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We characterize the principal eigenvalues and eigenfunctions in RN, and present
comparison results, for higher dimensional p-Laplacian. Our main tool is Picone's
identity. In this way we extend several recent results on spectral and comparison
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INTRODUCTION

This paper is primarily motivated by the recent articles by Jin [J], Zhu
[Z], and Walter [W], on spectral and comparison results for differential
equations. Specifically, in [J], there is a discussion of the existence and
nonexistence of eigenvalues�solutions for linear Schro� dinger equations with
indefinite weight functions, while in [Z, W] the authors present Sturmian
results for nonlinear ordinary differential inequalities of the p-Laplacian
type.

In this article, we extend the results of [J] to the p-Laplacian and pre-
sent a version of the results in [Z, W] suitable for partial differential equa-
tions. We obtain some modest extensions of the latter results even in the
one-dimensional case. We do not employ the methods in [J, Z, W], since
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it does not appear that they are amenable to the extensions we seek (divi-
sion by specific functions thus exploiting linearity in [J], Bernoulli trans-
formations in [Z, W]). Instead we proceed by arguments involving a
suitable Picone identity. This approach is of extreme simplicity.

This paper is arranged as follows. In the next section we present some
background material. The following two sections deal with principal eigen-
values and with Oscillation and Sturmian theory.

Although we occasionally refer to such topics, we do not consider exist-
ence�regularity conditions in this paper. The interested reader will find
these subjects discussed in detail in some of the cited references. Here, for
the sake of presentational simplicity, we assume that all functions intro-
duced are smooth in their arguments, unless otherwise specified. Solutions
to differential inequalities are understood in the usual weak sense and are
assumed to be of class C 1+: at least. Throughout this paper we will use & }&
and & }&r to denote the norms in W1, p and Lr (r>1) respectively.

1. BACKGROUND

Let 0 be a domain in Rn, bounded or unbounded, with N>p>1. We
consider the equation

&2p u := &div( |{u| p&2 {u)=*g |u| p&2 u in 0 (1.1)

in two ways: We say that u # W 1, p
loc is a solution of (1.1) if and only if for

all . # C �
0 (0) we have

L(u, .) :=|
0

|{u| p&2 {u{.=|
0

g |u| p&2 u. :=R(u, .), (1.2)

while u�0 is an eigenfunction of (1.1) if and only if u is a solution of (1.1)
and furthermore there exists a sequence [.n]/C �

0 (0) such that
L(.n , .n) � L(u, u) and R(.n , .n) � R(u, u). Note that if 0 is bounded,
(1.2) implies that the eigenfunctions satisfy u=0 on �0.

We say u is a supersolution of (1.1), or a solution to the inequality

&2p u�g |u| p&2 u

if and only if for any . # C �
0 (0) with .�0,

|
0

|{u| p&2 {u{.�|
0

g |u| p&2 u..
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Observe that a solution may not be an eigenfunction. If 0 is unbounded,
the existence of a positive eigenfunction may be shown under suitable con-
ditions on g, but in general there may not be any. Sufficient conditions can
be found in the literature. See, e.g., [AB, AH1, FMST, H].

We assume that the coefficient g # LN�p(0) & L�
loc(0). Then by standard

regularity results (cf. Tolksdorff [T]), any solution u of (1.1) satisfies that
u # C1+:(0$) for any bounded domain 0$/0. Moreover, if u is a super-
solution of (1.1), then Theorems 1.2 and 5.1 of [Tr] asserts that, for any
ball B(2r)/0 with radius 2r, a Harnack inequality

max
B(r)

u�C min
B(2r)

u (1.3)

holds, where C depends on N, p, the radius r and &g&�, B(2r) . It then follows
that, in particular, if u is a nonnegative solution of (1.1) then either u>0
or u#0.

We finally recall the following Picone's identity (cf. [AH2, D]):

Picone's Identity. Suppose v>0 and u�0 are differentiable. Let

L1(u, v)=|{u| p+( p&1)
u p

v p |{v| p& p
u p&1

v p&1 {u |{v| p&2 {v,

(1.4)

R1(u, v)=|{u| p&{ \ u p

v p&1+ |{v| p&2 {v.

