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Abstract

Up to now, most of the results on the tangential Hilbert 16th problem have been concerned
with the Hamiltonian regular at infinity, i.e., its principal homogeneous part is a product of the
pairwise different linear forms. In this paper, we study a polynomial Hamiltonian which is not
regular at infinity. It is shown that the space of Abelian integral for this Hamiltonian is finitely
generated as aR[h] module by several basic integrals which satisfy the Picard–Fuchs system
of linear differential equations. Applying the bound meandering principle, an upper bound for
the number of complex isolated zeros of Abelian integrals is obtained on a positive distance
from critical locus. This result is a partial solution of tangential Hilbert 16th problem for this
Hamiltonian. As a consequence, we get an upper bound of the number of limit cycles produced
by the period annulus of the non-Hamiltonian integrable quadratic systems whose almost all
orbits are algebraic curves of degreek + n, under polynomial perturbation of arbitrary degree.
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1. Introduction

In this paper, we study the number of zeros of Abelian integral for a polynomial
Hamiltonian which is irregular at infinity.

1.1. The tangential Hilbert 16th problem

Let H(x, y), f (x, y), g(x, y) be polynomials in two-real variables and�h the closed
connected component of level set{(x, y)|H(x, y) = h}. Suppose that

� = f (x, y) dx + g(x, y) dy (1.1)

is a real polynomial 1-form with degreed = max{degf (x, y), degg(x, y)}. The
Abelian integral is defined by

I (h) = I (h,H,�) =
∮
�h

�. (1.2)

The tangential Hilbert 16th problem, or the weakened Hilbert 16th problem, posed by
Arnold [A1,A2], is to place an upper boundZ(degH, d) of the number of zeros of
I (h) on the maximal connected interval of existence of�h, in terms of degH andd.

The general result of solving the tangential Hilbert 16th problem was achieved
by Varchenko[V] and Khovanskii[K] , who proved independently the existence of
Z(degH, d), but no explicit expression ofZ(degH, d) has been obtained. Many au-
thors have contributed to estimate or to give an explicit upper bound of the number of
zeros ofI (h) for the cubic and quartic elliptic HamiltoniansH = y2+p(x), see for in-
stance Petrov[P1,P2,P3], Rousseau and Zoladek[RZ], Zhao and Zhang[ZZz], Liu [Lc]
etc. In the paper[HI2] , Horozov and Iliev gave a linear upper boundZ(3, d)�15d+15
for general cubic Hamiltonians. The authors of the paper[NY3] constructed a linear
differential equation satisfied byI (h) and obtained using the tools from[IY] an asymp-
totical exponential bound for the number of zeros ofI (h). More results of this problem
will be recalled in Sections 1.2–1.4.

1.2. Abelian integrals and limit cycles

We briefly recall the connection between the tangential Hilbert 16th problem and the
number of limit cycles of planar vector fields.

1.2.1. The polynomial perturbations of Hamiltonian systems
Consider the perturbed system

dH(x, y) + �� = 0, (1.3)�
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where � is a small parameter. Then the displacement function is

d(h, �) = �(h, �) − h = �I (h) + �2M2(h) + · · · �kMk(h) + · · · . (1.4)

Here�(h, �) is the first return mapping of(1.3)� in terms ofh and�. Let M1(h) = I (h).
It is well known that the number of zeros of the first non-vanishing Melnikov function
Mk(h), k = 1, 2, . . . , gives an upper bound of the number of limit cycles in(1.3)�
which are born out from the period annulus�h surrounding the center of(1.3)0.

For the quadratic perturbations of quadratic Hamiltonian systems, i.e., degH =
3, d = 2, it has been proved in[GH] for perturbations ofgenericquadratic Hamiltonian,
that, if I (h) ≡ 0, then(1.3)� is a Hamiltonian system. It has been shownZ(3, 2) = 2
by the works of Horozov, Iliev[HI1] , Gavrilov [G3], Li [LZ] , etc. If I (h) ≡ 0 for non-
genericquadratic Hamiltonians, then the higher-order Melnikov functionMk(h), k�2,
must be considered. In the paper[I3] , Iliev gave the formula of higher-order
Melnikov function for quadratic perturbations of non-generic quadratic integrable sys-
tem. By the study of the number of zeros of higher Melnikov function, we know that
the cyclicity of period annulus of non-generic quadratic Hamiltonian systems under
quadratic perturbations is 3 for the Hamiltonian triangle case, and 2 for other cases
(see[CLY,GI,I1,ZLL,ZZh2]).

In order to obtain more limit cycles of planar systems and various configuration
patterns of their relative disposition, which is a part of Hilbert 16th problem, Li et
al. study the tangential Hilbert 16th problem for the symmetric planar polynomial
systems. For example, he proved that the exact upper bound of the number of limit
cycles (Hilbert number) for cubic system is at least 11[LjH] . More results about the
number of zeros of higher-order Melnikov function and limit cycles can be found in
[F,G2,GI,I4,Lj,ZZh1] and reference therein.

1.2.2. The polynomial perturbations of non-Hamiltonian integrable systems
Consider generalized system{

ẋ = Hy(x,y)

M(x,y)
+ �P(x, y),

ẏ = −Hx(x,y)
M(x,y)

+ �Q(x, y),
(1.5)�

whereHy/M, Hx/M, P (x, y), Q(x, y) are polynomials,H(x, y) = h is a first integral
of system(1.5)0 with integrating factorM(x, y). Suppose that(1.5)0 has at least one
center. IfM(x, y) is not a constant, then(1.5)0 is called a non-Hamiltonian integrable
system. The Abelian integrals, associated with system(1.5)�, are defined as

Ĩ (h) =
∮
�h

M(x, y)(−P(x, y) dy + Q(x, y) dx). (1.6)

Since the integrating factorM(x, y) is no longer a constant, the study of Abelian
integrals for non-Hamiltonian integrable systems is more difficult than the one in the
Hamiltonian cases.
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In the papers[LLLZ,LZLZ,ZLLZ] , the authors study quadratic non-Hamiltonian inte-
grable systems whose almost all orbits are conic, cubic and quartic curves, respectively,
where the phrase “almost all" means “all except at most a finite number of”. They
give a linear estimate of the number of zeros of Abelian integralsĨ (h) for these
systems. A series papers are concerned with the quadratic perturbations of quadratic
non-Hamiltonian integrable systems, see[DLZ,GLLZ,I2,Zo], etc.

1.3. The space of Abelian integrals and Gavrilov theorems

The study of tangential Hilbert 16th problem requires a very basic information con-
cerning the space of Abelian integrals. This problem can be resolved if the Hamiltonian
is sufficiently regular at infinity.

Definition 1.1 (Novikov and Yakovenko [NY5]). A polynomial H(x, y) ∈ C[x, y] of
degreen is said to be regular at infinity, if one of the three equivalent conditions
holds:
(1) its principle homogeneous part̂H ,a homogeneous polynomial of degreen, is a

product ofn pairwise different linear forms;
(2) Ĥ has an isolated critical point (necessarily of multiplicity(n − 1)2) at the origin

(0, 0);
(3) the level curve{Ĥ = 1} ⊂ C2 is non-singular.

Definition 1.2. A polynomial H(x, y) ∈ C[x, y] of degreen is said to be irregular at
infinity, if it is not regular at infinity.

In [G1,G2], Gavrilov proved that for polynomial HamiltonianH(x, y) regular at
infinity, the space of Abelian integrals is finitely generated as aC[h]-module by the
basic integrals. However, it seems that there is no general result about the space of
Abelian integrals for the polynomial Hamiltonian which is irregular at infinity.

1.4. Meandering principle and Picard–Fuchs system

Consider a polynomial vector field inRn or Cn, defined by a system ofn first-
order polynomial ordinary differential equations, whose degrees and the magnitude of
coefficients are explicitly bounded. Then the number of isolated intersection points
between a integral trajectory of this polynomial vector field and any affine hyperplane
in the ambient space can be explicitly characterized in terms of the size of this integral
trajectory and the magnitude of the coefficients of vector fields, see[NY1,NY2,NY4,Y1]
for details. Using the bounded meandering principle, the authors of the paper[NY1]
proved that the number of zeros of Abelian integrals for the elliptic HamiltonianH =
y2 + p(x) is characterized by a certain tower function depending only on the degree
degp(x) and d.

Almost all approaches of the solution of the tangential Hilbert 16th problem so far
was based on using the system which is calledPicar–Fuchs system, or Gauss–Manin
connection. The system, satisfied by the monomial integralsV = (I0, I1, . . . , Il), has
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the form

V̇ = Υ (h)V,

with a rational matrix functionΥ (h), whereI0, I1, . . . , Il generate the space of Abelian
integrals as aR[h]-module orC[h]-module . One can obtain from Picard–Fuchs system
more information concerning Abelian integrals.

To investigate the tangential Hilbert 16th problem for thebalanced Hamiltonian, an
explicit system of the monomial integrals is derived in the paper[NY5] . A peculiar
feature is that the dimension of this system is approximately two times greater than
that one of the standard Picard–Fuchs system, and so it is calledRedundant Picard–
Fuchs system. The above result allow to apply the bounded meandering principle for
the balanced Hamiltonians and then one gets an explicit upper bound for the number
of zeros of Abelian integral away from the critical locus. The paper[Y2] deals with the
bounded decomposition in Brieskorn lattice and Picard–Fuchs system corresponding to
semiquasi-homogeneous Hamiltonian.

