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1. Introduction

Both random dispersal evolution equations (or reaction diffusion equations) and nonlocal dis-
persal evolution equations (or differential integral equations) are widely used to model diffusive 
systems in applied sciences. Random dispersal equations of the form{

∂tu(t, x) = �u(t, x) + F(t, x,u), x ∈ D,

Br,bu(t, x) = 0, x ∈ ∂D (x ∈ R
N if D =R

N),
(1.1)

are usually used to model diffusive systems which exhibit local internal interactions (i.e. the 
movements of organisms in the systems occur randomly between adjacent spatial locations) and 
have been extensively studied (see [1–3,6,19,20,24,29,32,42,46], etc.). In (1.1), the domain D
is either a bounded smooth domain in RN or D = R

N . When D is a bounded domain, either 
Br,bu = Br,Du := u (in such case, Br,Du = 0 on ∂D represents homogeneous Dirichlet bound-
ary condition), or Br,bu = Br,Nu := ∂u

∂n (in such case, Br,Nu = 0 on ∂D represents homogeneous 
Neumann boundary condition), and when D = R

N , it is assumed that F(t, x, u) is periodic 
in xj with period pj and Br,bu = Br,P u := u(t, x + pj ej) − u(t, x) with ej = (δ1j , δ2j , · · · , δNj )

(δij = 0 if i �= j and δij = 1 if i = j ) (in such case, Br,P u = 0 in RN represents periodic bound-
ary condition).

Many applied systems exhibit nonlocal internal interaction (i.e. the movements of organisms 
in the systems occur between non-adjacent spatial locations). Nonlocal dispersal evolution equa-
tions of the form{

∂tu(t, x) = ν
∫
D∪Db

k(y − x)[u(t, y) − u(t, x)]dy + F(t, x,u), x ∈ D̄,

Bn,bu(t, x) = 0, x ∈ Db if Db �= ∅,

(1.2)

are often used to model diffusive systems which exhibit nonlocal internal interactions and have 
been recently studied by many authors (see [4,7–9,12–14,18,21,26,28,30,31,44], etc.). In (1.2), 
D is either a smooth bounded domain of RN or D = R

N ; ν is the dispersal rate; the kernel 
function k(·) is a smooth and nonnegative function with compact support (the size of the support 
reflects the dispersal distance) and 

∫
RN k(z)dz = 1. When D is bounded, either Db = DD :=

R
N\D̄ and Bn,bu = Bn,D := u (in such case, u = 0 on RN\D̄ represents homogeneous Dirichlet 

type boundary condition), or Db = DN := ∅ (in such case, nonlocal diffusion takes place only 
in D̄ and hence DN = ∅ represents homogeneous Neumann type boundary condition); when D =
R

N , it is assumed that F(t, x + pj ej, u) = F(t, x, u), Db = DP := R
N , and Bn,bu = Bn,P u :=

u(t, x + pj ej) − u(t, x) (hence Bn,P u = 0 on RN represents periodic boundary condition).
Observe that (1.2) with Db = DD and Bn,bu = Bn,Du can be rewritten as

∂tu(t, x) = ν

⎡
⎣∫

D

k(y − x)u(t, y)dy − u(t, x)

⎤
⎦+ F(t, x,u), x ∈ D̄; (1.3)

that (1.2) with Db = DN reduces to

∂tu(t, x) = ν

∫
k(y − x)

[
u(t, y) − u(t, x)

]
dy + F(t, x,u), x ∈ D̄; (1.4)
D
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and that (1.2) with D = DP , F(t, x, u) being periodic in xj with period pj , and Bn,bu = Bn,P u

can be written as{
∂tu(t, x) = ν

∫
RN k(y − x)

[
u(t, y) − u(t, x)

]
dy + F(t, x,u), x ∈R

N,

u(t, x) = u(t, x + pj ej), x ∈R
N

(1.5)

(j = 1, 2, · · ·N).
A huge amount of research has been carried out toward various dynamical aspects of random 

dispersal evolution equations of the form (1.1). There are also many research works toward var-
ious dynamical aspects of nonlocal dispersal evolution equations of the form (1.2). It has been 
seen that random dispersal evolution equations with Dirichlet, or Neumann, or period boundary 
condition and nonlocal dispersal evolution equations with the corresponding boundary condition 
share many similar properties. For example, a comparison principle holds for both equations. 
There are also many differences between these two types of dispersal evolution equations. For 
example, solutions of random dispersal evolution equations have smoothness and certain com-
pactness properties, but solutions of nonlocal dispersal evolution equations do not have such 
properties. Nevertheless, it is expected that nonlocal dispersal evolution equations with Dirichlet, 
or Neumann, or periodic boundary condition and small dispersal distance possess similar dynam-
ical behaviors as those of random dispersal evolution equations with the corresponding boundary 
condition and that certain dynamics of random dispersal evolution equations with Dirichlet, or 
Neumann, or periodic boundary condition can be approximated by the dynamics of nonlocal 
dispersal evolution equations with the corresponding boundary condition and properly rescaled 
kernels. It is of great theoretical and practical importance to investigate whether such naturally 
expected properties actually hold or not.

The objective of the current paper is to investigate how the dynamics of random dispersal 
operators/equations can be approximated by those of nonlocal dispersal operators/equations from 
three different perspectives, that is, from initial–boundary value problem point of view, from 
spectral problem point of view, and from asymptotic behavior point of view. To this end, we 
assume that k(·) is of the form,

k(z) = kδ(z) := 1

δN
k0

(z

δ

)
(1.6)

for some k0(·) satisfying that k0(·) is a smooth, nonnegative, and symmetric (in the sense 
that k0(z) = k0(z

′) whenever |z| = |z′|) function supported on the unit ball B(0, 1) and ∫
RN k0(z)dz = 1, where δ(> 0) is called the dispersal distance. We also assume that

ν = νδ := C

δ2
, (1.7)

where C =
(

1
2

∫
RN k0(z)z

2
Ndz

)−1
. Throughout the rest of this paper, we will distinguish the three 

boundary conditions by i = 1, 2, 3. Let

X1 = X2 = {u(·) ∈ C(D̄,R)}
with ‖u‖Xi

= maxx∈D̄ |u(x)|(i = 1, 2),

X3 = {u ∈ C(RN,R)|u(x + pj ej) = u(x)},
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with ‖u‖X3 = maxx∈RN |u(x)|. Let

X+
i = {u ∈ Xi |u(x) ≥ 0}

(i = 1, 2, 3). For u1(x), u2(x) ∈ Xi , we define

u1 ≤ u2(u1 ≥ u2) if u2 − u1 ∈ X+
i (u1 − u2 ∈ X+

i )

(i = 1, 2, 3). Note that X1 = X2 and the introduction of X2 is for convenience.
First, we investigate the approximations of solutions to the initial–boundary value problem 

associated to (1.1), that is,

⎧⎨
⎩

∂tu(t, x) = �u + F(t, x,u), x ∈ D,

Br,b(t, x)u = 0, x ∈ ∂D (x ∈R
N if D =R

N),

u(s, x) = u0(x), x ∈ D̄

(1.8)

by solutions to the initial–boundary value problem associated to (1.2) with k(·) = kδ(·) and 
ν = νδ , that is,

⎧⎨
⎩

∂tu(t, x) = νδ

∫
D∪Db

kδ(y − x)[u(t, y) − u(t, x)]dy + F(t, x,u), x ∈ D̄,

Bn,bu(t, x) = 0, x ∈ Db if Db �= ∅,

u(s, x) = u0(x), x ∈ D̄,

(1.9)

where Br,b = Br,D (resp. Bn,b = Bn,D and Db = DD), or Br,b = Br,N (resp. Db = DN (= ∅)), 
or Br,b = Br,P (resp. Bn,b = Bn,P and Db = DP ). In the rest of this paper, we assume

(H0) D ⊂ R
N is either a bounded C2+α domain for some 0 < α < 1 or D = R

N ; kδ(·) is 
as in (1.6) and νδ is as in (1.7); F(t, x, u) is C1 in t ∈ R and C3 in (x, u) ∈ R

N × R, and 
when D = R

N , F is periodic in xj with period pj , that is, F(t, x + pj ej, u) = F(t, x, u) for 
j = 1, 2, · · · , N .

Note that, by general semigroup theory (see [22,35]), for any s ∈R and any u0 ∈ Xi ∩ C1(D̄)

with Br,bu0 = 0 on ∂D, (1.8) with b = D if i = 1, b = N if i = 2, and b = P if i = 3 has a unique 
(local) solution, denoted by ui(t, x; s, u0). Similarly, for any s ∈ R and any u0 ∈ Xi , (1.9) with 
b = D if i = 1, b = N if i = 2, and b = P if i = 3 has a unique (local) solution, denoted by 
uδ

i (t, x; s, u0).
Among others, we prove

Theorem A. Assume that for given 1 ≤ i ≤ 3, δ0 > 0, s ∈ R, T > 0, and u0 ∈ Xi ∩ C3(D̄) with 
Br,bu0 = 0 if D is bounded (b = D if i = 1 and b = N if i = 2), ui(t, x; s, u0) and uδ

i (t, x; s, u0)

exist on [s, s + T ] for all 0 < δ ≤ δ0. Assume also that sups≤t≤s+T ,x∈D̄,0<δ≤δ0
|ui(t, x; s, u0)| <

∞. Then,

lim
δ→0

sup
t∈[s,s+T ]

‖uδ
i (t, · ; s, u0) − ui(t, · ; s, u0)‖Xi

= 0.
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It should be pointed out that Theorem A is the basis for the study of approximations of various 
dynamics of random dispersal evolution equations by those of nonlocal dispersal evolution equa-
tions. It should also be pointed out that when F(t, x, u) ≡ 0 in (1.8) and (1.9), similar results to 
Theorem A have been proved in [10] and [11] for the Dirichlet and Neumann boundary condition 
cases, respectively.

