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Abstract

We extend the classical maximal principle of Alexandrov, to very weak solutions of the elliptic equation∑n
i,j=1 aij (x) ∂2u

∂xi∂xj
= f .
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1. Introduction

We consider elliptic second-order partial differential operators of the form

Lu =
n∑

i,j=1

aij (x)
∂2u

∂xi∂xj

, (1.1)

where the measurable coefficients aij = aji are defined on a bounded C1-smooth domain
Ω ⊂Rn. Let the equation

Lu = f (1.2)

be satisfied almost everywhere in Ω for some function f .
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The operator L is elliptic in Ω if the coefficient matrix A (x) = [aij (x)] is positive in Ω .
Precisely, if λ(x),Λ(x) denote the smallest and the largest eigenvalues of A (x) then

0 < λ(x)|ξ |2 � aij (x)ξiξj � Λ(x)|ξ |2

for all ξ = (ξ1, . . . , ξn) ∈ Rn. If K(x) = Λ(x)/λ(x) is bounded in Ω , we refer to the operator L

as uniformly elliptic in Ω , see [6].

We abbreviate ∂2u
∂xi∂xj

to uij and write

Lu = Tr
[
A (x)D2u

]
where D2u is the Hessian matrix

D2u =
[

u11 . . . u1n

. . .

un1 . . . unn

]
.

The Sobolev class W 2,n
loc (Ω) is considered the natural domain of definition of the operator L see

[16] and [20]. For in this class the determinant of the Hessian matrix is locally integrable,

H u = detD2u ∈ L 1
loc(Ω). (1.3)

Observing that condition (1.3) is less restrictive than u ∈ W 2,n
loc (Ω) we are interested in studying

the operator L in weaker domains of definition than that in W 2,n
loc (Ω).

We will let D denote the determinant of A . Thus D
1
n is the geometric mean of the eigenvalues

of A ,

0 < λ(x) � D
1
n (x) � Λ(x).

The classical maximum principle of Alexandrov [3] reads as:

Theorem 1.1. Let Ω be a bounded domain and u ∈ C(Ω) ∩ W 2,n
loc (Ω). Then

sup
Ω

u � sup
∂Ω

u+ + C
∥∥Lu/D1/n

∥∥
L n(Ω)

(1.4)

where u+ = max{0, u} and C is a constant that depends on n and diamΩ .

Numerous papers have been devoted to this estimate. In particular, Alexandrov [4] and Pucci
[16] proved that, without any restriction on the ellipticity constant, it is not possible to replace
the L n(Ω)-norm of Lu by some L p(Ω)-norm, p < n.

However, at least in the plane, if one fixes the ellipticity constant K = ess supx∈Ω K(x) there
is a positive ε depending on K such that one can obtain estimates in L p(Ω) for all p > 2 − ε.
The sharp range of values for p for which an estimate of the form (1.4) holds has been conjec-
tured by Pucci [17] and proved by Astala, Iwaniec and Martin in [5].
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In the present paper, we relax the assumption u ∈ W 2,n
loc (Ω) and obtain several results for such

solutions which we refer to very weak solutions.
First we extend the maximum principle (1.4) to very weak solutions which are concave, i.e.

solutions whose Hessian matrix is nonpositive on Ω .
Let W 2,Θ(Ω) denote the Orlicz–Sobolev space, Θ(t) = tn

log
1
n (e+t)

, of functions whose second

order derivatives satisfy

∫
Ω

|D2u|n
log

1
n (e + |D2u|)

< ∞.

Theorem 1.2. For any concave function u ∈ W 2,Θ(Ω) ∩ C(Ω) we have

sup
Ω

u � sup
∂Ω

u+ + C
∥∥Lu/D1/n

∥∥
L n(Ω)

(1.5)

where C is a constant depending only on n and diamΩ .

Then, we deal with the case where the coefficient matrix A (x) verifies an exponential inte-
grability condition

∫
Ω

exp

( |A |n
D

)
dx < ∞. (1.6)

This additional assumption on the coefficients allows us to consider solutions in somewhat
weaker class than W 2,n

loc (Ω); namely, satisfying the following condition

lim
ε→0

εn

∫
Ω

∣∣D2u
∣∣(1−ε)n log

(
e + ∣∣D2u

∣∣) = 0. (1.7)

Theorem 1.3. Under the assumption (1.6) the estimate (1.4) remains true for any function u ∈
C(Ω) ∩ W 2,1(Ω) satisfying (1.7).