1.5. The main results of this paper

It seems that most of results on the tangential Hilbert problem so far have been con-
cerned with the Hamiltonian regular at infinity. In this paper, we consider a polynomial
Hamiltonian which is irregular at infinity. More precisely, let

H(x, y) = xk(1
2y

2 + p(x)) = h, k ∈ Z+ = {1, 2, 3, . . . , }, (1.7)

wherep(x) is a monic polynomial of degreen,

p(x) =
n∑

l=0

plx
l, pn = 1, (1.8)

H(x, y) ∈ R[x, y] or C[x, y]. The homogeneous part ofH(x, y) has a zero atx = 0
with multiplicity k + n, which means thatH(x, y), defined in (1.7), is irregular at
infinity. On the other hand, the Hamiltonian (1.7) is a first integral of non-Hamiltonian
integrable system(1.5)0 with the integrating factorM(x, y) = xk−1. Of course, it is
also a first integral of Hamiltonian systemdH(x, y) = 0, i.e., the Hamiltonian system
(1.3)0.

We investigate in this paper the tangential Hilbert 16th problem for Hamiltonian
system (1.7). It is shown in Section 2 that the space of Abelian integrals is finitely
generated as aR[h]-module by n + k basic integralsJ−1(h), J0(h), . . . , Jn+k−2(h),
which is a counterpart of Gavrilov theorem (Corollary 2.2). The properties of Abelian
integrals are given in Section 2.3, providedp(x) = ±(x − c)n, c ∈ R. Following the
arguments used in[NY5] , we derive an explicit system of Picard–Fuchs equations of
the form

(hE − A)J̇ = BJ, A, B ∈ Mat(n+k)×(n+k)(C),
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satisfied by the vectorJ = (J−1, J0, . . . , Jn+k−2). The algorithm for derivation of
Picard–Fuchs system allow us to give a complete description and obtain an explicit
bound on the norms for the matrices ofA andB, see Proposition 3.1, Sections 3.3 and
3.4 for more details. The above information on Picard–Fuchs system and the space of
Abelian integrals already suffices to apply the bounded meandering principle and get
an explicit upper bound for the number of zeros ofI (h) away from the critical locus
of the Hamiltonian (1.7) (Theorem 4.2).

As a continuation of the work in[LLLZ,LZLZ,ZLLZ] , we study the number of
zeros of the Abelian integral̃I (h), defined in (1.6), for the non-Hamiltonian integrable
quadratic system(1.5)0 which has a first integral either (1.7) withn = 1, 2, k�3, or

H(x, y) = H̃ (x, y) = x−k−2(1
2y

2 + p0x
2 + p1x + p2) = h, k�3. (1.9)

It is proved that in Section 2.5 that̃I (h), related to(1.5)� and (1.9), can be expressed as
a combination with polynomial coefficients ofk + 2 Abelian integralsJ−1, J0, . . . , Jk,
associated with the system(1.5)� and the Hamiltonian(1.7)|n=2, k�3. Therefore, the
same Picard–Fuchs system can be used in the study of Abelian integrals for these
two different quadratic non-Hamiltonian integrable systems. More information on the
Picard–Fuchs system for the Hamiltonian (1.7) withn = 1, 2 can be found in Sections
3.5, 3.6.1 and 3.6.2. Since the degenerate Hamiltonian(1.7)n=2 has a atypical critical
value, we derive the Picard–Fuchs system satisfied byJ̇l , l = −1, 0, 1, . . . , k − 1, in
Sections 3.6.3 and 3.6.4. Finally, we get an upper bound for the number of limit cycles
of polynomial perturbations of quadratic non-Hamiltonian system(1.5)0 with the first
integrals(1.7)n=2 or (1.9) under the assumptioñI (h) /≡ 0. The accurate formulation is
given in Section 4.3.

1.6. Conventions

Let (x, y) ∈ R2 and f (x, y), g(x, y), H(x, y) ∈ R[x, y] if the planar vector fields
and the limit cycles are concerned with. We always suppose that� is a real or complex
1-form andH(x, y) ∈ R[x, y] (or C[x, y]) is defined as (1.7) unless the opposite is
claimed.

2. The relative cohomology decomposition of polynomial 1-form

2.1. Notations and conventions

Let �m, m = 0, 1, 2 be the space of polynomialm-forms on R2 or C2. The mul-
tiplication �(h) · � = �(H)� holds over the ring of polynomialC[h]. An equivalent
relation ∼ is defined between two 1-form� and �̃ as follows:� ∼ �̃ if and only if
�−�̃ = d�(x, y,H)+�(x, y,H) dH , where�(x, y,H) and�(x, y,H) are polynomials
of x, y andH.

In the sequel,∗ denotes constant. Let

�ij = xiyj dx, Iij = Iij (h) =
∮
�h

�ij (2.1)
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and

�i = xiy dx, Ji = Ji(h) =
∮
�h

�i , i = · · · − 1, 0, 1, · · · . (2.2)

We put deg � = max{degf (x, y), degg(x, y)}, where � ∈ �1 is defined in (1.1).
The symbol	l (H), 	ij (H), 
l (H), etc. always means the polynomials ofH.

2.2. The relative cohomology decomposition of polynomial 1-form for Hamiltonian
(1.7)

2.2.1. The main result
Theorem 2.1. For every complex polynomial 1-form� ∈ �1, deg� = d, there exists
polynomials�(H), 	l (H), l = −1, 0, 1, . . . , n + k − 2, such that

� =
n+k−2∑
l=−1

	l (H)�l + �(H)
dx

x
+ d�(x, y,H) + �(x, y,H) dH. (2.3)

Here �(x, y,H) and �(x, y,H) are polynomials ofx, y,H , and
(i) if n�3, then deg	l (H)�

[
(d̃ − l)/(n + k)

]
for d̃� l + 1 and deg	l (H) = 0 for

d̃� l, respectively, where d̃ = [(d − 1)/2]n+ ((−1)d + 1)/2 and [s] denotes entire
part of s;

(ii) if n = 1, 2, thendeg	l (H)�[(d − 1− l)/(n+ k)] for d� l + 1 and deg	l (H) = 0
for d� l, respectively;

(iii) If d�k, then �(H) ≡ 0; If d�k + 1, then deg�(H)�[d/k] for n = 1 and
deg�(H)�[((d − 2)n + 2)/(2k)] for n�2, respectively.

Corollary 2.2. Let � be a real polynomial1-form anddeg � = d, H(x, y) ∈ R[x, y].
Then the Abelian integralsI (h), associated with Hamiltonian(1.7),can be expressed as

I (h) =
∮
�h

� =
n+k−2∑
l=−1

	l (h)Jl, (2.4)

where	l (h) is defined as in Theorem2.1.

Corollary 2.2 shows that the space of all Abelian integrals is finitely generated as a
free R[h]-module byn + k integralsJ−1(h), J0(h), . . . , Jn+k−2(h).

2.2.2. Proof of Theorem 2.1
The proof consists of a long straightforward calculation. Leti + j �d = max{deg

f (x, y), degg(x, y)}, wheref (x, y), g(x, y) are defined in (1.1). We have

xiyj dy = 1

j + 1
d(xiyj+1) − i

j + 1
�i−1,j+1,
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so we only need to consider the 1-form�ij , i + j �d. We split the proof into several
steps.
Step 1: In the first step, we will express�ij as a linear combination ofdx/x,

�kj ′/2−1,j ′ and �l , l = −1, 0, 1, . . . , with polynomial coefficients, modulo 1-form
d� + � dH .
(1) If k and j are odd, then

�ij =
i+(j−1)n/2∑

l=i

∗�l + d�ij (x, y) + �ij (x, y) dH, (2.5)

where

�ij (x, y) = xi+1

∗yj +
n∑

l1=0

∗xl1yj−2 + · · ·

+
n∑

l1=0

n∑
l2=0

· · ·
n∑

l(j−3)/2=0

∗xl1+l2+···+l(j−3)/2y3

 ,

�ij (x, y) = xi−k+1

∗yj−2 +
n∑

l1=0

∗xl1yj−4 + · · ·

+
n∑

l1=0

n∑
l2=0

· · ·
n∑

l(j−3)/2=0

∗xl1+l2+···+l(j−3)/2y

 .

It follows from (1.7) that

dH = xky dy + xk−1(1
2ky

2 + kp(x) + xp′(x)) dx. (2.6)

Multiplying both sides of (2.6) byxi−k+1yj−2, we get

xi−k+1yj−2 dH = xi+1yj−1 dy + 1

2
kxiyj dx + xi(kp(x) + xp′(x))yj−2 dx. (2.7)

On the other hand,

xi+1yj−1 dy = 1

j
d(xi+1yj ) − i + 1

j
�ij . (2.8)
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Taking (2.8) into (2.7), we have

kj − 2(i + 1)

2j
�ij = −

n∑
l=0

(k + l)pl�i+l,j−2 − d

(
xi+1yj

j

)
+ xi−k+1yj−2 dH. (2.9)

Please note that (2.6)–(2.9) hold for∀k ∈ Z+. If k and j are odd, thenkj −2(i+1) �= 0,
which implies

�ij = 2j

kj − 2(i + 1)

(
−

n∑
l=0

(k + l)pl�i+l,j−2 − d

(
xi+1yj

j

)
+ xi−k+1yj−2 dH

)
.

(2.10)

It follows from (2.10) that

�ij =
n∑

l1=0

∗�i+l1,j−2 + d(∗xi+1yj ) + ∗xi−k+1yj−2 dH

=
n∑

l1=0

n∑
l2=0

∗�i+l1+l2,j−4 + d(∗xi+1yj +
n∑

l1=0

∗xi+l1+1yj−2)

+(∗xi−k+1yj−2 +
n∑

l1=0

∗xi+l1−k+1yj−4) dH

= · · ·

=
n∑

l1=0

n∑
l2=0

· · ·
n∑

l(j−1)/2=0

∗�i+l1+···+l(j−1)/2 + d�ij (x, y) + �ij (x, y) dH.

