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1. Introduction

We consider the following lattice dynamical system for unknown u = {u j} j∈Z:

u′
j = d j+1u j+1 + d ju j−1 − (d j+1 + d j)u j + f j(u j), j ∈ Z, (1.1)
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where f j ∈ C1+α[0,1] for some α ∈ (0,1) for j ∈ Z, f j+N = f j and d j+N = d j > 0 for all j ∈ Z for
some positive integer N . Eq. (1.1) can be regarded as a spatial discrete version of the following
reaction–diffusion equation

ut = (
d(x)ux

)
x + f (x, u),

where d(x) and f (x, u) are periodic in x. In biology, let u j denote the density of a certain species
in a periodic patchy environment. Assuming the species at site j can only interact with those at the
nearby sites, then Eq. (1.1) describes the rate of change of density of this species at each site j. It is
equal to the sum of the source f j(u j) at site j and the fluxes q j±1 from sites j ± 1 to site j:

q j+1 := d j+1[u j+1 − u j], q j−1 := d j[u j−1 − u j],

where d j,d j+1 are the diffusion constants. See [8,15,16] for more references and details.
It is trivial that for a given initial data {u j(0)} ∈ [0,1] there exists a unique solution u to (1.1)

for t � 0 such that 0 � u j(t) � 1 for all t � 0 and j ∈ Z. We are interested in the wave propagation
phenomenon. In particular, we are interested in special solutions U of (1.1) for t ∈ R satisfying the
following conditions:

U j(t + N/c) = U j−N (t), t ∈ R, j ∈ Z, (1.2)

U j(t) → 1 as j → −∞, U j(t) → 0 as j → +∞, locally in t ∈ R, (1.3)

for some nonzero constant c. We shall call a solution (c, U ) of (1.1)–(1.3) as a traveling wave solution.
The constant c is the wave speed and U is the profile. In this paper, we shall always assume that

f j(0) = f j(1) = 0 ∀ j ∈ Z. (1.4)

The study of traveling wave for lattice dynamical system has attracted a lot of attention for past
years, see, e.g., the works [1–4,6,7,10–14,17–20]. The main concerns are existence, uniqueness, and
stability of traveling waves. Typically, there are two different nonlinearities, namely, monostable and
bistable cases. In the monostable case, we have

f ′
j(1) < 0 < f ′

j(0) ∀ j ∈ Z, f j(s) > 0 ∀s ∈ (0,1), j ∈ Z. (1.5)

For the bistable case, we have f ′
j(0) < 0 and f ′

j(1) < 0 for all j ∈ Z. If N = 1, then f j+1 = f j and
d j+1 = d j for all j. This is the so-called homogeneous media case. In general, if N > 1, then it is
called the periodic case.

In this paper, we shall focus on the periodic monostable case. We refer the reader to the work [5]
and the references cited therein for the periodic bistable case. In [5], the existence, uniqueness and
stability of traveling waves for periodic bistable case are studied in detail.

The existence of traveling waves for monostable case in periodic media was first obtained by
Hudson and Zinner [11,12] under the extra assumption

f ′
j(0)s − Ms1+α � f j(s) � f ′

j(0)s ∀s ∈ [0,1], j ∈ Z, (1.6)

for some constants M > 0 and α ∈ (0,1). Recently, one of the authors and Hamel [10] gave a different
approach to prove the existence of traveling waves for all speeds c � c∗ for some positive minimal
speed c∗ . Moreover, it is also shown in [10] that the condition c � c∗ is not only a sufficient condition
but also a necessary condition for the existence of traveling waves.

For reader’s convenience, we recall some properties of traveling wave from [10]. Let (c, U ) be a
traveling wave solution of (1.1)–(1.3) with c �= 0. Then we have 0 < U j(t) < 1 for all ( j, t) ∈ Z × R;
U j(t) → 0 as t → −∞; U j(t) → 1 as t → ∞; U ′

j(t) > 0 for all t ∈ R and U ′
j(t) → 0 as t → ±∞.
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The aim of this paper is to study the uniqueness and stability of traveling waves in the periodic
monostable case. Hence we shall always assume that (1.4), (1.5) and (1.6) hold.

Recall from [10] that for each λ ∈ R there exists a unique v = {v j} with max j∈Z v j = 1 and v j+N =
v j > 0 for all j ∈ Z such that

M(λ)v j = d j+1e−λv j+1 + d je
λv j−1 − (d j+1 + d j)v j + f ′

j(0)v j (1.7)

for all j ∈ Z, where M(λ) is the largest eigenvalue of (1.7). Moreover, there exists λ∗ > 0 such that
c∗ = M(λ∗)/λ∗ and the mapping c = M(λ)/λ : (0, λ∗) 	→ c ∈ (c∗,∞) is strictly decreasing.

