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Abstract

Up to now, most of the results on the tangential Hilbert 16th problem have been concerned
with the Hamiltonian regular at infinity, i.e., its principal homogeneous part is a product of the
pairwise different linear forms. In this paper, we study a polynomial Hamiltonian which is not
regular at infinity. It is shown that the space of Abelian integral for this Hamiltonian is finitely
generated as &[k] module by several basic integrals which satisfy the Picard—Fuchs system
of linear differential equations. Applying the bound meandering principle, an upper bound for
the number of complex isolated zeros of Abelian integrals is obtained on a positive distance
from critical locus. This result is a partial solution of tangential Hilbert 16th problem for this
Hamiltonian. As a consequence, we get an upper bound of the number of limit cycles produced
by the period annulus of the non-Hamiltonian integrable quadratic systems whose almost all
orbits are algebraic curves of degreetr n, under polynomial perturbation of arbitrary degree.
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1. Introduction

In this paper, we study the number of zeros of Abelian integral for a polynomial
Hamiltonian which is irregular at infinity.

1.1. The tangential Hilbert 16th problem

Let H(x, y), f(x,V), g(x,y) be polynomials in two-real variables aii¢ the closed
connected component of level sgk, y)|H (x, y) = h}. Suppose that

o= f(x,y)dx +g(x,y)dy (11

is a real polynomial 1-form with degreé = max{degf(x,y), degg(x,y)}. The
Abelian integral is defined by

I(hy=1(h,H, w) = f . (1.2
Iy

The tangential Hilbert 16th problem, or the weakened Hilbert 16th problem, posed by
Arnold [A1,A2], is to place an upper bound(degH, d) of the number of zeros of
I(h) on the maximal connected interval of existencel@f in terms of deg? andd.

The general result of solving the tangential Hilbert 16th problem was achieved
by Varchenko[V] and Khovanskii[K], who proved independently the existence of
Z(degH, d), but no explicit expression of (degH, d) has been obtained. Many au-
thors have contributed to estimate or to give an explicit upper bound of the number of
zeros ofI (k) for the cubic and quartic elliptic Hamiltoniar$ = y2+ p(x), see for in-
stance PetroyP1,P2,P3] Rousseau and Zolad¢RZ], Zhao and Zhan{ZZz], Liu [Lc]
etc. In the papefHI2], Horozov and lliev gave a linear upper boudd3, d) <15/ +15
for general cubic Hamiltonians. The authors of the paid&r3] constructed a linear
differential equation satisfied b¥(%) and obtained using the tools froftY] an asymp-
totical exponential bound for the number of zeros/ k). More results of this problem
will be recalled in Sections 1.2-1.4.

1.2. Abelian integrals and limit cycles

We briefly recall the connection between the tangential Hilbert 16th problem and the
number of limit cycles of planar vector fields.

1.2.1. The polynomial perturbations of Hamiltonian systems
Consider the perturbed system

dH(x,y) +¢ew =0, (1.3),
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where¢ is a small parameter. Then the displacement function is
d(h,e) = p(h,e) —h = el (h) + &Ma(h) + - - & My(h) + - - (1.4)

Herep(h, ¢) is the first return mapping dfL.3), in terms ofh ande. Let M1(h) = I (h).

It is well known that the number of zeros of the first non-vanishing Melnikov function
Mi(h), k = 1,2,..., gives an upper bound of the number of limit cycles(ih3),
which are born out from the period annullig surrounding the center gfL.3)o.

For the quadratic perturbations of quadratic Hamiltonian systems, i.e.H deg
3, d = 2, it has been proved ifGH] for perturbations ofjenericquadratic Hamiltonian,
that, if (k) =0, then(1.3); is a Hamiltonian system. It has been sho®(B, 2) = 2
by the works of Horozov, llieyHI1], Gavrilov [G3], Li [LZ], etc. If I (k) = O for non-
genericquadratic Hamiltonians, then the higher-order Melnikov functddp(h), k> 2,
must be considered. In the pap@B3], lliev gave the formula of higher-order
Melnikov function for quadratic perturbations of non-generic quadratic integrable sys-
tem. By the study of the number of zeros of higher Melnikov function, we know that
the cyclicity of period annulus of non-generic quadratic Hamiltonian systems under
quadratic perturbations is 3 for the Hamiltonian triangle case, and 2 for other cases
(see[CLY,Gl,11,ZLL,ZZh2]).

In order to obtain more limit cycles of planar systems and various configuration
patterns of their relative disposition, which is a part of Hilbert 16th problem, Li et
al. study the tangential Hilbert 16th problem for the symmetric planar polynomial
systems. For example, he proved that the exact upper bound of the number of limit
cycles Hilbert numbe) for cubic system is at least 1[LjH]. More results about the
number of zeros of higher-order Melnikov function and limit cycles can be found in
[F,G2,Gl,l4,Lj,ZZh1] and reference therein.

1.2.2. The polynomial perturbations of non-Hamiltonian integrable systems
Consider generalized system

Hy(x,y) (1.5);

. Hy(,
i = pE L eP(x, y),
y=- M(x,y) +:e0(x, y),

whereH, /M, H,/M, P(x,y), Q(x,y) are polynomialsH (x, y) = h is a first integral
of system(1.5)9 with integrating factorM (x, y). Suppose thatl.5)p has at least one
center. If M (x, y) is not a constant, the(l.5)¢ is called a non-Hamiltonian integrable
system. The Abelian integrals, associated with syst&rs),, are defined as

T = fr M(x. y)(—P(x, y) dy + Q(x, y) dx). (1.6)
h

Since the integrating factoM (x, y) is no longer a constant, the study of Abelian
integrals for non-Hamiltonian integrable systems is more difficult than the one in the
Hamiltonian cases.
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In the paperg§LLLZ,LZLZ,ZLLZ] , the authors study quadratic non-Hamiltonian inte-
grable systems whose almost all orbits are conic, cubic and quartic curves, respectively,
where the phrase “almost all" means “all except at most a finite_number of”. They
give a linear estimate of the number of zeros of Abelian integidls) for these
systems. A series papers are concerned with the quadratic perturbations of quadratic
non-Hamiltonian integrable systems, §8#.Z,GLLZ,12,Z0], etc.

1.3. The space of Abelian integrals and Gavrilov theorems

The study of tangential Hilbert 16th problem requires a very basic information con-
cerning the space of Abelian integrals. This problem can be resolved if the Hamiltonian
is sufficiently regular at infinity.

Definition 1.1 (Novikov and Yakovenko [NY)5]A polynomial H(x,y) € C[x,y] of
degreen is said to be regular at infinity, if one of the three equivalent conditions
holds:
(1) its principle homogeneous paff,a homogeneous polynomial of degragis a
product ofn pairwise different linear forms;
(2) H has an isolated critical point (necessarily of multiplicity — 1)2) at the origin
(0, 0);
(3) the level curve{H = 1} c C? is non-singular.

Definition 1.2. A polynomial H (x, y) € C[x, y] of degreen is said to be irregular at
infinity, if it is not regular at infinity.

In [G1,G2] Gavrilov proved that for polynomial Hamiltonia# (x, y) regular at
infinity, the space of Abelian integrals is finitely generated a€[A]-module by the
basic integrals. However, it seems that there is no general result about the space of
Abelian integrals for the polynomial Hamiltonian which is irregular at infinity.

1.4. Meandering principle and Picard—Fuchs system

Consider a polynomial vector field iR or C", defined by a system af first-
order polynomial ordinary differential equations, whose degrees and the magnitude of
coefficients are explicitly bounded. Then the number of isolated intersection points
between a integral trajectory of this polynomial vector field and any affine hyperplane
in the ambient space can be explicitly characterized in terms of the size of this integral
trajectory and the magnitude of the coefficients of vector fields[I8¥& ,NY2,NY4,Y1]
for details. Using the bounded meandering principle, the authors of the pdjyéj
proved that the number of zeros of Abelian integrals for the elliptic Hamiltollaa
y2 + p(x) is characterized by a certain tower function depending only on the degree
degp(x) andd.

Almost all approaches of the solution of the tangential Hilbert 16th problem so far
was based on using the system which is caldar—Fuchs systepor Gauss—Manin
connection The system, satisfied by the monomial integréls= (Ip, I1, ..., I;), has
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the form
V=ThV,

with a rational matrix functior (z), wherelo, I, ..., I; generate the space of Abelian
integrals as &[4]-module orC[h]-module . One can obtain from Picard—Fuchs system
more information concerning Abelian integrals.

