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Abstract

In this work we consider the two-species chemotaxis system with logistic source. We present the global
existence of generalized solutions under appropriate regularity assumptions on the initial data. In addition,
the asymptotic behavior of the solutions is studied, and our results generalize and improve some well-known
results in the literature.
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1. Introduction

In this paper, we concerned with the two-species chemotaxis system with Lotka-Volterra com-
petitive kinetics:
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ur=diAu—V-uxi(w)Vw) + pju(l —u —ayv), xe, t=>0,
v =d)Av—V - (2(w)Vw) + uov(l —v —azu), xe, t>0,
w; =d3Aw — (ou + Bv)w, xeQ, t>0, (1.1)

du __ v _ dw __
v v =Y xe€df2, t >0,

u(x,0) =uog(x), v(x,0) =vo(x), wx,0) =wo(x), xe,

where Q@ C RY (N > 1) is a bounded domain with smooth boundary Q2 and ;’—v denotes the
derivative with respect to the outer normal of 9€2, # and v represent the population densities of
two species and w denotes the concentration of the oxygen. dy, da, d3, 41, 12, a1, az, o, B are
positive constants, initial data uq, vg, wo are known functions satisfying

(10, v, wo) € WH®() x WH®(Q) x Wh(Q) are nonnegative with ug # 0 and vg % 0.
(1.2)

xi (i =1,2) fulfilling
xi € C'*7([0, 00)) for some ¥ >0 and x; > 0 as well as x; (0) > 0 (i =1, 2). (1.3)

Chemotaxis is the directed movement of cells or organisms in response to the gradients
of concentration of the chemical stimuli. It plays fundamental roles in various biological pro-
cesses including embryonic development, wound healing, and disease progression. Chemotaxis
is also crucial for many aspects of behavior, including locating food sources (such as the fruit fly
Drosophila melanogaster navigates up gradients of attractive odors during food location), avoid-
ance of predators and attracting mates (such as male moths follow pheromone gradients released
by the female during mate location), slime mold formation, angiogenesis in tumor progression
and primitive steak formation. The pioneering works of the chemotaxis model was introduced
by Keller and Segel in [13], describing the aggregation of cellular slime mold toward a higher
concentration of a chemical signal, which reads

uy=Au—V-wVv), xe€, t>0,
(1.4)
v=Av—v—+u, xeQ, t>0.

The mathematical analysis of (1.4) and the variants thereof mainly concentrates on the bound-
edness and blow-up of the solutions [5,9,27,36,38,43]. As the blow-up has not been observed
in the real biological process, many mechanisms, such as nonlinear porous medium diffusion,
saturation effect, logistic source may avoid the blow-up of solutions [10,12,24,30,34,60]. In the
past few decades, the system (1.4) has attracted extensive attention. For a helpful overview of
many models arising out of this fundamental description we refer to the survey [2,6,8].

Keller and Segel [14] introduced a phenomenological model of wave-like solution behavior
without any type of cell kinetics, a prototypical version of which is given by:

ur=~Au—xV-(5Vv), xeQ, t>0,
(1.5)
vy = Av —uv, xeQ, t>0,
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where u represents the density of bacteria and v denotes the concentration of the nutrient. The
second equation models consumption of the signal. In the first equation, the chemotactic sensitiv-
ity is determined according to the Weber-Fechner law, which says that the chemotactic sensitivity
is proportional to the reciprocal of signal density. Winkler [47] proved that if initial data satisfy-
ing appropriate regularity assumptions, the system (1.5) possesses at least one global generalized
solution in two dimensional bounded domains. Moreover, he took into account asymptotic be-
havior of solutions to the system (1.5), and proved that v(-, t) A 0in L*°(R) and v(-,t) — 0
mLHmaw—wan@dkmfm;ﬁy%Wﬁhg
constants. The same author [49] showed that the system (1.5) admits at least one global renor-
malized solution which is radially symmetric if initial data (uq, vg) are radially symmetric and
Q := Br(0) ¢ RN with R > 0. Wang et al. [41] proved that the system (1.5) admits a unique
global solution if initial data are appropriate small and that the second equation of Av is re-
placed by £ Av with £ > 0 in whole space. When the system (1.5) has a logistic source ru — pu?,
Lankeit and Lankeit [17] showed that the system (1.5) possesses a global generalized solution
for any x >0, r > 0 and u > 0. When Au is replaced by Au™ (m > 1), Lankeit [16] proved
thatif m > 1 + %, the system (1.5) admits a global classical solution or global locally bounded
weak solution. When v does not stand for a nutrient be consumed but for a signalling substance
produced by the bacteria themselves, which is given by:

)5 M, where m, M are positive

ur=A~Au—xV-(5Vv), xeQ, t>0,
(1.6)

vy=Av—v+u, xeQ, t>0.

When % is replaced by x (v), x (v) < uﬁ(#)k with some xo > 0, « > 0 and k£ > 1, Winkler [42]
proved that for any choice of appropriate initial data, the system (1.6) possesses a unique global
classical solution that is bounded in 2 x (0, oo) for N > 1. Stinner and Winkler [35] showed
that for any A € (0, min{1, X—lz}), the system (1.6) admits at least one couple (u, v) of nonnegative
functions defined in © x (0, co) such that (u, v) is a global weak power-A solution of (1.6) for
N > 2. Recently, Winkler and Yokota [52] proved that the system (1.6) possesses a uniquely

determined global classical solution if x € (0, xo] and x2 < 8, where xo € (0, \/%), 6 >0 are
constants. Furthermore, the solution of (1.6) converges to the homogeneous steady state (izq, i)
at an exponential rate with respect to the norm in (LOO(Q))2 as t — 00, where ug = ﬁ fQ ug.
Lankeit and Winkler [18] introduced an apparently novel type of generalized solution, and proved
that under the hypothesis that

00 ifN=2,
x<{+8 ifN=3,
2 ifN >4,

for all initial data satisfying suitable assumptions on regularity and positivity, an associated no-
flux initial-boundary value problem admits a globally defined generalized solution. This solution
inter alia has the property that u € L}OC (2 x [0, 00)).

To further understand the development of system (1.1), it is necessary to review the related
literature in this direction. Being distinctive from the model (1.1), the following two-species
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chemotaxis system with Lotka-Volterra competitive kinetics, in this system, the signal is pro-
duced rather than consumed by the cells:

u=V-(Diw)Vu) = V- uS1(w) - Vw) + pu(l —u —ajv), xe, t>0,
=V -(D(v)Vv) = V- wSH W) -Vw) + pav(l —v —azu), xe, t=>0,

wy = Aw — w + au + P, xe, t>0, (1.7)
m=m=5=0 x€dQ, 1>0,
u(x,0) =ugp(x), vx,0) =vo(x), wix,0)=wo(x), x € Q.

In the two-dimensional case, Bai and Winkler [1] obtained global existence of solution to the
system (1.7) when Di(u) = Da(v) = 1, S1(u) = x1, S2(v) = x2. Moreover, they also took
into consideration an asymptotic behavior of solutions for the system (1.7), and proved that if
ai,az € (0,1) and p1, up are sufficiently large, then any global bounded solution exponentially
converges to (11 a“glz, 11 a’fflz, el ‘i]);ri(] —2)) as t — 00; If a1 > 1 > ap > 0 and s is suffi-
ciently large, then any global bounded solution exponentially converges to (0, 1, 8) as t — 00;
If ay =1 > ap > 0 and w, is sufficiently large, then any global bounded solution algebraically
converges to (0, 1, B) as t — co. Mizukami [25] extended this result and showed that the system
(1.7) admits a unique global uniformly bounded classical solution if Dy(u) = dy, D>(u) = da,
—w + ou + Po is replaced by h(u, v, w) and Sy (u), S2(v) are replaced by x; (w) i=1,2,re-
spectively, and there are some positive constants r, 6, M, p, k;, i = 1, 2 such that —(u v,w) >0,

(u v,w) >0, Bw(”‘ v,w)<-—r, [hu,v,w)+sw| <M +u+v), —xi(wh(0,0, w) <k;,
2dl dsx](w) + (cd3 — di)p + v/(d3 — d;)? p? + 4d;d3 p[ xi(w)]* < 0. In the three-dimensional
case, Lin and Mu [20] proved that if @1 and w, are large enough to obtain similar results. In the
high dimensional case, Lin et al. [21] and Zhang and Li [55] obtained unique global classical
bounded solution for appropriate conditions, respectively. However, the asymptotic behavior of
solutions is not involved. When the system has a logistic source, while the two-species do not
influenced each other, in other words, the competitive kinetics terms pju(l — u — ajv) and
wav(l — asu — v) are replaced by pju(l — u) and pov(l — v), respectively, Negreanu and
Tello [28,29] separately claimed that the system (1.7) has unique uniformly bounded solution
with w;, = eAw + h(u, v, w), € € [0, 1), Mizukami and Yokota [26] removed the restriction of
e €10, 1) to obtain similar results. When D1 (u) = Dy(v) =1, S1(u) = x1, S2(v) = x2, Zhang
and Li [56] proved that the system (1.7) admits a unique global bounded classical solution if 1]
and p, are large enough in bounded convex domain. They also proved that the system (1.7) pos-
sesses at least one global weak solution for any w1 > 0 and @y > 0. When Dy (u) = Da(v) =1,
S1(u), S>2(v) are replaced by y; (i =1, 2), respectively, Li and Wang [19] showed that if