We shall focus our attention on those traveling waves (c, U ), c > c∗ , of (1.1)–(1.3) satisfying

lim
j−ct→∞

U j(t)

e−λ( j−ct)v j
= 1, (1.8)

for some λ > 0 such that M(λ) = cλ and {v j} is the unique eigenvector of (1.7) corresponding to λ

such that max j∈Z v j = 1 and v j+N = v j > 0 for all j ∈ Z.
We now state our stability theorem as follows.

Theorem 1.1. Suppose that there exists a traveling wave (c, U ) with c > c∗ such that (1.8) holds for some
λ ∈ (0, λ∗). Let u be the solution of (1.1) for t � 0 with the initial value {u j(0)} satisfying

0 � u j(0) � 1, u j(0) � e−λ· j v j ∀ j ∈ Z, (1.9)

lim inf
j→−∞

u j(0) > 0, lim
j→∞

u j(0)

e−λ· j v j
= 1. (1.10)

Then

lim
t→∞ sup

j

{∣∣[u j(t)/U j(t)
] − 1

∣∣} = 0.

The proof of Theorem 1.1 is based on a method in [3] with some nontrivial modifications. In [3],
a lattice dynamical system in homogeneous media is studied. There the proof of stability theorem is
through a related continuum equation by extending the spatial variable from j ∈ Z to x ∈ R. But, here
we shall only use the original equation (1.1) to prove the stability theorem. Moreover, there is only
one wave profile for the homogeneous case in [3]. In our periodic lattice dynamical system, there are
N wave profiles. This makes the stability analysis more complicated. To overcome this difficulty, we
introduce the following transformation

W j(x) := U j
([ j − x]/c

)
, equivalently U j(t) = W j( j − ct), (1.11)

which is very useful in the periodic framework. Indeed, this transformation is reminiscent of a similar
transformation in the case of partial differential equation (cf. [9]).

By adapting a method used in [4], we have the following uniqueness theorem.

Theorem 1.2. Suppose that (c, U ) and (c, U ) are two traveling wave solutions of (1.1)–(1.3) such that

lim
j−ct→∞

U j(t)

e−λ( j−ct)v j
= h, lim

j−ct→∞
U j(t)

e−λ( j−ct)v j
= h̄ (1.12)

for some positive constants λ, h and h̄ such that M(λ) = cλ, where {v j} is the eigenvector of (1.7) cor-
responding to λ such that v j = v j+N > 0 for all j and max{v j} = 1. Then there exists ξ ∈ R such that
U j(t) = U j(t + ξ) for all j ∈ Z, t ∈ R.
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This paper is organized as follows. We shall give the proof of Theorem 1.1 in Section 2. The proof
of Theorem 1.2 is given in Section 3. In this paper, we shall use both functions U j and W j defined in
(1.11) alternatively from time to time.

2. Stability of traveling wave

This section is devoted to the proof of Theorem 1.1. First, we call a continuous function w a super-
solution of (1.1) in an interval I , if w is differentiable a.e. such that

w ′
j(t) � A[w j](t) + f j

(
w j(t)

)
a.e. for t ∈ I , ∀ j ∈ Z, (2.1)

where

A[w j](t) := d j+1 w j+1(t) + d j w j−1(t) − (d j + d j+1)w j(t).

The notion of sub-solution is defined similarly by reversing the inequality in (2.1).
Based on a traveling wave (c, U ), we can construct the following super/sub-solution.

Lemma 2.1. For each δ ∈ (0,1) and η ∈ (0, infs∈(−δ,δ)[ f (1 − s)/s]), there exists l = l(δ,η) > 0 such that for
any ε ∈ [0, δ] the function w± := {w±

j } defined by

w±
j (t) := (

1 ± εe−ηt)U j
(
t ∓ lεe−ηt), ( j, t) ∈ Z × [0,∞),

is a super/sub-solution of (1.1).

Proof. We consider only the case of super-solution. The case of sub-solution is similar.
Set w j(t) := (1 + q)U j(s), s := t − lεe−ηt and q := εe−ηt . Then we compute

w ′
j(t) − A[w j](t) − f j

(
w j(t)

)
= −ηqU j(s) + (1 + q)(1 + lηq)U ′

j(s) − (1 + q)
[
U ′

j(s) − f j
(
U j(s)

)] − f j
(
(1 + q)U j(s)

)
= −ηqU j(s) + lηq(1 + q)U ′

j(s) + (1 + q) f j
(
U j(s)

) − f j
(
(1 + q)U j(s)

)
.

Notice that

(1 + q) f j(U j) − f j
(
(1 + q)U j

) =
q∫

0

[
f j(U j) − U j f ′

j

(
(1 + p)U j

)]
dp

= qf j(U j) − U j f j(1 + q) − U j

q∫
0

[
f ′

j

(
(1 + p)U j

) − f ′
j(1 + p)

]
dp

� −U j f j(1 + q) − U j

q∫
0

[
f ′

j

(
(1 + p)U j

) − f ′
j(1 + p)

]
dp.