Finally, we consider the uniformly elliptic case. In this case we obtain the estimate (1.4) for
solutions u in the Grand–Sobolev spaces W 2,n)(Ω) ⊃ W 2,n(Ω) (see Section 2 for definitions
and basic properties of this space). Precisely,

Theorem 1.4. Let L be uniformly elliptic and u ∈ C(Ω) ∩ W 2,n)(Ω). Then (1.4) holds.

The paper is organized as follows: first we set up some notation and terminology concerning
Orlicz spaces, and other function spaces. Next we discuss Hodge decomposition of matrix fields.
Finally, in Section 6 the case L uniformly elliptic is treated.
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2. Notations and preliminary results

In this section we recall some basic properties of the Orlicz–Zygmund spaces and their duals.
The results we will state are well known, for the proofs we refer to [9,10,18].

An Orlicz function is a continuously increasing function

Φ : [0,∞) → [0,∞),

Φ(0) = 0, lim
t→∞Φ(t) = ∞,

though in most of our applications Φ will be convex and in this case we call it a Young function.
Let Ω be a C1-smooth domain. The Orlicz space, denoted by L Φ(Ω), consists of all mea-

surable functions f on Ω such that∫
Ω

Φ
(
k−1|f |) < ∞, for some k = k(f ) > 0.

L Φ(Ω) is a complete linear metric space with respect to the following distance function:

distΦ(f,g) = inf

{
k > 0:

∫
Ω

Φ
(
k−1|f − g|) � 1

}
.

There is also a homogeneous nonlinear functional on L Φ(Ω) called the Luxemburg functional:

‖f ‖L Φ = ‖f ‖Φ = inf

{
k > 0;

∫
Ω

Φ
(
k−1|f |) � Φ(1)

}
(2.1)

in the case when Φ is a Young function, the expression ‖ ‖Φ is a norm and L Φ(Ω) becomes a
Banach space.

The Zygmund spaces, denoted by L p logα L (Ω), correspond to the Orlicz functions Φ(t) =
tp logα(a + t) with 1 � p < ∞; α ∈R.

The defining function Φ(t) = tp logα(e + t), 1 � p < ∞ is a Young function when α � 1 −p

and we have the following estimates

‖f ‖L p log−1 L � ‖f ‖p � ‖f ‖L p log L

and

‖f ‖L p log L �
[∫

|f |p log

(
e + |f |

‖f ‖p

)] 1
p

� 2‖f ‖L p log L . (2.2)

For p � 1 and α � 0 the nonlinear functional

[[f ]]p,α =
[∫

Ω

|f |p logα

(
e + |f |

‖f ‖p

)] 1
p

is comparable with the Luxemburg norm, given at (2.1).
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The following estimates are straightforward

‖f ‖L p log−1 L � ‖f ‖L p � ‖f ‖L p logα L � [[f ]]p,α � 2‖f ‖L p logα L

for α > 0. We have the Hölder-type inequalities

‖fg‖L c logγ L � Cαβ(a, b)‖f ‖L a logα L · ‖g‖L b logβ L

whenever a, b > 1 and α,β ∈ R are coupled by the relationships

1

c
= 1

a
+ 1

b
,

γ

c
= α

a
+ β

b
.

Proposition 2.1. For any α > 0 and p � 1,

c(α,p)‖f ‖α
L αp log L �

∥∥|f |α∥∥
L p log L � C(α,p)‖f ‖α

L αp log L .

Proof. By the obvious inequality

c(γ ) log(e + t) � log
(
e + tγ

)
� C(γ ) log(e + t) ∀γ, t > 0, (2.3)

and by (2.2) we have

∥∥|f |α∥∥p

L p log L �
∫
Ω

|f |αp log

(
e + |f |α

‖|f |α‖p

)

� c(α)

∫
Ω

|f |αp log

(
e + |f |

‖f ‖αp

)

� c(α,p)‖f ‖αp

L αp log L .