Here we use the inequalityk(j − 2m) − 2(i + l1 + l2 + · · · + lm + 1) �= 0, m =
1, 2, . . . , (j − 1)/2, providedj and k are odd.
(2) Let kj − 2(i + 1) = 0, i.e., i = kj/2 − 1. If j is odd and k is even, then

�kj/2−1,j =
(j−1)/2∑

l′=0

((j−1)/2−l′)n∑
m=0

∗Hl′�(j/2−l′)k+m−1. (2.11)

If j is even, then

�kj/2−1,j = ∗Hj/2dx

x
+ d

∑
l′,m

∗Hl′x(j/2−l′)k+m


+
∑

l′,m
∗Hl′−1x(j/2−l′)k+m

 dH, (2.12)

where (l′,m) �= (j/2, 0), 0� l′ �j/2, 0�m�(j/2 − l′)n.
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If j is odd andk is even, then it follows from (1.7) that

�kj/2−1,j = xk/2−1(xky2)(j−1)/2y dx = 2(j−1)/2xk/2−1y(H − xkp(x))(j−1)/2 dx

= xk/2−1y

(j−1)/2∑
l′=0

∗Hl′(xkp(x))(j−1)/2−l′ dx

=
(j−1)/2∑

l′=0

((j−1)/2−l′)n∑
m=0

∗Hl′x(j/2−l′)k+m−1y dx,

which implies (2.11). Ifj is even, the by the same arguments as above, we have

�kj/2−1,j = x−1(xky2)j/2 dx =
j/2∑
l′=0

(j/2−l′)n∑
m=0

∗Hl′x(j/2−l′)k+m−1 dx.

Since

Hl′x(j/2−l′)k+m−1 dx = d(∗Hl′x(j/2−l′)k+m) − ∗x(j/2−l′)k+mHl′−1 dH

for (l′,m) �= (j/2, 0), l′ �= 0, the decomposition (2.12) follows.
(3) Let kj − 2(i + 1) �= 0.
If k is even and j is odd, then

�ij =
i+(j−1)n/2∑

l=i

∗�l +
∑

j ′ � j−2

∗�kj ′/2−1,j ′ + d�̃ij (x, y) + �̃ij (x, y) dH, (2.13)

where �̃ij (x, y) and �̃ij (x, y) are two variables polynomials, j ′ and i′ = kj ′/2 − 1
have the formsj ′ = j − 2m, i′ = i + l1 + l2 + · · · + lm, m ∈ Z+, 1�m�(j −
3)/2, 0� lq �n, q = 1, 2, . . . , m. So i′ + (j ′ − 1)n/2� i + (j − 1)n/2.
If j are even, then

�ij =
∑

j ′ � j−2

∗Hj ′/2 dx

x
+ d�ij (x, y,H) + �ij (x, y,H) dH, (2.14)

where�ij (x, y,H), �ij (x, y,H) are polynomials ofx, y and H. j ′ = j −2m is defined
as follows: there existsi′ = i + l1 + l2 + · · · + lm, 1�m�(j − 2)/2, 0� lq �n, q =
1, 2, . . . , m, such thatkj ′ − 2(i′ + 1) = 0.
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We get (2.13) from (2.10) by the same arguments as (1) and (2). The expression
(2.14) follows from (2.10) and (2.12), we omit the details.
Step2: We prove in this step that�i can be expressed as a linear combination of

�l , l = −1, 0, 1, . . . , n+k−2, with polynomial coefficients, modulo 1-formd�+� dH .
(4) For i�n + k − 1, we have

(n + 2i + 2)�i = (2(i − n + 1) − 3k)H�i−k−n +
n−1∑
l=0

(2n − 3l − 2i − 2)pl�l+i−n

−d(xi−n+1y3) + 3xi−k−n+1y dH. (2.15)

Multiplying (1.7) by xi−k−ny dx, we get

H�i−k−n = 1

2
�i−n,3 + �i +

n−1∑
l=0

pl�i+l−n. (2.16)

By (2.9), we have

3k − 2(i − n + 1)

6
�i−n,3

= −
n∑

l=0

(k + l)pl�i+l−n − d

(
xi−n+1y3

3

)
+ xi−k−n+1y dH. (2.17)

If i = 3k/2 + n − 1, i.e., 3k − 2(i − n + 1) = 0, then (2.17) implies

(k + n)�3k/2+n−1 = −
n−1∑
l=0

(k + l)pl�3k/2+l−1 − d

(
x3k/2y3

3

)
+ xk/2y dH,

which is (2.15) withi = 3k/2 + n − 1. If i �= 3k/2 + n − 1, then (2.15) follows from
(2.16) and (2.17).
(5) �i , i�n + k − 1, can be represented as

�i =
n+k−2∑
l=−1

	il(H)�l + d�i (x, y) + �i (x, y) dH, (2.18)

where�i (x, y), �i (x, y) are polynomials of x and y, deg	il(H)�[(i − l)/(n + k)], l =
−1, 0, . . . , n + k − 2.
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We prove (2.18) by induction fori. For i = n + k − 1, it follows from (2.15) that
(3n + 2k)�n+k−1 ∼ −kH�−1 + ∑n−1

l=0 (−3l − 2k)pl�l+k−1. Suppose (2.18) hold for
n + k − 1�m� i − 1, m ∈ Z+, then we get by using (2.15) that

�i ∼ ∗H�i−k−n +
n−1∑
l′=0

∗�l′+i−n

∼ H

n+k−2∑
l=−1

	i−k−n,l(H)�l +
n−1∑
l′=0

∗
n+k−2∑
l=−1

	l′+i−n,l(H)�l .

Let 	il(H) = ∗H	i−k−n,l(H) +∑n−1
l′=0 ∗	l′+i−n,l(H). Then

deg	il(H) � max{1 + deg	i−k−n,l(H), deg	i−1,l(H),

deg	i−2,l(H), . . . , deg	i−n,l(H)}

� max

{
1 +

[
i − k − n − l

n + k

]
,

[
i − 1 − l

n + k

]
,

[
i − 2 − l

n + k

]
,

. . . ,

[
i − n − l

n + k

]}

=
[

i − l

n + k

]
.

Step3: In the final step, we prove (2.3). First of all, we will show thatthe following
expression holds, provided j is odd:

�ij ∼
n+k−2∑
l=−1

	ij l(H)�l , (2.19)

where deg	ij l(H)� [(i + (j − 1)n/2 − l)/(n + k)] for i + (j − 1)n/2� l + 1 and
deg	ij l(H) = 0 for i + (j − 1)n/2� l, respectively.

If k is odd, then (2.19) follows from (2.5) and (2.18). Now we consider�kj/2−1,j ,
wherek is even. Using (2.18) again, we have in (2.11),

Hl′�(j/2−l′)k+m−1 ∼
n+k−2∑
l=−1

Hl′	(j/2−l′)k+m−1,l(H)�l .
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The degree of coefficient of�l is explicitly bounded:

degHl′	(j/2−l′)k+m−1,l(H) � l′ +
[
(j/2 − l′)k + m − 1 − l

n + k

]
�
[
jk/2 + l′n + m − 1 − l

n + k

]
�
[
jk/2 − 1 + (j − 1)n/2 − l

n + k

]
=
[
i + (j − 1)n/2 − l

n + k

]
,

where i = kj/2 − 1, l = −1, 0, 1, . . . , n + k − 2. In the above proof we use the
inequality 0�m�((j − 1)/2 − l′)n. It follows from (2.11) and the estimate for
degHl′ 	(j/2−l′)k+m−1,l(H) that (2.19) holds for�kj/2−1,j . Therefore, it follows from
(2.13) and (2.18) that (2.19) holds ifk is even.

Since� is a linear combination of�ij with constant coefficients, we get (2.3) from
(2.19), (2.12) and (2.14).

Please note thatdx/x just appears in the decomposition of�kj/2−1,j , provided j is
even. If i + j = d, i = kj/2− 1, thenj/2 = (d + 1)/(k + 2), which implies�(H) ≡ 0
for d�k. In what follows we consider (2.14). Leti + j = d�k + 1, n�2. Thenj ′/2,
defined in (2.14), is explicitly bounded:

j ′

2
= i′ + 1

k
= i + l1 + l2 + · · · lm + 1

k
� i + mn + 1

k

� 1

k

(
i + j − 2

2
n + 1

)
= 1

k

(
d − j + j − 2

2
n + 1

)
= 1

2k
(2d − 2n + 2 + (n − 2)j)

� 1

2k
(2d − 2n + 2 + (n − 2) d) = 1

2k
((d − 2)n + 2),

which yields deg�(H)� max{[((d − 2)n + 2)/(2k)], [(d + 1)/(k + 2)]} = [((d − 2)n +
2)/(2k)] for d�k + 1, n�2. The estimation for deg	l (H) follows from (2.19). �

2.3. Properties of Abelian integralJl providedp(x) = ±(x − c)n, c ∈ R, c �= 0, n�2

Recall thatp(x) is monic. If p(x) has only one real critical point atc with multi-
plicity n, thenp(x) = (x − c)n, which meansH(x, y) = xk(y2/2+ (x − c)n) = h. The
corresponding integrable system is{

ẋ = xy = �H
�y /xk−1,

ẏ = −ky2/2 − (x − c)n−1((k + n)x − kc) = − �H
�x /xk−1.
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The type of critical points can be determined by using the theorems in[ZDHD]. If n
is even, then the above system has a center at(c, 0) and a saddle at(kc/(k + n), 0).
If n is odd, then(c, 0) is a degenerate non-center critical point and(kc/(k + n), 0) is
a center (resp., saddle) forc > 0 (resp.,c < 0). Let �h ⊂ {(x, y) ∈ R2|H(x, y) = h}
be the periodic orbit around the center.