To investigate the tangential Hilbert 16th problem for thedanced Hamiltonianan
explicit system of the monomial integrals is derived in the pap&r5]. A peculiar
feature is that the dimension of this system is approximately two times greater than
that one of the standard Picard—Fuchs system, and so it is dadddndant Picard—
Fuchs systemThe above result allow to apply the bounded meandering principle for
the balanced Hamiltonians and then one gets an explicit upper bound for the number
of zeros of Abelian integral away from the critical locus. The pgdy@] deals with the
bounded decomposition in Brieskorn lattice and Picard—Fuchs system corresponding to
semiquasi-homogeneous Hamiltonian.

1.5. The main results of this paper

It seems that most of results on the tangential Hilbert problem so far have been con-
cerned with the Hamiltonian regular at infinity. In this paper, we consider a polynomial
Hamiltonian which is irregular at infinity. More precisely, let

Hx,y)=x*Gy* + pex)=h, keZ'={123 ...}, (L7)
where p(x) is a monic polynomial of degres,

n
pe) =) px's pa=1 (1.8)
=0

H(x,y) € R[x, y] or C[x, y]. The homogeneous part @&f (x, y) has a zero ak =0
with multiplicity k 4+ n, which means thatH (x, y), defined in (1.7), is irregular at
infinity. On the other hand, the Hamiltonian (1.7) is a first integral of non-Hamiltonian
integrable systen{1.5)g with the integrating factoM (x, y) = x*~1. Of course, it is
also a first integral of Hamiltonian systed¥ (x, y) = 0, i.e., the Hamiltonian system
(1.3)o.

We investigate in this paper the tangential Hilbert 16th problem for Hamiltonian
system (1.7). It is shown in Section 2 that the space of Abelian integrals is finitely
generated as &[k]-module byn + k basic integrals/_1(h), Jo(h), ..., Jyix—2(h),
which is a counterpart of Gavrilov theorem (Corollary 2.2). The properties of Abelian
integrals are given in Section 2.3, providgdx) = +(x — ¢)", ¢ € R. Following the
arguments used ifNY5], we derive an explicit system of Picard—Fuchs equations of
the form

(hE —A)J =BJ, A, Be Matgiixnit(C),
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satisfied by the vectod = (J_1, Jo, ..., Jurk—2). The algorithm for derivation of
Picard—Fuchs system allow us to give a complete description and obtain an explicit
bound on the norms for the matrices Afand B, see Proposition 3.1, Sections 3.3 and
3.4 for more details. The above information on Picard—Fuchs system and the space of
Abelian integrals already suffices to apply the bounded meandering principle and get
an explicit upper bound for the number of zerosIgh) away from the critical locus
of the Hamiltonian (1.7) (Theorem 4.2).

As a continuation of the work ifLLLZ,LZLZ,ZLLZ] , we study the number of
zeros of the Abelian integral(k), defined in (1.6), for the non-Hamiltonian integrable
quadratic systengl.5)p which has a first integral either (1.7) with=1,2, k>3, or

H(x,y) = H(x,y) = x *23y2 + pox® + pix + p2) = h, k=3. (19

It is proved that in Section 2.5 thdth), related to(1.5), and (1.9), can be expressed as

a combination with polynomial coefficients &f+ 2 Abelian integrals/_1, Jo, ..., J,
associated with the systef.5), and the Hamiltonian(1.7)|,—2, k > 3. Therefore, the
same Picard—Fuchs system can be used in the study of Abelian integrals for these
two different quadratic non-Hamiltonian integrable systems. More information on the
Picard—Fuchs system for the Hamiltonian (1.7) with= 1, 2 can be found in Sections
3.5, 3.6.1 and 3.6.2. Since the degenerate Hamilto(lar,—> has a atypical critical
value, we derive the Picard—Fuchs system satisfied/jby = —1,0,1,...,k — 1, in
Sections 3.6.3 and 3.6.4. Finally, we get an upper bound for the humber of limit cycles
of polynomial perturbations of quadratic non-Hamiltonian systém)o with the first
integrals(1.7),,—> or (1.9) under the assumptiar(k) = 0. The accurate formulation is
given in Section 4.3.

1.6. Conventions

Let (x,y) € R? and f(x, y), g(x,y), H(x,y) € R[x, y] if the planar vector fields
and the limit cycles are concerned with. We always supposecihata real or complex
1-form and H (x, y) € R[x, y] (or C[x, y]) is defined as (1.7) unless the opposite is
claimed.

2. The relative cohomology decomposition of polynomial 1-form
2.1. Notations and conventions

Let A, m = 0, 1,2 be the space of polynomiah-forms onR? or C. The mul-
tiplication y(h) - @ = y(H)w holds over the ring of polynomiaC[k#]. An equivalent
relation ~ is defined between two 1-formw and @ as follows: w ~ @ if and only if
w—o=d&x,y, H)+n(x,y, H)dH, whereé(x, y, H) andn(x, y, H) are polynomials
of x, y andH.

In the sequelx denotes constant. Let

wjj = xiy./ dx, I,] = Il](h) :ﬁ Wjj (21)
h
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and
w; =x'ydx, Ji=J,-(h)=?§ wi, i=---—101,---. (2.2)
Iy

We putdeg w = max{degf (x, y), degg(x, y)}, wherew e A is defined in (1.1).
The symbole; (H), «;j(H), ,(H), etc. always means the polynomials lof

2.2. The relative cohomology decomposition of polynomial 1-form for Hamiltonian
.7

2.2.1. The main result
Theorem 2.1. For every complex polynomial 1-form e A%, degw = d, there exists
polynomialsé(H), oy(H), I = —-1,0,1,...,n + k — 2, such that

n+k—2
d
0= w(H)on+8(H) = +di(x. y. H) +n(x.y. H) dH. 23
1=-1

Here {(x, y, H) and 5(x, y, H) are polynomials of, y, H, and

(i) if n>3, thendego (H) < [(d —1)/(n+ k)] for d>1+ 1 and degw (H) = O for
d<l respecnvelywhered =[(d—-1)/2ln+ ((-1)¢ +1)/2 and [s] denotes entire
part of §

(i) if n=1,2,thendegy(H)<[(d—1—1)/(n+k)] for d>1+1 and degy;(H) =0
for d <1, respectively

(i) If d<k, thendo(H) = 0; If d>k + 1, then degd(H)<[d/k] for n = 1 and
degd(H) <[((d — 2)n + 2)/(2k)] for n>2, respectively.

Corollary 2.2. Let w be a real polynomiall-form anddeg w = d, H(x,y) € R[x, y].
Then the Abelian integrals(h), associated with Hamiltonia(.7), can be expressed as

n+k—2

I(h):ffr w= > oh), (2.4)
h

I=—1
whereo; (h) is defined as in Theorem.1.

Corollary 2.2 shows that the space of all Abelian integrals is finitely generated as a
free R[h]-module byn + k integralsJ_1(h), Jo(h), ..., Jutx—2(h).

2.2.2. Proof of Theorem 2.1
The proof consists of a long straightforward calculation. Let j <d = maxXdeg
f(x,y), degg(x, y)}, where f(x, y), g(x, y) are defined in (1.1). We have

1 i
xtyldy = ]Td(x 'yt - +1wz 1,j+1»
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so we only need to consider the 1-fom;, i + j <d. We split the proof into several
steps.
Step 1: In the first step, we will express);; as a linear combination oflx/x,

wyjrj2-1,; and o, I = —1,0,1,..., with polynomial coefficients, modulo 1-form
dé+ndH.
(1) If k and j are odd then
i+(j—n/2
wij= Y ko +d&;(x,y) 4+, y)dH, (2.5)

=i
where

n
Cij(x,y) = Xyl + Z xltyl =2 4.
11=0

+ i i . i *x11+lz+~--+l(j73)/2y3

11=0 1,=0  I(;_g,;2=0

n
iy, ) = X T2 B ety
11=0

n n n
+Z Z Z sx At FlG-3,2y

11=0 b=0  I(;_32=0
It follows from (1.7) that
dH = x*ydy + X (Gky? + kp(x) + xp/ (x)) dx. (2.6)
Multiplying both sides of (2.6) by ~*t1y/=2 we get
x"*’Hlyj*2 dH = x”lyj*ldy + %kxiyj dx + x'(kp(x) + xp/()c))yj*2 dx. (2.7

On the other hand,

i+1

) . 1 , )
xithyi=lgy = ;d(x’+1y/) — wij. (2.8)
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Taking (2.8) into (2.7), we have

kji —2(i+1)
—_— W),
2j

<xi+lyj
J

= Z(k +Dpiwis1j—2 —d ) + xI7*1yi=2gH. (2.9)
1=0

Please note that (2.6)—(2.9) hold fék € Z™. If k andj are odd, thertj —2(i +1) # 0,
which implies

2j - xitl
= —|— k+1 vl i—2—d
Wi j K —2(+1) ;( + D proitij-2 (

.y.1> 4oyl kL2 dH) _
J

(2.10)

It follows from (2.10) that

n
wij = Y ki, jo2 +dx ) 4o TFHyI2g g

11=0
n n n
i+1_j i+1+1 j—2
= Z Z *Oi 11+, j—4 + d (xx' Ty + Z sx! Tty =2y
11=0 [>=0 11=0

n
(iR 2 Z wxi kL =4 g g
=0

n n n
=Y Y o Y kWit G (L) + (L y) dH.