Secondly, we investigate the principal eigenvalues of time periodic random dispersal eigen-
value problems of the form⎧⎨

⎩
−∂tu + �u + a(t, x)u = λu, x ∈ D,

Br,bu = 0, x ∈ ∂D (x ∈R
N if D =R

N),

u(t + T ,x) = u(t, x), x ∈ D,

(1.10)

and their nonlocal counterparts of the form

⎧⎨
⎩

−∂tu + νδ

∫
D∪Db

kδ(y − x)
[
u(t, y) − u(t, x)

]
dy + a(t, x)u = λu, x ∈ D̄,

Bn,bu = 0, x ∈ Db if Db �= ∅,

u(t + T ,x) = u(t, x), x ∈ D̄,

(1.11)

where a(t +T , x) = a(t, x), and when D =R
N , a(t +T , x+pj ej) = a(t, x) for j = 1, 2, · · · , N , 

and Br,b = Br,D (resp. Bn,b = Bn,D and Db = DD), or Br,b = Br,N (resp. Db = DN (= ∅)) or 
Br,b = Br,P (resp. Bn,b = Bn,P and Db = DP ). We assume that a(t, x) is a C1 function in 
(t, x) ∈ R ×R

N .
The eigenvalue problems of (1.10), in particular, their associated principal eigenvalue prob-

lems, are extensively studied and quite well understood (see [15–17,23,25,27,34,38], etc.). For 
example, with any one of the three boundary conditions, it is known that the largest real part, de-
noted by λr(a), of the spectrum set of (1.10) is an isolated algebraically simple eigenvalue with 
a positive eigenfunction, and for any other λ in the spectrum set of (1.10), Reλ ≤ λr(a) (λr(a) is 
called the principal eigenvalue of (1.10) in literature).

The eigenvalue problems (1.11) have also been studied recently by many authors (see [5,12,
27,36,38–41], etc.). Let λδ(a) be the largest real part of the spectrum set of (1.11) with any one 
of the three boundary conditions. λδ(a) is called the principal spectrum point of (1.11). λδ(a)

is also called the principal eigenvalue of (1.11), if it is an isolated algebraically simple eigen-
value with a positive eigenfunction (see Definition 3.1 for detail). Note that λδ(a) may not be 
an eigenvalue of (1.11) (see [12,39] for examples). Hence the principal eigenvalue of (1.11) may 
not exist. In [41], the authors of the current paper studied the dependence of principal spectrum 
points or principal eigenvalues (if exist) of nonlocal dispersal operators on underlying parame-
ters (δ, a(·), and ν) in a spatially heterogeneous but temporally homogeneous case. However, the 
understanding is still little to many interesting questions regarding the principal spectrum points 
or principal eigenvalues (if exist) of (1.11). In this paper, we show that the principal eigenvalue 
of (1.10) can be approximated by the principal spectrum point of (1.11). In fact, we show

Theorem B. limδ→0 λδ(a) = λr(a).

We remark that Theorem B is another basis for the study of approximations of various dynam-
ics of random dispersal evolution equations by those of nonlocal dispersal evolution equations. 
We also remark that some necessary and sufficient conditions are provided in [36] and [37] for 
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λδ(a) to be the principal eigenvalue of (1.11). Among other, it is proved in [36, Theorem A] and 
[37, Theorem 3.1] that λδ(a) is the principal eigenvalue of (1.11) if and only if

λδ(a) > max
x∈D̄

⎧⎨
⎩− C

δ2
+ 1

T

T∫
0

a(t, x)dt

⎫⎬
⎭ .

This together with Theorem B implies the following remark.

Remark 1.1. λδ(a) is the principal eigenvalue of (1.11), provided δ � 1.

Thirdly, we explore the asymptotic dynamics of the following time periodic dispersal evolu-
tion equations,

{
∂tu = �u + uf (t, x,u), x ∈ D,

Br,bu = 0, x ∈ ∂D (x ∈ R
N if D =R

N),
(1.12)

and

{
∂tu = νδ

∫
D∪Db

kδ(y − x)[u(t, y) − u(t, x)]dy + uf (t, x,u), x ∈ D̄,

Bn,bu = 0, x ∈ Db if Db �= ∅,

(1.13)

where D is as in (H0). In the rest of this paper, we assume that

(H1) f is C1 in t ∈ R and C3 in (x, u) ∈ R
N ×R; f (t, x, u) < 0 for u � 1 and ∂uf (t, x, u) < 0

for u ≥ 0; f (t + T , x, u) = f (t, x, u); and when D = R
N , f (t + T , x, u) = f (t, x + pj ej, u) =

f (t, x, u) for j = 1, 2, · · · , N .

(H2) For (1.12), λr(f (· , · , 0)) > 0, where λr(f (· , · , 0)) is the principle eigenvalue of (1.10) with 
a(t, x) = f (t, x, 0).

(H2)δ For (1.13), λδ(f (· , · , 0)) > 0, where λδ(f (· , · , 0)) is the principle spectrum point of (1.11)
with a(t, x) = f (t, x, 0).

Equations (1.12) and (1.13) are widely used to model population dynamics of species exhibit-
ing random interactions and nonlocal interactions, respectively (see [4,14,33], etc. for (1.12) and 
[36] for (1.13)). Thanks to the pioneering works of Fisher [20] and Kolmogorov et al. [29] on the 
following special case of (1.12),

∂tu = uxx + u(1 − u), x ∈R,

(1.12) and (1.13) are referred to as Fisher type or KPP type equations.
The dynamics of (1.12) and (1.13) have been studied in many papers (see [24,33,45] and 

references therein for (1.12), and [36] and references therein for (1.13)). With conditions (H1) 
and (H2), it is proved that (1.12) has exactly two nonnegative time periodic solutions, one is u ≡ 0
which is unstable and the other one, denoted by u∗(t, x), is asymptotically stable and strictly 
positive (see [45, Theorem 3.1], see also [33, Theorems 1.1, 1.3]). Similar results for (1.13)
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under the assumptions (H1) and (H2)δ are proved in [36, Theorem E]. We denote the strictly 
positive time periodic solution of (1.13) by u∗

δ (t, x).
Note that, by Theorem B and Remark 1.1, (H2) implies (H2)δ when 0 < δ � 1. Hence, we 

only assume (H2) in the following theorem. In this paper, we show that

Theorem C. If (H1) and (H2) hold, then for any ε > 0, there exists δ0 > 0, such that for all 
0 < δ < δ0, we have

sup
t∈[0,T ]

‖u∗
δ (t, ·) − u∗(t, ·)‖C(D̄,R) ≤ ε.

Theorems A–C above show that many important dynamics of random dispersal equations can 
be approximated by the corresponding dynamics of nonlocal dispersal equations, which is of 
both great theoretical and practical importance.

The rest of the paper is organized as follows. In Section 2, we explore the approximation of 
solutions of random dispersal evolution equations by the solutions of nonlocal dispersal evolution 
equations and prove Theorem A. In Section 3, we investigate the approximation of principal 
eigenvalues of time periodic random dispersal operators by the principal spectrum points of 
time periodic nonlocal dispersal operators and prove Theorem B. We study in Section 4 the 
approximation of the asymptotic dynamics of time periodic KPP equations with random dispersal 
by the asymptotic dynamics of time periodic KPP equations with nonlocal dispersal and prove 
Theorem C.

2. Approximation of initial–boundary value problems of random dispersal equations by 
nonlocal dispersal equations

In this section, we explore the approximation of solutions to (1.8) by the solutions to (1.9). 
We first present some comparison principle for (1.8) and (1.9). Then we prove Theorem A. 
Though the ideas of the proofs of Theorem A for different types of boundary conditions are the 
same, different techniques are needed for different boundary conditions. We hence give proofs 
of Theorem A for different boundary conditions in different subsections.

2.1. Comparison principle for random and nonlocal dispersal evolution equations

In this subsection, we present a comparison principle for random and nonlocal evolution equa-
tions, which will be applied in the proof of Theorem A in this section as well as in the proofs of 
Theorems B and C in Sections 3 and 4.

Definition 2.1 (Super- and sub-solutions). A continuous function u(t, x) on [s, s + T ) × R
N is 

called a super-solution (sub-solution) of (1.9) on (s, s + T ) if for any x ∈ D̄, u(t, x) is differen-
tiable on (s, s + T ) and satisfies that

⎧⎨
⎩

∂tu(t, x) ≥ (≤)νδ

∫
D∪Db

kδ(y − x)[u(t, y) − u(t, x)]dy + F(t, x,u), x ∈ D̄,

Bn,bu(t, x) ≥ (≤)0, x ∈ Db if Db �= ∅,

¯
u(s, x) ≥ (≤)u0(x), x ∈ D,
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when b = D or N , or that⎧⎨
⎩

∂tu(t, x) ≥ (≤)νδ

∫
RN kδ(y − x)[u(t, y) − u(t, x)]dy + F(t, x,u), x ∈ R

N,

Bn,bu(t, x) = 0, x ∈ R
N,

u(s, x) ≥ (≤)u0(x), x ∈ R
N,

when b = P .
Super-solutions and sub-solutions of (1.8) on (s, s + T ) are defined in an analogous way.