Then L1(u, v)=R1(u, v), L1(u, v)�0, and L1(u, v)=0 a.e. 0 if and only if
{(u�v)=0 a.e. 0, i.e., u=kv for some constant k in each component of 0.

2. PRINCIPAL EIGENVALUES AND POSITIVE SOLUTIONS

We observe the following consequence of (1.4).

Theorem 2.1. Suppose &2pu�g1 |u| p&2 u has a positive solution w in
0. If g�g1 , then so does &2pu= g |u| p&2 u.

Proof. Exhaust 0 by a family of bounded domains 0� k /0k+1 with
0=�k 0k . For . # C �

0 (0k), let .\=max[\., 0]. We have, from
Picone's identity,

0�|
0k

L1(.\, w)=|
0k

|{.\| p&|
0k

(.\) p

w p&1 (&2pw)

�|
0k

( |{.\| p& g1(.\) p), (2.1)
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and the equalities hold only if .\#0 or .\=cw, the latter is impossible.
It then follows that

0�|
0k

( |{.| p& g1 |.| p)�|
0k

( |{.| p& g |.| p) (2.2)

for . # C �
0 (0k).

We claim that, for any k, there exists ck>0 such that

|
0k

( |{.| p& g |.| p)�ck |
0k

( |{.| p+|.| p) (2.3)

for . # C �
0 (0k). Suppose the contrary. Then for some k>0, there exists

.n # C �
0 (0k) with &.n&=1 such that

|
0k

( |{.n | p& g |.n | p)�
1
n

.

By (2.2) we have

0�|
0k

( |{.n | p& g1 |.n | p)�
1
n

.

Without loss of generality we can assume that .n � .0 in Lr(0k) for some
.0 # W 1, p

0 (0k), where 1<r<Np�(N& p). It then follows from (2.2) and
the convergence that

0�|
0k

( |{.0 | p& g |.0 | p)=0.

This implies from (2.1) and (2.2) that .0 #0, contradicting to the fact that
&.n&=1. Thus (2.3) must hold.

Let fk # C 1
0(0k) be such that fk�0, & fk &=1, and supp( fk) is contained

in a neighbourhood of �0k . By (2.3) and the maximum principle, the
problem

&2pu& g |u| p&2 u= fk , x # 0k ,
(2.4)

u =0, x # �0k

has a positive solution uk . We normalize the solution uk such that
uk(x0)=1 for some fixed point x0 # 01 (note that only fk would have been
modified accordingly). Obviously such uk is also a supersolution of the
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modified equation (2.4). Thus Harnack's inequality (1.3) is applicable. We
then have, for any fixed 0m ,

&uk&��C,

by (2.3), (2.4) and the definition of fk , with C independent of k. Without
loss of generality, this implies that uk � u in C1+: by [T] for some :
on every 0m with u�0 and u�0 since u(x0)=1. It then follows from
Harnack's inequality that u>0 on 0 and u solves the equation. This proves
the theorem. K

Remark 2.2. Note that we do not need a fixed w>0 for all k in
Theorem 2.1. We need only assume the existence of a wk>0 in 0k ,
solution &2p u= g1 |u| p&2 u in 0k . I.e., w can change with k.

Now consider the eigenvalue problem

&2p u=*g |u| p&2 u (2.5)

on 0. Sufficient conditions on g have been given (see, e.g., [AB, AH1,
FMST, H, J]) so that (2.5) has positive eigenfunctions. In particular, if
g # LN�p(0) & L�

loc(0), g+�0 and g&�0, then there exist principal eigen-
values *+>0>*& such that (2.5) has positive eigenfuntions associated
with *+ and *& respectively. We note that the principal eigenvalues are
characterized by the relation

|
0

|{.| p�max{*+ |
0

g |.| p, *& |
0

g |.| p=
for all . # C �

0 (0).
Our next result is related to Theorem 1 of Jin and Theorem 1.1 of

Afrouzi and Brown for p=2, which give another characterization of the
principal eigenvalues *+ and *&.

Theorem 2.3. Let &2p w1=*+gw p&1
1 and &2pw2=*&gw p&1

2 in 0
with w1 and w2 positive eigenfunctions, *&<0<*+. Then problem (2.5) has
a positive solution if and only if * # [*&, *+].