11=0 b,=0  I(j_1);2=0

Here we use the inequality(j — 2m) — 2@ + 11+l + -+l +1) # 0, m =
1,2,...,(j—1)/2, providedj andk are odd.
(2) Letkj —2(i+1)=0,ie,i=kj/2—1.1f jis odd and k is eventhen

(j=b/2 (j=1/2=1)n

Okjj2-1,j = Z Z *H" 02— ykrm—-1- (2.11)
I'=0 m=0

If j is even then

odx ’ . ’
Wkjja-1,j = *HJ/2? +d Z sl xUG/2=1k+m

/
U'.m

S DRl At I (2.12)

U'\m

where (I, m) # (j/2,0),0<1'< j/2,0<m < (j/2 — ")n.
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If j is odd andk is even, then it follows from (1.7) that

oy /a1 = XMLk y2) =Dy gy = 2U=D/2 K21y (g ok p(3)) I =D/2 g

(j—1)/2
= k21, Z «H (* p(o) U072 g
I'=0
(G-=D/2 (j=D/2=l")n
Z wH! xU/2=0km=1y g
'=0 m=0

which implies (2.11). Ifj is even, the by the same arguments as above, we have

. jf2 Gfe=tm
Wi = Lk y2) /2 gy = Z Z wH! xG/2=DkAm=1 4
I'=0 m=0

Since

H xU2=0ktm=1 g — gt G/2=0ktmy _ oy G2=Dktm gl =1 g b

for (I',m) # (j/2,0), I’ # 0, the decomposition (2.12) follows.
(3) Let kj — 2(i + 1) # O.
If k is even and j is oddthen

i+(j—1n/2 ~
= Y kop+ Y sy +dE, y) 700 ) dH,  (2.13)
I=i J'<j-2

where ¢;;(x, y) and ﬁij(x, y) are two variables polynomials;’ and i’ = k;’/2 — 1
have the formsj’ = j —2m, i’ =i+l +lo+ -+, m e ZT,1<m<(j —
3)/2,0<l,<n, g =1,2,...,m. Soi' + (j' —Dn/2<i + (j — Dn/2.

If j are even then

./ d.x
wij= Y. *H-’/ZY+d§,~j(x,y,H)+11ij(x,y,H)dH, (2.14)
J<j-2

where¢;;(x, y, H), n;;(x, y, H) are polynomials ofc, y and H j" = j—2m is defined
as follows: there exist$' =i + 11+l + -+ 1y, 1<m<(j —2)/2, 0<iy;<n, g =
1,2, ...,m, such thatk;’ — 2(i’ + 1) = 0.



Y. Zhao / J. Differential Equations 209 (2005) 329-364 339

We get (2.13) from (2.10) by the same arguments as (1) and (2). The expression
(2.14) follows from (2.10) and (2.12), we omit the details.

Step2: We prove in this step thab; can be expressed as a linear combination of
o, 1 =-1,0,1,...,n+k—2, with polynomial coefficients, modulo 1-fora:+ndH.
(4) For izn+k —1, we have

n—1
(n+2i+2w; = 2 —n+1) —3)Hw; -+ Y _ (20— 3 — 2 — 2)pjoyyin
1=0
—d(x' T3y p 3y TRty g, (2.15)
Multiplying (1.7) by x' ="y dx, we get
1 n—1
Hw;—g—p = 5 @Wi-n3+ i+ Z PIDiti—n. (2.16)
1=0
By (2.9), we have
I —2G—n+1)
Wj—p,3

6

n xi7n+1y3 )
= - Z (k+Dpi1wiyi—n —d <T> +xi Tty gl (2.17)
=0

If i =3k/24+n—-1,ie., % —2(Gi—n+1) =0, then (2.17) implies

n—1 x3/2y3
(k +n)wzr/21n-1=— Z (k+Dpiwgrjor-1—d (
=0

) +x*2yaH,

which is (2.15) withi = 3k/2+n — 1. If i # 3k/2+n — 1, then (2.15) follows from
(2.16) and (2.17).
(5) w;,i>n+k — 1, can be represented as

n+k—2

wi= Y w(H)w +d&(x.y) +n;(x, y) dH, (2.18)
1=-1

where; (x, y), n; (x, y) are polynomials of x and,ydegu;;(H) <[(i —1)/(n+ k)], [ =
-1,0,....n4+k—2.
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We prove (2.18) by induction for. Forz =n+k—1, it follows from (2.15) that
(3n + 2k)wpqk—1 ~ —kHo_1+ Y 1 ( 3l — 2k) pjwik—1. Suppose (2.18) hold for
n+k—1<m<i—1, meZ", then we get by using (2.15) that

n—1

W ~ *Hw;—g—p + Z KO j—n
I'=0

n+k—2 n—1 n+k—2

~ H Z O —k— n](H)wl+Z Z o 4i— nl(H)wl

[=-1 I'= I=—-1
Let ajy (H) = +H; iy /(H) + Y Zo *0r4i—n(H). Then

dego;; (H) < max{1+ degu;_i—, (H), dego;_1,;(H),

degoi—2,(H), ..., degxi—n(H)}

i—k—n-—1 i—1-1 i—2-1
< maxil+ , , )
n—+k n—+k n—+k
i—n—1
n+k
N [n+k}

Step3: In the final step, we prove (2.3). First of all, we will show tlila¢ following
expression holdsprovided j is odd

n+k—2

Wjj ~ Z oij1(H)awy, (2.19

I=-1

where degu; ;) (H)< [(i + (j —Dn/2-1)/(n + k)] for i + (j — Dn/2>1 + 1 and
degu;j;(H) = 0 for i + (j — Dn/2<, respectively

If k is odd, then (2.19) follows from (2.5) and (2.18). Now we considegf>_1 ;,
wherek is even. Using (2.18) again, we have in (2.11),

n+k—2

H" 0 2-1yiim—1~ Z H" o jo—1herm—11(H) .
I=—1
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The degree of coefficient aby; is explicitly bounded:
jj2—1' -1-
l’+[(]/ Nk +m l]

degH" o joiiam—11(H) <
g (j/2—1"k+m—1,1(H) p—

- [jk/2+1In+m—1-1
1 n+k
_jk/2—1+(j—l)n/2—li|
<
L n+k
_[i+(G=Dn/2-1
N n+k '

wherei = kj/2—-1,1 = -1,0,1,...,n + k — 2. In the above proof we use the
mequallty <Km<(j — /2 = 1"n. It follows from (2.11) and the estimate for
degH' o(j/2—1nk+m—1,1(H) that (2.19) holds forwy;/2-1,;. Therefore, it follows from
(2.13) and (2.18) that (2.19) holds kfis even.

Sincew is a linear combination ofy;; with constant coefficients, we get (2.3) from
(2.19), (2.12) and (2.14).

Please note thalx/x just appears in the decomposition @f;/>—1,;, providedj is
even. Ifi+j=d,i =kj/2—1, thenj/2 = (d +1)/(k+2), which impliesé(H) =0
for d <k. In what follows we consider (2.14). Lét+ j =d>k+1,n>2. Then;’/2,
defined in (2.14), is explicitly bounded:

j’_i’+1_i+l1+lz+~-~lm+1<i+mn+l
2k k = k
1 j—2 1 -2
<z<i+J2 n—i—l):z(d—j—ka n+1)

1 .
= 5 @d=21+2+ 0 -2))

N

1 1
5 (2d =212+ (n=2)d) = 5= ((d = 2n +2),

which yields de@(H) < maX{[((d — 2)n + 2)/(2k)], [(d + 1)/ (k + 2)]} = [((d — 2)n +
2)/(2k)] for d >k + 1, n>2. The estimation for deg(H) follows from (2.19). I

2.3. Properties of Abelian integral; provided p(x) = +(x —¢)*, c€e R, ¢ 20, n>2

Recall thatp(x) is monic. If p(x) has only one real critical point a with multi-
plicity n, then p(x) = (x — ¢)", which meansH (x, y) = x*(y2/2+ (x —¢)") = h. The
corresponding integrable system is

. 0H ; k—1
X :xy:E/x ,

y = —ky?/2 — (x — )" N((k + n)x —ke) = —%—f/xk’l.
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The type of critical points can be determined by using the theorenf&DiD]. If n
is even, then the above system has a centde,d@) and a saddle atkc/(k + n), 0).
If nis odd, then(c, 0) is a degenerate non-center critical point gkd/(k + n), 0) is
a center (resp., saddle) for> 0 (resp.,c < 0). Let I', C {(x,y) € R?|H(x, y) = h}
be the periodic orbit around the center.