Proposition 2.1 (Comparison principle).

(1) Suppose that u−(t, x) and u+(t, x) are sub-solution and super-solution of (1.8) on (s, s+T ), 
respectively, then

u−(t, x) ≤ u+(t, x) ∀ t ∈ [s, s + T ), x ∈ D̄.

(2) Suppose that u−(t, x) and u+(t, x) are sub-solution and super-solution of (1.9) on (s, s+T ), 
respectively, then

u−(t, x) ≤ u+(t, x) ∀ t ∈ [s, s + T ), x ∈ D̄.

Proof. (1) It follows from comparison principle for parabolic equations.
(2) It follows from [36, Proposition 3.1]. �

2.2. Proof of Theorem A in the Dirichlet boundary condition case

In this subsection, we prove Theorem A in the Dirichlet boundary case. Throughout this 
subsection, we assume (H0), and Br,bu = Br,Du in (1.8), and Db = DD (= R

N\D̄) and 
Bn,bu = Bn,Du in (1.9). Note that D ∪ Db = R

N in this case. Without loss of generality, we 
assume s = 0.

Proof of Theorem A in the Dirichlet boundary condition case. Let u0 ∈ C3(D̄) with 
u0(x) = 0 for x ∈ ∂D. Let uδ

1(t, x) be the solution of (1.9) with s = 0 and u1(t, x) be the so-
lution of (1.8) with s = 0. Suppose that u1(t, x) and uδ

1(t, x) exist on [0, T ]. By regularity of 
solutions for parabolic equations, u1 ∈ C1+ α

2 ,2+α((0, T ] × D̄) ∩ C0,2+α([0, T ] × D̄). Let ũ1 be 
an extension of u1 to [0, T ] ×R

N satisfying that ũ1 ∈ C0,2+α([0, T ] ×R
N). Define

Lδ(z)(t, x) = νδ

∫
RN

kδ(y − x)[z(t, y) − z(t, x)]dy.

Let G(t, x) = ũ1(t, x) for (t, x) ∈ [0, T ] ×R
N\D̄. Then ũ1 verifies⎧⎨

⎩
∂t ũ1(t, x) = Lδ(ũ1)(t, x) + Fδ(t, x) + F(t, x, ũ1(t, x)), x ∈ D̄, t ∈ (0, T ],
ũ1(t, x) = G(t, x), x ∈R

N\D̄, t ∈ [0, T ],
ũ1(0, x) = u0(x), x ∈ D̄,

where
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Fδ(t, x) = �ũ1(t, x) − Lδ(ũ1)(t, x)

= �ũ1(t, x) − νδ

∫
RN

kδ(y − x)(ũ1(t, y) − ũ1(t, x))dy.

Let wδ
1 = ũ1 − uδ

1. We then have⎧⎪⎨
⎪⎩

∂tw
δ
1(t, x) = Lδ(w

δ
1)(t, x) + Fδ(t, x) + aδ

1(t, x)wδ
1(t, x), x ∈ D̄, t ∈ (0, T ],

wδ
1(t, x) = G(t, x), x ∈ R

N\D̄, t ∈ [0, T ],
wδ

1(0, x) = 0, x ∈ D̄,

(2.1)

where aδ
1(t, x) = ∫ 1

0 Fu[t, x, uδ
1(t, x) + θ(ũ1(t, x) − uδ

1(t, x))]dθ .
We claim that {

supt∈[0,T ] ‖Fδ(t, ·)‖X1 = O(δα),

supt∈[0,T ],x∈RN\D̄,dist(x,∂D)≤δ |G(t, x)| = O(δ).
(2.2)

In fact,

�ũ1(t, x) − νδ

∫
RN

kδ(y − x)(ũ1(t, y) − ũ1(t, x))dy

= �ũ1(t, x) − νδ

∫
RN

1

δN
k0

(
y − x

δ

)
(ũ1(t, y) − ũ1(t, x))dy

= �ũ1(t, x) − νδ

∫
RN

k0(z)(ũ1(t, x + δz) − ũ1(t, x))dz

= �ũ1(t, x) − νδ

∫
RN

k0(z)

[
δ2z2

N

2! �ũ1(t, x) + O(δ2+α)

]
dz

= �ũ1(t, x) −
⎡
⎢⎣νδδ

2
∫
RN

k0(z)
z2
N

2
dz

⎤
⎥⎦�ũ1(t, x) + O(δα)

= �ũ1(t, x) − �ũ1(t, x) + O(δα)

= O(δα) ∀ x ∈ D̄,

and

|G(t, x)| = |ũ1(t, x)|
≤ sup

t∈[0,T ],x∈RN\D,z∈∂D,dist(x,z)≤δ

|ũ1(t, x) − u1(t, z)|

= O(δ) ∀ x ∈ R
N\D̄, dist(x, ∂D) ≤ δ.

Therefore, (2.2) holds.
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Next, let w̄ be given by

w̄(t, x) = eAt (K1δ
αt) + K2δ,

where A = max
t∈[0,T ],x∈D̄,0<δ≤δ0

aδ
1(t, x). By direct calculation, we have

⎧⎨
⎩

∂t w̄(t, x) = Lδ(w̄) + aδ
1(t, x)w̄ + F̄δ(t, x) x ∈ D̄, t ∈ (0, T ],

w̄(t, x) = eAt (K1δ
αt) + K2δ, x ∈ R

N\D̄, t ∈ [0, T ],
w̄(0, x) = K2δ, x ∈ D̄,

(2.3)

where

F̄δ(t, x) = eAtK1δ
α + [A − aδ

1(t, x)]eAtK1δ
αt − aδ

1(t, x)K2δ.

By (2.2), there are 0 < δ̃0 ≤ δ0 and K1, K2 > 0 such that

{
Fδ(t, x) ≤ F̄δ(t, x), x ∈ D̄, t ∈ [0, T ],
G(t, x) ≤ eAt (K1δ

αt) + K2δ, x ∈R
N\D̄, dist(x, ∂D) ≤ δ, t ∈ [0, T ], (2.4)

when 0 < δ < δ̃0. By (2.1), (2.3), (2.4), and Proposition 2.1, we obtain

wδ(t, x) ≤ w̄(t, x) = eAt (K1δ
αt) + K2δ ∀x ∈ D̄, t ∈ [0, T ] (2.5)

for 0 < δ < δ̃0.
Similarly, let w(t, x) = eAt (−K1δ

αt) − K2δ. We can prove that for 0 < δ < δ̃0 (by reducing 
δ̃0 if necessary),

wδ(t, x) ≥ w(t, x) = −eAt (K1δ
αt) − K2δ ∀ x ∈ D̄, t ∈ [0, T ]. (2.6)

By (2.5) and (2.6) we have

|wδ(t, x)| ≤ eAtK1δ
αt + K2δ ∀ x ∈ D̄, t ∈ [0, T ],

which implies that there is C(T ) > 0 such that for any 0 < δ < δ̃0,

sup
t∈[0,T ]

‖u1(· , t) − uδ
1(· , t)‖X1 ≤ C(T )δα.

Theorem A in the Dirichlet boundary condition case then follows. �
Remark 2.1. If the homogeneous Dirichlet boundary conditions Br,Du = u = 0 on ∂D and 
Bn,Du = u = 0 on RN\D̄ are changed to nonhomogeneous Dirichlet boundary conditions 
Br,Du = u = g(t, x) on ∂D and Bn,Du = u = g(t, x) on RN\D̄, Theorem A also holds, which 
can be proved by the similar arguments as above.
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2.3. Proof of Theorem A in the Neumann boundary condition case

In this subsection, we prove Theorem A in the Neumann boundary condition case. Throughout 
this subsection, we assume (H0), and Br,bu = Br,Nu in (1.8), and Db = DN = ∅ in (1.9). Without 
loss of generality, we assume s = 0.

We first introduce two lemmas. To this end, for given δ > 0 and d0 > 0, let Dδ = {z ∈
D|dist(z, ∂D) < d0δ}.

Lemma 2.1. Let θ ∈ C1+ α
2 ,2+α((0, T ] × ×R

N) ∩ C0,2+α([0, T ] ×R
N) and ∂θ

∂n = h on ∂D, then 
for x ∈ Dδ and δ small,

1

δ2

∫
RN\D

kδ(y − x)(θ(t, y) − θ(t, x))dy

= 1

δ

∫
RN\D

kδ(y − x)n(x̄) · y − x

δ
h(x̄, t)dy

+
∫

RN\D
kδ(y − x)

∑
|β|=2

Dβθ

2
(x̄, t)

[(
y − x̄

δ

)β

−
(

x − x̄

δ

)β
]

dy + O(δα),

where x̄ is the orthogonal projection of x on the boundary of D so that ‖x̄ − y‖ ≤ 2d0δ and n(x̄)

is the exterior unit normal vector of ∂D at x̄.

Proof. See [10, Lemma 3]. �
Lemma 2.2. There exist K > 0 and δ̄ > 0 such that for δ < δ̄,∫

RN\D
kδ(y − x)n(x̄)

y − x

δ
dy ≥ K

∫
RN \D

kδ(y − x)dy.