Proof. It follows immediately from Theorem 2.1 that for * # [*&, *+],
(2.5) has a positive solution. Indeed, let * # (*&, *+). Observe that for
. # C �

0 (0) we have

| ( |{.| p&*g |.| p)�max{*+ |
0

g |.| p, *& |
0

g |.| p=&* | g |.| p�0.
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Note that equality cannot hold for .�0, since there are no eigenvalues in
(*&, *+). We conclude from Theorem 2.1 and (2.2), (2.4) in particular, the
existence of a w�0 such that &2pw&*gw p&1= f (x) with 0� f # C0(0).
Now we apply Theorem 2.1.

Conversely, suppose for some *0>*+, (2.5) has a positive solution w.
Then, again by Picone's identity, for any . # C �

0 (0), .�0,

0�|
0

L1(., w)=|
0

|{.| p&|
0

. p

w p&1(&2pw)�|
0

( |{.| p&*0 g. p).

Letting . � w1 we obtain

0�|
0

L1(w1 , w1)�(*+&*0) |
0

gw p
1 <0,

a contradiction. So *0�*+. The fact that *�*& can be shown in the same
way. This concludes the proof. K

3. OSCILLATION AND STURM COMPARISON

In this section we will use Theorems 2.1 and 2.3 to prove and generalize
some osillation and comparison results.

Let Lw=&2pw& g |w| p&2 w. As a direct consequence of Theorem 2.3,
we have

Corollary 3.1. Let 0� be a bounded subdomain of 0. Suppose that
&2pw& g |w| p&2 w=0 in 0� and w=0 on �0� has a positive solution. Then
Lw=0 has no positive solution in the whole of 0, i.e., all solutions of
Lw=0 in 0 must change sign.

We note that the subdomain 0� given in Corollary 3.1 is called a nodal
domain.

Definition 3.2. L is oscillatory if and only if given any neighbourhood
N of infinity, we have a nodal domain M in N & 0. L is nonoscillatory
otherwise.

Corollary 3.3. L is nonoscillatory if there exists a neighbourhood N

of infinity such that Lw=0 has a positive solution in N & 0.
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Next, we generalize Theorem B of [Z], which is proved for radially sym-
metric function g( |x|, u) and concerns with the existence of positive radial
solutions. Consider the problem:

&2pu= g(x, u), x # BK ,
(3.1)

u=0, x # �BK ,

where BK denotes the ball in Rn centered at the origin with radius K. Let
M>0 and denote M� =(N�M)1�p ( p�( p&1)) ( p&1)�p.

Theorem 3.4. Suppose g(x, u) satisfies

0�g(x, t)�Mt p&1, t�0. (3.2)

Then (3.1) does not have any positive solutions for any K<M� .

Proof. Suppose that (3.1) has a positive solution u1>0. This shows
that the principal eigenvalue to the problem

&2pu=
g(x, u1)

u p&1
1

u p&1, x # BK ,
(3.3)

u=0, x # �BK ,

is *+=1 (the associated positive eigenfunction is u1). On the other hand,
a calculation shows that (cf. the proof of Theorem 4.3 of [Z]),
w(x)=M� ( p&1)�p&|x| p�( p&1) satisfies the inequality &2pw�Mw p&1 on
BM� . Since g(x, u)�u p&1�M for u>0, Theorem 2.1 implies that

&2p v=
g(x, u1)

u p&1
1

v p&1

has a positive solution in BM� . In particular v>0 on �BK . We then derive
from Theorem 2.3 that the principal eigenvalue *+ of (3.3) satisfies *+>1,
a contradiction. Thus (3.1) cannot have any positive solution. This ends the
proof. K

As a direct consequence, we have

Corollary 3.5. Assume g(x, u) satisfies (3.2). Then the problem

&2pu= g(x, u), x # 0$,
(3.1)$

u=0, x # �0$,

has no positive solution for any 0$//BM� .
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Observe that a similar result holds for any cylinder with BM� as
cross section. As an explicit example, note that w(x1)=M� ( p&1)�p&
|x1 | p�( p&1) satisfies &2pw�Mw p&1 in (&M� , M� ), where M� =(1�M)1�p

( p�( p&1))( p&1)�p. Consequently w satisfies the same inequality in the cylinder

C=(&M� , M� )_6 N
i=2(&�, �).