Proposition 2.3. Suppose that the monic polynomia{x) has only one real critical

point atx = ¢, i.e. p(x) = (x — ¢)".
(i) If nis odd andc > 0, then

% (ke — (k +n)x) x* 1 — x)"/z_ly dx = 0.
Iy
(i) If n/2 is eventhen
) ((k +n)x — ke) x*2(x — o)"* Ly dx = 0. (2.20)
h

This implies that/,_1, Ji, ..., Jyj24k—1 are linearly dependent.
(iii) If n is even butz/2 is odd then

y§ ((k + n)x — ke) x*L(x = 0)"?* Ly dx = 2/2rh. (2.21)
Iy

Proof. Denote by(x;(h),0), i = 1, 2, the intersection point of closed orbifs;, and
x-axis, which impliesH (x; (h), 0) = x{‘(h)(x,- (h) —c¢)" = h. By direct computation, we

have
~ k k k n
H(c.0) =0, h=H( ‘ ,0)=(—1)"c"+k<—) ( " ) .
k+n k+n k+n

(i) If nis odd andc > 0, then(kc/(k + n), 0) is a center andc/(k +n) < c. Since
x = 0 is an invariant line, the periodic orbit around the ceriter/(k +n), 0) does
not intersectt = 0, which impliesc > x for V(x, y) € I',, h € (h, 0). Therefore,

(ke — (k +n)x) x* e — x)"* Ly dx
Iy

x2(h)
- 2/ (ke — (k 4+ n)x) x*L(c — )% 1/2hx—* + 2(c — x)" dx
x1(h)

x2(h) -
= Zﬁ/ (ke — (k + n)x) x* L — )% Y — x)2 | = + 1dx
x1(h) u



Y. Zhao / J. Differential Equations 209 (2005) 329-364 343
X2(h)
— + 1du
1(h) u

Here, we used the following integration formula:

=0.

/ g+1du=\/h+uﬁ+h|n(ﬁ+\/h~l—u), u=x"c—x)".

(i) If n/2 is even, then(c,0) is a center andx — ¢)/?2 > 0 for Y(x,y) € I}.
Therefore,

((k 4+ n)x — ke) x*x — )% Ly dx
Fh

x2(h)
=2 ((k +n)x — ke) x¥1x — )21/ 2hx—k — 2(x — o) dx
x1(h)

x2(h) h
= zﬁ/ (k +n)x —ke) x¥2x — )" /= — 1dx
x1(h) v
xz(h)
‘/ — —1dv
1(h) v

Here we used the following formula:

=0.

h .
/ — —1du = vh — v/v + h arcsin %, v =xF(x — o).
v V

(iii) If nis even butn/2 is odd, then(x —¢)"/2 < 0 for x < ¢ and (x — ¢)"/2 > 0 for
x > ¢, respectively, if(x, y) € I';,, wherel;, is a periodic orbit around the center
(c, 0). Hence,

% ((k +n)x —ke) xF1(x — c)"/zfly dx
Iy

c
h
=-2V2 ((k + n)x — ke) X Lx — o2 — o2/ _ 14x
x1(h) v
x2(h) 7
+2x/§/ ((k +n)x —ke) x* 2 — )% L x — )2,/ = — 1dx
v
x2(h) [
=-2V2 ,/——1dv+2 2 /__1dv
x1(h)

=2V2rh. O
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Proposition 2.3(ii) shows that at most-k—1 integralsJ;(h), [ = —1,0, ..., n+k—3,
generate the space of all Abelian integrals as a R@el-module, provided that/2 is
even andp(x) = (x — ¢)". Please compare this conclusion with Corollary 2.2.

We always suppose, = 1, i.e., p(x) is monic univariate polynomial in this paper.
However, if p, = —1, we have the similar conclusions as Proposition 2.3(i):

Proposition 2.4. If p(x) = —(x — ¢)", then the identity(2.20) holds.

Proof. In this case, the corresponding integrable system has a center/é +n), 0)

if and only if one of the following conditions holds: (i) is even, (ii))n is odd,c < 0.
The critical point(c, 0) is a cuspidal or saddle point. Singe= 0 is an invariant line,
we know thatsgn(x —¢) = —1 (resp.,sgn(x —c¢) = 1) for V(x,y) e I' if ¢ > 0
(resp.,c < 0). By the same arguments as in the proof of Proposition 2.3(i), we have

((k 4+ n)x — ke) x*T(x — o) Ly dx

Iy
x2(h) h
— 22 _ a\n/2 o 1d k PR/
V2sgn((x — ¢)"'?) " \ Ne— + (x (x —¢) )
=0,
Here (x;(h), 0),i = 1, 2, is the intersection point of;, andx-axis, x1(h) < x2(h), and

we use the integration formula as in the proof of Proposition 2.3(i)L]

2.4. Normal form and Abelian integrals for non-Hamiltonian quadratic integrable
casen = 1,2 with k>3

We have given the main results about Abelian integrals for quadratic sy&t&n
and (1.5), in Corollary 2.2. In this section, we are going to formulate analogs of Sec-
tion 2.3 for quadratic case = 2. Before that we give a normal form afL.5)¢
with at least one center fon = 1,2. Using the results from appendix ¢f3],
we get

Proposition 2.5. If n = 1 in (1.5)9, then the parametergg, p1, p2 can be taken as
p2 = 0,p1 =1, po = —(k + 1)/k. Moreover system(1.5)9 has a center at(1, 0)
and two saddles at0, ++/2(k + 1)/k). The closed orbitl’;, C {(x, y)|H(x,y) = h} is
defined forh € 2 = (—1/k, 0).

Proposition 2.6. If n = 2 in (1.5)9, then the parametepg, p1, p2 can be taken as
p2=1p1=—(k+2+kpo)/(k+1). Let

k
m=HL0=2"1 = g O 0)—_po<'%02> ot 27
S e k+ Dk +2?
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Moreover we have

() If po < 0, then system1.5)¢ has two center atS1(1, 0), S2(kpo/(k + 2),0) and
two saddles at(0, ++/—2pg). The ovalsI', around S1 (resp, S»2) are defined
in X1 = (h1,0) (resp, 22 = (h2,0) if k is even andX,; = (0, hp) if k is odd
respectively.

(i) If po = 0, then system(1.5)¢ has a center atS; and a degenerate critical point
at (0,0). The ovals arounds; are defined forh € X1 = (—1/(k + 1), 0).

(i) If 0 < po < (k+ 2)/k, then systen{1.5)¢ has a center atS; and a saddle afS,.
The ovals arounds; are defined for Hamiltonian values € X~ = (hq, h)).

(iv) If po = (k+ 2)/k, then system(1.5)g has only one degenerate critical point at
(1,0).

(v) If po> (k+2)/k, then systen{1.5)p has a center atS, and a saddle atS;. The
closed orbits arounds, are defined inX = (ho, h1).

From now on, we always suppose thaj, p1, p2 are defined as Propositions 2.5
and 2.6 for the cases = 1 and 2. In the next proposition, we consider the Abelian
integrals for quadratic case= 2, providedk >1.

Proposition 2.7.If n =2 and pg = 1 (resp, po = (k + 2)%/k?), then J; = (kJi_1 +
2V21h) /(k + 2) (resp, Jx = Ji—1 + 23/2nh/(k + 2)).