On the other hand, using again (2.3) we have

‖f ‖αp

L αp log L �
∫
Ω

|f |αp log

(
e + |f |

‖f ‖αp

)

� c(α,p)

∫
Ω

|f |αp log

(
e +

( |f |
‖f ‖αp

)α)

� c(α,p)
∥∥|f |α∥∥p

L p log L . �
A pair of Orlicz function (Φ,Ψ ) are called Hölder conjugate couple, or Young complementary

functions, if we have Hölder’s inequality

∣∣∣∣
∫

fg

∣∣∣∣ � CΦΨ ‖f ‖Φ‖g‖Ψ
Ω
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for f ∈ L Φ(Ω) and g ∈ L Ψ (Ω). Our basic example is the Hölder conjugate couple Φ(t) =
t log(e + t) and Ψ (t) = et − 1 which define the Zygmund and exponential classes. In this case
we have the estimate

∣∣∣∣
∫
Ω

fg

∣∣∣∣ � 4‖f ‖L log L ‖g‖Exp.

Thus Exp(Ω) is the dual space to the Zygmund space L logL (Ω).
The Orlicz–Sobolev space W k,Φ(Ω), k ∈ N is the space of all functions u such that u and

its distributional derivatives up to order k lie in L Φ(Ω). Note that W 1,Φ(Ω) is a Banach space
equipped with the norm

‖u‖W 1,Φ (Ω) = ‖u‖L Φ(Ω) + ‖∇u‖L Φ(Ω).

Also W 2,Φ(Ω) is a Banach space equipped with the norm

‖u‖W 2,Φ(Ω) = ‖u‖L Φ(Ω) + ∥∥D2u
∥∥

L Φ(Ω)

where D2u denotes the Hessian matrix of u.
Here we confine ourselves to the essential matters and refer to [1,10,23] for further informa-

tions on Orlicz–Sobolev spaces.
Let Ω be any measurable set of finite positive measure |Ω| < ∞, and f an integrable function,

the notation fΩ = −
∫

Ω
f (x)dx stands for the integral mean of f over Ω .

The class L q)(Ω). For q � 1, following [12] and [13], we recall the class L q)(Ω) of all mea-
surable functions h : Ω →R such that

sup
0<ε�q

ε

∫
Ω

∣∣h(x)
∣∣q−ε

dx < ∞.

If q > 1, then L q)(Ω) becomes a Banach space with the norm

‖h‖q) = sup
0<ε�q−1

{
ε −
∫
Ω

∣∣h(x)
∣∣q−ε

dx

} 1
q−ε

.

Clearly L q)(Ω) ⊂ ⋂
1�p<q L p(Ω), for q > 1. For a measurable function h on Ω we shall

also consider the quantity:

(h)q = lim sup
ε→0+

{
ε −
∫
Ω

∣∣h(x)
∣∣q−ε

dx

} 1
q−ε

.

Hence h ∈ L q)(Ω) if and only if (h)q < ∞.
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The class Σq(Ω). Let q � 1. By Σq(Ω) we denote the subclass of L q)(Ω) consisting of all
functions h such that (h)q = 0; i.e.,

h ∈ Σq(Ω) ⇐⇒ lim
ε→0+ ε

∫
Ω

|h|q−ε dx = 0.

The class Σq(Ω) was introduced by L. Greco in [7] where many properties of this class are stud-
ied. In particular the following relations between Σq(Ω) and the classes of functions introduced
above are established.

Theorem 2.2. (See [7].) For any q � 1 the following inclusions hold

L q(Ω) �
L q

logL
(Ω) � Σq(Ω) � L q)(Ω) �

⋂
β>1

L q

logβ L
(Ω). (2.4)

Moreover, Σq(Ω) is a closed subspace of L q)(Ω), provided q > 1.

Our next purpose is to introduce another class of function, denoted by Σ
q
α (Ω) and establish

some relations.

The class Σ
q
α (Ω). Let q � 1, 0 < α � 1. Σ

q
α (Ω) is the subclass of L q)(Ω) consisting of all

functions h such that

h ∈ Σq
α (Ω) ⇐⇒ lim

ε→0+ εα

∫
Ω

|h|(1−ε)qdx = 0.

Clearly if α = 1 we obtain exactly the space Σq(Ω).

Theorem 2.3. The following inclusion L q

logα L (Ω) ⊂ Σ
q
α (Ω) holds, for any q � 1.

Proof. Let h ∈ L q

logα L (Ω). We may assume that h � 1 by considering max{|h|,1} if necessary.
Then by the elementary inequality (e + t)ε < e + tε (0 < ε < 1, t � 0) we obtain

εαh(1−ε)q = hq

logα(e + h)
· logα[(e + h)ε]

hqε

� hq

logα(e + h)
· logα(e + hε)

hqε

�
[

sup
t�1

log(e + t)

t

]q

· hq

logα(e + h)

= [
log(e + 1)

]q hq

logα(e + h)
.