Corollary 3.5 then holds for any 0$//C. We are not aware of other non-
radial results of this type.

Our next results deal with related comparison principles. Consider, for
i=1, 2,

&div[.i (x, ui) |{ui |
p&2 {ui]= gi (x, ui), x # 0 (3.4) i

with

.1(x, u)�.2(x, v)>0,
g1(x, u)

up&1 �
g2(x, v)

v p&1 , for any 0�v�u and x # 0.

(3.5)

Theorem 3.6. Suppose that ui is a positive solution of (3.4)i for i=1, 2.
Assume that the Divergence theorem is applicable to ui on 0, 0 is bounded and
that

_.1(x, u1) |{u1 | p&2 �u1

�n
&.2(x, u2) \u1

u2+
p&1

|{u2 | p&2 �u2

�n &�0 (3.6)

on �0. Then u1�u2 throughout 0 cannot hold, unless u1=cu2 for some
constant c.

Proof. Suppose, on the contrary, that u1�u2 in 0. We have u p
1 �u p&1

2 is
well defined. By Picone's identity, we get

0�|
0

.2(x, u2 ) L1(u1 , u2 )

=|
0

.2 (x, u2 ) |{u1 | p&|
0

.2(x, u2 ) { \ u p
1

u p&1
2 + |{u2 | p&2 {u2
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=|
0

(&div[.1 (x, u1 ) |{u1 | p&2 {u1]) u1+|
0

[.2 (x, u2 )&.1 (x, u1 )] |{u1 | p

+|
0

u p
1

u p&1
2

div[.2 (x, u2 ) |{u2 | p&2 {u2]

+|
�0\.1 (x, u1 ) |{u1 | p&2 u1

�u1

�n
&.2(x, u2)

u p
1

u p&1
2

|{u2 | p&2 �u2

�n + ds

=|
0 _

g1 (x, u1 )
u p&1

1

&
g2 (x, u2 )

u p&1
2 & u p

1 +|
0

[.2(x, u2 )&.1 (x, u1 )] |{u1 | p

+|
�0 _.1 (x, u1 ) |{u1 | p&2 �u1

�n
&.2 (x, u2 ) \u1

u2+
p&1

|{u2 | p&2 �u2

�n & u1ds

�0. (3.7)

This implies u1=cu2 with some c, which contradicts (3.5). Thus the
theorem is proved. K

Corollary 3.7. If u1=u2 on �0 then u1�u2 cannot hold throughout 0,
unless u1=cu2 .

Proof. Indeed if u1=u2 on �0 and u1�u2 in 0, then (3.6) holds and we
obtain a contradiction unless u1 , u2 are constant multiples. K

Corollary 3.8. Suppose g1 , g2 , .1 and .2 are radially symmetric in the x
variable, satisfy (3.5), and 0 is a ball centered at the origin. If ui are positive
radially symmetric solutions of (3.4)i , i=1, 2, and u1=u2 on �0, then u1�u2

in 0, provided either .1 #.2 or u$2 (r)�0. Consequently, if u1(x0)>u2(x0) for
some x0 # 0, and ui solves (3.4)i , then u1>u2 in 0� .

Proof. Suppose the contrary. We can assume that u1>u2 on a subdomain
0$ and u1=u2 on �0$. Since u1 and u2 are radially symmetric, the Divergence
theorem is applicable on 0$. Thus we can repeat the proof of Theorem 3.6 on
0$. Observe that �u1 ��n��u2 ��n on �0$, and thus the boundary integral
in (3.7) is nonpositive. This leads to a contradiction as before. The proof is
complete. K

Remark 3.9. A scrutiny of the proof of Theorem 3.6 shows that, if we
replace (3.4) by

&div[.1(x, u1) |{u1 | p&2 {u1]�g1(x, u1)
(3.4)$

&div[.2(x, u2) |{u2 | p&2 {u2]�g2(x, u2),

the conclusions of Theorem 3.6 and Corollary 3.8 remain valid.
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We now apply these arguments to the inequalities considered in Theorem
A of [Z] and Theorem 4 of [W]. Consider the inequalities