Proof. If po =1 (resp.,po = (k + 2)2/k?) holds, thenH = xK(y2/2+ (x —1)?) =#h
(resp., H = x¥(y2/2 4+ (x — (k + 2)/k)?) = h). The results follow from Proposition
2.3(iii). O

2.5. Abelian integrals for systeri.5), with the Hamiltonian(1.9)

Let d = max{deg P(x, y), degQ(x, y)}—k+1 in (1.5); and p» = 1 in (1.9). Rewrite
the polynomial perturbed syste.5), with Hamiltonian (1.9) as the form

X=ay ey camr* Y,

. 5 5 i (222,

y=(k+2)y°/24+kpox®+ (k+Dpix+(k+2 + e} iy ppr*x'y,

wherek >3, d >k — 1. The unperturbed quadratic integrable syst@22)g has a first
integral (1.9) with integrating factar —*—3. Using Poincaré transformation

u
x=-, y=—, dt =—zdr,
Z Z

and then takingg — x, u — y, system(2.22), is reduced to

i=ay e icapprrx Ty
= —ky?/2 —kpo — (k + D) prx — (k +2)x° +¢ (223,
X Vit <t X Iy e xy).

<.
|
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The quadratic integrable syste(@.23)p has a first integral1.7)|,—2 with integrating
factor x*~1. To estimate the number of zero of Abelian integral associated system
(2.22),, we study the equivalent syste(d.23),. Since

w DT gy 1 d (x—(i+j—k—3)yj+l) + [+ J'. —k— 3x—(i+j—k—2)yj+1 dx.
j+1 j+1

the Abelian integrals, related to systeh23),, can be represented as

I(h)zyg xk_l( > x_(i+j_2)(>kyj+>kyj+l)) dx. (2.24)
rh

it+j <d—k+1

Proposition 2.8. (i) If d>2k + 2, then the Abelian integra(2.24), related to system
(2.23);, can be expressed as

k
I(h) = h~1==20K N g, () gy, (2.25)
I=-1

wheredegB_;(h) <[(d — 2)/k], degf;(h)<[(d — k — 2)/k], O<I<k.
(i) If k—1<d<2k+1,thenl(h) can be expressed &8.4)|,—2 with degu_1(h) <1,
dego; (h) = 0 for 0<I<k.

Proof. Firstly, we point out by symmetry that, _, x~'y/ dx = 0 if j is even. Therefore,
we just consider/_; ; for oddj. The proof is split into several steps.
(1) I_;;, j is odd andj >3, can be represented as the form

—itj-1
Ifi,j = Z *J; + Z *ij//Zfl,j’a (2.26)
I=—i kj'j2=14j' < —i+j
wherei’ = kj’/2 — 1 and j’ have the forms’ = —i +l1 + b+ -+ 1y, 3<) =

J—2m<j—-2,1,€{0,1,2,g=12,...,m, m<(j—3)/2, and the second term in
(2.26) vanishes identically i~i 4+ j <O.

Sincei >0, j >3, we havekj — 2(—i + 1) # 0. So (2.26) follows from (2.10) by
the same arguments as in step 1 of the proof for Theorem 2.1.
(2) J_;(h), i =2, can be expressed as

k
Joithy=>" B_iy(h™ N, (2.27)

I=-1

where _; ;(h=1) is a polynomial ofh ! with degB_; ;(h~1) <[ — 2)/k] + 1.
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Takingi — —i + k + 2 and integrating both sides of (2.15), we get

J_i (po(2i — 2k —2)J i1k

B 1
T @2i+k—2h
+p1(2i — 2k —5)J_ k11 + (2 — 2k —8)J_j1py2).

Then (2.27) follows by induction.
(3) It follows from (2.24), (2.26) and (2.19) that

—i+k+1
I(h) = Z Z *J; + Z *lgjr 21, j
i+j<d—k+1 \I=—i—j+k+1 kj'j2—1+4j < —i+k—2
k+1
= Z *J] + Z *ij’/Z—l,j’
I=—d+2k kj'/2—1+j' <k+2
k d—2k
= Z *J; + *Jp+1 + Z *J_p,
[=-1 =2

provided d >2k + 2. We get (2.252 by using (2.27) and (2.18) fé>2k + 2. If
k—1<d<2k+1, thenI(h) = Y }1%, %J;, which implies (ii). O

If po = 0 in (1.9), then the similar results can be obtained by the sam
arguments. [

3. Picard-Fuchs systems
3.1. Gelfand-Leray formula

If a pair of polynomial 1-formw, 0 satisfies the identityyw = d H A 0, then for any
continuous family of cyclel’, C {(x, y)|H (x, y) = h},

i
— o= 0, (3.1
dh Jr, r,

which is called Gelfand—Leray formula.

3.2. Derivation of the Picard—Fuchs system {1dr7)

Computations of this section are a modification of a standard derivation of a Picard—
Fuchs system for hyperelliptic integrals, see @\N)Y5,R], etc. Letw; be the differential
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1-form, defined in (2.2), whose derivativeds); = x’ dy Adx. The 2-formH (x, y) dw;
will be divided by dH (x, y), yielding the identities

n+k—2
H(x,y)do;=dH Adi+ Y ajdo;

j=—1

with appropriate 1-formi;, i = —1,0,...,n + k — 2. This implies the Picard—Fuchs
equation satisfied by_1(h), Jo(h), ..., Ju+r—2(h). More precisely, we have

(1
Hdw; = x't* <§y2 + p(x)> dy A dx
1o k1 ,
= Sx"*hy2dy ndx + (x (kp(x) + xp' (X))bi (x) +a,-(x)) dy A dx
1 i+k 2 1 k—1.2
:Ex yedy Ndx + Hx—ékx vy bi(x)dy ANdx + a;(x)dy A dx

1 .
= zx’yHy dy Ndx — bi(x)(dH — Hydy) Ady

1
—Skbi ()x~YyHydy Adx + a;(x)dy A dx

2
+a;(x)dy N dx

1 . 1
= (—x’y — Ekbi(x)x_1y> (dH — Hydx) ANdx — bij(x)dH Ndy

2 j=0 j=0

1 i+1 1 n+k—2
=dH A —wi+Z(j—Ek)bijwj_l—d(ybi(x)) + > ajdo;,

where we use the following identities:
(i) the 1-form and the partial differential derivatives df (x, y):

1
dH = Hydx + Hydy, H, =x*"1 (Ekyz +kp(x) + xp’(x)> . Hy=x*y, (32

(i) division with remainderthe polynomialsx’** p(x) of degreen + k +i is divided
by x*~(kp(x) + xp'(x)) = Hy — ($)kx*"1)? as

X p ) = K hkp o) 4 xp ()i (x) + a; (x),

dega; (x)<n +k—2, degh;(x)<i+1, (3.3)
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here
n+k—2 i+1

a;(x) = Z aijxj, bi(x):Zbijxj, i=-1,0,1,....n+k—2,
j=0 j=0

(i) the form b;(x) dy is represented as a linear combination
i+1 A
bi(x)dy = d(ybi(x)) — b;(x)y dx = d(ybi(x)) — Z jbijxI"tydx, (34)

j=1

(iv) the remainders; (x) dy A dx can be represented as

n+k—2 ' n+k—2
a;(x)dy Ndx = Z aijx’ dy ndx = Z aijdow;j. (3.5)
=1 =1

Integrating over the periodic orbif’, C {(x, y)|H(x,y) = h} (so that exact forms
d(yb;(x)) disappear) and using the Gelfand—Leray formula (3.1), one gets

n+k—2 i+1 1
hiJi — Zo aijlj = 5Ji + Zo(j = 50bijJj-1, (3.6)
= j=

where J; = dJ;/dh. Denote byd = col(J_1, Jo, J1, ..., Jusk—2), A = (ai,);fjijzl,

B = (B;)" A= 21t~ \where we suppose;, 1 =0 and

(i./)=(~10)
(J — k/2)bij, J<i,
Bij =112+ +1-k/2biit1. j=i+1, (3.7)
0, jzi+2.

The matrix form of (3.6) is
(hE—A)J =BJ, A, Be Matgixni)(C). (3.8

The identities (3.3) imply the following claim, which gives a complete description
of the entries of the matriceA and B.