Proposition 2.3. Suppose that the monic polynomialp(x) has only one real critical
point at x = c, i.e. p(x) = (x − c)n.

(i) If n is odd andc > 0, then∮
�h

(kc − (k + n)x) xk−1(c − x)n/2−1y dx = 0.

(ii) If n/2 is even, then∮
�h

((k + n)x − kc) xk−1(x − c)n/2−1y dx = 0. (2.20)

This implies thatJk−1, Jk, . . . , Jn/2+k−1 are linearly dependent.
(iii) If n is even butn/2 is odd, then∮

�h

((k + n)x − kc) xk−1(x − c)n/2−1y dx = 2
√

2�h. (2.21)

Proof. Denote by(xi(h), 0), i = 1, 2, the intersection point of closed orbits�h and
x-axis, which impliesH(xi(h), 0) = xk

i (h)(xi(h)− c)n = h. By direct computation, we
have

H(c, 0) = 0, h̃ = H

(
kc

k + n
, 0

)
= (−1)ncn+k

(
k

k + n

)k (
n

k + n

)n

.

(i) If n is odd andc > 0, then(kc/(k + n), 0) is a center andkc/(k + n) < c. Since
x = 0 is an invariant line, the periodic orbit around the center(kc/(k+n), 0) does
not intersectx = 0, which impliesc > x for ∀(x, y) ∈ �h, h ∈ (̃h, 0). Therefore,∮

�h

(kc − (k + n)x) xk−1(c − x)n/2−1y dx

= 2
∫ x2(h)

x1(h)

(kc − (k + n)x) xk−1(c − x)n/2−1
√

2hx−k + 2(c − x)n dx

= 2
√

2
∫ x2(h)

x1(h)

(kc − (k + n)x) xk−1(c − x)n/2−1(c − x)n/2

√
h

u
+ 1dx
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= 2
√

2
∫ x2(h)

x1(h)

√
h

u
+ 1du

= 0.

Here, we used the following integration formula:∫ √
h

u
+ 1du = √

h + u
√

u + h ln(
√

u + √
h + u), u = xk(c − x)n.

(ii) If n/2 is even, then(c, 0) is a center and(x − c)n/2 > 0 for ∀(x, y) ∈ �h.
Therefore,∮

�h

((k + n)x − kc) xk−1(x − c)n/2−1y dx

= 2
∫ x2(h)

x1(h)

((k + n)x − kc) xk−1(x − c)n/2−1
√

2hx−k − 2(x − c)n dx

= 2
√

2
∫ x2(h)

x1(h)

((k + n)x − kc) xk−1(x − c)n−1

√
h

v
− 1dx

= 2
√

2
∫ x2(h)

x1(h)

√
h

v
− 1dv

= 0.

Here we used the following formula:∫ √
h

v
− 1du = √

h − v
√

v + h arcsin

√
v

h
, v = xk(x − c)n.

(iii) If n is even butn/2 is odd, then(x − c)n/2 < 0 for x < c and (x − c)n/2 > 0 for
x > c, respectively, if(x, y) ∈ �h, where�h is a periodic orbit around the center
(c, 0). Hence,∮

�h

((k + n)x − kc) xk−1(x − c)n/2−1y dx

= −2
√

2
∫ c

x1(h)

((k + n)x − kc) xk−1(x − c)n/2−1(x − c)n/2

√
h

v
− 1dx

+2
√

2
∫ x2(h)

c

((k + n)x − kc) xk−1(x − c)n/2−1(x − c)n/2

√
h

v
− 1dx

= −2
√

2
∫ c

x1(h)

√
h

v
− 1dv + 2

√
2
∫ x2(h)

c

√
h

v
− 1dv

= 2
√

2�h. �



344 Y. Zhao / J. Differential Equations 209 (2005) 329–364

Proposition 2.3(ii) shows that at mostn+k−1 integralsJl(h), l = −1, 0, . . . , n+k−3,
generate the space of all Abelian integrals as a freeR[h]-module, provided thatn/2 is
even andp(x) = (x − c)n. Please compare this conclusion with Corollary 2.2.

We always supposepn = 1, i.e., p(x) is monic univariate polynomial in this paper.
However, if pn = −1, we have the similar conclusions as Proposition 2.3(i):

Proposition 2.4. If p(x) = −(x − c)n, then the identity(2.20) holds.

Proof. In this case, the corresponding integrable system has a center at(kc/(k+n), 0)
if and only if one of the following conditions holds: (i)n is even, (ii)n is odd,c < 0.
The critical point(c, 0) is a cuspidal or saddle point. Sincex = 0 is an invariant line,
we know thatsgn(x − c) ≡ −1 (resp.,sgn(x − c) ≡ 1) for ∀(x, y) ∈ �h if c > 0
(resp.,c < 0). By the same arguments as in the proof of Proposition 2.3(i), we have∮

�h

((k + n)x − kc) xk−1(x − c)n/2−1y dx

= 2
√

2sgn((x − c)n/2)

∫ x2(h)

x1(h)

√
h

xk(x − c)n
+ 1d

(
xk(x − c)n

)
= 0,

Here (xi(h), 0), i = 1, 2, is the intersection point of�h andx-axis, x1(h) < x2(h), and
we use the integration formula as in the proof of Proposition 2.3(i).�

2.4. Normal form and Abelian integrals for non-Hamiltonian quadratic integrable
casen = 1, 2 with k�3

We have given the main results about Abelian integrals for quadratic system(1.3)�
and (1.5)� in Corollary 2.2. In this section, we are going to formulate analogs of Sec-
tion 2.3 for quadratic casen = 2. Before that we give a normal form of(1.5)0
with at least one center forn = 1, 2. Using the results from appendix of[I3] ,
we get

Proposition 2.5. If n = 1 in (1.5)0, then the parametersp0, p1, p2 can be taken as
p2 = 0, p1 = 1, p0 = −(k + 1)/k. Moreover, system(1.5)0 has a center at(1, 0)
and two saddles at(0,±√

2(k + 1)/k). The closed orbit�h ⊂ {(x, y)|H(x, y) = h} is
defined forh ∈ 
 = (−1/k, 0).

Proposition 2.6. If n = 2 in (1.5)0, then the parameterp0, p1, p2 can be taken as
p2 = 1, p1 = −(k + 2 + kp0)/(k + 1). Let

h1 = H(1, 0) = p0 − 1

k + 1
, h2 = H(

kp0

k + 2
, 0) =

−p0

(
kp0
k+2

)k

(k2p0 − (k + 2)2)

(k + 1)(k + 2)2 .
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Moreover, we have
(i) If p0 < 0, then system(1.5)0 has two center atS1(1, 0), S2(kp0/(k + 2), 0) and

two saddles at(0,±√−2p0). The ovals�h around S1 (resp., S2) are defined
in 
1 = (h1, 0) (resp., 
2 = (h2, 0) if k is even and
2 = (0, h2) if k is odd,
respectively).

(ii) If p0 = 0, then system(1.5)0 has a center atS1 and a degenerate critical point
at (0, 0). The ovals aroundS1 are defined forh ∈ 
1 = (−1/(k + 1), 0).

(iii) If 0 < p0 < (k + 2)/k, then system(1.5)0 has a center atS1 and a saddle atS2.
The ovals aroundS1 are defined for Hamiltonian valuesh ∈ 
 = (h1, h2).

(iv) If p0 = (k + 2)/k, then system(1.5)0 has only one degenerate critical point at
(1, 0).

(v) If p0 > (k + 2)/k, then system(1.5)0 has a center atS2 and a saddle atS1. The
closed orbits aroundS2 are defined in
 = (h2, h1).

From now on, we always suppose thatp0, p1, p2 are defined as Propositions 2.5
and 2.6 for the casesn = 1 and 2. In the next proposition, we consider the Abelian
integrals for quadratic casen = 2, providedk�1.

Proposition 2.7. If n = 2 and p0 = 1 (resp., p0 = (k + 2)2/k2), then Jk = (kJk−1 +
2
√

2�h)/(k + 2) (resp., Jk = Jk−1 + 2
√

2�h/(k + 2)).

Proof. If p0 = 1 (resp.,p0 = (k + 2)2/k2) holds, thenH = xk(y2/2 + (x − 1)2) = h

(resp.,H = xk(y2/2 + (x − (k + 2)/k)2) = h). The results follow from Proposition
2.3(iii). �

2.5. Abelian integrals for system(1.5)� with the Hamiltonian(1.9)

Let d = max{degP(x, y), degQ(x, y)}−k+1 in (1.5)� andp2 = 1 in (1.9). Rewrite
the polynomial perturbed system(1.5)� with Hamiltonian (1.9) as the form

{
ẋ = xy + �

∑
i+j �d−k+1 ∗xiyj ,

ẏ = (k + 2)y2/2 + kp0x
2 + (k + 1)p1x + (k + 2) + �

∑
i+j �d−k+1 ∗xiyj ,

(2.22)�

wherek�3, d�k − 1. The unperturbed quadratic integrable system(2.22)0 has a first
integral (1.9) with integrating factorx−k−3. Using Poincaré transformation

x = 1

z
, y = u

z
, dt = −z d�,

and then takingz → x, u → y, system(2.22)� is reduced to


ẋ = xy + �

∑
i+j �d−k+1 ∗x−(i+j−3)yj ,

ẏ = −ky2/2 − kp0 − (k + 1)p1x − (k + 2)x2 + �
×∑i+j �d−k+1 x−(i+j−2)yj (∗ + ∗y).

