0,,1) B(0,,1)

+ ][ o (x +ey) — Io@x)|dy + 1o (lp — f)(x).
B(0y,1)

To deal with the first term in the right-hand side of the above formula, we let

Ge = IB(6n,€)|_llB(6n,6) -

and utilize the fact (see [7, (2)]) that there exists a positive constant C 4 ), depending on o and
n, such that

Iyqe(x) < Camylx|*7", VxeR" Vee(0,00),

thereby obtaining

][ Lo(lf —oD(x +ey)dy =ge * [Ua (| f — D] (%) < Clam L (| f — @) (x).

B(0,,1)

Meanwhile, from ¢ € CZ°(IR"), it follows that /,¢ is a continuous locally integrable function on
R”, so the Lebesgue differentiation implies that

lim ][ [T (x + &y) — Iyp(x)|dy =0, VxeR",
e—0

B(0y,1)

because any x € R” is a Lebesgue point of /,¢. Therefore,

lim sup ][ o f(x +ey) = Lo f(x)|dy < [Can + 1] La(|f — @D (x).

e—=0
B0, 1)

With this and Lemma 4.2, we conclude that

Ra.pa x €R": limsup ][ o f(x+ey)— Iy f(x)|dy >$

e—0 K
B(0,,1)

8
< Ra,p. ({x eR": L(If —oD(x) > ComF1 })
a,n
587p||f_(p||[;p,k(Rn)

<8 PpP.
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By this and the arbitrariness of 1, we obtain (4.1), which completes the proof of Lemma 4.5. O
4.2. Proof of Theorem 1.3

In this section, we show Theorem 1.3 by first establishing the following three auxiliary lem-
mas. The first lemma stems from [7, Lemma 1].

Lemma 4.6. Let { f}} jen be a bounded sequence in HP*R"), where a, ) € (0,n) and p satis-
fies (1.12). Assume that there exists a measurable function F on R" such that

lim Iy fj(x) = F(x) foralmost every x € R".
j—o0
Then there exists a function f € HP*(R") such that
I N e rqey < Csup L fill g
JjeN
and
Iy f(x)=F(x) foralmostevery x € R",

where C is a positive constant independent of f.

Proof. According to [5, Section 3.2] (see also Section 3.3), we know that the predual space
of HP*(R") is Lg/’A(R”), where 1/p + 1/p’ = 1. By the Banach—-Alaoglu theorem (see [26,
Theorem 3.15]), we know that there exist f € H”*(R") and a subsequence of {f i}jen, still
denoted by { f}} jen, such that lim;_, o, f; = f in the weak-* topology, that is,

lim /fj(x)fp(x)dx:/f(x)(p(x)dx, VgoeLg/,k(R”).
j—o00
R~ R~

This further gives

||f||Hp~l(Rn) < sup I/ ||Hp,k(Rn)~
jeN

It remains to show that I, f (x) = F(x) for almost every x € R". Without loss of generality, we
may assume that f = 0 almost everywhere on R" and aim to show that F' = 0 almost everywhere
on R". Define

gx) = |x|°‘7"13(6m1)(x) and h(x):=|x|*" — g(x), Vx eR".
For any ¢ € (0, 00), let g.(-) := z—:’”g(e’1 -) and &, be defined in a similar way. Observe that

|x|*7" = e%ge(x) + %he (x), Vx eR".
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Let us first prove that ho(x — ) € Lg /’)‘(R”) whenever x € R” and ¢ € (0, 00). By translation

and dilation invariance, this is equivalent to validating that & € Lg /’A(R”). To this end, it suffices
to find a sequence {/;};en C CZ°(R") such that

lhj— h||Lp/,,\(R,1) — 0 as j— oo. 4.3)
Indeed, by the Holder inequality, one easily finds that

=I-

” : ”LP/*)‘(]R”) ”LP/"/)‘(]R")'

Meanwhile, noticing that the assumption (1.12) implies that W +n < 0, we then have

T A
p'n ') on

(o(—n)p/n (a—n)p/n 1
Il = | [ 5|~ | [o SR | <oc,

lx|=1 1

This gives (4.3), because any function in the Lebesgue space LP™/*(R") can be approximated
by functions in C°(R").