Proposition 3.1. (i) Let p(x) be a monic polynomial of degree defined as in(1.8).
If —1<j<k—2,thena;; =0; If k —1<j<n+k— 2, thenq;; can be obtained by
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the following recursive formulas

n—j+k-1
a-1j = T k+n Dj—k+1,
J+1 :
dij = Gi=1,j-1 =y di-lntk—2Pj—k+1s i20. (3.9)
(i) For b;;, we have
1 1 L
biit1= rn bij = g i lke2, 0<j<i, iz—-1 (3.10

Proof. The identity (3.3) shows that; (x) has a zero akt = 0 with multiplicity at
leastk — 1, which implies thats;; = 0 for 0<j <k — 2. a; _1 = O follows from our
assumption. Recalp(x) is monic, i.e.,p, = 1. Using (3.3) again, one gets 1(x) =
1/(k +n), and

a_1(x) = X po) — x*Lkp(x) + xp’ (x))b_1(x)

n n n
1 n—1
k-1 ! I I+k—1
= - = k+1 =
X <1§=o PIX = 1E=o( +Dpix ) E (k+n> pIx

=0

__n [t S S 1 n+k—2
_k+np0x +k+nplx+ +k+np"_1x
"gf n—j+k—1 ;
= —_— . X7,

k+n Pj—k+1

j=k=1
which yields the first identity of (3.9). By (3.3), we have

XL p () = XL kp (x) + xp/ (0)bi—1(x) + @i -1 (x), (311
Multiplying both sides of (3.11) by, we get

() = K kp () + xp’ (0)) (ebi—1(60)) + xai—1(x). (3.12)
The following identity follows by using division algorithm:

_ aj—1n+k—2
xai—1(x) = xX*Lkp(x) + xp’'(x)) ﬁ

<n+k-2. (3.13)

+a;(x), dega;(x)
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Substituting (3.13) into (3.12), we obtain

ai—1n+k—2

bi(x) = xb;—1(x) + ot (3.14)
and
_ aj—1.n+k—2
ai(x) = xa;i_1(x) — x*Lkp(x) + xp’ (x)) s
k+n
n+k—2 Qi dnaks n
_ Z ai—l,lxl+l_ % Z(k+l)plxl+k—1
I=k—1 oz
n+k—1 Qi Lk 2n+k71
_ j %= n+ . . j
= Z i1, j-1x! = = — Z (J+Dpj—k+1x
j=k—1
n+k—2 ] 11
= Z Ai=1,j-1 = o Gi-Lntk=2Pj—k+1 | X
j=k—1

which implies the second identity of (3.9). Here, we yse = 1 andqg;; = O for
—1<j <k —2.

The first formula of (3.10) is obtained by using (3.3). It follows from (3.14) by
induction that

bi(x) = x (xbi—z(X) +

ai—2 n+k—2 ai—1n+k—2
k+n k+n

ai—2,n+k—2x aj—1n+k—2

k+n k+n

x2bi_o(x) +

= x? (xb,'_g(x) +

ai—3,n+k—2> i -2 pk—2 )

X
k+n k+n k+n
; A0n4k—2 -1 . ALpn+hk—2 ;_2 )
= x'bo(x) + —=x* X e —"
oW+ k+n k+n

_ 1 i+1 a*l,n+k72xi T aO,n+k72xi_1 al,n+k72xi_2

k+n k+n k+n k+n

a;_ _
4o g dizlndk=2
k+n

which yields the second formula of (3.10). The proof is finished[]
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3.3. Spectral properties of matrices and B

The matrices oA and B can be completely described by the following propositions
and corollaries.

Proposition 3.2. (i) Let ¥ € C, ¥ # 0, be a critical point ofx* p(x) andfz = p(F)
the corresponding critical value. Then the column veetal(i %, 1, , #2, ..., "2
€ C"* is the eigenvector oA with the eigenvaluég:.
(i) Denote byVy the subspace spanned by the eigenvectors of matrixith the
eigenvalueh = 0 and dim Vy the dimension ofp. If for any non-zero critical point
the corresponding critical value is not equal to zetbendim Vp = k.

Proof. If % is a critical point ofx* p(x) and ¥ # 0, theni*~L(kp(xX)) + ¥p'(¥) = 0.
It follows from (3.3) that

n+k—2
hf:m@ﬁzz:mﬂk

j=—1

which yields (i). Since Proposition 3.1 shows; = 0 for —1<j<k — 2, we con-
clude thatder(hE — A) = 0 has a zero ah = 0 with multiplicity k. Let ¢; =
col(5_1 59, 5t ...,5;'.“‘_2), j=-101,...,n+k—2, where

j 9 ]7 ]7
g=11t Ti=J
Y 0 ifi#j.

Using a;; = 0 for —1< j <k — 2 again, we have 06; = Ad;, —1<j<k — 2, which
implies thato_1, do, ..., dr_2 are the eigenvectors ok with the eigenvalug: = 0.
dim Vo = k follows from the assumption. [

To convenience, we give the following definition.

Definition 3.3. Function F(x) having neither degenerate critical point nor multiple
critical value forvx € D are said to be a Morse function iR.

Corollary 3.4. Suppose that* p(x) is a Morse polynomial inD = {x|x # 0} c C,
and for any critical point inD, the corresponding critical value is not equal to zero.
Then

(i) A is diagonalizable and its eigenvalues are the critical valuesHak, y);

(ii) All finite singular points of Picard—Fuchs equatiofi3.8) are Fuchsian which by
definition means the matrix2.E—A) 1B of coefficients o8l has poles of first order.
This implies that/ (), defined in(2.4), is an (multiple-valuedl analytic function in
C\{h|det(hE — A) = 0}.

Proof. By the assumptions, the matriX has neither degenerate critical point nor
multiple critical value forx € D. The result (i) follows from Proposition 3.2.
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Singular points of (3.8) are determined by the equatien(rE — A) = 0, which
means that: = & is a singular point of (3.8) if and only if it is a eigenvalue of the
matrix A. Solving J; (k) from (3.8) by Cramer rule, one can exprekgh) as the form

n+k—2

. 1
Ji(h) = W—A) 1;1 Yi (W) Jr,

where y;;(h) is a polynomial ofh. Since we have shown;; =0, —1<j<k—2in
Proposition 3.1y;,(h) has a zero ak = 0 with multiplicity at leastk — 1. Noting that
det(hE — A) has a zero ak = 0 with multiplicity k, we obtain that the singular point
h =0 is Fuchsian. It follows from the assumptions that any non-zero critical value of
xkp(x) is simple eigenvalue of the matrik, so the corresponding singular point of
(3.8) is Fuchsian, too. O

It follows from (3.7) and Proposition 3.1 that the diagonal entries of the m&rix
areBjjt1=mn+2+2)/(2k+n)), i =-10,1,...,n+k — 2, which yields

Proposition 3.5. The matrixB is triangular. Its spectrum consists of the numbeérst
2i +2)/2k+n)),i=-1,0,1....n+k—2.

3.4. Bounds for the matrix norms
For a polynomialp(x) € C[x] let || p|| be the sum of absolute valued of its coeffi-

cients, which is called theorm or /*-norm of p(x). The norm of matriceA and B
are

n+k—2
IAl=max Y lajl, —1<i<n+k -2},
j=-1
n+k—1
1Bl =max{ Y [Bil. —1<i<n+k—2}. (3.15)
j=0

Theorem 3.6. The entries of matriced and B are explicitly bounded

3 n
A Bl<-+—(C+C?+...+C"), c= —1>0. 3.16
IAI+IBI<S + 2 (C+C2 O Ipl-1>0. (316

Proof. It follows from Proposition 3.1(i) that

n+k—2

la_a@)l = )

j=k—1

n—j+k—-1
k+n

n
- <— —-1). 31
‘IPJ k1] k+n(|lpll ) (317
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Using (3.13) again, we get by induction

N

n+k—2 - n k+1
”lli (X)” = Z (li_l,jxﬁ_l — ( (k T > p]xl+k_l> ai -1 n+k—2
j l

n+k—3 n—1
; k+1
— a _x]+l_ xl+k71 ai B
Z i—1.j k+n pi i—1n+k—2

n+k—3 n—1 k+l
<X a4 X () e e
j=k-1 1=0
< lai—a)|| = lai—1n+k—2] + Ul pll = Dlai—1n+k—2]
= llai—1()Nl + (1Pl — 2)|ai—1nrk—2]
< lai—20)1l + 1Pl = 2(ai—2.n4k—2] + @i —10+4—2])
< .
i—1
< llao@)ll + Upl =2 ) larnsx-2l
=0
n i—1
< — —-1) + -2 a _
(Pl =D+ dipl )l;| Lntk—2l
n n+k—3
< et e-D 1_2_:1 lag k2.