Therefore, since h
logα(e+h)

is integrable and εαh(1−ε)q → 0 almost everywhere as ε → 0, by
the Dominated Convergence Theorem, the desired inclusion follows. �
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Corollary 2.4. Let Θ(t) = tq

log
1
q (e+t)

, q � 1, and let u ∈ W 2,Θ(Ω). Then

lim
ε→0

ε
1
q

∫
Ω

∣∣D2u
∣∣(1−ε)q = 0.

We will conclude this section by recalling the following particular case of a result due to
T. Iwaniec and C. Sbordone (see Proposition 1 in [12]). It will be a key tool to our proof of
Theorem 4.2.

Theorem 2.5. (See [12].) Let 1 � r1 < r < r2 < ∞ and let

T : L p
(
Ω,Rn×n

sym

) → L p
(
Ω,Rn×n

sym

)
(2.5)

be a bounded linear operator for any p ∈ [r1, r2]. Then, for any 1 − r
r1

� ε � 1 − r
r2

and any

V ∈ L r (Ω,Rn×n
sym ) such that T (V ) = 0 it holds

∥∥T
(|V |−εV

)∥∥
r

1−ε
� Cr |ε|‖V ‖1−ε

r (2.6)

where

Cr = 2r(r2 − r1)

(r − r1)(r2 − r)
sup

r1�p�r2

‖T ‖p.

Here ‖T ‖p denotes the norm of the operator (2.5).

Remark 2.6. Under suitable condition on Φ , the estimate (2.6) has counterparts in Orlicz
space L Φ , namely

∥∥T
(|V |−εV

)∥∥
Φ

� CΦ |ε|∥∥|V |−εV
∥∥

Φ
. (2.7)

3. Hodge decomposition

For any matrix field V = [V ij ]ni,j=1 we define

DIV(V ) =
n∑

i,j=1

∂2

∂xi∂xj

V ij .

If V = [V ij ] belongs to L p(Ω,Rn×n
sym ), 1 < p < ∞, the bi-Laplacian equation

��v = DIV(V )

can be solved by using the Riesz transforms R = (R1, . . . ,Rn),

D2v = (R ⊗ R)
[〈R ⊗ R|V 〉] =: RV
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where R ⊗ R = [Ri ◦ Rj ]i,j=1,...,n, i.e.

vxkxl
= Rk

(
Rl

(
n∑

ij=1

Ri

(
RjV

ij
)))

, k, l = 1, . . . , n.

Hence the Hodge decomposition of V reads as

V = D2v + H

where v is a W 2,p(Rn) function and H = [Hij ] is a symmetric matrix field verifying

n∑
i,j=1

∂2Hij

∂xi∂xj

= 0. (3.1)

Notice that

R : L p
(
Rn,Rn×n

) → L p
(
Rn,Rn×n

)
and the range of the operator

T = Id − R : L p
(
Rn,Rn×n

) → L p
(
Rn,Rn×n

)
consists of the matrix fields satisfying (3.1).

In other words,

V = RV + T V.

Moreover, from the L p-boundedness of the Riesz transforms it follows that

‖RV ‖p + ‖T V ‖p � C(p)‖V ‖p (3.2)

where C(p) is a positive constant depending only upon p (see [11] for the independence of the
constant C of the dimension n).

Now, let Ω be a subdomain of Rn. In view of the Hodge decomposition of a matrix field
V ∈ L p(Ω,Rn×n

sym ) we consider the inhomogeneous problem

⎧⎪⎨
⎪⎩

��v = f ∈ W −2,p(Ω),

v = 0 on ∂Ω,
∂v
∂−→n = 0 on ∂Ω.

(3.3)

When Ω is smooth, problem (3.3) admits a unique solution v ∈ W 2,p(Ω) (see for example [2,
14,15,21,22]). If f has a divergence form, say f = DIV(V ), with V = [V ij ] ∈ C∞

0 (Ω,Rn×n
sym ),

then the solution of the system (3.3) takes the form

RΩ(V ) := D2v. (3.4)
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Denote by H p(Ω,Rn×n
sym ) the closure of the range of the Hessian operator

D2 : C∞
0 (Ω) → L p

(
Ω,Rn×n

sym

)
,

1 < p < ∞. If Ω is smooth then RΩ has a continuous extension to all L p(Ω,Rn×n
sym ) spaces,

and so (3.4) extends to all V ∈ L p(Ω,Rn×n
sym ) and gives a solution v of the problem (3.3) with

D2v ∈ H p(Ω,Rn×n
sym ), 1 < p < ∞.