71 , = >
¢ 2/xE+x3 p 2/ xE+ %3

the system (1.7) possesses a unique global bounded classical solution in the there dimensional
case. Very recently, Jin et al. [11] proved that system (1.7) possesses a unique global classical so-
lution if D1 (u), D2 (v) are replaced by dj (w), da(w), S1(u), S2(v) are replaced by x1(w), x2(w),

respectively, d;(w), xi(w) > 0 for all w > 0, d’(w) < 0 and hm di(w) =0 and hm 5’55;

u1>(9x%+3x§)(ﬁ+ﬁ> n2 9% +3xH5+2)

Please cite this article in press as: G. Ren, B. Liu, Global existence and asymptotic behavior in a two-species
chemotaxis system with logistic source, J. Differential Equations (2020), https://doi.org/10.1016/j.jde.2020.01.008




YJDEQ:10215

G. Ren, B. Liu/ J. Differential Equations eee (eeee) eee—see 5

hm dE ; exist, i = 1,2. When the third equation degenerates into an elliptic equation, Lin

et al [22] obtained global existence of solution to the system (1.7) with D{(u) = D>(v) =1,
S1(m) = x1, S2(v) = x2. Moreover, they also reckoned on asymptotic behavior of solutions to
the system (1.7).

Compared with system (1.7), the mathematical analysis of two-species chemotaxis-competi-
tion system with two signals points to the necessity of a strengthened. The model is given by:

uy=V-(D1(w)Vu) — V- (S1(w) - Vv) + pu(l — u*! — ajw), xe, t>0,
T, =Av—v+wh, xe, t>0,
wy =V - (Dy(w)Vw) — V- (S2(w) - Vz) + mow (1 — w*? — aru), xe, t>0,
T3 = Az —z4u’?, xe, t>0,
(D1(u)Vu — S1(u) - Vo) - v——"‘j—O x €0, t>0,
(D2(w)Vw — SH(w) - Vz) - v = =0, x€dQ, >0,
u(x,0) =up(x), v(x,0) =vo(x), wx,0) =wp(x), z(x,0) =z0(x), xe€.

(1.8)

When t =1, D1(u) = D(v) =1, S1(w) = x1, S2(w) = x2, ¢1 =ap = y1 = y» = 1, Black [3]
showed that system (1.8) possesses a global classical bounded solution in two-dimensional, and
further discussed the asymptotic behavior of global bounded solutions in high dimensional cases.
When Di(u) = Dr(v) =1, Si(w) =SH(w)=x>0,i=1,2, yy=ym=1u=u =0, Yu
et al. [53] proved that if mym, — 271(% + %) > 0, there are finite time blow-up solutions to
the system (1.8) with m| = fQ uo and my = fQ wo, while the global boundedness of solutions is
furthermore established under the condition that max{m,m;} <4mx. When t =0, u; = o =
0, D;i(u) > Cp; (1 + Wil Si(u) < Cs,u?, (i =1,2), Zheng [59] proved that if one of the
following cases holds:

x1 <0, Q1<m1+% and q2<m2+%_%;

N-2 N-2
xi=x2<0, g1 <mi+2—YDe and gy <my + 2 — XD

x1=x2>0, q1<m1+%—1 and q2<m2+%—1,

where (N — 2)1 denotes the positive part of (N — 2), the system (1.8) admits a unique and
uniformly bounded global classical solution. When D1 (u) = Da(w) =1, S1(u) = x1u, Sa(w) =
X2w, a1 =ar = y] = y» = 1, Zhang et al. [57] showed that if x1x2 < 1u2, the system (1.8)
possesses a unique positive classical bounded solution. Moreover, when x; < a;u; (i =1, 2),itis
shown that such solution stablhzes to spatially homogeneous equilibria (N7, N2, N2, N1) in the
large time limit, where Ny = 1 = u , Ny = 11 “2 .Whena; >1>a>0, x; >0, u; >0, Zhang
[54] further proved that the unique nonnegatlve classical solution (#, v, w,z) — (0,1,1,0) if
X1X2 < wip2, x1 <aipni and xp < po. Very recently, when t =1, D;(s) > Cp,s™™, S;(s) <
Cs;s™, Ren and Liu [31] showed that if
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max{—m1+%, a15m1+%}, if0<a1§(]v';#—l,
max{—ml + 72(1%/(-7512;12)—3’ lomy Ll}, if —(1\“;2)7/2 —l<oa < 72(NJ3F2)V2 -1,
n <
max{—ml +14+ 2 - My, M +L1], ifz(]v“;& —l<o<(N+2py—1,
max{—m1+1+%, M}, ifa; > (N+2)y,—1
as well as
max{—my + £, @252 4 L, 10 <ay < WEn
max{—mz%—%’ l_mz-i-Lz}, if%—l<az<w—l,
ny <
max|—m2+ 142 — M, +L2], if 28N | <y < (N +2)p1 — 1,
maX{—mz+1+ﬁ, %"2*2} ifoar > (N +2)y1 — 1,
— (+DWN+2y1+2y2) — (N+2))/2 _ (ot D(N+2y,+2y1) —
Where Ll T 2N M = O!1+1( 1) L W and M2 =
o + P ((N 4)'/22)”‘ 1). Then for any choice of the 1n1t1al data, the system (1.8) possesses at least

one global weak solution. When 7 = 0, they proved that the system (1.8) possesses at least one
non-negative global weak solution if (1) ¢y >n) — l,ao >ny — l: (D g > a1, a1 —n1+ 1<
Y < —(ozl —ny+1)or 1(0(2—n2+1) <y <ap —ny+ 1, (i) a) > ay, az(otl —n+1<
y1 <op—ny+1, Olz—n2+1<)/2< 1((¥2—n2—|—1) 21—-—my—n1>0,1—my—ny>0:
(i) my >my, J2(1—my —ny) <y <1—m1 —ni, L=my—ny <yr < 710 —my — n2),
()ymy>my, 1 —my —ny <y < E(l—ml —ny), ;(1 —my—ny)<yy<l—mp—no.In
addition, they also took into account asymptotic behavior of solutions to the system (1.8). When
t=lLai=w=y1=pr=1 5w) <Cs1+u)", S2(w) < Cs,(1 + w)"?, the solution of
(1.8) has the following properties: (i) Let ay, az € (0, 1), under the condition that there exists
c1, ¢ > 1 such that

"1 i ay(l—ap) 1 J7%) ¢ ar (1—az) 1
—2 > nd —2 > — ,
C5,  16Cp, a1 (1 —a2) (1 —araz) C5, 16Cp,ar (1 —ay) (1 —aiaz)

where ¢; = max{l (1 + 1]l Looro. MOHL&(W”)“mﬁ"i} (i=1,2),¢p=uifi=1and¢p=uw

if i =2, then (u,v,w,z) — (N1, N, N, N1) in L°°(Q2) as t — oo, where N; := af’[‘lz
Ny = 11_ a‘lléz ; (i) Let a; > 1 > ap > 0, under the condition that there exists ¢y > 1 such that
é‘—i > m, where ¢, is defined as (i), then (u,v,w,z) — (0,1,1,0) in L*°(Q) as

t—>00. Whent=0,01=xo=y1=y2=1, Si(u) <Cs,(1 +u)"', S2(w) < Cs,(1 + w)"2,

the solution of (1.8) has the following properties: (i) Let a;, a2 € (0, 1), under the condition
N C}

that there exist c1,c2 > 1, B1, B2 € (0, 1) such that B8 > ajar and ) > m

a1c2N2C§2

6Ch,a(1—FD then (u, v, w, z) — (N1, N2, N», N1) in L°°(2) as t — o00; (ii) Let

well as puy >
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a; > 1> a> > 0, under the condition that there exist 83 € (0, 1) and ¢, > 1 such that 83 > aja;

202
ayc5C .
and u2 > WZ(?—&%)’ then (I/t, v, w,z) — (O, 1, 1,0) mn LOO(Q) ast — o0.

Wang et al. [39] proved that the system (1.1) admits a unique global bounded classical solution
if one of the following cases holds: fori =1, 2,

(D) xi(w) 0 and [Jwol| 7 dids 2vdids &3 [N+
AW) = X0,8 > WollLeo(@) < - arctan ;
l l © VN +1x0i ~N+1xo, 2 d;d;

(2) 0 < wol| a3 in(——2
< [|[WollLoQ) < min s
@3N+ DI lz~o ol di +d3

1).