Using the same arguments as above, we have
lar Nl < llar—1()N + Upll = Dlar—1n+k-2]
< a1+ Uipll = D llai-1(x)|l = Cllai—1(x) |l
which yields by induction

n

Cl+2.
k+n

I+1
|ar k-2l < lar ()| < CFHla—1(0) || <

The following inequality is obtained from (3.7) and (3.10):

i+1 1 i+1 k 1 i+1
D 1Byl = 5+ =5l byl <5+ @tk =1 (D 1yl
j=0 j=0 j=0
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i1
1 n+k-1 ’
= E + W <1+ Z |al,n+k2|>

1=—1
5 it 5 k3
<5t > larnk-21< 5 + Y lansi-al.
I=—1 I=—1
The above discussions imply
3 n n+k—3
A Bl < =+—C+C _
IAI+IBI < 5+ C+ l; lar k-2
<32 "+t vty D
T2 k+n '

3.5. Picard—Fuchs equation for quadratic integrable system with 1

We will describe the Picard—Fuchs equation for (1.7) wite- 1. Let p1 =1, po =
—(k + 1)/k (cf. Proposition 2.5). It is obvious that1 = Al|,—1 and B1 = B|,—1 are
two (k + 1) x (k + 1) matrices. The entries A1 are

1
aj k-1 = _E’ ajj = O, —1<j<k — 2, (3.18)

and the entriesB;; of the matrixB are defined as (3.7) with

1 1
biiiq= —— b= — . o0<j<i. 3.19
i,i+1 k+1 ij kk + 1) JXX! ( )

Indeed, it follows from Proposition 3.1 that

k k k+1
A o1 = ———QAj -1 k— = — ai1jk-1|\——— ) =ai-1k-1,
ik—1 k+l,1,k 1P0 k+111,k1 X i—1,k—1
which impliesa; y—1 = aj_14-1=---=a_14-1 = po/(k+1) = —1/k. We get (3.19)

from (3.10) and (3.18).
It is easy to get|A1| = 1/k<1. Using (3.7) and (3.19), we have

k—1
1 Ky 1 K1
Bil < =4 (k-141-%) 1 KT
1Bl 2+< + 2>k+1+§)j 2‘k(k+l)
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k

[N

1,k kg1 1 kK
T2 2k+1) 24 k(k+D) 20 2(k+1) 2+ D)
3
<_5
2

which implies||A1]+|B1]| <5/2. The Picard—Fuchs syste®.8)|,-1 has two Fuchsian
singular points at: =0 andh = —1/k.

3.6. Picard—Fuchs systems for quadratic integrable systems2

In this section, we always suppose that= 1, p1 = —(k + 2+ kpo)/(k + 1), see
Proposition 2.6. The matridA, = A|,—2 and Bz = BJ|,—2 will be completely described
by po andk.

3.6.1. General cases: the description of the entrief\gfand B>

Proposition 3.7. Let p» = 1, p1 = —(k + 2 + kpo)/(k + 1). ThenA, = (a;;) and
B> = (B;;) are two (k + 2) x (k + 2) matrices and

i+1 ! i+1
po—1 kpo 2po ( kpo .

o £po ((Kpo N, 3.20
aj k-1 k+1 (;<k+2>>+k+2(k+2 ! ( )
2 po—1

a_ -1 = k) a; = 5T 1 — i,k—1,
1k—1 —k+2170 ik k1 di k-1
ay; =0, —1<j<k -2, 0<i<k. (3:21)

The entriesB;; of the matrixB, are defined by3.7) with (3.10)|,—2, (3.20)and (3.21).

Proof. It follows from Proposition 3.1 that

k k+1
aj k-1 +aix = k12 ai—1,kP0o + Ai—1,k—1 — ‘t2 aAi—1,kP1 = Ai—1,k—1 + Ai—1k,
which implies by induction that
a; +aik = a +a; =---=a +a o~ (3.22
ik=1 ¥ dif = Qi-lp-1 ¥ -1k =00 = dolg-1 -1k = .

where we use (3.9) to get 1 ;-1 anda_1. The formulas in (3.21) are obtained by
using (3.22) and Proposition 3.1.

We are going to prove (3.20) by induction. Foe 0, (3.20) holds by direct com-
putations. Suppose that (3.20) holds for 1. Then using (3.22) and Proposition 3.1
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again,

k kpo (po—1
aj k-1 = _k T Zai—l,kpo = —m k+1 —ai-1k-1])>

which implies that (3.20) holds far [

3.6.2. The casgpo =0

In this case, it follows from Proposition 3.7 thaty = —1/(k+1), a;; =0, —1<j <
k — 1. The matrixA, has two eigenvalues d = 0 with multiplicity k + 1 andh =
—1/(k+1) with multiplicity 1, respectively. Using the same arguments as in Proposition
3.2 and Corollary 3.4, we conclude th&} is diagonalizable and the two singular points
of Picard—Fuchs equatio(8.8)|,—> are Fuchsian, too. Therefore, the Abelian integral
1(h), defined in (2.4), is an (multiple-valued) analytic function@\{0, —1/(k + 1)}.
Using the inequality obtained in Section 3.4, we have

i+1

3 = 3 i4+1 3 k+1 5
Bg— = — <— —_ = =,
jZ_ |Bij] 2+;_1|al’k| 2+k+1\2+k+1 2

which means|B,|| <5/2. The norm ofA; is [|Az] = 1/(k + 1)< 3.

3.6.3. The degenerate cage = 1
We consider the critical values af p(x), degp(x) = 2. It follows from Proposition
2.6 that for non-zero critical point = 1, the corresponding critical valug, is equal
to zero. This means Corollary 3.4 does not hold. In what follows we derive a Picard-

Fuchs system satisfied ly= col(J_1, Jo, ..., Jx_1) and show that all singular points
are Fuchsian for such system.

Corollary 3.8. Let pp = 1. The vector] = col(J_1, Jo, ..., Jr—1) satisfies the follow-
ing Picard—Fuchs system

(hE — A2)J = Bod, (3.23)

wherel = d23/dn2, A, = @;j)f 5Ly andBz = (B; ,)gﬁ;};"()_l,o) are two (k+1) x (k+1)
matrices with

4 k i+1
a;j =0, -1<j<k -2, Gjx-1= G122 <_k T 2) , —l<i<k—1 (329

B, is defined by

~ i—k o~ k—2j ko'
Biiv1= , By =B = ., 0<j<i, 3.2
WAL iy DT ((k+2)2> <k+2) IS (829

and B;; = 0 for i +2<j <k.
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Proof. Differentiating both sides of (3.8), we get

(hE — A)J = (B — E)J. (3.26)

We have known that the matri® is triangular andB;; = 0 for j>i + 2. Proposition
3.5 shows that the diagonal entries &g 1l,—2 = (i +2)/(k+2),i =-1,0,...,k,
which implies thatBy x+1|,=2 = 1. Therefore, the matrixB — E)|,—2 is triangular with

the form
(B2 0
(B—E>|n_2—(* 0),

where x = (B0, Bk.1, - .., Br.x). On the other hand, it follows from Proposition 2.7
that J, = kJi_1/(k + 2). Substituting it into the right-hand side ¢8.26)|,—», we get
(3.23).

In fact, (3.23) is the firsk + 1 equations of systen.26)|,—» with Ji = (k/(k +
2)Ji-1, po=1. O

Using the same arguments as in Proposition 3.2 and Corollaries 3.4, 3.8 yields
that the Picard—Fuchs equation (3.23) has two Fuchsian singular points=d and
h = ax_1,-1, which are the eigenvalues @fz with multiplicity k and multiplicity 1,
respectively. The normi\, SatISerS||A2|| <1. By (3.25), we have

i—k k—2j i-j ko~ k O\
Z <1+ — —
(k +2)2 k+2 (k +2)2 = k+2

k k i+1 3
+ l_ T A < _’
20k +2) <k+2> 2

which shows||B2| < 3/2.

i+1

Z|§ij| =
j=0

3.6.4. The degenerate capg = (k + 2)2/k?
In this case, we know from Proposition 2.6 that for the non-zero critical poiat
(k + 2)/k, the corresponding critical value of p(x), degp(x) = 2, is equal to zero.
So Corollary 3.4 does not hold for this case. Using the same arguments as Section
3.6.3, one gets

Corollary 3.9. Let pg = (k + 2)2/k2. The vectord = col(J_1, Jo, ..., Jr_1) satisfies
(hE — Ap)J = BoJ, (3.27)
whereA; = (a;;) and B = (B;;) are two (k + 1) x (k + 1) matrices

_ o—1 4 _ . .
ai,k71=i+l=ﬁ, a;j =0, —-1<i<k—-1 —-1<j<k—-2, (3.28
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and the entriesB;; of the matrixB are defined by

(i —k)/(k+2), j=i+1, (3.29)

B (k—2j)/(k(k+2)), 0<j<i,
Bl,j =
0, i +2<j<k.