Definition 3.1. A subdomain Ω in Rn is said to be regular if the linear operator RΩ is continuous
in L p(Ω,Rn×n

sym ), for every p ∈ ]1,∞[.

Any C1 bounded domain is regular (see [2], Theorem 2.1).
Now, let Ω be a regular domain and let us introduce the operator

TΩ = Id − RΩ : L p
(
Ω,Rn×n

sym

) → L p
(
Ω,Rn×n

sym

)
. (3.5)

The range of this operator consists of matrix fields on Ω which satisfy (3.1). Hence we obtain
(as before) the Hodge decomposition of a matrix field V ∈ L p(Ω,Rn×n

sym ):

V = D2v + H, DIV(H) = 0, D2v ∈ H p
(
Ω,Rn×n

sym

)
together with the uniform estimate

∥∥D2v
∥∥

p,Ω
+ ‖H‖p,Ω � C(p,Ω)‖V ‖p,Ω

Since for any u ∈ W 2,p(Ω) it holds TΩ(D2u) = 0, by Theorem 2.5 with T = TΩ , we conclude
with the inequality

∥∥TΩ

(∣∣D2u
∣∣−ε

D2u
)∥∥

p
1−ε

� Cp|ε|∥∥D2u
∥∥1−ε

p
. (3.6)

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2 in slightly more general assumption on D2u (see Theo-
rem 4.2 below). One of the key ingredients in our proof is Lemma 9.2 in [6].

This lemma depends upon the notion of contact set. If u is an arbitrary continuous function
on Ω , the upper contact set of u, denoted Γ + or Γ +

u , is the subset of Ω where the graph of u

lies below a support hyperplane in Rn+1, that is,

Γ + = {
y ∈ Ω

∣∣ u(x) � u(y) + p · (x − y) for all x ∈ Ω, for some p = p(y) ∈Rn
}
.

Clearly, u is a concave function in Ω if and only if Γ +
u = Ω .
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Lemma 4.1. (See [6], Lemma 9.2.) For any u ∈ C2(Ω) ∩ C(Ω) we have

sup
Ω

u � sup
∂Ω

u+ + d

ω
1/n
n

( ∫
Γ +

∣∣detD2u
∣∣)1/n

(4.1)

where d = diamΩ and ωn denotes the measure of the unit sphere ∂B(0,1) of Rn.

In this paper, using Lemma 4.1, we shall prove the following

Theorem 4.2. Let u ∈ C(Ω)∩W 2,1(Ω) be a concave function (i.e. −D2u � 0) such that |D2u| ∈
Σn

1
n

(Ω). Then

sup
Ω

u � sup
∂Ω

u+ + d

ω
1/n
n

∥∥∥∥ Lu

D1/n

∥∥∥∥
L n(Ω)

. (4.2)

Proof. Let u ∈ C(Ω) ∩ W 2,1(Ω) be a concave function such that |D2u| ∈ Σn
1
n

(Ω), i.e.

lim
ε→0

ε
1
n

∫
Ω

∣∣D2u
∣∣(1−ε)n = 0 (4.3)

and let 0 < ε � 1. Obviously,

〈
A (x)

∣∣ D2u
〉 = n∑

i,j=1

aij (x)uxixj
= Lu (4.4)

in Ω ⊂Rn. Multiplying (4.4) by |D2u|−ε we obtain

〈
A (x)

∣∣ ∣∣D2u
∣∣−ε

D2u
〉 = ∣∣D2u

∣∣−ε
Lu. (4.5)

Since by (4.3) |D2u| ∈ L (1−ε)n(Ω), then |D2u|−εD2u belongs to L n(Ω). Hence, we can
consider (see Section 3) the Hodge decomposition:

∣∣D2u
∣∣−ε

D2u = D2vε + Hε (4.6)

where vε ∈ W 2,n(Ω).
Moreover, using the same notation as in Section 3,

D2vε = R
(∣∣D2u

∣∣−ε
D2u

)
,

and

Hε = TΩ

(∣∣D2u
∣∣−ε

D2u
)
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by (3.6) we have

‖Hε‖n � Cnε · ∥∥∣∣D2u
∣∣−ε

D2u
∥∥

n
. (4.7)

By (4.6), Eq. (4.5) becomes

〈
A (x)

∣∣D2vε

〉 + 〈
A (x)

∣∣Hε

〉 = ∣∣D2u
∣∣−ε

Lu.

