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Abstract

In this paper we consider the elastic energy for open curves in Euclidean space subject to clamped bound-
ary conditions and obtain the Łojasiewicz–Simon gradient inequality for this energy functional. Thanks to 
this inequality we can prove that a (suitably reparametrized) solution to the associated L2-gradient flow 
converges for large time to an elastica, that is to a critical point of the functional.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

In the past years a considerable number of papers dealing with the long-time existence of 
motion of curves by the L2-gradient flow for the elastic energy have appeared in the literature. 
Closed curves subject to a length/area constraint of some sort and with or without an inextensi-
bility condition have been studied for instance in [8,27,32,14,18,25,26]; open curves subject to 
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different types of boundary conditions and a constraint on the length have been treated in [11,17,
9,10], curves of infinite length in [24].

However, in several of the above frameworks the question of asymptotical convergence to an 
equilibrium point of the gradient system has not been satisfactorily answered. Indeed, in many 
of the works just mentioned (see for instance [8,11,17,9,10]), the method of proof chosen to 
show long-time existence allows only to infer that for a sequence of time converging to infinity 
there exists a subsequence of suitably reparametrized curves that converge to a critical point of 
the energy functional. Thus, in principle different sequences could converge to different critical 
points. Motivation for this work is to show that this does not happen and that given an initial 
smooth curve the whole flow converges (after an appropriate reparametrization) to a stationary 
solution.

We give here a detailed proof for the setting presented in [17], that is for the elastic flow of 
open curves subject to a constraint on the growth of the length (obtained by adding a suitable 
penalty term in the energy functional) and clamped boundary conditions (i.e. the two boundary 
points of the curve and its tangents are kept fixed along the evolution).

More precisely, let us recall that the elastic energy for a regular and sufficiently smooth curve 
f : I → R

d , f = f (x), is given by

E : f �→ 1

2

∫
I

|�κ|2 dsf = 1

2

∫
I

|�κ|2 |fx |dx, (1.1)

with �κ the curvature vector, that is �κ = ∂sf ∂sf f where ∂sf = 1
|fx |∂x . Here and in the following, 

d ∈ N, d ≥ 2, and I := [0, 1] ⊂ R. It is well known that the energy E is a geometric functional, 
i.e. it is invariant under reparametrizations of the curve f , and that the L2-gradient of the elastic 
energy is given by

∇L2E(f ) = ∇2
sf

�κ + 1

2
|�κ|2�κ, (1.2)

where ∇sf φ := ∂sf φ − 〈∂sf φ, ∂sf f 〉∂sf f , see for instance [11, Lemma A.1].
Since the energy E might be decreased by letting the curve grow towards infinity (just think 

of a (portion of a) circle whose radius is expanding), it is typical to penalize the growth of the 
length of the curve by considering the functional

Eλ(f ) := E(f ) + λL(f ) (1.3)

for a given positive constant λ. The L2-gradient is then given by

∇L2Eλ(f ) = ∇2
sf

�κ + 1

2
|�κ|2�κ − λ�κ, (1.4)

and the associated evolution reads⎧⎪⎪⎨
⎪⎪⎩

∂tf = −∇2
sf

�κ − 1
2 |�κ|2�κ + λ�κ t ∈ (0, T ),

f (t,0) = f−, f (t,1) = f+ t ∈ (0, T ),

∂sf f (t,0) = T−, ∂sf f (t,1) = T+ t ∈ (0, T ),

f (0, ·) = f (·)
(1.5)
0
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for given f± ∈ R
d , unit vectors T±, as well as a smooth regular initial curve f0 : [0, 1] → R

d . 
The evolution problem (1.5) has been studied in [17]. There the following result is shown.

Theorem 1.1 ([17, Theorem 1]). For any prescribed constant λ ∈ (0, ∞) and smooth initial 
curve f0 with finite length L(f0) ∈ (0, ∞) and the clamped boundary conditions

f (t,0) = f−, f (t,1) = f+, ∂sf f (t,0) = T−, ∂sf f (t,1) = T+

there exists a global smooth solution to the L2-flow of Eλ(f ) in (1.3). Moreover, after 
reparametrization by arc-length, the family of curves f (t) subconverges to f∞, which is an 
equilibrium of the energy functional Eλ.