Since f j ∈ C1+α([0,1]), f j can be suitably extended so that f j ∈ C1+α([−1,2]). Then we have

∣∣∣∣∣
q∫ [

f ′
j

(
(1 + p)U j

) − f ′
j(1 + p)

]
dp

∣∣∣∣∣ � 2qK (1 − U j)
α,
0
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where

K := max
j∈Z

max
−1�s<t�2

| f ′
j(t) − f ′

j(s)|
|t − s|α .

It follows that

1

q

{
w ′

j(t) − A[w j](t) − f j
(

w j(t)
)}

� lη(1 + q)U ′
j(s) − ηU j(s) − [

f j(1 + q)/q
]
U j(s) − 2K

(
1 − U j(s)

)α
U j(s).

Now, for a given δ > 0, we set

ηδ := inf
j∈Z,−δ<s<δ

[
f j(1 − s)/s

]
.

Note that ηδ > 0, since f ′
j(1) < 0. Choose η ∈ (0, ηδ). Since lim j−ct→−∞ U j(t) = 1, there exists ξ0 such

that 2K (1 − U j(s))α � ηδ − η for all j − cs � ξ0. Recall from Lemma 2.5 of [10] that U ′
j > 0 in R for

all j ∈ Z. Hence

w ′
j(t) − A[w j](t) − f j

(
w j(t)

)
� 0 ∀ j − cs � ξ0. (2.2)

On the other hand, since U j(t) → 0 as j − ct → ∞, it follows from Lemma 2.4 of [10] that

lim inf
j−ct→∞

U ′
j(t)

U j(t)
= lim inf

( j,t)∈Z×R, U j(t)→0

U ′
j(t)

U j(t)
> 0.

Hence, if we choose

l := 2K

η(1 − δ)
sup

j−cs�ξ0

U j(s)

U ′
j(s)

,

then l > 0 and we obtain

w ′
j(t) − A[w j](t) − f

(
w j(t)

)
� 0 ∀ j − cs � ξ0. (2.3)

Combining (2.2) and (2.3), we obtain that w := {w j} is a super-solution of (1.1). �
Recall the following standard comparison principle. Since the proof is standard, we omit it here

(see also [3]).

Proposition 2.2. Given two bounded continuous functions u, v on [t0,∞) for some t0 � 0 such that u, v are
differentiable a.e. in [t0,∞). Suppose that

u′
j(t) − A[u j](t) − f

(
u j(t)

)
� v ′

j(t) − A[v j](t) − f
(

v j(t)
) ∀t � t0, j ∈ Z,

and u j(t0) � v j(t0) for all j ∈ Z. Then u j(t) � v j(t) for all t � t0 , j ∈ Z. Moreover, if, besides the above
assumptions, uk(t0) > vk(t0) for some k ∈ Z, then u j(t) > v j(t) for all t > t0 , j ∈ Z.
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Given any c > c∗ . Let λ ∈ (0, λ∗) be such that M(λ) = cλ and let {v j} be the eigenvector of (1.7)
corresponding to λ such that max j∈Z v j = 1 and v j+N = v j > 0 for all j ∈ Z. Then it is easy to check
that the function ū = (ū j) j∈Z defined by

ū j(t) = min
{

e−λ( j−ct)v j,1
} ∀( j, t) ∈ Z × R (2.4)

is a super-solution of (1.1). Moreover, we can choose μ ∈ (λ,λ∗) such that μ < (1 + α)λ and M(μ) <

cμ, where α is the constant defined in (1.6). Let {w j} be the eigenvector of (1.7) corresponding to μ
such that max j∈Z w j = 1 and w j+N = w j > 0 for all j ∈ Z. Then the function u = (u j) j∈Z defined by

u j(t) = max
{

e−λ( j−ct)v j − Ae−μ( j−ct)w j,0
} ∀( j, t) ∈ Z × R (2.5)

is a sub-solution of (1.1), if A is large enough.
Note that the traveling wave solution, denoted by {U j}, obtained by an iteration starting from the

above super/sub-solutions satisfies (1.8) for some λ ∈ (0, λ∗). To see this, we first note from [10] that

u j(t) � U j(t) � ū j(t) ∀( j, t) ∈ Z × R. (2.6)

For j − ct � 1, we have

ū j(t) = e−λ( j−ct)v j, u j(t) = e−λ( j−ct)v j − Ae−μ( j−ct)w j . (2.7)

Writing

u j(t) = e−λ( j−ct)v j
[
1 − Ae−(μ−λ)( j−ct)w j/v j

]

and using the fact μ ∈ (λ,λ∗), then (1.8) follows from (2.6) and (2.7).
From now on, we assume that u is the solution of (1.1) for t � 0 with the initial value {u j(0)}

satisfying (1.9) and (1.10) for a traveling wave (c, U ) with c > c∗ satisfying (1.8) for some λ ∈ (0, λ∗).
Also, for a given c > c∗ , we fix the corresponding λ,μ, A, v j, w j defined as above in the following.