Proof. See [10, Lemma 4]. �
Proof of Theorem A in the Neumann boundary condition case. Suppose that u0 ∈ C3(D̄). 
Let uδ

2(t, x) be the solution to (1.9) with s = 0 and u2(t, x) be the solution to (1.8) with s = 0. 
Assume that u2(t, x) and uδ

2(t, x) exist on [0, T ]. Then u2 ∈ C1+ α
2 ,2+α((0, T ] × D̄). Let ũ2 be an 

extension of u2 to [0, T ] × R
N satisfying that ũ2 ∈ C1+ α

2 ,2+α((0, T ] × R
N) ∩ C0,2+α([0, T ] ×

R
N). Define

Lδ(z)(t, x) = νδ

∫
D

kδ(y − x)(z(t, y) − z(t, x))dy,

and

L̃δ(z)(t, x) = νδ

∫
N

kδ(y − x)(z(t, y) − z(t, x))dy.
R
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Set wδ
2 = uδ

2 − ũ2. Then

∂tw
δ
2(t, x) = ∂tu

δ
2(t, x) − ∂t ũ2(t, x)

= [Lδ(u
δ
2)(t, x) + F(t, x,uδ

2)] − [�ũ2(t, x) + F(t, x, ũ2)]
= Lδ(w

δ
2)(t, x) + aδ

2(t, x)wδ
2(t, x) + Fδ(t, x),

where aδ
2(t, x) = ∫ 1

0 Fu(t, x, ũ2(t, x) + θ(uδ
2(t, x) − ũ2(t, x)))dθ and

Fδ(t, x) = L̃δ(ũ2)(t, x) − �ũ2(t, x) − νδ

∫
RN\D

kδ(y − x)(ũ2(t, y) − ũ2(t, x))dy.

Hence wδ
2 verifies

{
∂tw

δ
2(t, x) = Lδ(w

δ
2)(t, x) + aδ

2(t, x)wδ
2(t, x) + Fδ(t, x), x ∈ D̄,

wδ
2(0, x) = 0, x ∈ D̄.

(2.7)

To prove the theorem, let us pick an auxiliary function v as a solution to

⎧⎨
⎩

∂tv(t, x) = �v(t, x) + aδ
2(t, x)v(t, x) + h(t, x), x ∈ D, t ∈ (0, T ],

∂v
∂n (t, x) = g(t, x), x ∈ ∂D, t ∈ [0, T ],
v(0, x) = v0(x), x ∈ D

for some smooth functions h(t, x) ≥ 1, g(t, x) ≥ 1 and v0(x) ≥ 0 such that v(t, x) has an exten-
sion ṽ(t, x) ∈ C1+ α

2 ,2+α((0, T ] ×R
N) ∩ C0,2+α([0, T ] ×R

N). Then v is a solution to{
∂tv(t, x) = Lδ(v)(t, x) + aδ

2(t, x)v(t, x) + H(t, x, δ), x ∈ D̄, t ∈ (0, T ],
v(0, x) = v0(x), x ∈ D̄, t ∈ [0, T ], (2.8)

where

H(t, x, δ) = �ṽ(t, x) − L̃δ(v)(t, x) + νδ

∫
RN\D

kδ(y − x)(ṽ(t, y) − ṽ(t, x))dy + h(t, x).

By Lemma 2.1 and the first estimate in (2.2), we have the following estimate for H(x, t, δ):

H(t, x, δ) = �ṽ(t, x) − L̃δ(v)(t, x) + C

δ2

∫
RN\D

kδ(y − x)(ṽ(t, y) − ṽ(t, x))dy + h(t, x)

≥ C

δ

∫
RN\D

kδ(y − x)n(x̄)
y − x

δ
g(x̄, t)dy

+ C

∫
N

kδ(y − x)
∑
|β|=2

Dβṽ

2
(x̄, t)

[(
y − x̄

δ

)β

−
(

x − x̄

δ

)β
]

dy + 1 − C1δ
α

R \D
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≥ C

δ
g(x̄, t)

∫
RN\D

kδ(y − x)n(x̄)
y − x

δ
dy − D1C

∫
RN\D

kδ(y − x)dy + 1

2
(2.9)

for some constants D1 and C1 and δ sufficiently small such that C1δ
α ≤ 1

2 . Then Lemma 2.2
implies that there exist C ′ > 0 and δ′ such that

1

δ

∫
RN\D

kδ(y − x)n(x̄)
y − x

δ
dy ≥ C′

δ

∫
RN\D

kδ(y − x)dy,

if δ < δ′. This implies that

H(x, t, δ) ≥
[
CC′g(x̄, t)

δ
− D1

] ∫
RN\D

kδ(y − x)dy + 1

2
, (2.10)

if δ < δ′.
We now estimate Fδ(t, x). By Lemmas 2.1, 2.2, the first estimate in (2.2), and the fact that 

∂ũ2
∂n = 0 on ∂D, we have

Fδ(t, x) = O(δα) + νδ

∫
RN\D

kδ(y − x)(ũ2(t, y) − ũ2(t, x))dy

= O(δα) + C

∫
RN\D

kδ(y − x)
∑
|β|=2

Dβθ

2
(x̄, t)

[(
y − x̄

δ

)β

−
(

x − x̄

δ

)β
]

dy

≤ C2δ
α + D1C

∫
RN\D

kδ(y − x)dy

= C2δ
α + D2

∫
RN\D

kδ(y − x)dy (2.11)

for some C2 > 0 and D2 > 0. Given ε > 0, let vε = εv. By (2.8), vε satisfies

{
∂tvε(t, x) − Lδ(vε)(t, x) − aδ

2(t, x)vε(t, x) = εH(t, x, δ), x ∈ D̄,

vε(0, x) = εv0(x), x ∈ D̄.
(2.12)

By (2.10) and (2.11), there exist C3 > 0 and 0 < δ̃0 < δ0 such that for 0 < δ ≤ δ̃0,

Fδ(t, x) ≤ Cδα + D2

∫
RN\D

kδ(y − x)dy

≤ ε

2
+ C3ε

δ

∫
N

kδ(y − x)dy = εH(x, t, δ) ∀x ∈ D̄, t ∈ [0, T ]. (2.13)
R \D
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Then by (2.7), (2.12), (2.13), and Proposition 2.1, we have

−Mε ≤ −vε ≤ wδ
2 ≤ vε ≤ Mε ∀ δ ≤ δ̃0,

where M = max
t∈[0,T ],x∈D̄

v(t, x). This implies

sup
t∈[0,T ]

‖uδ
2(t, ·) − u2(t, ·)‖X2 → 0, as δ → 0.

Theorem A in the Neumann boundary condition is thus proved. �
2.4. Proof of Theorem A in the periodic boundary condition case

In this subsection, we prove Theorem A in the periodic boundary condition case. Throughout 
this subsection, we assume (H0), Br,bu = Br,P u in (1.8), and Bn,bu = Bn,P u in (1.9). Without 
loss of generality again, we assume s = 0.

Proof of Theorem A in the periodic boundary case. Suppose that u0 ∈ X3 ∩ C3(RN). Let 
uδ

3(t, x) be the solution to (1.9) with s = 0 and u3(t, x) be the solution to (1.8) with s = 0. 
Suppose that u3(t, x) and uδ

3(t, x) exist on [0, T ]. Set wδ
3 = uδ

3 − u3. Then wδ
3 satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tw
δ
3(t, x) = νδ

∫
RN kδ(y − x)(wδ

3(t, y) − wδ
3(t, x))dy + aδ

3(t, x)wδ
3(t, x) + Fδ(t, x),

x ∈ R
N, t ∈ (0, T ],

wδ
3(t, x) = wδ

3(t, x + pj ej ), x ∈ R
N, t ∈ [0, T ],

wδ
3(0, x) = 0, x ∈ R

N,

(2.14)

where aδ
3(t, x) = ∫ 1

0 Fu(t, x, u3(t, x) + θ(uδ
3(t, x) − u3(t, x)))dθ and Fδ(t, x) = νδ

∫
RN kδ(y −

x)[u3(t, y) − u3(t, x)]dy − �u3. Let

w̄(t, x) = eAt (K1δ
αt) + K2δ,

where A = max
t∈[0,T ],x∈RN ,0<δ≤δ0

aδ
3(t, x). Applying the similar approach as in the Dirichlet bound-

ary condition case, we can show that there are K1 > 0, K2 > 0, and δ0 > 0 such that for 
0 < δ < δ0,

−w̄(t, x) ≤ wδ
3(t, x) ≤ w̄(t, x) ∀ x ∈ R

N, t ∈ [0, T ].
Theorem A in the periodic boundary condition case then follows. �
3. Approximation of principal eigenvalues of time periodic random dispersal operators by 
nonlocal dispersal operators

In this section, we investigate the approximation of principal eigenvalues of time periodic 
random dispersal operators by the principal spectrum points of time periodic nonlocal dispersal 
operators. We first recall some basic properties of principal eigenvalues of time periodic ran-
dom dispersal or parabolic operators, and basic properties of principal spectrum points of time 
periodic nonlocal dispersal operators. We then prove Theorem B.
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3.1. Basic properties

In this subsection, we present basic properties of principal eigenvalues of time periodic 
parabolic operators and basic properties of principal spectrum points of time periodic nonlocal 
dispersal operators.