Moreover, it is shown that such solution stabilizes to spatially homogeneous state in the sense
that: (1) If ay, az € (0, 1) and ug, vo # 0, (4, v, w) exponentially converges to (11_;7;2 , 11—;?{212 ,0);
(2) If af >1>a >0 and vy # 0, (u,v,w) exponentially converges to (0,1,0); (3) If
a;=1>ay >0 and vy # 0, (u, v, w) algebraically converges to (0, 1, 0). When system (1.1)
without Lotka-Volterra competitive kinetics, x1(w) = x; and y2(w) = x2, Zhang and Tao [58]
showed that the system possesses a unique global classical solution that is uniformly bounded

if max{x1, xoHlw(x, 0)llre@) <4/ %n. Furthermore, they also considered asymptotic behavior

of solutions to the system (1.1) and proved that (u, v, w) — (|_s12\ Jo 1o, ﬁ Jo v0,0) in L norm
as t — oo uniformly with respect x € Q2. For two-species chemotaxis-Navier-Stokes system with
Lotka-Volterra competitive kinetics, we recommend that readers refer to the literature [7].

Throughout the above analysis, compared with two-species chemotaxis system (1.7) with
Lotka-Volterra competitive kinetics where the signal is produced or two-species chemotaxis-
competition system (1.8) with two signals, it is so fragmentary that two-species chemotaxis
system (1.1) with Lotka-Volterra competitive kinetics where the signal is consumed. To the best
of our knowledge, the global generalized solution of system (1.1) remains under-explored. Mo-
tivated by the arguments in previous studies [4,32,39,40,46,51,58], we mainly revealed that the
system (1.1) has a global generalized solutions. In addition, the asymptotic behavior of the so-
lution was well addressed. Theorem 3.1 partially generalizes and improves Theorem 1.2 in [39]
and Theorem 1.1 in [58], Theorem 3.2 partially generalizes and improves Theorem 1.2 in [58].

In this paper, we use symbols C; and ¢; (i =1,2,---) as some generic positive constants
which may vary in the context. For simplicity, u(x, ) is written as u, the integral fQ u(x)dx is
written as [q, u(x).

The present paper has the following layout. In Section 2, we summarize a useful lemma in
order to prove the main results. In Section 3, we give some fundamental estimates for the solution
to the system (3.5) prove Theorem 3.1, and then construct a functional to prove Theorem 3.2.

2. Preliminaries

In this section, we state a useful lemma to prove the main results in Section 3.

Lemma 2.1 (Gagliardo-Nirenberg interpolation inequality). ([23]) Let 0 <6 < p < (NZ_—AQH

Then there exists positive constant Cgy such that for all u € WH2() N LY (),
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1—
lullzri@) < Con (IVull72 g lull o, + lullo@)

|z
|z

L € (0, 1), where (N — 2) 4 denotes the positive part of (N —2).

is valid with a = —x5
PN

1

3. Dynamics for an two-species chemotaxis system with consumption of chemoattractant
3.1. Global existence to a two-species chemotaxis system

In this subsection, we consider the global existence of two-species chemotaxis system with
consumption of chemoattractant. Let us first introduce the concept of generalized solution, which
can be found in [46], and also in [4,32,40,51]. Then, we state the main result of this subsection.

Definition 3.1. Let 7 > 0. A triplet (u, v, w) of functions

ue L},.([10,00); W), ve L}, (Qx][0,00)),
w e L2.(R x [0,00)) N L}, ([0, 00); W2(2))

such that
Vin(v+ 1) and uVw belong to L7, (2 x [0, 00); RY)

will be called a generalized solution to (1.1) if for all ¥ € CS" (Q x [0, T)) the identities

T T T
—//ulp,—/uow(-,O)z—dl//Vu-le—}—//qu(w)vw.vw
0 Q Q 0 Q 0 Q

T

+//,u1u(1 —u—a)y @3.1)
Q

0

and

T T T
—//ww, — /wow(~,0) = —dg//Vw -V — //(otu + Bv)wyr 3.2)
0 Q 0 Q 0 Q

Q

hold, if for all nonnegative v € C§° (2 x [0, T)) the inequality

T
—//ln(v+ D, —/ln(v0+ Dy (-,0)
0 Q Q

T T T
de//|Vln(v+1)|21ﬂ—d2//Vln(v+1)-V1ﬁ+//vj_l)(g(w)Vw-Vl//
0 Q 0 Q 0 Q

Please cite this article in press as: G. Ren, B. Liu, Global existence and asymptotic behavior in a two-species
chemotaxis system with logistic source, J. Differential Equations (2020), https://doi.org/10.1016/j.jde.2020.01.008




YJDEQ:10215

G. Ren, B. Liu/ J. Differential Equations eee (eeee) eee—see 9
T T
v vy
—// Xz(w)(Vw-Vln(v—i—1))1ﬂ+/£2//—(1—v—a2u) (3.3)
v+1 v+1
0 Q 0 Q
is valid, and if

/v(-,t)g,uz/v(l—v—azu) fora.e.t > 0. (3.4
Q Q

A global generalized solution of (1.1) is a triplet (u, v, w) of functions defined in 2 x (0, co0)
which is a generalized solution to (1.1) in € x (0, T') for all T > 0.

Remark 3.1. Analogous to the reasoning in [17, Theorem 2.5], multiplying the inequality v; >
drAv —V - (v2(w)Vw) + purv(l — v — au) by v%, the above definition in accordance with
classical solution if (u, v, w) is a global very weak solution in the above sense which additionally
fulfills (u, v, w) € (CY(Q x [0, 00)) N C>1(Q x (0, 0)))>, then (u, v, w) already solves (1.1)
classically in € x (0, 00).

Now, we state our main result in this subsection.

Theorem 3.1. Let @ C RY (N > 1) be a bounded domain with smooth boundary, d» > 0, 1 >
0, up >0,a1>0,a20>0, >0, >0, d1,dz3 >0, x; (i =1,2) fulfill (1.3) and initial data
(uo, vo, wo) satisfy (1.2) as well as

sup [lwoll Lo (@) < w,
t>0

where the positive constant is given by

_ Ry )
d3—d|+ (d%z dy)=+dd3 lfd3—d1§ 1+%/Ed1,

1
- 2d,d3(d3—d)) . 14+4/13 14+4/5
w = SR o L I L DA S, —d) < 1=
||X1 ”LDO([O,HwOHLoo(Q)]) (d3—d1)2+d1d3 l‘f 6 dl < d3 dl = P dl 5
Jaid; ifds —dy > 554,

Then there are nonnegative functions

u € L((0,00); L'(2)) N L3, ([0, 00); W2(Q)),
v e L*®((0, 00); L1(Q)),
we L®(Q2 x (0,00)) NLZ ([0, 00): WH2(Q))

loc

such that

Q

/u(',t)fml :=max[/uo, u} fora.e.t >0,
1

Q Q H
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) |€2]
v(-, 1) <mj :=max vg, — ( fora.e.t >0,
“2
Q Q

and (u, v, w) is a global generalized solution of (1.1) in the sense of Definition 3.1.

Remark 3.2. Theorem 3.1 partially generalizes and improves Theorem 1.2 in [39] and Theorem
1.11n [58].

In order to construct such generalized solutions by an approximation procedure, we introduce
the following regularized problems

g =d1Aug — V- (Ug X1 (We) - Vwe) + piug (1 —ue —ajve), x€Q, t>0,
Ver = daAve — V- (Ve 26 (W) - Vwe) + ove (1 —ve —ague), x€, t>0,

ey =d3 Aw, — uetbite xeQ 1>0, (35
3—‘5=§—3=%—’:’=0, x€d, t>0,
s (x,0) = up(x), ve(x,0) = v0(x), we(x,0) = wo(x). xeQ

for ¢ € (0, 1). All of these problems (3.5) are indeed globally solvable in the classical sense.