(2.23)�
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The quadratic integrable system(2.23)0 has a first integral(1.7)|n=2 with integrating
factor xk−1. To estimate the number of zero of Abelian integral associated system
(2.22)�, we study the equivalent system(2.23)�. Since

x−(i+j−k−3)yj dy = 1

j + 1
d
(
x−(i+j−k−3)yj+1

)
+ i + j − k − 3

j + 1
x−(i+j−k−2)yj+1 dx,

the Abelian integrals, related to system(2.23)�, can be represented as

I (h) =
∮
�h

xk−1

 ∑
i+j �d−k+1

x−(i+j−2)(∗yj + ∗yj+1)

 dx. (2.24)

Proposition 2.8. (i) If d�2k + 2, then the Abelian integral(2.24), related to system
(2.23)�, can be expressed as

I (h) = h−[(d−k−2)/k]
k∑

l=−1


l (h)Jl, (2.25)

wheredeg
−1(h)�[(d − 2)/k], deg
l (h)�[(d − k − 2)/k], 0� l�k.
(ii) If k−1�d�2k+1, thenI (h) can be expressed as(2.4)|n=2 with deg	−1(h)�1,

deg	l (h) = 0 for 0� l�k.

Proof. Firstly, we point out by symmetry that
∮
H=h

x−iyj dx ≡ 0 if j is even. Therefore,
we just considerI−i,j for odd j. The proof is split into several steps.
(1) I−i,j , j is odd andj �3, can be represented as the form

I−i,j =
−i+j−1∑
l=−i

∗Jl +
∑

kj ′/2−1+j ′ �−i+j

∗Ikj ′/2−1,j ′ , (2.26)

where i′ = kj ′/2 − 1 and j ′ have the formsi′ = −i + l1 + l2 + · · · + lm, 3�j ′ =
j − 2m�j − 2, lq ∈ {0, 1, 2}, q = 1, 2, . . . , m, m�(j − 3)/2, and the second term in
(2.26) vanishes identically if−i + j �0.

Since i�0, j �3, we havekj − 2(−i + 1) �= 0. So (2.26) follows from (2.10) by
the same arguments as in step 1 of the proof for Theorem 2.1.
(2) J−i (h), i�2, can be expressed as

J−i (h) =
k∑

l=−1


−i,l(h
−1)Jl, (2.27)

where
−i,l(h
−1) is a polynomial ofh−1 with deg
−i,l(h

−1)�[(i − 2)/k] + 1.
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Taking i → −i + k + 2 and integrating both sides of (2.15), we get

J−i = 1

(2i + k − 2)h
(p0(2i − 2k − 2)J−i+k

+p1(2i − 2k − 5)J−i+k+1 + (2i − 2k − 8)J−i+k+2) .

Then (2.27) follows by induction.
(3) It follows from (2.24), (2.26) and (2.19) that

I (h) =
∑

i+j �d−k+1

 −i+k+1∑
l=−i−j+k+1

∗Jl +
∑

kj ′/2−1+j ′ �−i+k−2

∗Ikj ′/2−1,j ′


=

k+1∑
l=−d+2k

∗Jl +
∑

kj ′/2−1+j ′ �k+2

∗Ikj ′/2−1,j ′

=
k∑

l=−1

∗Jl + ∗Jk+1 +
d−2k∑
l=2

∗J−l ,

provided d�2k + 2. We get (2.25) by using (2.27) and (2.18) ford�2k + 2. If
k − 1�d�2k + 1, thenI (h) = ∑k+1

l=−1 ∗Jl , which implies (ii). �
If p2 = 0 in (1.9), then the similar results can be obtained by the sam

arguments. �

3. Picard–Fuchs systems

3.1. Gelfand–Leray formula

If a pair of polynomial 1-form�, � satisfies the identityd� = dH ∧ �, then for any
continuous family of cycle�h ⊂ {(x, y)|H(x, y) = h},

d

dh

∮
�h

� =
∮
�h

�, (3.1)

which is called Gelfand–Leray formula.

3.2. Derivation of the Picard–Fuchs system for(1.7)

Computations of this section are a modification of a standard derivation of a Picard–
Fuchs system for hyperelliptic integrals, see e.g.[NY5,R], etc. Let�i be the differential
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1-form, defined in (2.2), whose derivative isd�i = xi dy∧dx. The 2-formH(x, y) d�i

will be divided by dH(x, y), yielding the identities

H(x, y) d�i = dH ∧ �i +
n+k−2∑
j=−1

aij d�j

with appropriate 1-form�i , i = −1, 0, . . . , n + k − 2. This implies the Picard–Fuchs
equation satisfied byJ−1(h), J0(h), . . . , Jn+k−2(h). More precisely, we have

H d�i = xi+k

(
1

2
y2 + p(x)

)
dy ∧ dx

= 1

2
xi+ky2 dy ∧ dx +

(
xk−1(kp(x) + xp′(x))bi(x) + ai(x)

)
dy ∧ dx

= 1

2
xi+ky2 dy ∧ dx +

(
Hx − 1

2
kxk−1y2

)
bi(x) dy ∧ dx + ai(x) dy ∧ dx

= 1

2
xiyHy dy ∧ dx − bi(x)(dH − Hy dy) ∧ dy

−1

2
kbi(x)x

−1yHy dy ∧ dx + ai(x) dy ∧ dx

=
(

1

2
xiy − 1

2
kbi(x)x

−1y

)
(dH − Hx dx) ∧ dx − bi(x) dH ∧ dy

+ai(x) dy ∧ dx

= dH ∧
1

2
�i +

i+1∑
j=0

(j − 1

2
k)bij�j−1 − d(ybi(x))

+
n+k−2∑
j=0

aij d�j ,

where we use the following identities:
(i) the 1-form and the partial differential derivatives ofH(x, y):

dH = Hx dx + Hy dy, Hx = xk−1
(

1

2
ky2 + kp(x) + xp′(x)

)
, Hy = xky, (3.2)

(ii) division with remainder: the polynomialsxi+kp(x) of degreen + k + i is divided
by xk−1(kp(x) + xp′(x)) = Hx − (1

2)kx
k−1y2 as

xi+kp(x) = xk−1(kp(x) + xp′(x))bi(x) + ai(x),

degai(x)�n + k − 2, degbi(x)� i + 1, (3.3)
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here

ai(x) =
n+k−2∑
j=0

aij x
j , bi(x) =

i+1∑
j=0

bij x
j , i = −1, 0, 1, . . . , n + k − 2,

(iii) the form bi(x) dy is represented as a linear combination

bi(x) dy = d(ybi(x)) − b′
i (x)y dx = d(ybi(x)) −

i+1∑
j=1

jbij x
j−1y dx, (3.4)

(iv) the remainderai(x) dy ∧ dx can be represented as

ai(x) dy ∧ dx =
n+k−2∑
j=1

aij x
j dy ∧ dx =

n+k−2∑
j=1

aij d�j . (3.5)

Integrating over the periodic orbit�h ⊂ {(x, y)|H(x, y) = h} (so that exact forms
d(ybi(x)) disappear) and using the Gelfand–Leray formula (3.1), one gets

hJ̇i −
n+k−2∑
j=0

aij J̇j = 1

2
Ji +

i+1∑
j=0

(j − 1

2
k)bij Jj−1, (3.6)

where J̇i = dJi/dh. Denote byJ = col(J−1, J0, J1, . . . , Jn+k−2), A = (aij )
n+k−2
i,j=−1,

B = (Bij )
(n+k−2,n+k−1)
(i,j)=(−1,0) , where we supposeai,−1 = 0 and

Bij =


(j − k/2)bij , j � i,

1/2 + (i + 1 − k/2)bi,i+1, j = i + 1,
0, j � i + 2.

(3.7)

The matrix form of (3.6) is

(hE − A)J̇ = BJ, A, B ∈ Mat(n+k)×(n+k)(C). (3.8)

The identities (3.3) imply the following claim, which gives a complete description
of the entries of the matricesA and B.