Lemma 2.3. For any ε > 0, there exists a constant ξ1(ε) > 1 such that

u j(t − 2ε) � U j(t) � u j(t + 2ε) ∀ j − ct � ξ1(ε), t � 2ε. (2.8)

Proof. Given any ε > 0. First, we derive the second inequality in (2.8). By (1.10), there exists j0 de-
pending on ε such that

e−λ( j+cε)v j < u j(0) < e−λ( j−cε)v j ∀ j � j0. (2.9)

Choose A � e(μ−λ)( j0+cε)[max{v j}/min{w j}] large enough so that (2.5) is a sub-solution of (1.1). Then

e−λ( j+cε)v j − Ae−μ( j+cε)w j � 0 ∀ j � j0. (2.10)

Hence, from (2.9) and (2.10),

u j(0) � max
{

e−λ( j+cε)v j − Ae−μ( j+cε)w j,0
} ∀ j ∈ Z.

By the comparison principle,

u j(t) � e−λ( j−c(t−ε))v j − Ae−μ( j−c(t−ε))w j ∀ j ∈ Z, t � 0,
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i.e.,

u j(t + ε) � e−λ( j−ct)v j − Ae−μ( j−ct)w j ∀ j ∈ Z, t � 0. (2.11)

Moreover, by (1.8), there exists a constant x1(ε) > 1 such that

e−λ( j−c(t+ε))v j − Ae−μ( j−c(t+ε))w j � U j(t) ∀ j − ct � x1(ε). (2.12)

From (2.11) and (2.12) it follows that

u j(t + 2ε) � U j(t) ∀ j − ct � x1(ε), t � 0.

Next, we derive the first inequality in (2.8). By (1.9), we have

u j(0) � min
{

e−λ· j v j,1
} ∀ j ∈ Z.

By comparison,

u j(t) � min
{

e−λ( j−ct)v j,1
} ∀ j ∈ Z, t � 0. (2.13)

On the other hand, from (1.8), we have

lim
j−ct→∞

U j(t)

e−λ( j−c(t−2ε))v j
= e2λcε > 1.

Hence there exists a constant x2(ε) > 1 such that

e−λ( j−c(t−2ε))v j < U j(t) ∀ j − ct � x2(ε).

From (2.13) it follows that

u j(t − 2ε) � min
{

e−λ( j−c(t−2ε))v j,1
}

� U j(t) ∀ j − ct � x2(ε), t � 2ε.

Then the lemma follows by taking ξ1(ε) = max{x1(ε), x2(ε)}. �
Next, we have the following positivity lemma.

Lemma 2.4. There exist continuous functions {ψ j} j∈Z from (0,1]× (0,∞) to (0,1) such that if uk(0) > 0 for
some k ∈ Z then uk+n(t) � ψn(uk(0), t) > 0 for all n ∈ Z, t > 0.

Proof. Note that 0 � u j(t) � 1 for all t � 0 for all j ∈ Z. Choose σ > 0 so that σ > 2 max{d j}. From
(1.1) it follows that

u j(t) = e−σ t u j(0) +
t∫

0

eσ(s−t){d j+1u j+1(s) + d ju j−1(s)

+ [
σ − (d j+1 + d j)

]
u j(s) + f

(
u j(s)

)}
ds. (2.14)

This gives uk(t) � e−σ t uk(0) > 0 for all t > 0.
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Set q := min{d j}. Then q > 0. Moreover, from (2.14) it follows that

u j(t) � q

t∫
0

eσ(s−t)u j±1(s)ds.

Set ψ0(y, t) := ye−σ t and define recursively

ψ−n(y, t) = ψn(y, t) := q

t∫
0

eσ(s−t)ψn−1(y, s)ds, y ∈ (0,1], t > 0, n ∈ N.

The lemma follows. �
Note that

ψ±n(y, t) = yqntne−σ t

n(n − 1) · · · 1

for all n ∈ N.

Lemma 2.5. There exist constants δ ∈ (0,1), η > 0, l > 0, z0 > 0 and t0 � 4 such that

(
1 − δe−ηt)U j

(
t − z0 + lδe−ηt) � u j(t) �

(
1 + δe−ηt)U j

(
t + z0 − lδe−ηt)

for all j ∈ Z, t � t0 .

Proof. We first consider the lower bound of u j . Fix a t0 � 4. From Lemma 2.3 with ε = 1, there exists
a constant ξ1(1) such that

u j(t0) � U j(t0 − 2) ∀ j − ct0 � ξ1(1).

Since lim inf j→−∞ u j(0) > 0, there exist j0 ∈ Z and δ0 > 0 such that u j(0) > δ0 for all j � j0. By
Lemma 2.4, there exist δ ∈ (0,1) and η ∈ (0, ηδ) such that

u j(t0) � 1 − δe−ηt0 ∀ j − ct0 � ξ1(1).