In this work we strengthen the above statement by showing

Theorem 1.2. Let λ > 0 and f : [0, ∞) × I → R
d be the global smooth solution to the elastic 

flow (1.5). Then there exists a family of smooth diffeomorphisms �(t) : I → I , t ∈ (0, ∞) such 
that f (t, �(t, ·)) converges to a critical point f̂∞ of Eλ, i.e.

∥∥f (t,�(t, ·)) − f̂∞
∥∥

L2 → 0 as t → ∞. (1.6)

The reason for focusing first on a framework dealing with open curves is that a related state-
ment has been proved in [5] for closed surfaces and we can expect to be able to adapt those 
arguments to the case of closed curves without too much effort. More precisely, in [5] the au-
thors show that if the Willmore flow is started sufficiently close to a critical point, then the flow 
exists globally in time and it converges after a suitable reparametrization to a Willmore surface.

Our strategy in proving Theorem 1.2 is to exploit Theorem 1.1 in order to identify a critical 
point of the energy functional and “get sufficiently close” to it and then employ some ideas 
from [5] to show our claim. In particular, inspired by [5], we also apply the Łojasiewicz–Simon 
gradient inequality. In this respect a considerable effort in our work is spent in showing that 
the elastic energy functional satisfies the Łojasiewicz–Simon gradient inequality near a critical 
point, see Theorem 2.4 below. The particular choice of boundary conditions imposes a particular 
choice of function spaces and this in turn calls for new ideas and new arguments.

One of the advantages for using the Łojasiewicz–Simon gradient inequality is that, under suit-
able circumstances, it provides a L1-control (in time) for the velocity ‖∂tf ‖L2(I ) (see (5.15) and 
(5.19) below), as opposed to the sole steepest descent property of the evolution, that yields only 
a L2-control (see (5.1)). For more motivation and further applications of the Łojasiewicz–Simon 
gradient inequality we refer to [6] and [4].

Last but not least let us mention that in the case of planar curves the statement of Theorem 1.2
is obtained in [23] by different methods: there, starting from the long-time and sub-convergence 
result of Lin [17], the authors show that the set of critical points corresponding to any possible 
energy level is finite (up to reparametrization of the curve) and that these critical manifolds are 
isolated in the Hausdorff distance. Then, quite intuitively, the flow has no other choice but to 
converge to one possible stationary solution.

The paper is organized as follows: after introducing important notation and discussing some 
preliminaries in Section 2, we devote Section 3 and 4 to the proof of the Łojasiewicz–Simon gra-
dient inequality as given in Theorem 2.4. The proof of Theorem 1.2 is presented in Section 5. To 
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improve the readability of the paper we have decided to collect lengthy and technical calculations 
and auxiliary results in the Appendix.

2. Notation

First of all we provide some notation and recall some useful facts. Euclidean scalar product 
and norm in Rd are denoted by 〈·, ·〉euc and | · | respectively. The specification “euc” will be 
omitted if clear from the context. For simplicity of notation the dot “·” will also refer to the 
Euclidean scalar product. A scalar product in an arbitrary Hilbert space H will be denoted by 
〈·, ·〉H . If no index is specified then 〈·, ·〉 stands for the usual dual pairing with respect to a 
(specified) Banach space and its dual. A constant C can always change from line to line.

In the following let d ∈ N, d ≥ 2, and I = [0, 1] ⊂ R. Moreover, let f ∈ H 4(I, Rd), 
f = f (x), denote a regular curve. Regularity means that |fx| �= 0 in I and hence that f is 
an immersion. The curve f induces the volume form dsf = |∂xf | dx on I . For vector fields 
φ, ψ : I →R

d , p ∈ [1, ∞), ψ = ψ(x) and φ = φ(x), we write

‖ψ‖Lp(dsf ) :=
(∫

I

|ψ |p dsf

)1/p

and 〈φ,ψ〉L2(dsf ) =
∫
I

φ · ψ dsf .

From the Sobolev embedding H 2 ↪→ C1 and the regularity of f we know that |∂xf | ∈ [ε, 1
ε
]

uniformly on I for some ε > 0. Thus the Lp-spaces with respect to dx and dsf on I coincide.
For given φ : I → R

d we denote by ∇sf φ the normal component of ∂sf φ, that is

∇sf φ := ∂sf φ − 〈∂sf φ, ∂sf f 〉∂sf f.