Proposition 3.1. (i) Let p(x) be a monic polynomial of degree n, defined as in(1.8).
If −1�j �k − 2, then aij = 0; If k − 1�j �n + k − 2, then aij can be obtained by
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the following recursive formulas

a−1,j = n − j + k − 1

k + n
pj−k+1,

aij = ai−1,j−1 − j + 1

k + n
ai−1,n+k−2pj−k+1, i�0. (3.9)

(ii) For bij , we have

bi,i+1 = 1

k + n
, bij = 1

k + n
ai−j−1,n+k−2, 0�j � i, i� − 1. (3.10)

Proof. The identity (3.3) shows thatai(x) has a zero atx = 0 with multiplicity at
least k − 1, which implies thataij = 0 for 0�j �k − 2. ai,−1 = 0 follows from our
assumption. Recallp(x) is monic, i.e.,pn = 1. Using (3.3) again, one getsb−1(x) ≡
1/(k + n), and

a−1(x) = xk−1p(x) − xk−1(kp(x) + xp′(x))b−1(x)

= xk−1

(
n∑

l=0

plx
l − 1

k + n

n∑
l=0

(k + l)plx
l

)
=

n∑
l=0

(
n − l

k + n

)
plx

l+k−1

= n

k + n
p0x

k−1 + n − 1

k + n
p1x

k + · · · + 1

k + n
pn−1x

n+k−2

=
n+k−2∑
j=k−1

(
n − j + k − 1

k + n

)
pj−k+1x

j ,

which yields the first identity of (3.9). By (3.3), we have

xi+k−1p(x) = xk−1(kp(x) + xp′(x))bi−1(x) + ai−1(x), (3.11)

Multiplying both sides of (3.11) byx, we get

xi+kp(x) = xk−1(kp(x) + xp′(x))(xbi−1(x)) + xai−1(x). (3.12)

The following identity follows by using division algorithm:

xai−1(x) = xk−1(kp(x) + xp′(x)) ai−1,n+k−2

k + n
+ ai(x), degai(x)

�n + k − 2. (3.13)
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Substituting (3.13) into (3.12), we obtain

bi(x) = xbi−1(x) + ai−1,n+k−2

k + n
(3.14)

and

ai(x) = xai−1(x) − xk−1(kp(x) + xp′(x)) ai−1,n+k−2

k + n

=
n+k−2∑
l=k−1

ai−1,lx
l+1 − ai−1,n+k−2

k + n

n∑
l=0

(k + l)plx
l+k−1

=
n+k−1∑
j=k

ai−1,j−1x
j − ai−1,n+k−2

k + n

n+k−1∑
j=k−1

(j + 1)pj−k+1x
j

=
n+k−2∑
j=k−1

(
ai−1,j−1 − j + 1

k + n
ai−1,n+k−2pj−k+1

)
xj ,

which implies the second identity of (3.9). Here, we usepn = 1 and aij = 0 for
−1�j �k − 2.

The first formula of (3.10) is obtained by using (3.3). It follows from (3.14) by
induction that

bi(x) = x

(
xbi−2(x) + ai−2,n+k−2

k + n

)
+ ai−1,n+k−2

k + n

= x2bi−2(x) + ai−2,n+k−2

k + n
x + ai−1,n+k−2

k + n

= x2
(
xbi−3(x) + ai−3,n+k−2

k + n

)
+ ai−2,n+k−2

k + n
x + ai−1,n+k−2

k + n

= · · ·
= xib0(x) + a0,n+k−2

k + n
xi−1 + a1,n+k−2

k + n
xi−2 + · · · + ai−1,n+k−2

k + n

= 1

k + n
xi+1 + a−1,n+k−2

k + n
xi + a0,n+k−2

k + n
xi−1 + a1,n+k−2

k + n
xi−2

+ · · · + ai−1,n+k−2

k + n
,

which yields the second formula of (3.10). The proof is finished.�
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3.3. Spectral properties of matricesA and B

The matrices ofA and B can be completely described by the following propositions
and corollaries.

Proposition 3.2. (i) Let x̃ ∈ C, x̃ �= 0, be a critical point ofxkp(x) and h̃ = x̃kp(x̃)

the corresponding critical value. Then the column vectorcol(x̃−1, 1, x̃, x̃2, . . . , x̃n+k−2)

∈ Cn+k is the eigenvector ofA with the eigenvaluẽh.
(ii) Denote byV0 the subspace spanned by the eigenvectors of matrixA with the

eigenvalueh = 0 and dimV0 the dimension ofV0. If for any non-zero critical point,
the corresponding critical value is not equal to zero, then dimV0 = k.

Proof. If x̃ is a critical point ofxkp(x) and x̃ �= 0, then x̃k−1(kp(x̃)) + x̃p′(x̃) = 0.
It follows from (3.3) that

h̃x̃i = ai(x̃) =
n+k−2∑
j=−1

aij x̃
j ,

which yields (i). Since Proposition 3.1 showsaij = 0 for −1�j �k − 2, we con-
clude that det (hE − A) = 0 has a zero ath = 0 with multiplicity k. Let �j =
col(�−1

j , �0
j , �

1
j , . . . , �

n+k−2
j ), j = −1, 0, 1, . . . , n + k − 2, where

�i
j =

{
1 if i = j,

0 if i �= j.

Using aij = 0 for −1�j �k − 2 again, we have 0· �j = A�j , −1�j �k − 2, which
implies that�−1, �0, . . . , �k−2 are the eigenvectors ofA with the eigenvalueh = 0.
dimV0 = k follows from the assumption. �

To convenience, we give the following definition.

Definition 3.3. Function F(x) having neither degenerate critical point nor multiple
critical value for∀x ∈ D are said to be a Morse function inD.

Corollary 3.4. Suppose thatxkp(x) is a Morse polynomial inD = {x|x �= 0} ⊂ C,
and for any critical point inD, the corresponding critical value is not equal to zero.
Then
(i) A is diagonalizable and its eigenvalues are the critical values ofH(x, y);

(ii) All finite singular points of Picard–Fuchs equations(3.8) are Fuchsian, which, by
definition, means the matrix(hE−A)−1B of coefficients ofJ has poles of first order.
This implies thatI (h), defined in(2.4), is an (multiple-valued) analytic function in
C\{h|det (hE − A) = 0}.

Proof. By the assumptions, the matrixA has neither degenerate critical point nor
multiple critical value forx ∈ D. The result (i) follows from Proposition 3.2.
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Singular points of (3.8) are determined by the equationdet (hE − A) = 0, which
means thath = h̃ is a singular point of (3.8) if and only if it is a eigenvalue of the
matrix A. Solving J̇i (h) from (3.8) by Cramer rule, one can expressJ̇i (h) as the form

J̇i (h) = 1

det (hE − A)

n+k−2∑
l=−1

�il(h)Jl,

where �il(h) is a polynomial ofh. Since we have shownaij = 0, −1�j �k − 2 in
Proposition 3.1,�il(h) has a zero ath = 0 with multiplicity at leastk − 1. Noting that
det (hE − A) has a zero ath = 0 with multiplicity k, we obtain that the singular point
h = 0 is Fuchsian. It follows from the assumptions that any non-zero critical value of
xkp(x) is simple eigenvalue of the matrixA, so the corresponding singular point of
(3.8) is Fuchsian, too. �

It follows from (3.7) and Proposition 3.1 that the diagonal entries of the matrixB
are Bi,i+1 = (n + 2i + 2)/(2(k + n)), i = −1, 0, 1, . . . , n + k − 2, which yields

Proposition 3.5. The matrixB is triangular. Its spectrum consists of the numbers(n+
2i + 2)/(2(k + n)), i = −1, 0, 1, . . . , n + k − 2.

3.4. Bounds for the matrix norms

For a polynomialp(x) ∈ C[x] let ‖p‖ be the sum of absolute valued of its coeffi-
cients, which is called thenorm, or l1-norm of p(x). The norm of matricesA and B
are

‖A‖ = max{
n+k−2∑
j=−1

|aij |, −1� i�n + k − 2},

‖B‖ = max{
n+k−1∑
j=0

|Bij |, −1� i�n + k − 2}. (3.15)

Theorem 3.6. The entries of matricesA and B are explicitly bounded:

‖A‖ + ‖B‖� 3

2
+ n

k + n

(
C + C2 + · · · + Cn+k

)
, C = ‖p‖ − 1 > 0. (3.16)

Proof. It follows from Proposition 3.1(i) that

‖a−1(x)‖ =
n+k−2∑
j=k−1

∣∣∣∣n − j + k − 1

k + n

∣∣∣∣ |pj−k+1|� n

k + n
(‖p‖ − 1). (3.17)
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Using (3.13) again, we get by induction

‖ai(x)‖ =
∥∥∥∥∥∥
n+k−2∑
j=k−1

ai−1,j x
j+1 −

(
n∑

l=0

(
k + l

k + n

)
plx

l+k−1

)
ai−1,n+k−2

∥∥∥∥∥∥
=
∥∥∥∥∥∥
n+k−3∑
j=k−1

ai−1.j x
j+1 −

(
n−1∑
l=0

(
k + l

k + n

)
plx

l+k−1

)
ai−1,n+k−2

∥∥∥∥∥∥
�

∥∥∥∥∥∥
n+k−3∑
j=k−1

ai−1,j x
j+1

∥∥∥∥∥∥+
∥∥∥∥∥
n−1∑
l=0

(
k + l

k + n

)
plx

l+k−1

∥∥∥∥∥ |ai−1,n+k−2|

� ‖ai−1(x)‖ − |ai−1,n+k−2| + (‖p‖ − 1)|ai−1.n+k−2|
= ‖ai−1(x)‖ + (‖p‖ − 2)|ai−1,n+k−2|
� ‖ai−2(x)‖ + (‖p‖ − 2)(|ai−2,n+k−2| + |ai−1,n+k−2|)
� · · ·

� ‖a0(x)‖ + (‖p‖ − 2)
i−1∑
l=0

|al,n+k−2|

� n

k + n
(‖p‖ − 1) + (‖p‖ − 2)

i−1∑
l=−1

|al,n+k−2|

� n

k + n
C + (C − 1)

n+k−3∑
l=−1

|al,n+k−2|.

Using the same arguments as above, we have

‖al(x)‖ � ‖al−1(x)‖ + (‖p‖ − 2)|al−1,n+k−2|
� ‖al−1(x)‖ + (‖p‖ − 2)‖al−1(x)‖ = C‖al−1(x)‖,

which yields by induction

|al,n+k−2|�‖al(x)‖�Cl+1‖a−1(x)‖� n

k + n
Cl+2.