Lemma 3.1. Letr @ C RN (N > 1) be a bounded domain with smooth boundary, let di > 0,
dr>0,d3>0, u1 >0, u>0,a;>0,a,>0 >0, >0, ; ( =1,2) fulfill (1.3) and
initial data (ug, vo, wo) satisfy (1.2). Then for each € € (0, 1), there exist functions
— 3
(e, ve, we) € () €210, 000 WH(@) N €2 (@ x (0,00)))
q>N

and that (ug, ve, we) solves (3.5) classically. Furthermore,

Q
/ug(~,t)§m] - max{/uo, u} forall t >0, (3.6)
1
Q Q
o €2
Ve (-, 1) <mp:=max] [ vo, —] forallt >0 (3.7
"2
Q Q
and
r 1
//u§§m1T+E/uo forall T >0, 3.8)
0 Q Q

Ot~

1

/v§§m2T+—/vo forall T > 0. 3.9)
w2

Q Q
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Proof. Local existence, up to a maximal existence time Tpnax € (0, 00] can be seen by means of
well-established fixed point arguments [40,44,58], where if Tipax < 00, then

limsup(flue (-, D)l wia ) + 1ve (5 Dllwia) + lwe - Dllwiaq)) =00 (3.10)

t /" Tmax

for all ¢ > N. Moreover, using strong maximum principle assure positivity of u,, ve, and non-
negativity of w,, integrating the first equation in (3.5) over €2, we have

d
G Juerm [z < [ G.11)

Q Q Q

By the elementary inequality, we obtain 2u, < ug + 1, substituting these facts into (3.11), which

yields
d
I ueg +2u1 | ue < pr | ue + 12|,
Q

Q Q

it immediately derives that

Q

/ug(-,t) <mj:= max[/uo, u} for all 7 € (0, Tinax)-
1

Q Q

Similarly, we have

Q

/vg(-,t)fmz = max{/vo, U] for all 7 € (0, Tiyay).
n2

Q Q

T“;‘" }, then for each t € [0, Timax — T), integrating of (3.11) over

Moreover, if we let 7 := {1,
(t,t + 1), we obtain

t+t
1

//ugfmlr—i—— uo forall ¢ € [0, Tmax — 7). (3.12)
1

t Q Q

Likewise,

t+t |

/ /Ug <mst + —/vo for all 7 € [0, Tinax — 7). (3.13)
w2

r Q Q

If Thhax was finite, applying maximal Sobolev regularity theory [15,33] to the third equation
in (3.5), we readily conclude that w, € L>®((0, Tinax); W () N LP((0, Tax); W>P ()
for all p € (1, 00). Analogously, we obtain ug, vy € L ((0, Tmax); W (2)) N LP((0, Thnax);
WP (Q)), complies with (3.10), we know that Ty, = 00, and thus (u,, ve, w) is global classi-
cal solution. This completes the proof. O
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Lemma 3.2. Let (u,, ve, w,) be the solution of (3.5). Then

sup sup ||lwg(-, 1)Ly <w forallt > 0. (3.14)
£€(0,1) 1>0

Proof. Thanks to the nonnegativity of u,, v, w, and positivity of «, 8, along with the maximum

principle and the conditions of Theorem 3.1, we immediately obtain (3.14). This completes the
proof. O

Inspired by [37,45,48,51], we shall derive the following lemma.

Lemma 3.3. Assume that the conditions of Theorem 3.1 hold. Then there exists p > 4 such that
forall p €2, p], it can be findr > 0, n > w and Cy, C2 > 0 such that for each ¢ € (0, 1)

d _ _ _
< [urm—wo ’+cl/u§ 2|VM8|2+C1/M£’|VU)3|2Scz/uf(ﬁ—ws) o 3.15)
Q Q Q Q

forallt > 0.

Proof. Differentiating fQ ul (n — w,) ™" and by a straightforward calculation, we have

— [ ul(np—we)™"
dt 5(77 8)
Q

= P/Mf_l(ﬂ —we) " [diAug — V- (ug x1(We) - Vwe) + piute (1 — ue — ajvg)]
Q

(aus + Bve)we :|

4y uP(n—w —r—l[d Aw. —
/5(77 e) 35 We 1+ e(aues + Brg)we

Q

<-dip(p—1) / uP=2(n — we) | Vuel? — di pr / u? ' — wo) 7"V, - Vu,
Q Q

+p(p—1) / ul =L — we) ™ X1 (we) Ve - Ve + pr / u? (1 — we) ™ e (we) [ Vwe|?
Q Q

+M1p/ué’(n —we) " — dspr/ué”l(n —we) WV, - Ve
Q Q

e+ D)ds / WP (1 = we) 2|V,
Q

<—dip(p— 1)/145_2(77 —we) | Vue|* + mp/ué’(n —we) ™"
Q Q
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+ / [ prdi +ds) + p(p — D = we) x1e (W)Ul ™ (1 — we) ™" Vutg - Vo
Q
- / [r(r + Dd3 — priixiell Lo o, jwol oo ) (1 — we)lul (7 — we) ™ 2| Vang | (3.16)

Q

for all + > 0. By the Young’s inequality there exists § > 0 such that

/ [—pr(d +ds) + p(p — D7 — ) x1e W)~ (7 — we) " Vaty - Voo,
Q

u? (n — we) |V, |

- / [—pr(di+d3)+p(p—1D(n— w&‘)”X]S”Loo([o,”w()HLoo(Q)])]z

4dyp(p — 1)é
Q

+dip(p — 1)5/%’*2(77 —we) " Vug . (3.17)
Q

We claim that there exists constant ¢; > 0 such that for all € € (0, 1),

r(r + Dd3 — pril xie Lo (0, woll oo gy (1 — We)

[—pr(di+d3)+p(p—1)(n— wE)”Xlé‘”LOO([O,HIU()HLOO(Q)])]Z -
_ > ¢
4dp(p —1)8

(3.18)
It is clear to see that (3.18) to be equivalent to

PP = D2 = we) 1 x1e 1700 0, g 00
+[p(di + d3)* — 4(p — Dd1d381r> — 4(p — Dd1d3r§
—2p(p — Drillxiell oo, woll ooy (1 — we) (d1 +d3 — 28) < —4c1di(p — 1)8.
Letting r = (p — 1)6, 6 € [0, 1], we obtain

PO = we)? 116 10 0, g oo ) — 2P0 N X1 1L 10, il ) (1 — We) (e + d3 — 2d18)

C
+[p(dy +d3)? — 4(p — 1)d1d3810% — 4dyd308 < —?1.

Picking § € (0, 1) suitably close to 1, we have

p(n— ws)ZHXle||%00([(),”w0\|LOO(Q)]) - 2P9||X15||L°°([0,||w0||Loo(Q)])(77 —we)(d3 —dy)

+[p(dy — d3)? + 4d1d310% — 4d1d36 < —c1.

For simp]icity, let p = (n — we)ll x1e ”LOO([Oa”wO”LOO(S'Z)])’ s = w,, there exists § € (0, w) such that
s <5 forall (x,t) € 2 x (0, 00) and each ¢ € (0, 1), we just have to prove
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gy dy.p.6(9) i= pp> — 2pOd(d3 — di) + [p(di — d3)* + 4d1d310* — 4d1d30 <0,

by simple calculation, we readily conclude that I14, 45,59 < 0 if and only if ¢ € (¢1, ¢2), where

di1dz0(1 — 6 d1d;0(1 — 0
¢1=9(d3—d1)—2,/%, ¢2=9(d3—d1)+2/¥.

By some calculation, we know that

di<dy, p>1 and 0 €[0,1] or

¢ <0
d3>d;, p>1 and 0 €[0,60%],

4dd3

dz—d;
p(di—d3)*+4d1d3”

2/ (ds—d?+ 203

dy = dy +,/(ds — dy)? + 24
; .

where 0* = and ¢, obtain the maximum at 6 = 5 + , that is,

N —

@2 max = ¢2(9) =

The following details are quite a few elementary calculations, we left it out, so (3.18) is valid.
Owing to n > w, we obtain

(1—e)dip(p— 1)/u5‘2<n —we) | Vue > > (1 —e)dip(p— ™" /uf‘%wa2 (3.19)
Q Q

as well as
c1 / u? (n — we) " A\ Vwe|* > cpn "2 / u? |V |, (3.20)
Q Q

Together with (3.17), (3.19) and (3.20) inserted into (3.16), this shows that (3.15) holds. This
completes the proof. 0O

Lemma 3.4. Suppose that the conditions of Theorem 3.1 hold. Then there exists p > 4 such that
forall T > 0 and each ¢ € (0, 1) one can find C(T) > 0 satisfying

/u§(~, 1)< C(T) forallt>0 (3.21)
Q

as well as

T
//IWSFSC(T) (3.22)
0 Q

and
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T
2 2
//u6|Vw€| <C(T). (3.23)
0 Q

Proof. We know from Lemma 3.3 that there are constants ¢y, ¢ > 0 such that for each ¢ € (0, 1),

d
dt ul(n—we)” ’+C1(p)/u” 2| Vue|? +61(p)/ PV, |? Scz(p)/ P —we)™"
(3.24)
for all ¢ > 0. Integrating (3.24) from O to T, we have
/ué’(n —w) " <a3(p,T) = (/ uf (n — wo)")e”“’” (3.25)
Q Q
forallt € (0, T) and each ¢ € (0, 1), as well as
T T T
cl(p)//ug’*zmgﬁ +c1(p)//u5|wg|2 < cz<p>//u£<n —we)™
0 Q 0 Q 0 Q
<cp)es(p, T (3.26)

for all € € (0, 1). We choose p = p, (3.21) follows from (3.25), here we have been used the
fact that (n — we)™ > 7" in Q2 x (0, 0c0), whereas evaluating (3.26) for p =2 and p =4,
respectively, shows that (3.22) as well as (3.23) are valid. This completes the proof. O

Lemma 3.5. Suppose that the conditions of Theorem 3.1 hold. Then for all T > O there exists
C > 0 such that

T
//|Vw8|2§C foralle € (0, 1). (3.27)
0 Q

Proof. Multiplying the third equation in (3.5) by w,, integrating by parts and using the nonneg-
ativity of & and 8 as well as Lemma 3.2 to compute

&|Q_

1 2
3 /w +d3/|sz| / fawe + Prou; <0 forall ¢t >0, (3.28)
Q

1 + e(aus + Bve)we

from which (3.27) follows by integration. This completes the proof. O

Lemma 3.6. Assume that the conditions of Theorem 3.1 hold. Then for all T > O there exists
C(T) > O such that for all € € (0, 1),
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T
// Vol _ o), (3.29)
(ve +1)2 ~ '
0

Proof. Multiplying the second equation in (3.5) by
inequality, we obtain

d/l( +1) / !