The (weak) derivative with respect to sf is simply defined by ∂sf (·) = 1
|fx |∂x(·). Note that the 

definition is meaningful since for any η : I →R
d and ϕ ∈ C∞

0 (I, Rd) we have

∫
I

η · ∂sf ϕ dsf =
∫
I

η · ϕx dx = −
∫
I

ηx · ϕ dx = −
∫
I

∂sf η · ϕ dsf .

We also can define the Sobolev spaces Hk(I, dsf ; Rd) of mappings from I to Rd which are 
squared-integrable, k-times weakly differentiable with weak derivatives in L2(I, dsf ; Rd) and 
equipped with the norm 

∥∥φ
∥∥

Hk(dsf )
:= ∑k

i=0

∥∥∂i
sf

φ
∥∥

L2(dsf )
. Note that for the definition of 

Hk(I, dsf ; Rd) with k > 4 the regularity of f must be increased. Moreover Hk(I, dsf ; Rd)

and Hk(I, Rd) are the same spaces: the specification of the metric and associated measure will 
be given only when necessary. We will work with both since when f changes in the course of 
our arguments it is convenient to stick to a fixed metric, that is to work with Hk(I, Rd). The use 
of Hk(I, dsf ; Rd) will be preferred when we apply purely geometric arguments.

Definition 2.1. The space H 4
c is defined as

H 4
c := H 4(I,Rd) ∩ H 2

0 (I,Rd) . (2.1)
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Note that because of the above remarks we have that H 4
c = H 4

c (dsf ), with H 4
c (dsf ) =

H 4(I, dsf ) ∩ H 2
0 (I, dsf ), for any regular curve f ∈ H 4(I, Rd).

Eventually we will work on the space of variations normal to a given fixed regular curve f̄ . 
With this in mind we introduce the following spaces that depend on the particular choice of the 
given immersion f̄ .

Definition 2.2. Let f̄ ∈ H 4(I, Rd) be an immersion. The subspace of H 4
c given by normal vari-

ations is denoted by

H 4,⊥
c := {

φ ∈ H 4
c

∣∣ 〈φ, ∂xf̄
〉
euc (x) = 0 ∀x ∈ I

}
. (2.2)

Moreover

L2,⊥ := {
φ ∈ L2(I,Rd)

∣∣ 〈φ, ∂xf̄
〉
euc (x) = 0 ∀x ∈ I

}
. (2.3)

In the Łojasiewicz–Simon inequality we will describe the behavior of the elastic functional 
close to a critical point: first by studying only normal variations and then general ones. For this 
the following notation is useful.

Definition 2.3. Let f̄ ∈ H 4(I, Rd) be an immersion. The restriction of the elastic energy (1.1) to 
normal perturbations is defined as

E : U → R, φ �→ E(f̄ + φ) with U := Bρ(0) ⊂ H 4,⊥
c , (2.4)

while, for the ease of notation, we also define

E : U → R, ψ �→ E(f̄ + ψ) with U := Bρ(0) ⊂ H 4
c . (2.5)

Here ρ > 0 is chosen small enough such that f̄ + ψ , respectively f̄ + φ, is still immersed for all 
choices of ψ ∈ U, respectively φ ∈ U .

The functionals E and E are Fréchet-differentiable with derivatives E′ : U → (H
4,⊥
c )∗ and 

E′ : U → (H 4
c )∗. It turns out that these Fréchet-derivatives may be identified with (geometrical) 

L2-gradients in the following way. The operator ∇E : U → L2,⊥ is defined by the identity

E′(φ)η = 〈∇E(φ), η〉L2(ds(f̄ +φ))
∀φ ∈ U,∀η ∈ H 4,⊥

c .

Similarly, ∇E : U → L2, U = Bρ(0) ⊂ H 4
c , is defined by

E′(ψ)η = 〈∇E(ψ), η〉L2(ds(f̄ +ψ))
∀ψ ∈ U,∀η ∈ H 4

c .