For any x € R” and ¢ € (0, 00), by he(x —-) € L(I))/’)”(]R") and the convergence of {f;}jen C
HP*(R") to f =0 in the weak-* topology, we obtain

lim he % fj(x) = lim /hs(x - Nfiy»dy=0
j—o00 J—>0
]Rn

and hence, for almost every x € R”,
F(x)= lim I, fj(x) =&% lim ge* fj(x) +¢&% lim he* fj(x) =& lim g * f;(x).
j—oo j—00 Jj—00 Jj—00

Further, for any ¢ € Lg /’A(R”) with ||| Lo ) <1, applying the Fatou lemma and the Fubini
theorem, we have

n

[ im (e £p@pydx| <timint [ (6. x £ 000l da
| J

<timinf [ | [ lg0)l1f; = »ldy | lo(ldx

Rn n

Slijn_l)ggf/lgs(y)l/lfj(x—y)Iltp(X)ldxdy
R

Rn

=lijrg{£f/lgs(y)l/Ifj(z)llw(y+z)|dzdy

Rn Rn
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= lijrgiogf/ 18D fillgor@my oy + Il .y gy 4y
R}l

<sup [ fjll grr@nylIgll L1 (rry-
jeN

Therefore, after taking supremum over all ¢ € Lg "\(R") with |¢]| LY@y = 1, we derive that

Se%sup |l f; lgpr @y llgllLt ey = O
HP-)‘(R") jEN

LF N 70 oy ~g°“ lim g, * f;
j—)OO

as ¢ — 0, which implies that F' = 0 almost everywhere on R”. This finishes the proof of
Lemma4.6. O

Denote by C*°(R) the set of all infinitely differentiable functions on R := [0, 00). Ap-
plying Lemma 4.6, we show the following analogue of [7, Lemma 3], especially the condition
¢ € C°(R4) in [7, Lemma 3] is now relaxed to ¢ € C*°(R4).

Lemma 4.7. Let @ € (0, n) be a non-integer, A € (0,n) and p satisfy (1.12). Assume that ¢ €
C*®(Ry) satisfies

Wl <L, VieRy, ¥Vjef0,1,..., al), (4.4)

where L is a positive constant independent of t. Then, for any non-negative function f €
C2°(R™), there exists a function g € HP*(R") such that ¢ (I f) = Ig outside a set of van-
ishing Ra, p,»-capacity on R" and

g gprrey < CL S 1 ps ey
where C is a positive constant depending only on «, p, n and L.
Proof. Let us first show the conclusion of Lemma 4.7 with an additional assumption ¢ €
C(R4). Since f >0 and f € C°(R"), it follows that 0 < I f € C®°(R") and ¢p(Io f) €

C2°(R™). By this and [16, p. 74], we know that there exists g € L'(R™) N L®(R") such that
¢ Iy f) = I, g pointwise on R". As was proved in [7, (10)], one has

Tug(x) SM[f(x)+ To f(x), VxeR"

Recall that M is bounded on H”-*(R") whenever p € (1,00) and A € (0,n); see [13, Lemma
2.12]. With this and Remark 3.2, we find that g € H?-*(R") and

||g||Hp,A(Rn) N ||Tag||Hp-A(Rn) SIMSf+ Taf”Hp,A(Rn) s ||f||Hp,A(Rn)-

Now, we assume that ¢ € C*°(R.) satisfies (4.4), but has no compact support. By [7, p. 264],
we know that there exists {¢;};en C C°(R) satistying (4.4) uniformly and

lim ¢;(t) = ¢ (1), V1 € (0, 00).
j—00
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According to the above already proved fact, we find {g;} jen C L'(R™) N L*®(R") such that

¢j(a f)(x) = lagj(x), VxeR" VjeN,

and

sup 1g;ll g @ny SN 1o mny-
jeN

Notice that
i Lgj(0) = lim ¢l H(¥) =@Uaf)), VxR,

By these and Lemma 4.6, we find that there exists g € H”**(R") such that, for almost every
x eR",

lyg(x) = jli>n;o lygj(x) = ¢ o [)(x) 4.5)
and

gl gror ey < Sug 181l grp ey < Il o ey -
JE

For any ¢ € (0, 00), define g, as in (4.2). Then it follows from (4.5) that
Ge * lg8(x) = ge % ¢ (Lo ) (), Vx eR", Ve e (0,00).