Thus

u j(t0) �
(
1 − δe−ηt0

)
U j(t0 − 2)

= (
1 − δe−ηt0

)
U j

(
t0 − (

2 + lδe−ηt0
) + lδe−ηt0

) ∀ j ∈ Z,

where l = l(δ,η) > 0 is the constant defined in Lemma 2.1. It follows from the comparison principle
that

u j(t) �
(
1 − δe−ηt)U j

(
t − z∗ + lδe−ηt) ∀t � t0, j ∈ Z, (2.15)

where z∗ = 2 + lδe−ηt0 .
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For the upper bound, again by Lemma 2.3, we have

u j(t0) � U j(t0 + 2) ∀ j − ct0 � ξ1(1).

For j − ct0 � ξ1(1), we consider the function

W j(x) := U j
(
( j − x)/c

)
, j ∈ Z, x ∈ R. (2.16)

Then, by (1.2), W j = W j+N for all j ∈ Z, W j(∞) = 0 and W j(−∞) = 1. Therefore, we can choose
x̂ � 1 such that W j(x) � 1/(1 + δe−ηt0) for all j ∈ Z for all x � −x̂. Choose a large enough t̂ so that
j − c(t0 + 2 + t̂) � −x̂ for all j with j − ct0 � ξ1(1). Then

U j(t0 + 2 + t̂) = W j
(

j − c[t0 + 2 + t̂])

and so

u j(t0) � 1 �
(
1 + δe−ηt0

)
U j(t0 + 2 + t̂) ∀ j − ct0 � ξ1(1).

Hence, using U ′
j > 0, we obtain that

u j(t0) �
(
1 + δe−ηt0

)
U j(t0 + 2 + t̂) ∀ j ∈ Z.

By the comparison principle, we deduce that

u j(t) �
(
1 + δe−ηt)U j

(
t + z∗ − lδe−ηt) ∀t � t0, j ∈ Z, (2.17)

where z∗ = 2 + t̂ + lδe−ηt0 . The lemma follows by combining (2.15) and (2.17). �
Lemma 2.6. Let δ, l be two positive constants. Then there exists a positive constant M0 depending on δ and l
such that for all ε ∈ (0, δ]

(1 − ε)U j(t + 3lε) � U j(t) � (1 + ε)U j(t − 3lε) ∀ j − ct � −M0.

Proof. Recall the definition of W in (2.16). Note that W ′
j(±∞) = 0 and W j(−∞) = 1 for all j ∈ Z.

We compute that

d

ds

{
(1 + s)W j(x + 3cls)

} = W j(x + 3cls) + 3cl(1 + s)W ′
j(x + 3cls).

Hence, noting that W j = W j+N for all j, there exists M0 > 0 such that

d

ds

{
(1 + s)W j(x + 3cls)

}
> 0 ∀x � −M0, j ∈ Z, s ∈ [−δ, δ].

This implies that

d

ds

{
(1 + s)U j(t − 3ls)

}
> 0 ∀s ∈ [−δ, δ], j − ct � −M0.

Hence the lemma is proved. �
In the sequel, the constants δ, l, η, M0 are fixed as in Lemmas 2.5 and 2.6.
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Lemma 2.7. Let z > 0, t1 � 0 and M ∈ R. Suppose that w±
j (·; t1) is the solution of (1.1) for t � 0 with initial

value

w±
j (0; t1) = U j(t1 ± z)φ( j − ct1 − M) + U j(t1 ± 2z)

[
1 − φ( j − ct1 − M)

] ∀ j ∈ Z, (2.18)

where φ(s) = 0 for s � 0 and φ(s) = 1 for s > 0. Then there exists ε ∈ (0,min{δ, z/(3l)}), depending only on
M and z (independent of t1), such that

w+
j (1; t1) � (1 + ε)U j(t1 + 1 + 2z − 3lε),

w−
j (1; t1) � (1 − ε)U j(t1 + 1 − 2z + 3lε)

for all j ∈ Z with j − ct1 � M + c(1 + 2z).

Proof. First, we consider w+
j . Note that w+

j (0; t1) = U j(t1 + 2z) for all j − ct1 � M and w+
j (0; t1) =

U j(t1 + z) < U j(t1 + 2z) for all j − ct1 > M . By the strong comparison principle,

w+
j (1; t1) < U j(t1 + 1 + 2z) ∀ j ∈ Z. (2.19)

Consider first when t1 ∈ [0, T ), where T := N/c. Then by the equi-continuity of {w+
j (·; t1)} in

[0,∞) and {U j} in R, there exists ε ∈ (0,min{δ, z/(3l)}) such that for any initial time t1 ∈ [0, T )

w+
j (1; t1) < U j(t1 + 1 + 2z − 3lε) if j − c(t1 + 1 + 2z) ∈ [−M0, M]. (2.20)

For t1 � T , we can rewrite t1 = t0 + kT for some k ∈ N and t0 ∈ [0, T ). From (2.18) we have

w+
j (0; t1) = U j(t0 + kT + z)φ

(
j − c(t0 + kT ) − M

) + U j(t0 + kT + 2z)
[
1 − φ

(
j − c(t0 + kT ) − M

)]
= U j−kN (t0 + z)φ( j − kN − ct0 − M) + U j−kN (t0 + 2z)

[
1 − φ( j − kN − ct0 − M)

]
= w+

j−kN (0; t0).