Standard computations (see for instance [11, Lemma A.1]) together with the fact that ∂xη = 0 at 
the boundary give that

∇E(ψ) = ∇2
s �κ + 1

2
|�κ|2�κ, (2.6)
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where here �κ is the curvature vector of the curve f̄ + ψ and s = s(f̄ +ψ). For ∇E(φ) we get

∇E(φ) = ∇E(φ) − f̄x

|f̄x |
〈∇E(φ),

f̄x

|f̄x |
〉euc

= ∇2
s �κ + 1

2
|�κ|2�κ − f̄x

|f̄x |
〈∇2

s �κ + 1

2
|�κ|2�κ,

f̄x

|f̄x |
〉euc,

where here �κ is the curvature vector of the curve f̄ + φ and s = s(f̄ +φ). The difference in the 
two expression is due to the fact that ∇E(φ) ∈ L2,⊥, whereas ∇E(ψ) ∈ L2.

For more clarity in the application of some functional analytic arguments employed below, it is 
convenient to identify the Fréchet-derivative with the gradient with respect to a fixed L2-metric. 
More precisely we write

E′(ψ)η = 〈dE(ψ), η〉L2(dx) ∀ψ ∈ U,∀η ∈ H 4
c .

The above observations give that

dE(ψ) = ∇E(ψ)|f̄x + ψx | = (∇2
s �κ + 1

2
|�κ|2�κ)|f̄x + ψx |

with s = s(f̄ +ψ) and �κ the curvature of f̄ + ψ . The L2-gradient dE for normal variations is 
defined analogously, precisely

dE(φ) = ∇E(φ)|f̄x + φx | =
(
∇2

s �κ + 1

2
|�κ|2�κ − f̄x

|f̄x |
〈∇2

s �κ + 1

2
|�κ|2�κ,

f̄x

|f̄x |
〉euc

)
|f̄x + φx |,

where �κ is the curvature vector of the curve f̄ + φ and s = s(f̄ +φ).
We are now ready to state the Łojasiewicz–Simon inequality that we intend to prove.

Theorem 2.4. Let f̄ ∈ H 4(I, Rd) be a regular critical point for E , i.e. ∇L2E(f̄ ) = 0. Then there 
exists constants C1 > 0, θ ∈ (0, 12 ] and σ > 0 such that all ψ ∈ Bσ (0) ⊂ U ⊂ H 4

c satisfy the 
inequality

|E(0) − E(ψ)|1−θ ≤ C1
∥∥∇E(ψ)

∥∥
L2(ds(f̄ +ψ))

. (2.7)

First of all notice that since f̄ ∈ H 4(I ; Rd) is a regular curve and a critical point of the elastic 
energy, it is smooth, as one can see for instance by a bootstrap argument (recall (1.2) and (B.21)). 
In particular, f̄ ∈ H 5(I ; Rd), which is the highest regularity assumption that will be employed 
in the arguments that follow.

We prove (2.7) in two steps. First, we show the inequality only for normal variations, that 
is for the functional E (see Theorem 3.1 below. The main ideas for the proof are explained in 
Remark 3.3). Then, we deduce from this the inequality in its general form.
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3. Proof of the Łojasiewicz–Simon inequality for normal variations

The main result of this section is the following.

Theorem 3.1. Let f̄ be a smooth regular critical point for E , i.e. ∇L2E(f̄ ) = 0. Then there 
exists constants C2 > 0, θ ∈ (0, 12 ] and σ̃ > 0 such that all φ ∈ Bσ̃ (0) ⊂ U ⊂ H

4,⊥
c satisfy the 

inequality

|E(0) − E(φ)|1−θ ≤ C2
∥∥dE(φ)

∥∥
L2(dx)

. (3.1)

Remark 3.2. Notice that in (2.7) only geometric quantities appear, whereas in Theorem 3.1
we work with a fixed parametrization obtaining an estimate with dE(φ). This reflects the fact 
that the proof of the Łojasiewicz–Simon inequality for normal variations is mainly based on 
functional analytic arguments, whereas Theorem 2.4 will be applied in a geometric context. 
However, observe that by Theorem 3.1, using that ‖f̄x + φx‖L∞ ≤ C(f̄ , σ̃ ) and the explicit 
expressions for dE(φ) and ∇E(φ) given below Definition 2.3, we can find a constant C3 > 0
such that with the same σ̃ and θ ∈ (0, 12 ] we have

|E(0) − E(φ)|1−θ ≤ C2
∥∥dE(φ)

∥∥
L2(dx)

≤ C3‖∇E(φ)‖L2(dsf̄ +φ)

for all φ ∈ Bσ̃ (0) ⊂ U ⊂ H
4,⊥
c .