Let

X1 = X2 = {u ∈ C(R× D̄,R)|u(t + T ,x) = u(t, x)}
with norm ‖u‖Xi

= supt∈[0,T ] ‖u(t, ·)‖Xi
(i = 1, 2),

X3 = {u ∈ C(R×R
N,R)|u(t + T ,x) = u(t, x + pj ej) = u(t, x)}

with norm ‖u‖X3 = supt∈[0,T ] ‖u(t, ·)‖X3 , and

X+
i = {u ∈ Xi |u(t, x) ≥ 0}

(i = 1, 2, 3). And for u1, u2 ∈ Xi , we define

u1 ≤ u2(u1 ≥ u2) if u2 − u1 ∈X+
i (u1 − u2 ∈X+

i )

(i = 1, 2, 3). For given a(· , ·) ∈ Xi ∩ C1(R ×R
N), let Lδ

i (a) : D(Lδ
i (a)) ⊂ Xi → Xi be defined 

as follows,

(Lδ
1(a)u)(t, x) = − ∂tu(t, x) + νδ

⎡
⎣∫

D

kδ(y − x)u(t, y)dy − u(t, x)

⎤
⎦

+ a(t, x)u(t, x), (t, x) ∈ R× D̄, (3.1)

(Lδ
2(a)u)(t, x) = − ∂tu(t, x) + νδ

∫
D

kδ(y − x)[u(t, y) − u(t, x)]dy

+ a(t, x)u(t, x), (t, x) ∈ R× D̄, (3.2)

and

(Lδ
3(a)u)(t, x) = −∂tu(t, x) + νδ

∫
RN

kδ(y − x)[u(t, y) − u(t, x)]dy

+ a(t, x)u(t, x), (t, x) ∈R×R
N. (3.3)

We first recall the definition of principal spectrum points/eigenvalues of time periodic nonlocal 
dispersal operators.

Definition 3.1. Let

λδ
i (a) = sup{Reλ|λ ∈ σ(Lδ

i (a))}
for i = 1, 2, 3.
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(1) λδ
i (a) is called the principal spectrum point of Lδ

i (a).
(2) If λδ

i (a) is an isolated algebraically simple eigenvalue of Lδ
i (a) with a positive eigenfunction, 

then λδ
i (a) is called the principal eigenvalue of Lδ

i (a) or it is said that Lδ
i (a) has a principal 

eigenvalue.

For the time periodic random dispersal operators, let a(· , ·) ∈Xi ∩ C1(R ×R
N), and Li(a) :

D(Li(a)) ⊂ Xi → Xi be defined as follows,

(Li(a)u)(t, x) = −∂tu(t, x) + �u(t, x) + a(t, x)u(t, x)

for i = 1, 2, 3. Note that for u ∈D(L1(a)), Br,Du = u = 0 on ∂D and for u ∈D(L2(a)), Br,Nu =
∂u
∂n = 0 on ∂D. Let

λr
i (a) = sup{Reλ|λ ∈ σ(Li(a))}.

It is well known that λr
i (a) is an isolated algebraically simple eigenvalue of Li(a) with a positive 

eigenfunction (see [23]) and λr
i (a) is called the principal eigenvalue of Li(a).

Next we derive some properties of the principal spectrum points of nonlocal dispersal opera-
tors by using the spectral radius of the solution operators of the associated evolution equations. 
To this end, for i = 1, 2, 3, define �δ

i (t, s; a) : Xi → Xi by

(�δ
i (t, s;a)u0)(·) = ui(t, · ; s, u0, a), u0 ∈ Xi,

where u1(t, · ; s, u0, a) is the solution to

∂tu(t, x) = νδ

⎡
⎣∫

D

kδ(y − x)u(t, y)dy − u(t, x)

⎤
⎦+ a(t, x)u(t, x), x ∈ D̄ (3.4)

with u1(s, · ; s, u0, a) = u0(·) ∈ X1, u2(t, · ; s, u0, a) is the solution to

∂tu(t, x) = νδ

∫
D

kδ(y − x)[u(t, y) − u(t, x)]dy + a(t, x)u(t, x), x ∈ D̄ (3.5)

with u2(s, · ; s, u0, a) = u0(·) ∈ X2, and u3(t, ·; s, u0, a) is the solution to

∂tu(t, x) = νδ

⎡
⎢⎣∫
RN

kδ(y − x)u(t, y)dy − u(t, x)

⎤
⎥⎦+ a(t, x)u(t, x), x ∈R

N (3.6)

with u3(s, · ; s, u0, a) = u0(·) ∈ X3. By general semigroup property, �δ
i (t, s; a) (i = 1, 2, 3) is 

well defined.
Let A1 be −� with Dirichlet boundary condition acting on X1 ∩ C0(D). Let

Xr =D(Aα) (3.7)
1 1
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for some 0 < α < 1 such that C1(D̄) ⊂ Xr
1 with ‖u‖Xr

1
= ‖Aα

1 u‖X1 . Similarly, let A2 be −�

with Neumann boundary condition acting on X2. Let

Xr
2 = X2 (3.8)

with ‖u‖Xr
2
= ‖u‖X2 , and

Xr
3 = X3 (3.9)

with ‖u‖Xr
3
= ‖u‖X3 . Let

X
r,+
i = {u ∈ Xr

i |u(x) ≥ 0}

(i = 1, 2, 3). Similarly, for i = 1, 2, 3, define �i(t, s; a) : Xr
i → Xr

i by

(�i(t, s;a)u0)(·) = ui(t, · ; s, u0, a), u0 ∈ Xr
i ,

where u1(t, · ; s, u0, a) is the solution to{
∂tu(t, x) = �u(t, x) + a(t, x)u(t, x), x ∈ D,

u(t, x) = 0, x ∈ ∂D
(3.10)

with u1(s, · ; s, u0, a) = u0(·) ∈ Xr
1, u2(t, ·; s, u0, a) is the solution to

{
∂tu(t, x) = �u(t, x) + a(t, x)u(t, x), x ∈ D,
∂u
∂n (t, x) = 0, x ∈ ∂D

(3.11)

with u2(s, · ; s, u0, a) = u0(·) ∈ Xr
2, and u3(t, · ; s, u0, a) is the solution to

{
∂tu(t, x) = �u(t, x) + a(t, x)u(t, x), x ∈ R

N,

u(t, x + pj ej) = u(t, x), x ∈ R
N

(3.12)

with u3(s, · ; s, u3, a) = u0(·) ∈ Xr
3.

Let r(�δ
i (T , 0; a)) be the spectral radius of �δ

i (T , 0; a) and λδ
i (a) be the principal spectrum 

point of Lδ
i (a). We have the following proposition.

Proposition 3.1. Let 1 ≤ i ≤ 3 be given. Then

r(�δ
i (T ,0;a)) = eλδ

i (a)T .

Proof. See [41, Proposition 3.3]. �
Similarly, let r(�i(T , 0; a)) be the spectral radius of �i(T , 0; a) and λr

i (a) be the princi-
pal eigenvalue of Li(a). Note that Xr

i is a strongly ordered Banach space with the positive 
cone C = {u ∈ Xr

i | u(x) ≥ 0} and by the regularity, a priori estimates, and comparison prin-
ciple for parabolic equations, �i(T , 0; a) : Xr

i → Xr
i is strongly positive and compact. Then 

by the Kreı̆n–Rutman Theorem (see [43]), r(�i(T , 0; a)) is an isolated algebraically simple 
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eigenvalue of �i(T , 0; a) with a positive eigenfunction ur
i (·) and for any μ ∈ σ(�i(T , 0; a)) \

{r(�i(T , 0; a))},
Reμ < r(�i(T ,0;a)).

The following propositions then follow.

Proposition 3.2. Let 1 ≤ i ≤ 3 be given. Then

r(�i(T ,0;a)) = eλr
i (a)T .

Moreover, there is a codimension one subspace Zi of Xr
i such that

Xr
i = Yi ⊕ Zi,

where Yi = span{ur
i (·)}, and there are M > 0 and γ > 0 such that for any wi ∈ Zi , there holds

‖�i(nT ,0;a)wi‖Xr
i

‖�i(nT ,0;a)ur
i ‖Xr

i

≤ Me−γ nT .

Proposition 3.3. For given 1 ≤ i ≤ 3 and a1, a2 ∈ Xi ∩ C1(R ×R
N),

|λδ
i (a1) − λδ

i (a2)| ≤ max
t∈[0,T ],x∈D̄

|a1(t, x) − a2(t, x)|, (3.13)

and

|λr
i (a1) − λr

i (a2)| ≤ max
t∈[0,T ],x∈D̄

|a1(t, x) − a2(t, x)|. (3.14)

Proof. Let a0 = maxt∈[0,T ],x∈D̄ |a1(t, x) − a2(t, x)| and

a±
1 (t, x) = a1(t, x) ± a0.

It is not difficult to see that

�δ
i (t, s;a±

1 ) = e±a0(t−s)�δ
i (t, s;a1).

It then follows that

r(�δ
i (T ,0;a±

1 )) = e(λδ
i (a1)±a0)T . (3.15)

Observe that by Proposition 2.1, for any u0 ∈ X+
i ,

�δ
i (T ,0;a−

1 )u0 ≤ �δ
i (T ,0;a2)u0 ≤ �δ

i (T ,0;a+
1 )u0.

This implies that

r(�δ(T ,0;a−)) ≤ r(�δ(T ,0;a2)) ≤ r(�δ(T ,0;a+)).
i 1 i i 1
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This together with (3.15) implies that

λδ
i (a1) − a0 ≤ λδ

i (a2) ≤ λδ
i (a1) + a0, (3.16)

that is, (3.13) holds.
Similarly, we can prove that (3.14) holds. �

3.2. Proof of Theorem B in the Dirichlet boundary condition case

In this subsection, we prove Theorem B in the Dirichlet boundary condition case. Throughout 
this subsection, we assume Br,bu = Br,Du in (1.10), and Db = DD (= R

N \ D̄) and Bn,bu =
Bn,Du in (1.11). Note that for any a ∈ X1 ∩ C1(R × R

N), there are an ∈ X1 ∩ C3(R × R
N)

such that supt∈[0,T ] ‖an(t, ·) − a(t, ·)‖X1 → 0 as n → ∞. By Proposition 3.3, without loss of 
generality, we may assume that a ∈ X1 ∩ C3(R ×R

N).