— [ In(v =

dt ¢ ve + 1
Q Q

" +1 , integrating by parts and using Young’s

— V- (Ve x2¢(we) - Vwe) + wave (1 — ve — azue)]

|VU£|2 / Ve
=d — we)Vue - Vw
2 (Us+1)2 (US+1)2X28( ) Ve 3
Q Q
Vg
+M2/ — azie)
Q

_d |V |? 1 )
2% | er?  24 o 12 1T o 10, ) ot 1)2 V|
Q Q
2

I ER
wo [ oy ke [ o e [ T
Q Q Q

_ b Vg |? 1 ) )
2% | g2 2ay el o ule g / Ve |
Q Q
—azuz/ug —uz/vg. (3.30)
Q Q

We apply Lemma 3.1 and integrate (3.30) to obtain that for arbitrary 7 > 0 and each ¢ € (0, 1),
T
d2// Vo, /1( (. T)+1) /1( + 1) + paazer +e2)
—= n(v — [ In(v arcy +c
> et D2 B 0 M2(azcy + ¢
0 Q Q

T

1 2 2
+E”X2€||L°°<[o,nwouLoo<g)D//'de :

0 Q

where c1, c» > 0 are constants, combined with Lemma 3.5, we immediately get (3.29). This
completes the proof. O

Lemma 3.7. Suppose that the conditions of Theorem 3.1 hold. Then for all T > 0 there is a
constant C(T) > 0 such that for all € € (0, 1),
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T

/ (aug + Bve)we In(ve + 1)

T+ e, + foo)ws <C(T). (3.31)

0 Q

Proof. From the second and third equation in (3.5), we calculate

d w,
< / we In(e + 1) = / © dyAve — V- (v o (we) - Vawe) + e (1 — v — ate)]
dt ve +1

Q Q

1+ e(aue + Bve)we

\Y

=—d2/ Ve .sz—/ (e +Pre)we | 11
ve + 1 1+ e(aues + Bve)we

Q

+ [ [, = R i )
Q

Q

Vv, W 2
d v +d/7v
3/v8+1 ws + d (v€+1)2| Ve |
Q Q

Ve X2¢ (We) 2 / Ve We

St - == Vv, -V

+/ — [Vwg| (USJrl)zxze(wg) Ve - Vwg
Q

+M2/ YeWe (1 —vp —agu,) forallz > 0. (3.32)
ve + 1
Q

Using Young’s inequality, we obtain

Ve Vs> (d2+d3)? / 2
—(dr+d -Vw, < Vwg|, 3.33
@ dy [V < s+ S vy (3.33)
Q Q Q
V|2
& [ v zan [ T (3.34)
(ve +1)? (v + 1)2
Q Q
Ve X26 (We)
/72 :_18 [Vw,|* < ||XZa||L°°([0,uwoum(m])/Iszl2 (3.35)
&€
Q Q
as well as
/ VeWe (0e) V0, - V
- 5 w Ve - VW
(Ug+1)2X28 & e e
Q
_ Vg
= Wl x2e |2 10, llwo l Lo () ) il Vg
Q
1 |V |?
2 2 2 e
< [vuel+ g e s | oty (3.36)
Q Q
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and
Vew _
o [ 2 = v ) < il (3.37)
ve +1
Q

for all # > 0. From (3.32)—(3.37) we obtain after an integration that for all 7 > 0,

T T
(e + Bug)we In(vs + 1) o1, 5 / / |V |?
<(l+dw+-w o0 —
/ e+ poow, O AT I miea)) [ ]
0 Q 0 @
(dy + d3)?
+( 2 +||X2£||ioo([0,||wo||Loc<g>l)+1)/|sz|2
Q

+/woln<vo+1>+mw|sz|
Q

for all ¢ € (0, 1). By Lemmas 3.5 and 3.6 results in (3.31). This completes the proof. O
Inspired by [40,46,51], we shall derive the following lemma.
Lemma 3.8. Assume that the conditions of Theorem 3.1 hold and let T > 0. Then

(aue + Bve)we }
1 4+ e(aue + Bve)w, Jee(0,1)

is uniformly integrable over Q2 x (0, T). (3.38)

Proof. For given T > 0, in accordance with Lemmas 3.1 and 3.7, there are some constants
c1, ¢z > 0 such that

T
//uggcl forall ¢ € (0, 1) (3.39)
0 Q
and
r 1 1
// (e +prejweln@e +1) _ g e e, 1), (3.40)
1+ e(aue + Bvg)w,
0 Q

Given ¢ > 0, we can choose L > 0 appropriate large fulfilling

2

_2 _¢ (3.41)
In(L+1) — 3

and o > 0 appropriate small such that

BwLo < %, aw./cio < % (3.42)
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If A C 2 x (0, T) is an arbitrary measurable set satisfying |A| < o, we have
“// (us + Bue)we
1+ e(auy + Brg)w,
// (us + Bue)we [/ (oue + Bug)we
1+8(ozu5+,3v8)wg 1+ e(aue + Bve)we
N{ve>L} ANfve <L}

(aue + Brg)we In(vg + 1)
- ln(L+1) // 1+ e(oue + Bue)we “w//us + BwL|A N{ve < L}

AN{ve>

T

_l (L+1)+ﬂwLU+aw|A|z //

0

=¢ foralle € (0,1),

W |y

¢
37

wlv\f

thanks to ¢ > 0 was arbitrary, this clearly yields (3.31). This completes the proof. O

Lemma 3.9. Suppose that the conditions of Theorem 3.1 hold, and let m € N be such that m > %
Then for all T > O there exists C(T) > 0 such that

/ legr (-, t)||%W1.2(Q))*dt <C(T) foralle e (0,1) (3.43)
as well as
/ 107 In(ve (-, ) + Dl (wm2(qyy+dt < C(T) foralle € (0, 1) (3.44)
and
/ lwer ¢, Ol (wm.2()y+dt < C(T) forall e € (0,1). (3.45)

Proof. Givent >0 and ¢ € C§° (Q x [0, T)). Multiplying the first equation in (3.5) by ¢, inte-
grating by parts and using Holder inequality, for all € € (0, 1), we have

/Mst('vt)(/’:_dl/v“s'V‘P+/”8Xle(wa)vws'V§0+,U«l/us(1_us_alvs)(p

Q Q Q Q
<—d /Vua Vo + ”Xle”L"O([O,llwollLoo(Q)])/usvws Vo
Q Q
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+Ml/us(l_”s)€0

Q

<d ||Vu8||L2(Q) ||V(/’||L2(Q) + ||Xls||L°°([0,\|wo|\Loo(Q)])||usvws||L2(Q)||V§0||L2(Q)

2
+reillueli 2 lelizi) + ~illugliz el 2 -

By the Young’s inequality, we obtain

liter G DIy 20y < (2d%||wa||iz(m + 20116 1o 0, g 00 oy 18 Ve 172 )
+20 e 122 + 203 N2 g ) 10112 (3.46)

We apply Lemmas 3.1, 3.4 and integrate (3.46) to conclude that

/ lotgs (-, t)||%W1,2(Q))*dt <C(T) forallee(0,1).

Similarly, multiplying the second equation in (3.5) by Mﬁ,
Young’s inequality, it immediately derives that for all £ > 0,

integrating by parts and using

/ D In(vs (1) + Dg

Q

%
=/ S [drAve — V- (Vg x20 (We) - Vwe) + pove (1 — v — azue)]
e

Q
|V, |2 / Vo, / Ve Vo,
<dr [ 2, Vg — Y, -
=d (U£+1)2(ﬂ 2 e + 1 @ +1X2s(ws) We e + 1
Q Q Q
Vg 2
+/U HXZE(wa)ng-wa/vg—m/vs
Q ¢ Q
<ol |2y / AL YU,
( e w2

1 |V, |2 5
+ 1 x2¢ I Lo o, nwouLoo(Q)])( m [Vw,| )||<P||L°0(Q)
Q

1
Flx2e 200, wo oo ) D (/ |Vwe|* + Z>||V<P||L2(Q) + ZM2|Q|
Q

for all ¢ € (0,1). Since m > %, by the embedding theorem, we immediately find that
W’"’Z(Q) <> L°°(R2), there is a constant ¢; > 0 such that for all # > 0 and each ¢ € (0, 1),
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182 10(ver (- 1) 4+ 1)l ym2rne < € ( MJF/Ww |2+1)
et (s (wm2(Q))* = €1 (0 + 1)2 e )
Q Q

and thus, (3.44) follows from Lemmas 3.5 and 3.6. Then, multiplying the third equation in (3.5)
by ¢ and using Young’s inequality, we have

(aug + Bvs)we
we () =—d Vwe - Vo —
/ e (D) 3/ e % /1+8(au8+ﬂvg)wg(p
Q Q Q

1 _
=< d3(||sz||%2(Q) + Z)”V(»DHLZ(Q) +w(alluslipi) + BllvellL i) lellLe@)-

By continuity of embedding W 2(2) < L*°(£2), combined with Lemma 2.1, there is a constant
¢> > 0 such that for all # > 0 and each ¢ € (0, 1),

lwer (5 Ol (wm2 @)y = C2</ Ve |* + 1>,
Q

and thus, (3.45) follows from Lemma 3.5. This completes the proof. O

Now, we are preparing to extract a suitable sequence of number ¢ along with the respective
solutions approach a limit in appropriate topologies.