Remark 3.3. The Łojasiewicz–Simon inequality for normal variations follows once we have 
proven that for some ρ > 0 small enough on U = Bρ(0) ⊂ H

4,⊥
c :

1. E : U → R, φ �→ E(f̄ + φ) is analytic,
2. its gradient dE : U → L2,⊥ is analytic and
3. the Fréchet derivative of the gradient L := (dE)′(0) : H 4,⊥

c → L2,⊥ evaluated at 0 is a Fred-
holm operator.

This follows from [6, Corollary 3.11]. (See also [5, page 355].) For completeness in Appendix A
we give the statement of [6, Corollary 3.11] and show that 1., 2., 3. above are sufficient for the 
assumptions in [6, Corollary 3.11] to be satisfied. Note that the argument of Chill is more general 
since it relies merely on the structure of a Banach space not necessarily endowed with an inner 
product.

Proof of Theorem 3.1. By Remark 3.3, the claim in Theorem 3.1 follows from Theorem 3.5
and Corollary 3.13 below. �
3.1. Analyticity

The aim of this section is to show the analyticity of E and its gradient dE (cf. Remark 3.3). For 
convenience we recall the definition and fundamental properties of analytic maps between Ba-
nach spaces, see [35, Definition 8.8] or [33]. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), (Y1, ‖ · ‖Y ), (Y2, ‖ · ‖Y ), 
1 2
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(Z, ‖ · ‖Z) be arbitrary Banach spaces. A map f : D → Y , D open in X, is analytic at x0 ∈ D if 
in a neighborhood of x0

∞∑
k=0

‖ak‖‖x − x0‖k converges and f (x) =
∞∑

k=0

ak(x − x0)
k .

Here each ak is a k-linear, symmetric and continuous map from Xk = X ×· · ·×X (k-times) into 
Y and writing ak(x − x0)

k we actually mean ak(x − x0, ..., x − x0). The map f is analytic in D
if it is analytic at each point of D.

A linear and bounded map F ∈ B(X, Y) is analytic and so is its affine counterpart F(x1 + ·)
for a given x1 ∈ X. This follows immediately, since we may write F(x) = F(x0) + F(x − x0) =∑∞

k=0 ak(x − x0)
k , where ak = 0 for k > 2, a1 = F ∈ B(X, Y) and a0 = F(x0). With similar 

arguments one immediately sees that a map F : X → Y , x → a2(x, x) with a2 : X × X → Y

a bilinear, symmetric, continuous map, is analytic. Compositions of analytic functions is again 
analytic, that is if G : D → E and F : E → Z are analytic, where D open in X, E open in Y , 
then F ◦ G : D → Z is analytic (see for instance [33, page 1079]). If the Banach space Y is 
continuously embedded into a Banach space Z, then any analytic function from D, open set in 
X, to Y is also analytic as a map from D to Z. Moreover, the sum of analytic functions is clearly 
analytic.

In the following, it will be convenient to characterize the analyticity of a mapping seeing it as 
a product of two mappings. Since we work in Banach spaces we need some additional structure. 
If F : D → Y1, G : D → Y2, D open in X, are analytic and there exists a Banach space Z
as well as a bilinear continuous mapping ∗ : Y1 × Y2 → Z then the product F ∗ G : D → Z, 
x �→ F(x) ∗ G(x), is analytic. This can be proved using similar ideas as for the Cauchy product 
of series. Consequently the same holds for products with a finite number of factors. A particular 
case is when Y1 = Y2 = Y and Y is a Banach algebra. In this case, the product of two analytic 
functions G, F : D → Y is again analytic as a mapping from D to Y . In the proof below we will 
use that Hm(I, R), m ≥ 1, is a Banach algebra (see [3, Cor. 8.10] for m = 1).