Hence w+
j+kN (t; t1) = w+

j (t; t0) for all t � 0. In particular,

w+
j+kN (1; t1) = w+

j (1; t0). (2.21)

For any integer j1 with j1 − c(t1 + 1 + 2z) ∈ [−M0, M], i.e.,

j1 ∈ [−M0 + c(t0 + 1 + 2z) + kN, M + c(t0 + 1 + 2z) + kN
]
,

we can write j1 = j0 + kN for a unique integer j0 such that

j0 − c(t0 + 1 + 2z) ∈ [−M0, M].

Hence, by (2.21) and (2.20) with t1 replaced by t0 and j = j0, we have

w+
j1
(1; t1) = w+

j0
(1; t0) < U j0 (t0 + 1 + 2z − 3lε) = U j1 (t1 + 1 + 2z − 3lε)

for any integer j1 with j1 − c(t1 + 1 + 2z) ∈ [−M0, M]. Here the periodicity of U was used.
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Moreover, it follows from Lemma 2.6 that

U j(t1 + 1 + 2z) � (1 + ε)U j(t1 + 1 + 2z − 3lε) ∀ j − c(t1 + 1 + 2z) � −M0. (2.22)

This proves the inequality for w+
j (·; t1) for all t1 � 0.

The case for w−
j is similar. Hence the lemma follows. �

Proof of Theorem 1.1. Define z± := inf A± , where

A+ :=
{

z � 0
∣∣∣ lim sup

t→∞
sup

j

[
u j(t)/U j(t + 2z)

]
� 1

}
,

A− :=
{

z � 0
∣∣∣ lim inf

t→∞ inf
j

[
u j(t)/U j(t − 2z)

]
� 1

}
.

From Lemma 2.5, z0/2 ∈ A± . Hence z± are well defined and z± ∈ [0, z0/2]. It suffices to prove that
z+ = z− = 0.

For contradiction, we suppose that z+ > 0. Recall the constant ξ1(z+/2) defined in Lemma 2.3. Let
ε ∈ (0,min{δ, z+/(3l)}) be the constant obtained in Lemma 2.7 with z = z+ and M := ξ1(z+/2)+ cz+ .
Since z+ ∈ A+ , we have

lim sup
t→∞

sup
j

u j(t)

U j(t + 2z+)
� 1.

Hence there exists t0 � 4 such that

sup
j

u j(t0)

U j(t0 + 2z+)
� 1 + ε̂,

where

ε̂ := εe−K min
j∈{1,2,...,N} W j(M + 3clε), U j(t) = W j( j − ct),

and K := max{‖ f ′
j‖L∞}. Then

u j(t0) � U j
(
t0 + 2z+) + ε̂ ∀ j ∈ Z.

Now, let w±
j (·; t0) be the solution of (1.1) for t � 0 with initial value given by

w±
j (0; t0) = U j(t0 ± z)φ( j − ct0 − M) + U j(t0 ± 2z)

[
1 − φ( j − ct0 − M)

] ∀ j ∈ Z.

Then w+
j (0; t0) = U j(t0 + 2z+) for all j − ct0 � M and so

u j(t0) � w+
j (0; t0) + ε̂ ∀ j − ct0 � M.

Moreover, from Lemma 2.3, u j(t0) � U j(t0 + z+) if j − c(t0 + z+) � ξ1(z+/2). Since j − c(t0 + z+) �
ξ1(z+/2) if j − ct0 � M , we obtain from (2.18) that

u j(t0) � w+
j (0; t0) + ε̂ ∀ j − ct0 � M.
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We conclude that

u j(t0) � w+
j (0; t0) + ε̂ ∀ j ∈ Z.

It is easy to check that {w+
j (t; t0) + ε̂eKt} is a super-solution of (1.1). By comparison, u j(t0 + 1) �

w+
j (1; t0) + ε̂eK for all j ∈ Z. Then, by Lemma 2.7,

u j(t0 + 1) � (1 + ε)U j
(
t0 + 1 + 2z+ − 3lε

) + ε̂eK if j − ct0 � M + c
(
1 + 2z+)

.

It follows from the choice of ε̂ and W ′
j < 0 that

u j(t0 + 1) � (1 + 2ε)U j
(
t0 + 1 + 2z+ − 3lε

)
if j − ct0 � M + c

(
1 + 2z+)

.