Proof of Theorem B in the Dirichlet boundary condition case. First of all, for the simplicity 
in notation, we put

�(T ,0) = �1(T ,0;a), λr
1 = λr

1(a),

and

�δ(T ,0) = �δ
1(T ,0;a), λδ

1 = λδ
1(a).

Let ur(·) be a positive eigenfunction of �(T , 0) corresponding to r(�(T , 0)). Without loss of 
generality, we assume that ‖ur‖Xr

1
= 1.

We first show that for any ε > 0, there is δ1 > 0 such that for 0 < δ < δ1,

λδ
1 ≥ λr

1 − ε. (3.17)

In order to do so, choose D0 ⊂⊂ D and u0 ∈ Xr
1 ∩ C3(D̄) such that u0(x) = 0 for x ∈ D\D0, 

and u0(x) > 0 for x ∈ IntD0. By Proposition 3.2, there exist α > 0, M > 0, and u′ ∈ Z1, such 
that

u0(x) = αur(x) + u′(x), (3.18)

and

‖�(nT ,0)u′‖Xr
1
≤ Me−γ nT eλr

1nT . (3.19)

By Theorem A, there is δ0 > 0 such that for 0 < δ < δ0, there hold

(
�δ(nT ,0)ur

)
(x) ≥ (

�(nT ,0)ur
)
(x) − C1(nT , δ), (3.20)

and

(
�δ(nT ,0)u′)(x) ≤ (

�(nT ,0)u′)(x) + C2(nT , δ), (3.21)
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where Ci(nT , δ) → 0 as δ → 0 (i = 1, 2). Hence for 0 < δ < δ0,

(
�δ(nT ,0)u0

)
(x) = α

(
�δ(nT ,0)ur

)
(x) + (

�δ(nT ,0)u′)(x)

≥ α
(
�(nT ,0)ur

)
(x) − αC1(nT , δ) − C2(nT , δ) − ‖�(nT ,0)u′‖Xr

1

≥ αeλr
1nT ur(x) − αC1(nT , δ) − C2(nT , δ) − Me−γ nT eλr

1nT

= e(λr
1−ε)nT eεnT (αur(x) − Me−γ nT ) − αC1(nT , δ) − C2(nT , δ). (3.22)

Note that there exists m > 0 such that

ur(x) ≥ m > 0 for x ∈ D̄0.

Hence for any 0 < ε < γ , there is n1 > 0 such that for n ≥ n1,

eεnT (αur(x) − Me−γ nT ) ≥ u0(x) + 1 for x ∈ D̄0, (3.23)

and there is δ1 ≤ δ0 such that for 0 < δ < δ1,

C1(n1T , δ) + C2(n1T , δ) ≤ e(λr
1−ε)n1T . (3.24)

Note that u0(x) = 0 for x ∈ D\D0 and 
(
�δ(n1T , 0)u0

)
(x) ≥ 0 for all x ∈ D̄. This together with 

(3.22)–(3.24) implies that for δ < δ1,

(
�δ(n1T ,0)u0

)
(x) ≥ e(λr

1−ε)n1T u0(x), x ∈ D̄. (3.25)

By (3.25) and Proposition 2.1, for any 0 < δ < δ1 and n ≥ 1,

(�δ(nn1T ,0)u0)(·) ≥ e(λr
1−ε)nn1T u0(·).

This together with Proposition 3.1 implies that for 0 < δ < δ1,

eλδ
1T = r(�δ(T ,0)) ≥ e(λr

1−ε)T .

Hence (3.17) holds.
Next, we prove that for any ε > 0, there is δ2 > 0 such that for 0 < δ < δ2,

λδ
1 ≤ λr

1 + ε. (3.26)

To this end, first, choose a sequence of smooth domains {Dm} such that D1 ⊃ D2 ⊃ D3 · · · ⊃
Dm ⊃ · · · ⊃ D̄, and ∩∞

m=1Dm = D̄. Consider the following evolution equation

{
∂tu(t, x) = �u(t, x) + a(t, x)u(t, x), x ∈ Dm,

u(t, x) = 0, x ∈ ∂Dm.
(3.27)

Let

X1,m = {u ∈ C(D̄m,R)},



W. Shen, X. Xie / J. Differential Equations 259 (2015) 7375–7405 7395
and

Xr
1,m =D(Aα

1,m),

where A1,m is −� with Dirichlet boundary condition acting on X1,m ∩ C0(Dm) and 0 < α < 1. 
We denote the solution of (3.27) by um(t, · ; s, u0) = (�m(t, s)u0)(·) with u(s, · ; s, u0) = u0(·) ∈
Xr

1,m. By Proposition 3.2, we have

r(�m(T ,0)) = e
λr

1,mT
,

where λr
1,m is the principal eigenvalue of the following eigenvalue problem,

⎧⎨
⎩

−∂tu + �u + a(t, x)u = λu, x ∈ Dm,

u(t + T ,x) = u(t, x), x ∈ Dm,

u(t, x) = 0, x ∈ ∂Dm.

By the dependence of the principle eigenvalue on the domain perturbation (see [15]), for any 
ε > 0, there exists m1 such that

λr
1,m1

≤ λr
1 + ε

2
. (3.28)

Secondly, let ur
m1

(·) be a positive eigenfunction of �m1(T , 0) corresponding to r(�m1(T , 0)). 
By regularity for parabolic equations, ur

m1
∈ C3(D̄m1). Let (�δ

m1
(t, 0)ur

m1
)(x) be the solution to

{
ut = νδ

[∫
Dm1

kδ(y − x)u(t, y)dy − u(t, x)
]
+ a(t, x)u(t, x), x ∈ D̄m1,

u(0, x) = ur
m1

(x).
(3.29)

Then by Theorem A,(
�δ

m1
(nT ,0)ur

m1

)
(x) ≤ (

�m1(nT ,0)ur
m1

)
(x) + C(nT , δ) ∀ x ∈ D̄m1,

where C(nT , δ) → 0 as δ → 0. By Proposition 2.1,(
�δ(nT ,0)ur

m1
|D̄

)
(x) ≤ (

�δ
m1

(nT ,0)ur
m1

)
(x) ∀ x ∈ D̄.

It then follows that for x ∈ D̄,

(
�δ(nT ,0)ur

m1
|D̄

)
(x) ≤ (

�m1(nT ,0)ur
m1

)
(x) + C(nT , δ)

= e
λr

m1
nT

ur
m1

(x) + C(nT , δ)

≤ e(λr
1+ ε

2 )nT ur
m1

(x) + C(nT , δ)

= e(λr
1+ε)nT e− ε

2 nT ur
m1

(x) + C(nT , δ). (3.30)

Note that

minur
m1

(x) > 0.

x∈D̄
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Hence for any ε > 0, there is n2 ≥ 1 such that

e− ε
2 n2T ≤ 1

2
, (3.31)

and there is δ2 > 0 such that for 0 < δ < δ2,

C(n2T , δ) ≤ 1

2
e(λr

1+ε)n2T ur
m1

(x) ∀x ∈ D̄. (3.32)

By (3.30)–(3.32),

(
�δ(n2T ,0)ur

m1
|D̄

)
(x) ≤ e(λr

1+ε)n2T ur
m1

(x) ∀ x ∈ D̄.

This together with Proposition 2.1 implies that for 0 < δ < δ2,

(
�δ(nn2T ,0)ur

m1
|D̄

)
(x) ≤ e(λr

1+ε)nn2T ur
m1

(x) ∀ x ∈ D̄. (3.33)

This together with Proposition 3.1 implies that

λδ
1 ≤ λr

1 + ε

for 0 < δ < δ2, that is, (3.26) holds.
Theorem B in the Dirichlet boundary condition case then follows from (3.17) and (3.26). �

3.3. Proofs of Theorem B in the Neumann and periodic boundary condition cases

Proof of Theorem B in the Neumann boundary condition case. We assume Br,bu = Br,Nu

in (1.10), and Db = DN (= ∅) in (1.11). The proof in the Neumann boundary condition case is 
similar to the arguments in the Dirichlet boundary condition case (it is simpler). For the com-
pleteness, we give a proof in the following. Without loss of generality, we may also assume that 
a ∈ X2 ∩ C3(R ×R

N).
For the simplicity in notation, put

�(nT ,0) = �2(nT ,0;a), λr
2 = λr

2(a),

and

�δ(nT ,0) = �δ
2(nT ,0;a), λδ

2 = λδ
2(a).