Corollary 3.9 shows that (3.27) has two Fuchsian singular points at 0 and
h = 4/k?. It follows from (3.29) that

i+1 Pi—k 1 i
Bij| = k—2j
D 1 k+2\+k(k+2)§o| Ji

1

1
1 k <2,
+k(k+2)z =

Jj=0

which implies ||B2|| <2. The norm ofA is ||Az|| = 4/k2< 4.

4. Zeros of Abelian integrals away from the singular locus and limit cycles of
vector fields

In this section, we give the main results of this paper.

4.1. Meandering theorem

Consider the system

d
AX(h) = AX (h), A(h) =) Aih', (4.1)
i=0

where X (h) = col(X1(h), X2(h), ..., X,u(h)), A(h) € C[h]. The right-hand side of
(4.1) contains the matrix polynomiad(k) € Mat,,«,,(C[h]) of degreed and controlled
height(the maximal absolute value of coefficients of polynomial). Application the bound
meandering principle allow to prove

Lemma 4.1 (Novikov and Yakovenko [NY2, AppendiX.BJVith any linear poly
nomial system(4.1) of degree <d having at most d Fuchsian singularities in the
finite plane the number of isolated intersection between any trajecfo() of system
(4.1) of height < R and an any arbitrary linear hyperplane ¢, X >= g1 X1+ 02X+
---omXy = 0 over any simply connected sub-domain of the {get C||h — hj| >
1/R, |h| < R} is bounded by(2 + R)V, where N = N(m,d) € N is a primitive
recursive function ofn, d growing no fast than

N(m,d)< expexpexpex@miInd + O(1)).
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4.2. The upper bounds for the number of zeros of Abelian integrals and limit cycles

Corollary 2.2 shows that the linear span of all functibhJ;, I = —1,0,...,n +
k —2,0<i; < maxjegn <« {degy ()} contains all Abelian integrals of forms of degree
<d. To use Lemma 4.1, we should derive the equation satisfiedi'by. In fact,
the generatofh’J} of the space of Abelian integrals satisfy the following system by
derivation of (3.8)

d . . .
(hE —A) — (h'3) = BA'J +i(hE ~ Y (4.2)

Suppose that* p(x) is a Morse polynomial i = {x|x # 0} € C, and for any critical
point in D, the corresponding critical value is not equal zero. It follows from Corollary
3.4 and Theorem 3.6 that system (4.2) has the following properties:
(1) all finite singular points are Fuchsian and coincide with the singularities of Picard—
Fuchs system (3.8);
(2) system (4.2) can be written in the matrix form as (4.1) and the entries of the matrix
will be explicitly bounded byd and || p]|.
Denote byA the collection of all critical values ofd (x, y), i.e. A = {h|det (hE —
A) = 0}. Let R be a finite positive number ankig C C\/ the set obtained by cutting
the set

{heC:¥j=12....n+1 |h—h;| > 1/R, |h| < R, h; € A}

along no more tham + 1 line segmentKy is a simply connected compact set “on the
distance IR from both A and the infinite critical locus”. It follows from Corollary
3.4 that/ (h), defined in (2.4), is a single-valued analytic functionAix.

Please note that(h), defined in (1.6) with majdegP (x, y), degQ(x, y)} =d —k+
1, P(x,y), Q(x,y), H(x,y) € R [x, y], can be represented as (2.4).

The above discussions and Lemma 4.1 imply the main theorem of this paper:

Theorem 4.2. Let degw = d and max{degP (x, y), degQ(x, y)} =d — k + 1. Suppose

that x* p(x) is a Morse polynomial irD = {x|x # 0}, and for any critical point inD,

the corresponding critical value is not equal zetben

(i) the number of zeros insid€g of the Abelian integrald (k), defined in(2.4), does
not exceed2 + R)N, where N = N(k + n,d) is a certain elementary function
depending only ork, n, and d

(ii) the Abelian integrall (k), defined in(1.6) with P(x, y), Q(x, y), H(x,y) € R [x, y],
has at most2 + R)N zeros inKg.

Corollary 4.3. With the assumption of Theoredn2 and 7(h) # 0 (resp, 1(h) % 0),
system(1.3), (resp, (1.5);) has at most(2 + R)" limit cycles inside the domain
{(x,y) € R2|hc +1/R < H(x,y) < hy — 1/R} as ¢ — 0, where h., hy; are two
critical values of H(x, y), and the closed orbifl’, C {(x, y)|H(x,y) = h} is defined
in (he, hy).
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4.3. Limit cycles for quadratic non-Hamiltonian integrable system

We will list some results for limit cycles of systefd.5), with n = 1, 2 and system
(2.22),;. 1t follows from Corollary 4.3 that, ifr = 1, then system(1.5), has at most
(2+R)N, N = N(k+1, d), limit cycles inside the domaifi(x, y) € R?|—1/k+1/R <
H(x,y) < —1/R, H = x*(y2/2)+x — (k+1)/k}. Under the assumptiopg # 0, pg #

1, po # k?/(k + 2)2, h1 # h2, Corollary 4.3 holds fom = 2, too.

If po = 0, then it follows from Section 3.6.2 that(k) is an analytic function in
h € C\{0, —=1/(k+ 1)} and two singular points of system (3.8) are Fuchsian. Using the
same arguments as Section 4.2, we can get thagif = 0, then systen(1.5), has at
most (2 + R)™2 limit cycles in{(x, y) € R?| — 1/k+1/R < H(x,y) < —1/R}, where
N2 = Na(k + 2,d) is a certain elementary function depending onlyloand d.

Now we study the Abelian integrals for the degenerate cases. To be more concrete,
we only consider the degenerate cage= 1 in Lemma 4.4 and Proposition 4.5.

For degenerate casgs = 1, Corollary 3.4 does not hold. However, all singular
points of Picard—Fuchs system (3.23) are Fuchsian, and the norm of the matrices can
be explicitly bounded, see Section 3.6.3. To use these results, our strategy is to reduce
the problem of estimating the number of zeros Igh) to a problem of estimating
the number of zeros of certain Abelian integral, which can be expressed as a linear
combination ofJ;, I = —1,0,1,...,k — 1.

Since detB # 0, it follows from (3.8) and (2.4) that(h) and I (k) can be represented
as

k

k
Iy =Y 5%(d, Ihy=">Y Bhi, (4.3)

I=—1 =1

where ded; (h) < dego (h) + 1, degﬁl(h)g dego; (h). Eliminating J; from the two
equations of (4.3), we have

k-1

()i (h) = BT+ S(h), Sty =Y 3,(h)dr, (4.4)
I=-1

where y,(h) = % (h)B,(h) — % (h) B, (h), degy,(h) < degw;(h) + dego (k) + 1. The
following lemma has been used in many papers, see for insfgh2d.ZLZ,P1,R,ZZz]
etc.

Lemma 4.4. Denote by#I (h) the number of zeros df(h). We have
#I (h) <#o(h) +#S(h) + 1. (4.5)

Proof. Supposg thak, ko are two consecutive zeros df(h), then it follows from
(4.4) thatoy (1)1 (k) = S(k;), i = 1,2, which impliesS(x1)S(c2) <0 if % (h) # 0
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in [k1, k2]. Therefore, between any two consecutive zerog @f), there must exist at
least one zeros of (k) or o (k). The result of this lemma follows. O

Section 3.6.3 shows thafj, I = —1,0,...,k — 1 satisfies Picard—Fuchs equation
(3.23). Using Meandering theorem and the same arguments as in Section 4.2, we obtain
that S(k) has at mosi(2+ R)V zeros inside the domaik gz, where N = N (k + 2, d)
is a certain elementary function depending onlyloand d. This implies

#1(h) <2+ RN + deguy(h) + 2, h € K.

Since T(h) can be represented as (2.4), the above estimate holdsf(@r),#which
yields

Proposition 4.5. Let po = 1, n = 2 and maxdegP (x, y), degQ(x, y)} = d — k +
1 d>k—1.1If T_(h) # 0, then systenil.5); has at most2+R)N +[(d—k—1)/(k+2)]+2
(resp, (2+ R)N + 2) limit cycles ford >2k + 3 (resp, k — 1<d <2k + 2) inside the
domain {(x, y)|1/R < H(x,y) < dk-14-1— 1/R, H(x,y) = x¥(y?/2+ (x — D?)}.

For the degenerate capg = (k+2)2/k?, the same arguments can be used as above.
We can get the similar results on the number of limit cycles and zeros of Abelian
integrals for system(2.22), by using Proposition 2.8. The details are omitted.
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