On the other hand, from Lemma 2.3,

u j(t0 + 1) � U j
(
t0 + 1 + z+)

if j − c
(
t0 + 1 + z+)

� ξ1
(
z+/2

)
.

Since 0 < ε < z+/(3l) and U ′
j > 0, we obtain that

u j(t0 + 1) < (1 + 2ε)U j
(
t0 + 1 + 2z+ − 3lε

)
if j − ct0 � M + c.

Hence

u j(t0 + 1) � (1 + 2ε)U j
(
t0 + 1 + 2z+ − 3lε

) ∀ j ∈ Z.

By comparison,

u j(t + t0 + 1) �
(
1 + 2εe−ηt)U j

(
t + t0 + 1 + 2z+ − 2lε − lεe−ηt) ∀t � 0, j ∈ Z. (2.23)

By taking t → ∞ in (2.23), we obtain that z+ − lε ∈ A+ which contradicts the definition of z+ . Hence
we must have z+ = 0.

Similarly, we can also prove that z− = 0. This completes the proof of Theorem 1.1. �
3. Uniqueness of wave profile

In this section, we shall study the uniqueness of wave profiles for a given wave speed and give a
proof of Theorem 1.2.

Suppose that (c, U ) and (c, U ) are two traveling wave solutions of (1.1)–(1.3) such that (1.12) holds
for some positive constants λ, h and h̄ such that M(λ) = cλ, where {v j} is the eigenvector of (1.7)
corresponding to λ such that v j = v j+N > 0 for all j and max{v j} = 1. By a suitable translation, we
may assume that h = h̄ = 1. Therefore, (1.8) holds for both (c, U ) and (c, U ). Then, using (1.1) and
(1.7), it is easy to show that

lim
j−ct→∞

U ′
j(t)

U j(t)
= Λ = lim

j−ct→∞
U

′
j(t)

U j(t)
, Λ := M(λ) = cλ. (3.1)

First, we consider the function

g j(s, u) := f j
([1 + s]u) − (1 + s) f j(u), s � 0, u ∈ [0,1].
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Then dg j(s, u)/ds = u f ′
j([1 + s]u) − f j(u). Since f ′

j(1) < 0 and f j(1) = 0 for all j, by the periodicity
of f j , there exists ε0 ∈ (0,1) such that

f j
([1 + ε]u)

< (1 + ε) f j(u) ∀u ∈ (1 − ε0,1], (3.2)

for any ε ∈ (0, ε0], where we have extended f j(u) to be negative for all u ∈ (1,2].
We next define the number

l0 = l0(U ) := sup
{

W j(x)/
∣∣cW ′

j(x)
∣∣: W j(x) � 1 − ε0, j ∈ Z

}
(3.3)

for a wave profile {W j}. Note that l0 ∈ (0,∞), since W j(x), W ′
j(x) → 0 as x → ∞,

−c lim
x→∞

W ′
j(x)

W j(x)
= lim

j−ct→∞
U ′

j(t)

U j(t)
= Λ > 0,

and W ′
j < 0 for all j ∈ Z.

Lemma 3.1. Let (c, U ) and (c, U ) be two traveling wave solutions of (1.1)–(1.3). Let ε0 and l0 = l0(U ) be the
constants defined in (3.2) and (3.3). If there exists a constant ε ∈ (0, ε0] such that (1 + ε)U j(t − l0ε) � U j(t)
for all t ∈ R, j ∈ Z, then U j(t) � U j(t) for all t ∈ R, j ∈ Z.

Proof. To prove the lemma, it is equivalent to prove that if

(1 + ε)W j(x + cl0ε) � W j(x) ∀x ∈ R, j ∈ Z, (3.4)

for some ε ∈ (0, ε0], then W j(x) � W j(x) for all x ∈ R, j ∈ Z. For this, we define

w j(q, x) := (1 + q)W j(x + cl0q) − W j(x), q > 0, x ∈ R,

q∗ := inf
{

q > 0
∣∣ w j(q, x) � 0 ∀x ∈ R, j ∈ Z

}
.

By continuity, w j(q∗, x) � 0 for all x ∈ R, j ∈ Z.
We claim that q∗ = 0. For contradiction, we suppose that q∗ ∈ (0, ε0]. Since, by the definition of l0,

d

dq
w j

(
q∗, x

) = W j
(
x + cl0q∗) + cl0

(
1 + q∗)W ′

j

(
x + cl0q∗) < 0

for all x with W j(x + cl0q∗) � 1 − ε0 and j ∈ Z, we can find x0 ∈ R and k ∈ {1, . . . , N} with Wk(y0) >

1 − ε0, y0 := x0 + cl0q∗ , such that

wk
(
q∗, x0

) = dwk

dx

(
q∗, x0

) = 0,

i.e.,

(
1 + q∗)Wk(y0) = W k(x0),

(
1 + q∗)W ′

k(y0) = W
′
k(x0).