On the one hand, by Lemma 4.5, there exists a subset E* C R" such that Ry, 3 (E*) =0 and
lim |ge * I4g(x) — Iog(x)| < lim ][ [loag(x +ey) — Iog(x)|dy =0, VxeR"\E"
£—0 =0 P

B(0,,1)

On the other hand, by the mean value theorem and (4.4) as well as Lemma 4.5, there exists
another subset E** C R" such that Ry, 5 (E**) = 0 and that, for any x € R" \ E**,

lim g # ¢ (Lo f)(x) = ¢ (Lo f)(X)] < lim ][ o f)(x +y) = ¢ Lo f)(X)dy

B(0y.1)

<Llim ][ Lo f et £3) — L f (0| dy
g—0
B(0y,1)
=0.

Combining the last three formulae, we obtain

Please cite this article in press as: L. Liu et al., New characterizations of Morrey spaces and their preduals with
applications to fractional Laplace equations, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.10.020




YJDEQ:9590

L. Liu et al. / J. Differential Equations eee (eeee) eee—see 45

log(x) = ¢ (Lo f)(x), Vx eR"\ (E*UE™).

Also, by Lemma 4.1(ii), we have Rq, p(E* U E™) = 0, which completes the proof of
Lemma4.7. 0O

Via an argument similar to that used in the proof of the upper bound estimate of Theorem 1.2,
we have the following boundedness result for a variant of the operator 7.

Lemma 4.8. Let o € (0,n) be a non-integer, p € (1,00) and A € (0,n). Then there exists a
constant og € (1, p), depending only on o, n, p and A, such that, for any s € (1,0¢) and f €
HPH(R™),

N 2/s 172
; s dr
T, f(x):= [pry * ()" dy rFl+2o
0 [B@G..1

is well defined for almost every x € R". Moreover, there exists a positive constant C such that

||T;f||Hpvk(Rn) = Clfllgpa@nys Vv feHPMRY.
Proof. Given any s € (1, 00), if we have already proved that, for any f € C°(R") and x € R”,
METY )) S M)+ M F@) + IMAMFID T +TMAFH@1, (4.6)
then the conclusion of Lemma 4.8 follows from the same argument as that used in Section 3.2
whenever s € (1, o). In particular, og is the same as the one appeared in Section 3.2, which
depends only on «, n, p and A.

Now, we fix xo € R" and validate (4.6) for Mﬁ(Tof f)(x0). According to the proof of
Lemma 3.1, we only need to show that, for any given ball B C R" containing xo,

][IToff(X) — T, f2(xp)|dx
B

S M F(x0) + M2 f(x0) + IMAM FI9) o) TS + IMAFI) (xo)]', (4.7)
where f = fi 4+ f>» with f1 := flgp and f, := f — f1, and xp is a point in B satisfying

T; f>(xp) < oo. The existence of such a point xp is guaranteed by Lemma 2.1(iii).
Notice that (3.2) remains true, but with 7}, therein replaced by 75, which implies that

][IToff(X) =T, fr(xp)ldx < ][ Ty f1(x)dx +][ | Tg f2(x) = Ty (f2) (xp) | dx.
B B B

By the Holder inequality and the fact that 7 is bounded on L (R") for any given o € (1, 00)
(see [7, Remark in p. 262]), we obtain
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1/o0 1/o
][|T,;f1 (x)|dx < [][ T3 f1(x0)|° dx} |:|B| /If1 x)° dx} SIMAFI7) (o)1,
B B R»

which is as desired if we take o :=s. Thus, the proof of (4.7) falls into estimating

TS fo(x) = TS fo(xp) | S M f(x0) + M2 (x0) + IMMFIHx)IYS,  ¥YxeB. (4.8)

Similarly to the estimation of (3.3), we use s € (1, o) and the Minkowski inequality to write

TS fo(x) = T} fr(xp)|

00 s 2/s d 12
r
< {/ / { / |Pr,y(X—Z)—Pr,y(XB—Z)||f(Z)|dZ} dy:| m}

0 (On,1)  lz—xp|=5 max{r,ro}
|z—x|>5 max{r,ro}

AL o] )

0 ((ﬂ)n’l) ro<|z—x|<7r
=: Z(x) + 22()6).
By an argument similar to that used in the estimation of Z; in the proof of Lemma 3.1, we obtain
Zi(x) S Mf (xo).