The following inequality is obtained from (3.7) and (3.10):

i+1∑
j=0

|Bij | = 1

2
+

i+1∑
j=0

|j − k

2
| · |bij |� 1

2
+ (n + k − 1)

 i+1∑
j=0

|bij |

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= 1

2
+ n + k − 1

k + n

(
1 +

i−1∑
l=−1

|al,n+k−2|
)

� 3

2
+

i−1∑
l=−1

|al,n+k−2|� 3

2
+

n+k−3∑
l=−1

|al,n+k−2|.

The above discussions imply

‖A‖ + ‖B‖ � 3

2
+ n

k + n
C + C

n+k−3∑
l=−1

|al,n+k−2|

� 3

2
+ n

k + n
(C + C2 + · · · + Cn+k). �

3.5. Picard–Fuchs equation for quadratic integrable system withn = 1

We will describe the Picard–Fuchs equation for (1.7) withn = 1. Let p1 = 1, p0 =
−(k + 1)/k (cf. Proposition 2.5). It is obvious thatA1 = A|n=1 and B1 = B|n=1 are
two (k + 1) × (k + 1) matrices. The entries ofA1 are

ai,k−1 = −1

k
, aij = 0, −1�j �k − 2, (3.18)

and the entriesBij of the matrixB are defined as (3.7) with

bi,i+1 = 1

k + 1
, bij = − 1

k(k + 1)
, 0�j � i. (3.19)

Indeed, it follows from Proposition 3.1 that

ai,k−1 = − k

k + 1
ai−1,k−1p0 = − k

k + 1
ai−1,k−1

(
−k + 1

k

)
= ai−1,k−1,

which impliesai,k−1 = ai−1,k−1 = · · · = a−1,k−1 = p0/(k + 1) = −1/k. We get (3.19)
from (3.10) and (3.18).

It is easy to get‖A1‖ = 1/k�1. Using (3.7) and (3.19), we have

‖B1‖ � 1

2
+
(
k − 1 + 1 − k

2

)
1

k + 1
+

k−1∑
j=0

∣∣∣∣j − k

2

∣∣∣∣ 1

k(k + 1)
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� 1

2
+ k

2(k + 1)
+ k

2

k−1∑
j=0

1

k(k + 1)
= 1

2
+ k

2(k + 1)
+ k

2(k + 1)

� 3

2
,

which implies‖A1‖+‖B1‖�5/2. The Picard–Fuchs system(3.8)|n=1 has two Fuchsian
singular points ath = 0 andh = −1/k.

3.6. Picard–Fuchs systems for quadratic integrable systemsn = 2

In this section, we always suppose thatp2 = 1, p1 = −(k + 2 + kp0)/(k + 1), see
Proposition 2.6. The matrixA2 = A|n=2 and B2 = B|n=2 will be completely described
by p0 and k.

3.6.1. General cases: the description of the entries ofA2 and B2

Proposition 3.7. Let p2 = 1, p1 = −(k + 2 + kp0)/(k + 1). Then A2 = (aij ) and
B2 = (Bij ) are two (k + 2) × (k + 2) matrices, and

ai,k−1 = −p0 − 1

k + 1

(
i+1∑
l=1

(
kp0

k + 2

)l
)

+ 2p0

k + 2

(
kp0

k + 2

)i+1

, i�0, (3.20)

a−1,k−1 = 2

k + 2
p0, ai,k = p0 − 1

k + 1
− ai,k−1,

aij = 0, −1�j �k − 2, 0� i�k. (3.21)

The entriesBij of the matrixB2 are defined by(3.7) with (3.10)|n=2, (3.20)and (3.21).

Proof. It follows from Proposition 3.1 that

ai,k−1 + ai,k = − k

k + 2
ai−1,kp0 + ai−1,k−1 − k + 1

k + 2
ai−1,kp1 = ai−1,k−1 + ai−1,k,

which implies by induction that

ai,k−1 + ai,k = ai−1,k−1 + ai−1,k = · · · = a−1,k−1 + a−1,k = p0 − 1

k + 1
, (3.22)

where we use (3.9) to geta−1,k−1 and a−1,k. The formulas in (3.21) are obtained by
using (3.22) and Proposition 3.1.

We are going to prove (3.20) by induction. Fori = 0, (3.20) holds by direct com-
putations. Suppose that (3.20) holds fori − 1. Then using (3.22) and Proposition 3.1



Y. Zhao / J. Differential Equations 209 (2005) 329–364 357

again,

ai,k−1 = − k

k + 2
ai−1,kp0 = − kp0

k + 2

(
p0 − 1

k + 1
− ai−1,k−1

)
,

which implies that (3.20) holds fori. �

3.6.2. The casep0 = 0
In this case, it follows from Proposition 3.7 thatai,k = −1/(k+1), aij = 0, −1�j �

k − 1. The matrixA2 has two eigenvalues ath = 0 with multiplicity k + 1 and h =
−1/(k+1) with multiplicity 1, respectively. Using the same arguments as in Proposition
3.2 and Corollary 3.4, we conclude thatA2 is diagonalizable and the two singular points
of Picard–Fuchs equation(3.8)|n=2 are Fuchsian, too. Therefore, the Abelian integral
I (h), defined in (2.4), is an (multiple-valued) analytic function inC\{0,−1/(k + 1)}.
Using the inequality obtained in Section 3.4, we have

i+1∑
j=−1

|Bij |� 3

2
+

i−1∑
l=−1

|al,k| = 3

2
+ i + 1

k + 1
� 3

2
+ k + 1

k + 1
= 5

2
,

which means‖B2‖�5/2. The norm ofA2 is ‖A2‖ = 1/(k + 1)� 1
2.

3.6.3. The degenerate casep0 = 1
We consider the critical values ofxkp(x), degp(x) = 2. It follows from Proposition

2.6 that for non-zero critical pointx = 1, the corresponding critical valueh1 is equal
to zero. This means Corollary 3.4 does not hold. In what follows we derive a Picard–

Fuchs system satisfied bỹ̇J = col(J̇−1, J̇0, . . . , J̇k−1) and show that all singular points
are Fuchsian for such system.

Corollary 3.8. Let p0 = 1. The vector̃J = col(J−1, J0, . . . , Jk−1) satisfies the follow-
ing Picard–Fuchs system

(hE − Ã2)
¨̃J = B̃2

˙̃J, (3.23)

where ¨̃J = d 2̃J/dh2, Ã2 = (̃aij )
k−1
i,j=−1 and B̃2 = (B̃ij )

(k−1,k)
(i,j)=(−1,0) are two(k+1)×(k+1)

matrices with

ãij = 0, −1�j �k − 2, ãi,k−1 = 4

(k + 2)2

(
k

k + 2

)i+1

, −1� i�k − 1. (3.24)

B̃2 is defined by

B̃i,i+1 = i − k

k + 2
, B̃ij = Bij =

(
k − 2j

(k + 2)2

)(
k

k + 2

)i−j

, 0�j � i, (3.25)

and B̃ij = 0 for i + 2�j �k.
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Proof. Differentiating both sides of (3.8), we get

(hE − A)J̈ = (B − E)J̇. (3.26)

We have known that the matrixB is triangular andBij = 0 for j � i + 2. Proposition
3.5 shows that the diagonal entries areBi,i+1|n=2 = (i + 2)/(k + 2), i = −1, 0, . . . , k,
which implies thatBk,k+1|n=2 = 1. Therefore, the matrix(B−E)|n=2 is triangular with
the form

(B − E) |n=2 =
(

B̃2 0
- 0

)
,

where - = (Bk,0, Bk,1, . . . , Bk,k). On the other hand, it follows from Proposition 2.7
that J̈k = kJ̈k−1/(k + 2). Substituting it into the right-hand side of(3.26)|n=2, we get
(3.23).

In fact, (3.23) is the firstk + 1 equations of system(3.26)|n=2 with J̈k = (k/(k +
2))J̈k−1, p0 = 1. �

Using the same arguments as in Proposition 3.2 and Corollaries 3.4, 3.8 yields
that the Picard–Fuchs equation (3.23) has two Fuchsian singular points ath = 0 and
h = ãk−1,k−1, which are the eigenvalues of̃A2 with multiplicity k and multiplicity 1,
respectively. The norm̃A2 satisfies‖Ã2‖�1. By (3.25), we have

i+1∑
j=0

|B̃ij | =
∣∣∣∣ i − k

k + 2

∣∣∣∣+ i∑
j=0

∣∣∣∣ k − 2j

(k + 2)2

∣∣∣∣ ( k

k + 2

)i−j

�1 + k

(k + 2)2

i∑
j=0

(
k

k + 2

)i−j

= 1 + k

2(k + 2)

(
1 −

(
k

k + 2

)i+1
)

<
3

2
,

which shows‖B̃2‖�3/2.

3.6.4. The degenerate casep0 = (k + 2)2/k2

In this case, we know from Proposition 2.6 that for the non-zero critical pointx =
(k + 2)/k, the corresponding critical value ofxkp(x), degp(x) = 2, is equal to zero.
So Corollary 3.4 does not hold for this case. Using the same arguments as Section
3.6.3, one gets

Corollary 3.9. Let p0 = (k + 2)2/k2. The vector̃J = col(J−1, J0, . . . , Jk−1) satisfies

(hE − Ā2)
¨̃J = B̄2

˙̃J, (3.27)

where Ā2 = (āij ) and B̄2 = (B̄ij ) are two (k + 1) × (k + 1) matrices,

āi,k−1 = p0 − 1

k + 1
= 4

k2 , āij = 0, −1� i�k − 1, −1�j �k − 2, (3.28)
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and the entriesB̄ij of the matrixB̄ are defined by

B̄i,j =


(k − 2j)/(k(k + 2)), 0�j � i,

(i − k)/(k + 2), j = i + 1,
0, i + 2�j �k.