Lemma 3.10. Assume that the conditions of Theorem 3.1 hold. Then there are (&) jeN C
(0, 1) and nonnegative functions u,v and w defined a.e. in _Q x (0,00), such that £; (0
as j — oo, that with some p > 0 we have u € L((0, 00); L?(Q)) N L2, ([0, 00); W2(Q)),

v e L®((0, 00); LY(Q)) and w € L®(2 x (0,00)) N L% ([0, 00); WL2(Q)), that VIn(v + 1)

loc
and uVw belong to L2 ([0, 00): WE2(Q)), and that

loc
Ug—>u in leoc(ﬁ x [0, 00)) and a.e. in 2 x (0, 00), (3.47)
ugs(-,t) > u(-,t) in LZ(Q)for ae.t>0, (3.48)
Vue — Vu in L3 (R x [0, 00)) (3.49)
and
ve > v a.e.in Q2 x (0, 00), (3.50)
In(ve + 1) = In(w + 1) in L}, ([0, 00); W2(2)) (3.51)
as well as
we —> w in leoc(ﬁ x [0, 00)) and a.e. in 2 x (0, 00), (3.52)
we(-, 1) > w(,t) in L2(Q)for ae.t>0, (3.53)
we = w in L®(Q x (0, 00)), (3.54)
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Vw, = Vw in L} (R x [0, 00)), (3.55)

(aue + B we

. 1 -
T e(aus + poow, @t AW in L (210, 00)), (3.56)

ueVwe = uVw in L} (Q x [0, 00)) (3.57)

as € = gj \( 0. Furthermore, the identities (3.1), (3.2) and inequality (3.4) hold for all €
C5° (22 x [0, 00)) and

/ / |€2]
u(-, 1) < max{ uop, —} fora.e.t > 0. (3.58)
A A M1

Proof. According to Lemmas 3.4 and 3.9, Aubin-Lions lemma, it immediately derives that
there are (¢;)jen C (0, 1) and a nonnegative function u € leoc([O, 00); Wh2(Q)) such that
€j \( 0 as j — oo and that (3.47)—(3.49) hold. Owing to (3.21) and Fatou’s lemma, we know
that u € L°((0, 00); LP()), (3.58) is a consequence of (3.6) when combined with (3.47),
similar to (3.58), we also get (3.4). Analogously, according to Lemma 3.6 3.6, choose any
integer m > %, combined with (3.7) and Lemma 3.9, we have (In(vg + 1))¢(0,1) is bounded
in L2([0, T); W'2(2)) and (3, In(ve + 1))ee(0.1) is bounded in L2([0, T); (W"™2(2))*) for all
T > 0, applying Aubin-Lions lemma once more, there exists subsequence such that (3.50) and
(3.51) hold. Then, together with Lemmas 3.2, 3.5 and 3.9, we have (wg)¢e(0,1) is bounded in
L2([0, T); W2(2)) and (wer)ee(0,1) is bounded in L2([0, T); (W™2(2))*) for all T > 0, us-
ing Aubin-Lions lemma again, there is a subsequence such that (3.52), (3.53) and (3.55) hold.
The combination of (3.47) and (3.55), we immediately find that (3.57) holds. From Lemma 3.2
and Banach-Alaoglu theorem, we readily conclude that (3.54) is valid. Finally, in accordance
with Lemma 3.8 and Vitali convergence theorem, combined with (3.47), (3.50), (3.52), the
convergence of (3.56) holds. (3.1) and (3.2) can be obtained by means of (3.49), (3.52) and
(3.55)—(3.57), the details similar to our recent work [23], we omit giving details on this here.
This completes the proof. O

Inspired by [46] and also [4,32,40], we shall derive the following lemma.

Lemma 3.11. Assume that the conditions of Theorem 3.1 hold, and let (¢;) jeN and w be as in
Lemma 3.10. Then for all T > 0,

Vw, — Vw in L* (2 x (0,T)) ase=¢; \,0. (3.59)

Proof. Fixed T > 0, from Lemma 3.10, we can find ¢, > T such that ¢, is a Lebesgue point of
0 <t+> [ow?(-,1), and that moreover

/w?(-,&)—>/w2(~,t*) ase=¢; \(0. (3.60)
Q

Q

Given any t, > 0 and § € (0, 1), we let
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1, 1 €10, 1],
0, t €ty +6,00)

and

w(x,t), (x,t)ex(0,00),
w(x,t):=
wo(x), (x,1) € (—00,0].

Then for all § € (0, 1) and each & € (0, §), we introduce
Yx, 1) = ps(t) - (Apw)(x,1), (x,1) € Q2 x (0, 00),
where (Apw)(x,t) := %ftl_hzi)(x,s)ds, (x,1) € 2 x (0,00). Then ¢ € L®(Q2 x (0,00)) N

L2((0, 00); W]’Z(Q)) with ¢, € L*° (2 x (0, 00)), and in addition v is supported in Qx[0, 1+ +
1]. Thus, we now insert i into (3.2) to obtain

J(, h) = —d3//p5(t)Vw(x,t)-V(Ahu_))(x,t)dxdt
0 Q

= —//pg(t)w(x,t)(Aha))(x,r)dxdt—/wg(x)
0 Q

Q
—//,o,g(t)w(x,t)~%(u‘)(x,t)—u‘)(x,t—h))dxdt
0 Q

+//pg(t)(om(x,t)—i—ﬁv(x,t))w(x,t)(Ahu_))(x,t)dxdt
0 Q

=:J1(8, h) + J2(8, h) + J3(8, h) + J4(8, h) (3.61)
for all § € (0, 1) and each & € (0, §). Applying Lemma A.2(a) in [46], we obtain
V(Apw) = AV = Vo =Vw in L2(Q2 x (0,2, + 1)) ash \, 0,

and thus

ty+1
J(S,h)—>—d3//,o(;(t)lezdxdt as h N\, 0. (3.62)
0 Q

Similarly, combined with Lemma A.2(b) in [46] and w € L*°(2 x (—1, t, + 1)) assures that
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Apip = =w in L®(Qx (0, +1)) ash\0,

and thus
te+1
J1(8, h) — — / /pg(t)wzdxdz as h \, 0.
0 Q
Using Young’s inequality, we have
1 o0
J3(8,h) = E//,o,g(t)w (x,t)dxdt + — //pg(t)w(x Hw(x,t — h)dxdt
0 Q
1 7 1 7
-_ -2 _ -2 _n
< 2h///og(t)w (x,)dxdt + T //p(s(t)w (x,t )dxdt
0 Q 0 Q
i h 1
_ E// ps(o + ) ,Os(a)wZ(x,a)dxda—i—z/w%(x)
0 Q
=:J31(8,h) + J32(8,h) forall§ e (0,1)andh € (0,9).
By the dominated convergence theorem,
| 1
J31(6,h)—>—2—8 / w?(x,0)dxdo ash\,0,
t
here we have been used the fact that
! 1 . / .
Ps = ~3 in (ty, 1, +38) and pg=0 in (0, 2,) U (4 + 8, 00),
and thus
t+6 ! tx+6 !
d3 / /pg(t)|Vw(x,t)|2dxdtz—% / wz(x,t)dxdt+§/w8(x)
0 Q Q
o
—//pa(t)(au(x,t)+ﬂv(x,t))w2(x,t)dxdt
0 Q

(3.63)

for all § € (0, 1), when combined with Lebesgue theorem and dominated convergence theorem,

implies that
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d3/ |Vw|?dxdt > — /w( )+ = /wo //(om+,3v)w2dxdt. (3.64)

The combination of (3.60), (3.52), (3.54) and (3.56), we obtain

1y
—%/wz(.’t*)—#%/w%—//(cxu—kﬂv)w%lxdt

Q Q 0 Q

L
1 1
lim (“/wg(',t*)—i-—/w%—// (aue + Boe)we .wg)
e=ei\NON 2 2 1+ ¢e(aus + pve)ws
Q 0 Q

Q

= lim d3//|Vw8| dxdt.
&= 8/

From (3.64) we infer that

/ |Vw|2dxdt > hmlnf/ [Vwg| 2dxdt

e=¢g;\y
and thus, by (3.55),

Vw, — Vw in L*(2 x (0, 1))
as ¢ = ¢; \( 0, thanks to , > T, we immediately obtain (3.59). This completes the proof. O

Lemma 3.12. Suppose that the conditions of Theorem 3.1 hold, and let (&) jeN and u be as in
Lemma 3.10. Then for all T > 0,

Vue — Vu in L*(Q x (0,T)) e=¢; \,0. (3.65)

Proof. The proof is similar to Lemma 3.11, to avoid repetition, we omit giving details on this
here. O

Finally, we prove the main theorem.