By Propositions 3.1 and 3.2,

r(�(T ,0)) = eλr
2T , (3.34)

and

r(�δ(T ,0)) = eλδ
2T . (3.35)
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Let ur(·) be a positive eigenfunction of �(T , 0) corresponding to r(�(T , 0)). By regularity 
for parabolic equations, ur ∈ C3(D̄). By Theorem A, we have

‖�δ(nT ,0)ur − �(nT ,0)ur‖X2 ≤ C(nT , δ),

where C(nT , δ) → 0 as δ → 0. This implies that for all x ∈ D̄,(
�δ(nT ,0)ur

)
(x) ≥ (

�(nT ,0)ur
)
(x) − C(nT , δ)

= eλr
2nT ur(x) − C(nT , δ)

= e(λr
2−ε)nT eεnT ur(x) − C(nT , δ), (3.36)

and (
�δ(nT ,0)ur

)
(x) ≤ (

�(nT ,0)ur
)
(x) + C(nT , δ)

= eλr
2nT ur(x) + C(nT , δ)

= e(λr
2+ε)nT e−εnT ur(x) + C(nT , δ). (3.37)

Note that

min
x∈D̄

ur (x) > 0. (3.38)

Hence for any ε > 0, there is n1 > 1 such that{
eεn1T ur(x) ≥ 3

2ur(x) ∀x ∈ D̄,

e−εn1T ur(x) ≤ 1
2ur(x) ∀x ∈ D̄,

(3.39)

and there is δ0 > 0 such that for any 0 < δ < δ0,

C(n1T )δ <
1

2
e(λr

2−ε)n1T ur(x) ∀x ∈ D̄. (3.40)

By (3.36)–(3.40), we have that for any 0 < δ < δ0,

e(λr
2−ε)n1T ur(x) ≤ (

�δ(n1T ,0)ur
)
(x) ≤ e(λr

2+ε)n1T ur(x) ∀x ∈ D̄.

This together with Proposition 2.1 implies that for all n ≥ 1,

e(λr
2−ε)n1nT ur(x) ≤ (

�δ(n1nT ,0)ur
)
(x) ≤ e(λr

2+ε)n1nT ur(x) ∀x ∈ D̄.

It then follows that for any 0 < δ < δ0,

e(λr
2−ε)T ≤ r(�δ(T ,0)) ≤ e(λr

2+ε)T .

By Proposition 3.1, we have

|λδ
2 − λr

2| < ε ∀0 < δ < δ0.

Theorem B in the Neumann boundary condition case is thus proved. �
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Proof of Theorem B in the periodic boundary condition case. We assume D = R
N , and 

Br,bu = Br,P u in (1.10), and Bn,bu = Bn,P u in (1.11). It can be proved by the same arguments 
as in the Neumann boundary condition case. �
4. Approximation of time periodic positive solutions of random dispersal KPP equations 
by nonlocal dispersal KPP equations

In this section, we study the approximation of the asymptotic dynamics of time periodic KPP 
equations with random dispersal by those of time periodic KPP equations with nonlocal dispersal. 
We first recall the existing results about time periodic positive solutions of KPP equations with 
random as well as nonlocal dispersal. Then we prove Theorem C. Throughout this section, we 
assume that D is as in (H0), and (H1), (H2) and (H2)δ hold. Recall that, (H2) implies (H2)δ for 
δ sufficiently small by Theorem B.

4.1. Basic properties

In this subsection, we present some basic known results for (1.12) and (1.13). Let Xr
1, Xr

2, 
and Xr

3 be defined as in (3.7), (3.8), and (3.9), respectively. For u0 ∈ Xr
i , let (U(t, 0)u0)(·) =

u(t, · ; u0), where u(t, · ; u0) is the solution to (1.12) with u(0, · ; u0) = u0(·) and Br,bu = Br,Du

when i = 1, Br,bu = Br,Nu when i = 2, and Br,bu = Br,P u when i = 3. Similarly, for u0 ∈ Xi , 
let (Uδ(t, 0)u0)(·) = uδ(t, · ; u0), where uδ(t, · ; u0) is the solution to (1.13) with uδ(0, · ; u0) =
u0(·) and Db = DD (= R

N\D̄), Bn,bu = Bn,Du when i = 1, Db = DN (= ∅) when i = 2, and 
Bn,bu = Bn,P u and Db = Dp (= R

N) when i = 3.

Proposition 4.1.

(1) If u0 ≥ 0, solution u(t, · ; u0) to (1.12) with u(0, · ; u0) = u0(·) exists for all t ≥ 0 and 
u(t, · ; u0) ≥ 0 for all t ≥ 0.

(2) If u0 ≥ 0, solution u(t, · ; u0) to (1.13) with u(0, · ; u0) = u0(·) exists for all t ≥ 0 and 
u(t, · ; u0) ≥ 0 for all t ≥ 0.

Proof. (1) Note that u(·) ≡ 0 is a sub-solution of (1.12) and u(·) ≡ M is a super-solution 
of (1.12) for M � 1. Then by Proposition 2.1, there is M � 1 such that

0 ≤ u(t, x;u0) ≤ M ∀ x ∈ D̄, t ∈ (0, tmax),

where (0, tmax) is the interval of existence of u(t, · ; u0). This implies that we must have tmax = ∞
and hence (1) holds.

(2) It can be proved by similar arguments as in (1). �
Proposition 4.2.

(1) (1.12) has a unique globally stable positive time periodic solution u∗(t, x).
(2) (1.13) has a unique globally stable time periodic positive solution u∗

δ(t, x).

Proof. (1) See [45, Theorem 3.1] (see also [33, Theorems 1.1, 1.3]).
(2) See [36, Theorem E]. �
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Remark 4.1. By Proposition 4.2(2), if there is u0 ∈ X+
i \ {0} such that (Uδ(nT , 0)u0)(·) ≥ u0(·)

for some n ≥ 1, then we must have limn→∞(Uδ(nT , 0)u0)(·) = u∗
δ (0, ·) and hence

(Uδ(nT ,0)u0)(·) ≤ u∗
δ (0, ·).

Similarly, if there is u0 ∈ X+
i \ {0} such that (Uδ(nT , 0)u0)(·) ≤ u0(·) for some n ≥ 1, then

(Uδ(nT ,0)u0)(·) ≥ u∗
δ (0, ·).

4.2. Proof of Theorem C in the Dirichlet boundary condition case

In this subsection, we prove Theorem C in the Dirichlet boundary condition case. Throughout 
this subsection, we assume that Br,bu = Br,Du in (1.12), and Db = DD and Bn,bu = Bn,Du

in (1.13).

Proof of Theorem C in the Dirichlet boundary condition case. First of all, note that it suffices 
to prove that for any ε > 0, there is δ0 > 0 such that for 0 < δ < δ0,

u∗
δ (t, x) − ε ≤ u∗(t, x) ≤ u∗

δ (t, x) + ε ∀ t ∈ [0, T ], x ∈ D̄.

We first show that for any ε > 0, there is δ1 > 0 such that for 0 < δ < δ1,

u∗(t, x) ≤ u∗
δ (t, x) + ε ∀ t ∈ [0, T ], x ∈ D̄. (4.1)

To this end, choose a smooth function φ0 ∈ C∞
0 (D) satisfying that φ0(x) ≥ 0 for x ∈ D and 

φ0(·) �≡ 0. Let 0 < η � 1 be such that

u−(x) := ηφ0(x) < u∗(0, x) for x ∈ D̄.

Then there is ε0 > 0 such that

u∗(0, x) ≥ u−(x) + ε0 for x ∈ supp(φ0). (4.2)

By Proposition 4.2, there is N � 1 such that(
U(NT,0)u−

)
(x) ≥ u∗(NT ,x) − ε0/2 = u∗(0, x) − ε0/2 ∀ x ∈ D̄.

By Theorem A, there is δ̄1 > 0 such that for 0 < δ < δ̄1, we have(
Uδ(NT ,0)u−

)
(x) ≥ (

U(NT,0)u−
)
(x) − ε0/2 ∀ x ∈ D̄.

Hence for 0 < δ < δ̄1, (
Uδ(NT ,0)u−

)
(x) ≥ u∗(0, x) − ε0 ∀ x ∈ D̄. (4.3)

Note that (
Uδ(NT ,0)u−

)
(x) ≥ 0 ∀ x ∈ D̄.



7400 W. Shen, X. Xie / J. Differential Equations 259 (2015) 7375–7405
It then follows from (4.2) and (4.3) that for 0 < δ < δ̄1,

(
Uδ(NT ,0)u−

)
(x) ≥ u−(x) ∀ x ∈ D̄.

This together with Proposition 4.2 (2) implies that

(
Uδ(NT ,0)u−

)
(x) ≤ u∗

δ (0, x) ∀ x ∈ D̄ (4.4)

(see Remark 4.1).
By Proposition 4.2 (1) again, for n � 1,

u∗(t, x) ≤ (U(nNT + t,0)u−)(x) + ε/2 ∀ t ∈ [0, T ], x ∈ D̄. (4.5)

Fix an n � 1 such that (4.5) holds. By Theorem A, there is 0 < δ̃1 ≤ δ̄1 such that for 0 < δ < δ̃1,

(U(nNT + t,0)u−)(x) ≤ (Uδ(nNT + t,0)u−)(x) + C1(δ), (4.6)

where C1(δ) → 0 as δ → 0. By (4.4), Proposition 2.1, and Proposition 4.2 (2),

(
Uδ(nNT + t,0)u−

)
(x) ≤ (

Uδ(t,0)u∗
δ (0, ·))(x) = u∗

δ (t, x) (4.7)

for t ∈ [0, T ] and x ∈ D̄. Let 0 < δ1 ≤ δ̃1 be such that

C1(δ) < ε/2 ∀ 0 < δ < δ1. (4.8)

(4.1) then follows from (4.5)–(4.8).
Next, we need to show for any ε > 0, there is δ2 > 0 such that for 0 < δ < δ2,

u∗(t, x) ≥ u∗
δ (t, x) − ε ∀ t ∈ [0, T ], x ∈ D̄. (4.9)