(3.29)

Corollary 3.9 shows that (3.27) has two Fuchsian singular points ath = 0 and
h = 4/k2. It follows from (3.29) that

i+1∑
j=0

|B̄ij | =
∣∣∣∣ i − k

k + 2

∣∣∣∣+ 1

k(k + 2)

i∑
j=0

|k − 2j |

< 1 + 1

k(k + 2)

i∑
j=0

k < 2,

which implies‖B̄2‖�2. The norm ofĀ2 is ‖Ā2‖ = 4/k2�4.

4. Zeros of Abelian integrals away from the singular locus and limit cycles of
vector fields

In this section, we give the main results of this paper.

4.1. Meandering theorem

Consider the system

�(h)Ẋ(h) = A(h)X(h), A(h) =
d∑

i=0

Aih
i, (4.1)

where X(h) = col(X1(h),X2(h), . . . , Xm(h)), �(h) ∈ C[h]. The right-hand side of
(4.1) contains the matrix polynomialA(h) ∈ Matm×m(C[h]) of degreed and controlled
height(the maximal absolute value of coefficients of polynomial). Application the bound
meandering principle allow to prove

Lemma 4.1 (Novikov and Yakovenko [NY2, Appendix B]). With any linear poly-
nomial system(4.1) of degree�d having at most d Fuchsian singularities in the
finite plane, the number of isolated intersection between any trajectoryX(h) of system
(4.1) of height�R and an any arbitrary linear hyperplane< �, X >= �1X1+�2X2+
· · ·�mXm = 0 over any simply connected sub-domain of the set{h ∈ C||h − hj | >

1/R, |h| < R} is bounded by(2 + R)N , where N = N(m, d) ∈ N is a primitive
recursive function ofm, d growing no fast than

N(m, d)� exp exp exp exp(4m ln d + O(1)).
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4.2. The upper bounds for the number of zeros of Abelian integrals and limit cycles

Corollary 2.2 shows that the linear span of all functionhil Jl, l = −1, 0, . . . , n +
k − 2, 0� il � maxdeg��d {deg	l (h)} contains all Abelian integrals of forms of degree
�d. To use Lemma 4.1, we should derive the equation satisfied byhil Jl . In fact,
the generator{hiJ} of the space of Abelian integrals satisfy the following system by
derivation of (3.8)

(hE − A)
d

dh
(hiJ) = BhiJ + i(hE − A)hi−1J. (4.2)

Suppose thatxkp(x) is a Morse polynomial inD = {x|x �= 0} ∈ C, and for any critical
point in D, the corresponding critical value is not equal zero. It follows from Corollary
3.4 and Theorem 3.6 that system (4.2) has the following properties:
(1) all finite singular points are Fuchsian and coincide with the singularities of Picard–

Fuchs system (3.8);
(2) system (4.2) can be written in the matrix form as (4.1) and the entries of the matrix

will be explicitly bounded byd and ‖p‖.
Denote by� the collection of all critical values ofH(x, y), i.e. � = {h|det (hE −

A) = 0}. Let R be a finite positive number andKR ⊂ C\� the set obtained by cutting
the set

{h ∈ C : ∀j = 1, 2, . . . , n + 1, |h − hj | > 1/R, |h| < R, hj ∈ �}

along no more thann+ 1 line segment.KR is a simply connected compact set “on the
distance 1/R from both � and the infinite critical locus”. It follows from Corollary
3.4 thatI (h), defined in (2.4), is a single-valued analytic function inKR.

Please note that̃I (h), defined in (1.6) with max{degP(x, y), degQ(x, y)} = d −k+
1, P (x, y),Q(x, y),H(x, y) ∈ R [x, y], can be represented as (2.4).

The above discussions and Lemma 4.1 imply the main theorem of this paper:

Theorem 4.2. Let deg� = d and max{degP(x, y), degQ(x, y)} = d − k + 1. Suppose
that xkp(x) is a Morse polynomial inD = {x|x �= 0}, and for any critical point inD,
the corresponding critical value is not equal zero, then
(i) the number of zeros insideKR of the Abelian integralsI (h), defined in(2.4), does

not exceed(2 + R)N , whereN = N(k + n, d) is a certain elementary function
depending only onk, n, and d,

(ii) the Abelian integral̃I (h), defined in(1.6)with P(x, y),Q(x, y),H(x, y) ∈ R [x, y],
has at most(2 + R)N zeros inKR.

Corollary 4.3. With the assumption of Theorem4.2 and I (h) /≡ 0 (resp., Ĩ (h) /≡ 0),
system(1.3)� (resp., (1.5)�) has at most(2 + R)N limit cycles inside the domain
{(x, y) ∈ R2|hc + 1/R < H(x, y) < hs − 1/R} as � → 0, where hc, hs are two
critical values ofH(x, y), and the closed orbit�h ⊂ {(x, y)|H(x, y) = h} is defined
in (hc, hs).
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4.3. Limit cycles for quadratic non-Hamiltonian integrable system

We will list some results for limit cycles of system(1.5)� with n = 1, 2 and system
(2.22)�. It follows from Corollary 4.3 that, ifn = 1, then system(1.5)� has at most
(2+R)N, N = N(k+1, d), limit cycles inside the domain{(x, y) ∈ R2|−1/k+1/R <

H(x, y) < −1/R, H = xk(y2/2)+x−(k+1)/k}. Under the assumptionp0 �= 0, p0 �=
1, p0 �= k2/(k + 2)2, h1 �= h2, Corollary 4.3 holds forn = 2, too.

If p0 = 0, then it follows from Section 3.6.2 that̃I (h) is an analytic function in
h ∈ C\{0,−1/(k+ 1)} and two singular points of system (3.8) are Fuchsian. Using the
same arguments as Section 4.2, we can get that ifĨ (h) /≡ 0, then system(1.5)� has at
most (2 + R)N2 limit cycles in {(x, y) ∈ R2| − 1/k + 1/R < H(x, y) < −1/R}, where
N2 = N2(k + 2, d) is a certain elementary function depending only onk and d.

Now we study the Abelian integrals for the degenerate cases. To be more concrete,
we only consider the degenerate casep0 = 1 in Lemma 4.4 and Proposition 4.5.

For degenerate casesp0 = 1, Corollary 3.4 does not hold. However, all singular
points of Picard–Fuchs system (3.23) are Fuchsian, and the norm of the matrices can
be explicitly bounded, see Section 3.6.3. To use these results, our strategy is to reduce
the problem of estimating the number of zeros ofI (h) to a problem of estimating
the number of zeros of certain Abelian integral, which can be expressed as a linear
combination ofJ̇l , l = −1, 0, 1, . . . , k − 1.

Since detB �= 0, it follows from (3.8) and (2.4) thatI (h) and İ (h) can be represented
as

I (h) =
k∑

l=−1

	̃l (h)J̇l, İ (h) =
k∑

l=−1


̃l (h)J̇l, (4.3)

where deg̃	l (h)� deg	l (h) + 1, deg̃
l (h)� deg	l (h). Eliminating J̇k from the two
equations of (4.3), we have

	̃k(h)İ (h) = 
̃k(h)I (h) + S(h), S(h) =
k−1∑
l=−1

�l (h)J̇l, (4.4)

where �l (h) = 	̃k(h)̃
l (h) − 	̃l (h)̃
k(h), deg�l (h)� deg	l (h) + deg	k(h) + 1. The
following lemma has been used in many papers, see for instance[HI2,LZLZ,P1,R,ZZz],
etc.

Lemma 4.4. Denote by#I (h) the number of zeros ofI (h). We have

#I (h)� #̃	k(h) + #S(h) + 1. (4.5)

Proof. Suppose that�1,�2 are two consecutive zeros ofI (h), then it follows from
(4.4) that 	̃k(�i )İ (�i ) = S(�i ), i = 1, 2, which impliesS(�1)S(�2)�0 if 	̃k(h) �= 0



362 Y. Zhao / J. Differential Equations 209 (2005) 329–364

in [�1,�2]. Therefore, between any two consecutive zeros ofI (h), there must exist at
least one zeros ofS(h) or 	̃k(h). The result of this lemma follows. �

Section 3.6.3 shows thaṫJl, l = −1, 0, . . . , k − 1 satisfies Picard–Fuchs equation
(3.23). Using Meandering theorem and the same arguments as in Section 4.2, we obtain
that S(h) has at most(2 + R)N̄ zeros inside the domainKR, whereN̄ = N̄(k + 2, d)
is a certain elementary function depending only onk and d. This implies

#I (h)�(2 + R)N̄ + deg	k(h) + 2, h ∈ KR.

Since Ĩ (h) can be represented as (2.4), the above estimate holds for #Ĩ (h), which
yields

Proposition 4.5. Let p0 = 1, n = 2 and max{degP(x, y), degQ(x, y)} = d − k +
1, d�k−1. If Ĩ (h) /≡ 0, then system(1.5)� has at most(2+R)N̄+[(d−k−1)/(k+2)]+2
(resp., (2 + R)N̄ + 2) limit cycles ford�2k + 3 (resp., k − 1�d�2k + 2) inside the
domain {(x, y)|1/R < H(x, y) < ãk−1,k−1 − 1/R, H(x, y) = xk(y2/2 + (x − 1)2)}.

For the degenerate casep0 = (k+2)2/k2, the same arguments can be used as above.
We can get the similar results on the number of limit cycles and zeros of Abelian

integrals for system(2.22)� by using Proposition 2.8. The details are omitted.
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