The Proof of Theorem 3.1. Since the regularity properties of #, v and w have been proved in
Lemma 3.10, we will show (3.3) holds. For ﬁxed an arbitrary nonnegative ¥ € C° (€2 x [0, 00)),
multiplying the second equation in (3.5) by
ee (0, 1),

m + 7, integrating by parts, we obtain that for all
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o o
|V |?
d v )zlﬁ = In(ve + DYy — [ In(vo + DY (-, 0)
0 Q 0 Q Q
o o
+//VU5 Vi //UEXZS(WS)VMS_VI#
ve + 1 ve + 1
0 0 Q
o
+// UsXZa(ws) " Ve Y.
ve + 1 ve +1
0

From (3.51) we obtain

—//ln(vg+1)w,—>—//ln(v—l—l)tp, ase=¢; 0
0 Q 0 Q

and
//Vv8~V1p //vm(ug 1)- Vw—>//V1n(v+l) Vi
ve + 1
0 Q 0 Q

as ¢ =¢; \( 0. By (3.50) and dominated convergence theorem, we have

Ve v
— — ot in L? (R x [0, 00)) ase=¢; (0,

combined with (3.49) and (3.52), it is sufficient to ensure that

vsXZe(ws) UXZ(w)
// o // Vu-Vi ase=¢; (0.

Ve
e
ve + 1 v+1

a.e.in Q x (0,00)) ase=¢; (0,

combined with Lemma A.4 in [46], guarantees that

Vg v L0 =
vs+1Vu8—> v+1Vu inLj, (2 x[0,00)) ase=¢; (0,
and thus,
vsXZs(ws) vx2(w)
(V = 0.
// ve + 1 ¢ )W // v+ 1 v v—i—l)w aSE =€) N

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

3.71)
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By lower semicontinuity of norm in L?(£2 x (0, 00); RV) with respect to weak convergence,
we readily infer the validity of (3.3), for more details, we recommend that readers refer to [46,
Lemma 8.2]. This completes the proof. O

3.2. Asymptotic behavior of the two-species chemotaxis system with consumption of
chemoattractant

In this subsection, inspired by [50], we will consider the large time behavior of the solutions
gained above. As first, we show the main theorem.

Theorem 3.2. Under the condition of Theorem 3.1, there is a null set A C (0, 00) such that the
solution of (1.1) has the following properties:
(i) Assume that a1, ay € (0, 1). Then

lu (1) = Nill gy + G 1) = Nall gy + 1w, Dll 2y — 0 as (0. 00\A 31— o,

and Ny = —2

alaz alaz
(ii) Assume thatay > 1> apy > 0. Then

where N1 =

luC, Ol + v, 1) = Hipyg) + lw(, D2y = 0 as (0,00\A 51 — oo.
Remark 3.3. Theorem 3.2 partially generalizes and improves Theorem 1.2 in [58].

To get the desire results, we give the following key estimate of stabilization in (1.1) in the
case of ay,ap € (0, 1).

Lemma 3.13. Let ay, ay € (0, 1). Under the assumption of Theorem 3.2 (i), the solution of (1.1)

has the property that there are constants 91 > 0 and C1 > 0 such that the nonnegative function
E| defined by

Er(ue(, 1), ve(, 1), we (-, 1)) = /(us — N1 —Niln Z,—S)
1

Q

a2

a
““/(vs N2—N21n—)+2/ w?  (3.72)
Q

satisfying

|VU€|2
v

iE( G, 1), ve(-, 1) t)+C{/|VuS|2+
d[ 11U, , Ve, ’wé‘('s ) 1 M%
Q
+ fae- w2 [o-np2s [1vup)zo
Q

forallt > 0, where N1 = . Moreover,

and Ny =

_laaz aaz
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E1(ue(-, 1), ve(, 1), we (-, 1)) < Eq(ue (-, o), ve (-, 10), we (-, o) (3.74)

forall ty € [0, t) and each ¢ € (0, 1), and there exists C > 0 such that

[e.e]

Vu:? |Vu.|?

// ' wel” | Vel |, ~ NP4 (e = N + Ve P)< G foralle € 0.1). (375)
vS

0 Q

Proof. As the proof is quite a lot of calculation, we will refrain from a detailed of the proof
and only sketch the main steps. For more details the readers can be referred to our recent work
[31,33]. The proof of nonnegativity for £ is similar to Lemma 4.2 in [31], so we omit it. By the
straightforward calculation we have

d N
EEIO) = /(1 - u—l)[d1Aue =V (ue x1e(We) - Vwe) + e (1 — ue — ajve)]
&

LA
/ (1——)[d2Avs—V (Ve 225 (2) - Vawe) + e (1 — v — azt)]
(a”s‘i‘/gvs)ws
+ weldz Aw, —
Ql/ :ld3 B 1 + e(aus + Buo)w,

Ug

2
=_d1N1/| te| /Xla( 8) Ug - Vg +M1/“5(1_“s_alvs)
Q

aipdaNy [ Vel
a2 v2
Q

a1 N; w a
AL 2/X25( 2 vy Ve - Vi, + IMI/Us(l—vg—azug)
a

—u1N| /(1 —Ug — a1Vg) —

a2 Ve
Q
aip Ny 2 / (Que + Boe)wg
— [ (1 =ve— —d Vwe|® —
@ /( e — aalig) 3Ql/| el 01 1+ e(@us + Bue)ws
Q Q Q
2 |Vu»3|2
=—u1 [ (ug — Np) —2611M1 (e — N1)(ve — N2) —d1 Ny
Q
w,
+N1/¥Vu5~ i Lt} /(vg N»)? —d3Q1/|VwS
p &
N. d)N Vue|?
L 2/X25(wa)vv8_vw€_alm b 2/| U28|
a2 Vg a2 Vg

2
_Ql/ (s + poe)w (3.76)

I+ e(aus + Brg)we '
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here we have been used the fact that 1 + 1Ny =2u 1Ny + a1 No, ayNa + Ny =1, aa Ny +
Ny =1and 1+ N, =2N; + a; N1. By the Young’s inequality, we obtain

2
diN Vi, 2 Nillxiell 7o, .
N1/7X16:w€)Vus~ng§ ‘ '/' wel ol <“>]/|sz|2 3.77)
&

2 ug 2d1
as well as
N
ajp Z/Xze(wS)Vv€~ng
a2 Ve
2
_ a1 / IV, |2 "WIN?”XZ&”L°°[o,nwoumo(m] /IVw 2 (3.78)
2az 42 2apuody J o ’
Collecting (3.76)—(3.78), we thus infer that
d1N1 |V”£|

—E1<r)< m/(ue N — 2a1m/(ug N — No) —

(0 Nillte N 10, gl 1 “”“N2”X2€“L°°[o||wo||Loo<g>1 /IVwI
3el 2d, 2arpurds ’

ajpug aipidaNy [ |Vvgl?
- / (ve — N2)* — —. (3.79)
2az 112 v
Q
Similar to Lemma 5.2 in [39], there exists constant 1 > O such that
2 aifpy 2
—Ml/(us = N1 —2a1uy /(us — N1)(ve — No) — /(vs N2)
Q Q
<t [ =P = [ @ P, (3.80)
Q Q

Letting

2 2
Nillxie ”LOC[O»”wO”LOO(Q)] a1 Na || x2e ”L”O[O, llwoll oo (g
2d\d; 2apodrds

01=01—
and choosing

2 2
Nillxie ||Loo[0,||w0||LOO(Q)] a1 N2l x2e ||LOO[O’HwOHLOO(Q)]
2d1d3 2as padrds

01 >

)

it is clear to see that o7 > 0. Taking
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diN1 ajp1da N
Cy := min{— 1, datbe 2 o1, K1),
2ax12

and thus establishes (3.73). (3.74) and (3.75) are direct results on integrating (3.73) in time. This
completes the proof. O

Lemma 3.14. Assume that the conditions of Lemma 3.13 hold. Then for all ¢ > 0 there exists
T (¢) > 0 such that for all ¢ € (0, 1),

s (o 1) = Nillpiqy + lve (1) = Nallpiqy + lws (Dl 2y = ¢ forallt >T(s). (3.81)

Proof. First of all, we claim that there are some constants ¢, 7(¢) > 0 such that forall t > T'(¢),