&div[m1 (x) �(u) |{u| p&2 {u]�q1 (x) f(u),
(3.8)

&div[m2 (x) �(v) |{v| p&2 {v]�q2(x) f (v),

with m1�m2 and q1�q2 , �(u) is positive for u>0. Observe that if f (u)�up&1

is nonincreasing for u>0, then this is considered in (3.4)$ and Remark 3.9 is
directly applicable. Note also that the transformation

w=|
u

0
[�(!)]+ d! :=T(u)

with +=1�( p&1) changes these into inequalities of the earlier form with f(u)
replaced by f (T&1(w)). We thus require by (3.5) that f (T&1(w))�w p&1, or
f +(T&1(w))�w be monotone nonincreasing. Expressing

f +(T&1(w))=|
1

0
[ f +(T&1(tw))]$ w dt,

for this it will suffice that

[ f +(T&1(w))]$=�&+(u)
d
du

f +(u)

be nonincreasing. This is the condition given in [Z, W]. Note that, unlike
[Z, W], we do not require that f be monotone. Our other condition in (3.6)
becomes

m1 |{u| p&2 �u
�n

&m2_�u
0�+(!)

�v
0�+(!)&

p&1

(3.6)$

}
�(v)
�(u)

} |{v| p&2 �v
�n

�0.

Thus we have,

Corollary 3.10. Let u and v be positive solutions of (3.8). Assume that
�&+(u) (d�du) f +(u) is nonincreasing, where +=1�( p&1), and (3.6)$ holds on
�0. Then u�v cannot hold throughout 0.

Observe that on surfaces where u=v enclosing regions with u>v, (3.6)$ is
satisfied if �v��n�0 there. Indeed if v$�0 then u$�v$�0 and m1�m2 give
the result. On the other hand, in keeping with [Z, W], (3.6)$ will also hold if

u(0)�v(0), u$(0)�v$(0), 0�v$(0).
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Note that since v$(0)�0 then Eq. (3.8) indicates that v$(r)�0 for all r if
q2�0, f �0. Thus if u$(0)�0�v$(0) the result follows as (3.6)$ holds at zero
and at any point r0>0 where u=v and u(r)>v(r) for r<r0 .

Suppose now u(0)�v(0) with v$(0)�u$(0)�0. Again (3.6)$ holds at any
r0>0 with the same properties as in the previous case. But, in this case (3.6)$
becomes an added condition at 0, i.e., we require

m1(0)
|u$(0)| p&1 �(u(0))

[�u(0)
0 �+]1�+ �m2(0)

|v$(0)| p&1 �(v(0))
[�v(0)

0 �+]1�+ . (3.6)*

This is similar to condition (F) of [W] and (H4) of [Z], where [�u(0)
0 �+]1�+

and [�v(0)
0 �+]1�+ are replaced by f (u(0)) and f (v(0)), respectively. Note that

our (3.6)* is the same for all f which satisfy the earlier condition.
Furthermore, suppose condition (F) of [W] (or (H4) of [Z]) holds. In the

present case, one has

m1(0)
|u$(0)| p&1 �(u(0))

f (u(0))
�m2(0)

|v$(0)| p&1 �(v(0))
f (v(0))

;

then since f (T&1(w))�w p&1 is assumed nonincreasing, then u(0)�v(0) implies

f(u(0))
[�u(0)

0 �+]1�+�
f (v(0))

[�v(0)
0 �+]1�+ ,

and thus our condition (3.6)* holds.
Finally, suppose v$(0)>0. Much as in [W], if m1 #m2 the result is still

true. Indeed (3.6)$ holds as before at any point r0 where u=v and u(r)�v(r)
for r<r0 . We still require (3.6)* at zero, now with m1 #m2 . If we do not
require m1 #m2 , then (3.6)$ is a new criterion, however � enters in our condi-
tion. As for the case of Corollary 3.8, we see that Corollary 3.10 applied to
radially symmetric functions and solutions extends Theorem A of [Z] and
Theorem 4 of [W].
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