Let now Ω ′ ⊂⊂ Ω , applying Lemma 4.1 to vε ∈ W 2,n(Ω), we obtain

sup
Ω ′

vε � sup
∂Ω ′

v+
ε + d

ω
1/n
n

(∫
Ω ′

∣∣detD2vε

∣∣) 1
n

(4.8)

where d = diamΩ ′. Let ε → 0, our aim is to show that

sup
Ω ′

u � sup
∂Ω ′

u+ + d

ω
1/n
n

(∫
Ω ′

∣∣detD2u
∣∣) 1

n

. (4.9)

Indeed, for any matrix M ∈Rn×n, let |M| the usual Euclidean norm of M . We have the following
inequality

det(A + B) � |detA| + Cn

n−1∑
k=1

|A|k|B|n−k + |detB|, (4.10)

for A,B ∈ Rn×n. Then by Young inequality

|A|k|B|n−k � k

n
ε

1
n |A|n + n − k

n
ε
− k

n(n−k) |B|n, k = 1, . . . , n − 1. (4.11)

Combining (4.6) and (4.8) this yields

sup
Ω ′

vε � sup
∂Ω ′

v+
ε + d ′

ω
1/n
n

∫
Ω ′

(∣∣det
(∣∣D2u

∣∣−ε
D2u − Hε

)∣∣) 1
n . (4.12)

We apply (4.10) and (4.11) with A = Aε = |D2u|−εD2u and B = Bε = −Hε by (4.10) and
(4.11) to obtain

sup
Ω ′

vε � sup
∂Ω ′

v+
ε + d ′

ω
1/n
n

( ∫
Ω ′

|detA| + Cn

n−1∑
k=1

|A|k|B|n−k + |detB|
) 1

n

� sup
∂Ω ′

v+
ε + d ′

ω
1/n
n

(∫
′
|detA|

) 1
n + C(n,d)

[(
ε

1
n

n−1∑
k=1

k

n

∫
′
|A|n

) 1
n

Ω Ω
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+ ε
− n−1

n2

(∫
Ω ′

|B|n
) 1

n +
(∫

Ω ′
|detB|

) 1
n

]

= sup
∂Ω ′

v+
ε + d ′

ω
1/n
n

(∫
Ω ′

|detA|
) 1

n + C(n,d)[J1 + J2 + J3], (4.13)

where the terms J1, J2 and J3 stands for the integrals between rectangular brackets, respectively.
Next, we estimate the quantities J1, J2 and J3. First observe that

|detB| � cn|Hε|n,

so by (4.7), we have

J1 � C(n)

(
ε

1
n

∫
Ω

∣∣D2u
∣∣(1−ε)n

) 1
n

,

J2 � C(n)ε
1− n−1

n2

(∫
Ω

∣∣D2u
∣∣(1−ε)n

) 1
n

,

J3 � C(n)

(∫
Ω

|Hε|n
) 1

n

� C(n)ε

(∫
Ω

∣∣D2u
∣∣(1−ε)n

) 1
n

.

Corollary 2.4 shows that

J1, J2, J3 → 0, as ε → 0. (4.14)

Let us consider

∫
Ω ′

|detA| =
∫
Ω ′

∣∣det
∣∣D2u

∣∣−ε
D2u

∣∣

�
∫
Ω ′

∣∣D2u
∣∣−nε∣∣detD2u

∣∣

=
∫

Ω ′∩{|D2u|�1}

∣∣D2u
∣∣−nε∣∣detD2u

∣∣ +
∫

Ω ′∩{|D2u|<1}

∣∣D2u
∣∣−nε∣∣detD2u

∣∣

�
∫

Ω ′∩{|D2u|�1}

∣∣detD2u
∣∣ +

∫
Ω ′∩{|D2u|<1}

cn

∣∣D2u
∣∣n(1−ε)

.