E](ug(',t),Ug(‘,t),U)g(',t))Sg. (382)
In reality, in accordance with Lemma 3.13, there is a constant ¢; > 0 such that

e¢]

Vue?  |Vve|?
/ ' ”8| ! ”g| + (e N1)2+(v8—N2)2+|Vw8|2)§c1 forall & € (0, 1). (3.83)

8

0

Applying strong maximum principle, we know that u, > 0 in @ x (0, c0). Analogous to the
reason of Lemma 8.4 in [50], there are some constants ¢y = cp(N;) > 0 and ¢3 = c3(N2) > 0
such that whenever

N2 N2
”uS('vt) Nl”LZ(Q) 1|6 |a ”vs('»t) NZHLZ(Q) 1|6 |v (384)
we have
2.1
/(us(-,t)—Nl—Nlln 4 t))_ 2( % 2—I—Cz (ue(-, 1) — N1)?
veol [t - Nl)z) : (3.85)
and
Jeren =M= w2 <o w) ver [n - oy
Q 2 5 e Q
1
veal [en = N2)". (3.86)
Q

For given ¢ > 0, we can find y; (i =1, 2, 3, 4) such that
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s ! 3 NP IQ|
QV gtm@+nm§§,n§ T (3.87)
as well as
6‘37/31 =g 637/4% +c3ys < % va < NZ?;Z' (3.88)

and pick T = T (¢) large enough fulfilling

C C C C &
{9, G A A aey

) ’ ) ’ (389)
i 2 v Y4 G

From (3.83), there exists ¢, = t,(¢) € (0, T') such that for each ¢ € (0, 1),

IVue (-, t)12 Ve, 1) ]2 5 5 ¢
te) — N ty) — N A\ t —
/( st e ) = N @t = N V) P) <
In particular, we have
Ve (-, 1,0 Ve (-, 1))
Ty, el 3.90
ug(wf*) =" Ug(‘yt*) =7 ( )
Q
as well as
/ (e (-, 1) — N1)? <, / (We (- 1) — N2)* < pu (3.91)
Q Q
and
2 &
/WVwAuuN =7 (3.92)
Q

The combination of (3.84)—(3.92) and use the Poincaré inequality, we obtain

E1(ue (-, ), ve (-, 1), ws(‘vt*))z/(ua('st*)_Nl_Nll uegvt*))_"_ > /w (-, ty)

1

Q
Ve (-, t
+/ e t) = Ny — Nyl 1))
N>
Q
§ S S
=3t =S
For given ¢ > 0, we fixed ¢ > 0 such that
1 l l 1 l
cw2+m§§§,cg2+mg<§ (%V&zsz, (3.93)
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where ¢4, c5 > 0. From (3.82), there is a constant 7 = T (¢) > 0 such that for all ¢ € (0, 1),

t
/(us(-,t)—Nl Ny In et ))<§ forallr > T (3.94)
Ny
Q
as well as
-t
/(ue(., ) — Na— NpIn M)g ¢ forallt>T (3.95)
N>
Q
and
Q1
> w; ( t)y<c¢ forallt > T, (3.96)
Q
which yields

lwe (-, Ol 2() < (2§)2Q1 2 forallt > T. 3.97)

l
2
Similar to Lemma 8.6 in [50], there exists constant ¢4 > 0 such that

lue(-, 1) = Nillpi (g

1
5c4{/(us(-,r)— — Niln~ 2+c4/ ue(-,1) — Ny — Ny In

Q Q

us(nt))

1
t
§C4§% + c46 < 3 forallt > T.

Analogously, we obtain

e, 1) — Nall 1)

vg(',t) Ve (-, 1)
v )

;
2+Cs/ Ve(+, 1) — Ny — NpIn ———
N>

Q

565{/<v5(~,t) — Ny — Nzln
Q

< csg% +c5¢ < é forallt > T,
where c5 > 0 is a constant. This completes the proof. O
Finally, we give the following key estimates of stabilization in (1.1) in the case of a; > 1 > a5.
Lemma 3.15. Let a1 > 1 > ay. Under the assumption of Theorem 3.2 (ii), the solution of (1.1)

has the property that there are constants 9> > 0 and C3 > 0 such that the nonnegative function
E> defined by
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Er(ue(-, 1), ve(-, 1), we (-, 1)) := /ua + e (ve — 1 —1Inv,) + %/w? (3.98)
Q

axo
Q Q
satisfying

d |V, |? ) 2 P
—Ez(usc,t),v£<-,r),ws<-,t>>+c3{/ - +/u£+/<vg—1> +/|Vw8| }50 (3.99)
dt v}

Q Q Q

Q

forall t > 0. Moreover,

Ez(ué‘('a t)v vS('v t)7 wé‘('v t)) = Ez(ua('v tO)a vé’:‘('v t0)7 wE('s [0)) (3100)

forall ty € [0, t) and each € € (0, 1), and there exists C4 > 0 such that
o0
// + 24 (e — 12+ |Vw£|2)< Cy foralle € (0,1). (3.101)
0

Proof. Similar to Lemma 3.13, by the straightforward calculation we have

(aue + Bug)we
1 + e(auy + Bve)w,

d
EE2(I)=PL1/MS(1_us_alvs)+92/ws[d?aAws_
Q Q

251 1
+ /(1 — —)daAve — V- (Ve x26 (We) - Vwe) + a0 (1 — ve — azue)]
a2 J Vg

=M1/ue—m/bt?—al/m/ugve—afaéu/IVWel2
Q Q Q Q

_Qz/ (e + Bve)w] _M1d2/|Vv5|2+ i /mws)ws.wg
a

1+ e(aue + Bvawe  axun 2“29 Ve

M1
+a2 Us(l_vs_aﬂia)__/(1_1)5_“2148)

Q

S—M1/u§—2m/us(vs—l)——/( o 12 —d392/|Vw8|2

Q Q Q
d Ve |? w
_ Hiaz / | 25' 4 431 /X2e( e) Vo, - Vo,
a2 Vg az 2 Vg
Q Q

2
—0r / (ot + prjw: (3.102)
1+ e(aue + Bve)we

here we have been used the fact that a; > 1. Using Young’s inequality, we obtain
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2 L llx2e 117
K1 X2e (We) widz Ival el L0010, [lwoll oo ()] 2
—va . < |Vw6| .
azpun J Ve 202#2 2apu2ds

(3.103)

Inserting (3.103) into (3.102), we conclude that

d widy [ Vo 2
_Ez(t)i—//bl/ug—Zul/ug(vg—1)__/( 5—1)2 142 U;
&

dt 2azjiy
Q Q Q

2l X26 12 000 1 oo
_<d3Q2_ [0, lwoll (Q)])/|Vw8|2' (3.104)
2appuady

Analogous to Lemma 5.5 in [39], there is a constant «3 > 0 such that

—Ml/ug—Zm/ug(vs—l)——/(va—l) =< Kz/u _KZ/(US_I) (3.105)

Q Q

Letting

2
il x2e ||LOO[Os”wOHLOO(Q)]

2= 2azu2drd3

and choosing

2
il x2e ”LOC[Q llwoll oo (g

2apodrds

02 >

it is clear to see that 0, > 0. Taking

. d
C3 ;= min{ adle , 02, K2},
2az 42

and thus establishes (3.99). (3.100) and (3.101) are direct results on integrating (3.99) in time.
This completes the proof. O

Lemma 3.16. Suppose that the conditions of Lemma 3.15 hold. Then for all ¢ > 0O there exists
T (¢) > 0 such that for each ¢ € (0, 1),

s GOl 1@y + lvs G, 1) — Hipi gy + lwe (Dl 2 = ¢ forallt > T(g). (3.106)

Proof. The proof is similar to Lemma 3.14, to avoid repetition, we omit giving details on this
here. O

Finally, inspired by [50, p.1394], we prove the main theorem.
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The Proof of Theorem 3.2. Applying Fubini-Tonelli theorem, Lemma 3.10 provides (¢;) jeny C
(0,1) and a null set A C (0, oo) such that ¢; \ 0 as j — and

ug(-,t) = u(-, 1), ve(-,t) > v(-,t) and we(-, 1) > w(,1) a.e.inQforallt € (0,00) \ A,

as ¢ = ¢; \( 0. In accordance with Fatou’s lemma and the fact that L3(2) c L'(R), on one hand,
in case of ay, ay € (0, 1), we obtain from Lemma 3.14 that

lu(-, 1) = Nillpiy = 0, llv(, 1) — N2l 1) — 0 and
(., D)l 20 — 0 as (0,00) \ A 5 — o0,

1—ay
1—ajap

where N| = 2=9 and N, =

1—ajap

from Lemma 3.16 that

. On the other hand, in case of a; > 1 > a» > 0, we obtain

lu Olipig = 0, lvG, 1) =g — 0 and w(, )l 2@ — 0 as (0,00) \ A >t — oo,
which completes the proof of Theorem 3.2. O
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