Then, using (3.2), we have
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0 = cW
′
k(x0) + dk+1W k+1(x0 + 1) + dk W k−1(x0 − 1)

− (dk + dk+1)W k(x0) + fk
(
W k(x0)

)
�

(
1 + q∗){cW ′

k(y0) + dk+1Wk+1(y0 + 1) + dk Wk−1(y0 − 1)

− (dk + dk+1)Wk(y0)
} + fk

([
1 + q∗]Wk(y0)

)
= −(

1 + q∗) fk
(
Wk(y0)

) + fk
([

1 + q∗]Wk(y0)
)
< 0,

a contradiction. Hence q∗ = 0 and so W j(x) � W j(x) for all x ∈ R and j ∈ Z. �
In the sequel, we fix the constants ε0, l0 as above. Recall from the proof of Lemma 2.6 that there

exists M0(ε0, l0) > 0 such that

(1 − q)U j(t + 2l0q) � U j(t) � (1 + q)U j(t − 2l0q) ∀ j − ct � −M0, (3.5)

for all q ∈ (0, ε0].

Proof of Theorem 1.2. By (1.8), we have

lim
j−ct→∞

U j(t + 1)

U j(t)
= lim

j−ct→∞

{
U j(t + 1)

e−λ( j−c(t+1))v j
· e−λ( j−ct)v j

U j(t)
· eλc

}
= eλc > 1.

Hence there exists x1 such that U j(t + 1) > U j(t) if j − ct � x1. Since lim j−ct→−∞ U j(t) = 1, we can
find x2 � 1 such that

U j(t) � 1/(1 + ε0) ∀ j − ct � −x2.

It follows that

U j(t) � 1 � (1 + ε0)U j(t) ∀ j − ct � −x2.

Since

η := max
{

W j(x)
∣∣ x ∈ [−x2, x1], j ∈ Z

} ∈ (0,1)

and W j(−∞) = 1, there exists x3 � 1 such that

W j(x) � η ∀x � −x3, j ∈ Z.

Set t̂ := (x1 + x3)/c. Then, for x = j − ct ∈ [−x2, x1], we have

U j(t + t̂) = W j
(

j − c(t + t̂)
) = W j(x − x1 − x3) � η � W j(x) = U j(t).

Choosing T := 1 + t̂ + l0ε0 and using the monotonicity of wave profile, we conclude that

(1 + ε0)U j(t + T − l0ε0) � U j(t) ∀t ∈ R, j ∈ Z.

It then follows from Lemma 3.1 that U j(t + T ) � U j(t) for all j ∈ Z and t ∈ R.
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Now we set

ξ∗ := inf
{

h > 0
∣∣ U j(t + h) � U j(t) ∀ j ∈ Z, t ∈ R

}
.

Claim that ξ∗ = 0. If not, then ξ∗ > 0 and we have U j(t + ξ∗) � U j(t). By (1.8) again, we have

lim
j−ct→∞

U j(t + ξ∗/2)

U j(t)
= lim

j−ct→∞

{
U j(t + ξ∗/2)

e−λ( j−c(t+ξ∗/2))v j
· e−λ( j−ct)v j

U j(t)
· eλcξ∗/2

}
= eλcξ∗/2 > 1.

Hence there exists x4 such that

U j
(
t + ξ∗/2

)
� U j(t) ∀ j − ct � x4. (3.6)

Moreover from (3.5) for any q ∈ (0, ε0],

(1 + q)U j
(
t + ξ∗ − 2l0q

)
� U j

(
t + ξ∗) � U j(t) ∀ j − ct � −M := −M0 + cξ∗. (3.7)

Note that U j(t + ξ∗) > U j(t) for j − ct � x4, by (3.6) and the monotonicity of U . It follows from the
strong comparison principle that U j(t + ξ∗) > U j(t) for all ( j, t) ∈ Z×R. Hence, by continuity, we can
find ε ∈ (0,min{ε0, ξ

∗/(4l0)}) such that

U j
(
t + ξ∗ − 2l0ε

)
� U j(t) ∀ j − ct ∈ [−M, x4]. (3.8)

Combining (3.6), (3.7) and (3.8), we have

(1 + ε)U j
(
t + ξ∗ − 2l0ε

)
� U j(t)

for all ( j, t) ∈ Z × R. Using Lemma 3.1, we obtain that

U j
(
t + ξ∗ − l0ε

)
� U j(t)

for all ( j, t) ∈ Z × R. This contradicts the definition of ξ∗ . Hence ξ∗ = 0 and U j(t) � U j(t) for all
( j, t) ∈ Z × R.

Interchanging the role of U and U , we obtain that U j(t) � U j(t) for all ( j, t) ∈ Z×R. Hence U = U .
The proof is completed. �
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