Since
∫ |detD2u| < ∞ (otherwise estimate (4.9) is obvious), we can apply the Dominated Con-

vergence Theorem to deduce that
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(∫
Ω ′

|detA|
) 1

n →
(∫

Ω ′

∣∣detD2u
∣∣) 1

n

as ε → 0.

Observe that

vε → u
(
uniformly in Ω ′), (4.15)

then letting ε → 0 in (4.13), we obtain (4.9).
Estimate (1.4) follows, by the following lemma.

Lemma 4.3. Let u ∈ C(Ω) ∩ W 2,1(Ω) be concave. Then

∣∣detD2u
∣∣ � (Lu)n

nnD
.

Proof. The above estimate is immediate from the following matrix inequality:

detM detN �
(

traceMN

n

)n

, M,N symmetric � 0. (4.16)

Indeed, taking M = −D2u and N = [aij ] we have

∣∣detD2u
∣∣ = det

(−D2u
)
� 1

D

(
Tr[A (x)D2u]

n

)n

=
(

Lu

nD
1
n

)n

. �
Combining Lemma 4.3 with (4.9) the thesis (1.5) follows. �

5. Proof of Theorem 1.3

Proof of Theorem 1.3. Let u ∈ C(Ω) ∩ W 2,1(Ω) verifying (1.7) and let 0 < ε � 1. Using the
Hodge decomposition in L n logL (see Remark 2.6 and [8]) we write

∣∣D2u
∣∣−ε

D2u = D2vε + Hε

where D2vε ∈ L n logL (Ω) and

‖Hε‖L n log L � Cnε · ∥∥∣∣D2u
∣∣−ε

D2u
∥∥

L n log L . (5.1)

Using again Lemma 4.1 we have

sup
Ω ′

vε � sup
∂Ω ′

v+
ε + d

ω
1/n
n

( ∫
+

∣∣detD2vε

∣∣) 1
n

(5.2)
Γε
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Now, via the matrix inequality (4.16) taking M = −D2vε and N = [aij ], we have on Γ +
ε

∣∣detD2vε

∣∣ � 1

D

(
Tr[A (x)D2vε]

n

)n

. (5.3)

Hence, combining (5.2) and (5.3) we have

sup
Ω ′

vε � sup
∂Ω ′

v+
ε + d

ω
1/n
n

( ∫
Γ +

ε

1

D

(
Tr[A (x)D2vε]

n

)n) 1
n

� sup
∂Ω ′

v+
ε + d

nω
1/n
n

( ∫
Γ +

ε

1

D

(
Tr

[
A (x)

∣∣D2u
∣∣−ε

D2u
] − Tr

[
A (x)Hε(x)

])n
) 1

n

� sup
∂Ω ′

v+
ε + c(n)d

nω
1/n
n

(∫
Ω ′

1

D

∣∣D2u
∣∣−εn|Lu|n

) 1
n

+ c(n,Ω)

(∫
Ω ′

1

D

∣∣A (x)
∣∣n|Hε|n

) 1
n

. (5.4)

It remains to prove that the second integral in the last inequality goes to zero as ε → 0. By the
duality pairing between the spaces Exp(Ω ′) and the Zygmund space L logL (Ω ′) we have

∫
Ω ′

1

D

∣∣A (x)
∣∣n|Hε|n �

∥∥∥∥A (x)n

D

∥∥∥∥
Exp(Ω ′)

· ∥∥|Hε|n
∥∥

L log L (Ω ′). (5.5)

Moreover, by (5.1) and Proposition 2.1 it holds

∥∥|Hε|n
∥∥

L log L � c(n)εn
∥∥D2u

∥∥(1−ε)n

L (1−ε)n log L . (5.6)

Hence, combining (5.5) (5.6), (1.6) and (1.7) we obtain

(∫
Ω ′

1

D

∣∣A (x)
∣∣n|Hε|n

) 1
n → 0 as ε → 0. (5.7)

Finally we observe that

∫
Ω ′

1

D

∣∣D2u
∣∣−εn|Lu|n �

∫
Ω ′∩{|D2u|�1}

|Lu|n
D

+
∫

Ω ′∩{|D2u|<1}

∣∣D2u
∣∣−εn |Lu|n

D

=
∫

′ 2

|Lu|n
D

+
∫

′ 2

|〈A (x)|D2u|D2u|−ε〉|n
D

.