To this end, choose a sequence of open sets {Dm} with smooth boundaries such that D1 ⊃ D2 ⊃
D3 · · · ⊃ Dm ⊃ · · · ⊃ D̄, and D̄ = ∩∞

m=1Dm. According to Corollary 5.11 in [17], Dm → D

regularly and all assertions of Theorem 5.5 in [17] hold.
Consider {

∂tu = �u + uf (t, x,u), x ∈ Dm,

u(t, x) = 0, x ∈ ∂Dm.
(4.10)

Let Um(t, 0)u0 = u(t, · ; u0), where u(t, · ; u0) is the solution to (4.10) with u(0, · ; u0) = u0(·). 
By Proposition 4.2, (4.10) has a unique time periodic positive solution u∗

m(t, x). We first claim 
that

lim
m→∞u∗

m(t, x) → u∗(t, x) uniformly in t ∈ [0, T ] and x ∈ D̄. (4.11)

In fact, it is clear that u∗ ∈ C(R × D̄, R) and u∗
m ∈ C(R × D̄m, R). By [15, Theorem 7.1],

sup‖u∗
m(t, ·) − u∗(t, ·)‖Lq(D) → 0 as m → ∞
t∈R
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for 1 ≤ q < ∞. Let a(t, x) = f (t, x, u∗(t, x)) and am(t, x) = f (t, x, u∗
m(t, x)). Then u∗(t, x)

and u∗
m(t, x) are time periodic solutions to the following linear parabolic equations,

{
ut = �u + a(t, x)u, x ∈ D,

u(t, x) = 0, x ∈ ∂D,
(4.12)

and {
ut = �u + am(t, x)u, x ∈ Dm,

u(t, x) = 0, x ∈ ∂Dm,
(4.13)

respectively. Observe that there is M > 0, such that

‖a‖L∞([T ,2T ]×D) < M, ‖am‖L∞([T ,2T ]×Dm) < M, ‖u∗(0, ·)‖L∞(D) < M, and

‖u∗
m(0, ·)‖L∞(Dm) < M.

By [1, Theorem D(1)], {u∗
m(t, x)} is equi-continuous on [T , 2T ] × D̄. Without loss of generality, 

we may then assume that u∗
m(t, x) converges uniformly on [T , 2T ] × D̄. But u∗

m(t, ·) → u∗(t, ·)
in Lq(D) uniformly in t . We then must have

u∗
m(t, x) → u∗(t, x) as n → ∞

uniformly in (t, x) ∈ [T , 2T ] ×D̄. This together with the time periodicity of u∗
m shows that (4.11)

holds.
Next, for any ε > 0, fix m � 1 such that

u∗(t, x) ≥ u∗
m(t, x) − ε/3 ∀ t ∈ [0, T ], x ∈ D̄. (4.14)

Choose M � 1 such that for 0 < δ ≤ 1,

Mu∗
m(t, x) ≥ u∗

δ (t, x) ∀ t ∈ [0, T ], x ∈ D̄. (4.15)

Let

u+
m(x) = Mu∗

m(0, x), u+(x) = u+
m(x)|D̄.

By Proposition 4.2, for fixed m and ε, there exists N � 1, such that

u∗
m(t, x) ≥ (

Um(NT + t,0)u+
m

)
(x) − ε/3 ∀ t ∈ [0, T ], x ∈ D̄. (4.16)

By Theorem A, there is 0 < δ̃2 < 1 such that for 0 < δ < δ̃2,

(Um(NT + t,0)u+
m)(x) ≥ (Uδ

m(NT + t,0)u+
m)(x) − C2(δ) ∀ t ∈ [0, T ], x ∈ Dm, (4.17)

where C2(δ) → 0 as δ → 0 and (Uδ
m(t, 0)u0)(·) = u(t, · ; u0) is the solution to

{
ut (t, x) = νδ

[∫
Dm

kδ(y − x)u(t, y)dy − u(t, x)
]
+ u(t, x)f (t, x,u(t, x)), x ∈ D̄m

¯
u(0, x) = u0(x), x ∈ Dm.
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Let 0 < δ2 < δ̃2 be such that for 0 < δ < δ2,

C2(δ) < ε/3. (4.18)

By Proposition 2.1, for x ∈ D̄ we have

(Uδ
m(NT + t,0)u+

m)(x) ≥ (Uδ(NT + t,0)u+)(x),

and

(Uδ(NT + t,0)u+)(x) = (Uδ(t,0)Uδ(NT ,0)u+)(x) ≥ (Uδ(t,0)u∗
δ (0, ·))(x) = u∗

δ (t, x).

This together with (4.14), (4.16), (4.17), and (4.18) implies (4.9).
So, for any ε > 0, there exists δ0 = min{δ1, δ2}, such that for any δ < δ0, we have

|u∗(t, x) − u∗
δ (t, x)| ≤ ε uniform in t > 0 and x ∈ D̄. �

4.3. Proofs of Theorem C in the Neumann and periodic boundary condition cases

In this subsection, we prove Theorem C in the Neumann and periodic boundary condition 
cases.

Proof of Theorem C in the Neumann boundary condition case. We assume Br,bu = Br,Nu

in (1.10), and Db = DN (= ∅) in (1.11). The proof in the Neumann boundary condition case 
is similar to the arguments in the Dirichlet boundary condition case (it is indeed simpler). For 
completeness, we provide a proof.

First, we show that for any ε > 0, there is δ1 > 0 such that

u∗(t, x) ≤ u∗
δ (t, x) + ε ∀ t ∈ [0, T ], x ∈ D̄, (4.19)

if 0 < δ < δ1. Choose a smooth function u− ∈ C∞(D̄) with u−(·) ≥ 0 and u−(·) �≡ 0 such that

u−(x) < u∗(0, x) ∀ x ∈ D̄.

Then there is ε0 > 0 such that

u∗(0, x) ≥ u−(x) + ε0 ∀ x ∈ D̄. (4.20)

By Proposition 4.2 (1), there is N � 1 such that(
U(NT,0)u−

)
(x) ≥ u∗(0, x) − ε0/2 ∀ x ∈ D̄. (4.21)

By Theorem A, there is δ̄1 > 0 such that for 0 < δ < δ̄1,

(Uδ(NT ,0)u−)(x) ≥ (U(NT,0)u−)(x) − ε0/2 ∀ x ∈ D̄. (4.22)

By (4.20), (4.21) and (4.22),(
Uδ(NT ,0)u−

)
(x) ≥ u−(x) ∀ x ∈ D̄,
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and then by Proposition 4.2 (2),(
Uδ(NT ,0)u−

)
(x) ≤ u∗

δ (0, x) ∀ x ∈ D̄. (4.23)

By Proposition 4.2 (1) again, for any given ε > 0, n � 1, and 0 < δ < δ̄1,

u∗(t, x) ≤ (U(nNT + t,0)u−)(x) + ε/2 ∀ t ∈ [0, T ], x ∈ D̄. (4.24)

By Theorem A, there is 0 < δ1 ≤ δ̄1 such that for δ < δ1,

(U(nNT + t,0)u−)(x) ≤ (Uδ(nNT + t,0)u−)(x) + ε

2
∀ t ∈ [0, T ], x ∈ D̄. (4.25)

By Proposition 2.1 and (4.23), we have

(Uδ(nNT + t,0)u−)(x) = (Uδ(t,0)Uδ(nNT,0)u−)(x) ≤ (Uδ(t,0)u∗
δ (t, ·))(x)

= u∗
δ (t, x) (4.26)

for t ∈ [0, T ] and x ∈ D̄. (4.19) then follows from (4.24)–(4.26).
Next, we show that for any ε > 0, there is δ2 > 0 such that for 0 < δ < δ2,

u∗(t, x) ≥ u∗
δ (t, x) − ε ∀ t ∈ [0, T ], x ∈ D̄. (4.27)

Choose M � 1 such that f (t, x, M) < 0 for t ∈R and x ∈ D̄. Put

u+(x) = M ∀ x ∈ D̄.

Then for all δ > 0,

u∗
δ (0, x) ≤ u+(x) ∀ x ∈ D̄. (4.28)

By Proposition 4.2, there is N � 1 such that

u∗(t, x) ≥ (U(NT + t,0)u+)(x) − ε/2 ∀ t ∈ [0, T ], x ∈ D̄. (4.29)

By Theorem A, there is δ2 > 0 such that for 0 < δ < δ2,

(U(NT + t,0)u+)(x) ≥ (Uδ(NT + t,0)u+)(x) − ε

2
∀ t ∈ [0, T ], x ∈ D̄. (4.30)

By (4.28),

(Uδ(NT + t,0)u+)(x) = (Uδ(t,0)Uδ(NT ,0)u+)(x) ≥ (Uδ(t,0)u∗
δ (t, ·))(x)

= u∗
δ (t, x) (4.31)

for t ∈ [0, T ] and x ∈ D̄. (4.27) then follows from (4.29)–(4.31).
So, for any ε > 0, there exists δ0 = min{δ1, δ2}, such that for any 0 < δ < δ0, we have

|u∗(t, x) − u∗(t, x)| ≤ ε uniform in t > 0 and x ∈ D̄. �
δ
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Proof of Theorem C in the periodic boundary condition case. We assume D = R
N , and 

Br,bu = Br,P u in (1.10), and Bn,bu = Bn,P u in (1.11). It can be proved by the similar arguments 
as in the Neumann boundary condition case. �
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