For 22, following the estimation of Z; in the proof of Lemma 3.1, we write

o0
Zz(x)g{/ / i / ||X_Z+l’y|a_"—IxB—Z+ry|“_"|

5 0 Sro<|z—x|<7r
ro B(0,1) M=
7 § [x—z+ry|<drg

S ORI
r
><|f(Z)|dZ} dyi| m}

+ 7 / { / ...dz}sdy}z/s%}l/z

5 0 Sro<|z—x|<Tr
ro B(0,,1 ro=
770 On, 1) [x—zhry| =4

o0 -
" / / / S rgrlflfx — gpe-n-Ifi-

5 <M

7

Sro BO,1) Srosle—xl<7r P15

K 2/s 1/2
dr
><|f(Z)|dZ} dy:| m}

=:72.1(x) +Za2(x) + Z23(x).
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The treatment of Z; 3 in the proof of Lemma 3.1 directly gives
Z33(x) £ M f (x0).

Instead of (3.4) in the estimation of Z, 1, we now obtain

ot 2/s 12
Zy1(x) Sr§ / / {(Mf(xo+ry)+Mfxp+ry)}dy rld%
3r0 LBOy,1)
T 2/s 172
st [l [ wwrace [ ogeradl
3o L B B(xp,r)

S IMAM S o)l
Similarly, we also have
Z22(x) SIMIMFI) @',
Altogether, we obtain (4.8), which completes the proof of Lemma 4.8. O

Proof of Theorem 1.3. Without loss of generality, we may assume that
0< feCIR".

Due to Remark 4.4, we only need to show Theorem 1.3 under an additional assumption that p
satisfies (1.12). To this end, let ¢ be an infinitely differentiable increasing function on R such
that

0 ift € (—o0, 0],

¢(1) = .

1 ift € [1, 00).
For any j € Z, let ¢;(-) := 20227 . —1). Clearly, the sequence {¢;} ez satisfies (4.4) uni-
formly. For any j € Z, we apply Lemma 4.7 to find a function g; € H PA(R™) such that

<

¢j(Uy f) = Iyg; outside a set of vanishing R, p,1-capacity on R" and SUp ez, gl mprny S
I f | zr7.7 mny- From these and Lemma 4.1(i), it follows that

/Ra,m ((x €R": Lf(0) > 1)) di? 3 2PRy ({x ER": I f(x)> 21'})
0

JEZ

<YV Rupa (Jr e R 0y f ) > 7))

JEZ
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~ > 2 Rapi ([ R Lugi0) > 27}))

JEL

p
S Z ”g] Ial,A(Rn)’

J€EZ

where the last step is due to Lemma 4.2. Invoking Theorem 1.2, we obtain the desired result of
Theorem 1.3, provided that

P p
Y Tagi N gy S I W 4.9)
JEZ
Now we show (4.9). On the one hand, we have
D NTagillfp s gny = D int / |Tag (0P [0 (0)]' 77 dx
JEZL JEZ R

<intY [ Mg, lw001! " dx.
JE€Ln

where the infimum is taken over all non-negative functions w on R” satisfying (1.2). On the other
hand, we deduce from [7, (18)] that

Y ITagiIP SIMFO) + TS F@)P,  YxeR",
JEZ

where s can be any number in (1, .= a) By these, (1.4), Lemma 4.8 and the boundedness of M
on HP*(R") (see [13, Theorem 2.12]), we conclude that

D T8 oy S UMF + T3 F U
JEZ
p 4

” f” Hp: A(Rn
This finishes the proof of (4.9) and hence of Theorem 1.3. O
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