Ω ∩{|D u|�1} Ω ∩{|D u|<1}
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Then, since

|〈A (x)|D2u|D2u|−ε〉|n
D

� |A |n
D

∣∣D2u
∣∣(1−ε)n

,

we can apply the Dominated Convergence Theorem to conclude

(∫
Ω ′

1

D

∣∣D2u
∣∣−εn|Lu|n

) 1
n →

(∫
Ω ′

1

D
|Lu|n

) 1
n

as ε → 0. (5.8)

Combining (5.4), (5.7) and (5.8) we arrive at the desired inequality. �
We conclude this section by observing that in dimension n = 2, under assumption (1.6) a con-

tinuity result is obtained in [19].

6. The uniformly elliptic case

Proof of Theorem 1.4. Let u ∈ C(Ω) ∩ W 2,n)(Ω). Using the same arguments of the proof of
Theorem 4.2, we obtain

〈
A (x)

∣∣ ∣∣D2u
∣∣−ε

D2u
〉 = ∣∣D2u

∣∣−ε
Lu. (6.1)

Then, we consider the Hodge decomposition

∣∣D2u
∣∣−ε

D2u = D2vε + Hε (6.2)

where vε ∈ W 2,n(Ω) and

‖Hε‖n � Cnε
∥∥∣∣D2u

∣∣−ε
D2u

∥∥
n
. (6.3)

By (6.2), Eq. (6.1) takes the form

〈
A (x)

∣∣ D2vε

〉 = ∣∣D2u
∣∣−ε

Lu − 〈
A (x)

∣∣ Hε

〉
.

Applying Theorem 1.1 to vε we obtain, for any Ω ′ ⊂⊂ Ω ,

sup
Ω ′

vε � sup
∂Ω ′

v+
ε + d ′

ω
1/n
n

(∫
Ω ′

||D2u|−εLu − 〈A (x)|Hε〉|n
D

) 1
n

� sup
∂Ω ′

v+
ε + cn

d ′

ω
1/n
n

[(∫
Ω ′

||D2u|−εLu|n
D

) 1
n +

(∫
Ω ′

|〈A (x)|Hε〉|n
D

) 1
n
]

(6.4)

where d ′ = diamΩ ′.
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We are going to prove that

[(∫
Ω ′

||D2u|−εLu|n
D

) 1
n +

(∫
Ω ′

|〈A (x)|Hε〉|n
D

) 1
n
]

−→
(∫

Ω ′

|Lu|n
D

) 1
n

, (6.5)

as ε → 0. To this aim, let us preliminary observe that by the Schwarz inequality it holds∫
Ω ′

〈A (x)|Hε〉|n
D

�
∫
Ω ′

|A |n|Hε|n
D

� cn

∫
Ω ′

Λn(x)

λn(x)
|Hε|n. (6.6)

By assumption K = Λ(x)
λ(x)

∈ L ∞ and by (6.3)

(∫
Ω ′

|〈A (x)|Hε〉|n
D

) 1
n

� cn‖K‖∞‖Hε‖n

� cn‖K‖∞ε · ∥∥∣∣D2u
∣∣−ε

D2u
∥∥

n

� cn‖K‖∞ε1− 1
n

(
ε

∫
Ω ′

∣∣D2u
∣∣(1−ε)n

) 1
n

. (6.7)

As ε → 0, last expression tends to zero. On the other hand,

∫
Ω ′

||D2u|−εLu|n
D

=
∫

Ω ′∩{|D2u|�1}

||D2u|−εLu|n
D

+
∫

Ω ′∩{|D2u|<1}

||D2u|−εLu|n
D

�
∫

Ω ′∩{|D2u|�1}

|Lu|n
D

+
∫

Ω ′∩{|D2u|<1}

|〈A (x)|D2u|D2u|−ε〉|n
D

.

Note that in Ω ′ ∩ {|D2u| < 1} it holds

|〈A (x)|D2u|D2u|−ε〉|n
D

� |A |n|D2u|(1−ε)n

D

� cn

Λn(x)

λn(x)

∣∣D2u
∣∣(1−ε)n

� cnK
n(x).

Using the Dominated Convergence Theorem we obtain

(∫
Ω ′

||D2u|−εLu|n
D

) 1
n −→

(∫
Ω ′

|Lu|n
D

) 1
n

. (6.8)

Combining (6.7) and (6.8), (6.5) follows.
Letting ε → 0 in (6.4), thanks to (6.5) and (6.7) we complete the proof. �
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