Lemma 3.4. Let f̄ ∈ H 4(I ; Rd) be a regular curve and U = Bρ(0) ⊂ H
4,⊥
c be as in Defini-

tion 2.3. The following functions are well defined and (real-)analytic:

1. F1 : U → H 3(I, R), φ �→ |∂x(f̄ + φ)|,
2. F2 : U → H 3(I, Rd), φ �→ ∂x(f̄ +φ)

|∂x(f̄ +φ)| = ∂s(f̄ + φ) where s = s(f̄ +φ),

3. F3 : U → H 2(I, Rd), φ �→ �κf̄ +φ = ∂2
s (f̄ + φ) where s = s(f̄ +φ),

4. F4 : U → L1(I, R), φ �→ |�κf̄ +φ |2|∂x(f̄ + φ)|,
5. F5 : U → L2, φ �→

(
∇2

s �κ + 1
2 |�κ|2�κ

)
|f̄x + φx |, where �κ = �κf̄ +φ , s = s(f̄ +φ).

For sake of readability the proof of Lemma 3.4 is given in Appendix B.1.

Theorem 3.5. Let f̄ ∈ H 4(I ; Rd) be a regular curve and U = Bρ(0) ⊂ H
4,⊥
c be as in Defini-

tion 2.3. Then the functions

E : U → R, φ �→ E(f̄ + φ) = 1

2

∫
I

|�κf̄ +φ |2 dsf̄ +φ

and



2176 A. Dall’Acqua et al. / J. Differential Equations 261 (2016) 2168–2209
dE : U → L2,⊥, φ �→
(
∇2

s �κ + 1

2
|�κ|2�κ − f̄x

|f̄x |
〈∇2

s �κ + 1

2
|�κ|2�κ,

f̄x

|f̄x |
〉euc

)
|f̄x + φx | ,

(where �κ = �κf̄ +φ , s = s(f̄ +φ)) are (real-)analytic.

Proof. The analyticity of the function E follows directly from the analyticity of the function 
F4 defined in Lemma 3.4 since integration over [0, 1] is a well-defined continuous and linear 
operator on L1(I, R). Since the projection

F : L2(I,Rd) → L2,⊥(I,Rd), φ �→ φ − f̄x

|f̄x |
〈φ,

f̄x

|f̄x |
〉euc ,

is a linear and continuous operator, the analyticity of dE is a direct consequence of the analyticity 
of the function F5 defined in Lemma 3.4. �
3.2. The second variation of E

Proposition 3.6. Let f̄ ∈ H 4(I ; Rd) be a regular curve and φ, ψ ∈ U ⊂ H 4,⊥
c . Then the second 

variation of E (defined in (2.4)) at 0 in the direction of φ and ψ is given by

E′′(0)(ψ,φ) =
∫
I

(〈
∇2

s φ,∇2
s ψ

〉
+

〈
∇2

s φ, �κ
〉
〈ψ, �κ〉 +

〈
∇2

s ψ, �κ
〉
〈φ, �κ〉

− 3

2
|�κ|2 〈∇sψ,∇sφ〉 + 〈∇sψ, �κ〉 〈∇sφ, �κ〉

− 〈∇sψ,∇s �κ〉 〈φ, �κ〉 − 〈∇sφ,∇s �κ〉 〈ψ, �κ〉
+ |�κ|2 〈�κ,ψ〉 〈�κ,φ〉

)
dsf̄ ,

(3.2)

where 〈·, ·〉 = 〈·, ·〉euc, s = sf̄ and �κ = �κf̄ .

The lengthy calculation of the second variation is given in B.2 in the appendix.
We also immediately find the second variation of the elastic energy with penalized length 

Eλ : U →R, φ �→ E(φ) + λL(f̄ + φ) for λ ∈ R, λ ≥ 0.

Corollary 3.7. Under the same assumptions as in Proposition 3.6, the second variation of Eλ

at 0 in the direction of φ and ψ is given by

E′′
λ(0)[ψ,φ] =

∫
I

(〈
∇2

s φ,∇2
s ψ

〉
+

〈
∇2

s φ, �κ
〉
〈ψ, �κ〉 +

〈
∇2

s ψ, �κ
〉
〈φ, �κ〉

+ (λ − 3

2
|�κ|2) 〈∇sψ,∇sφ〉 + 〈∇sψ, �κ〉 〈∇sφ, �κ〉

− 〈∇sψ,∇s �κ〉 〈φ, �κ〉 − 〈∇sφ,∇s �κ〉 〈ψ, �κ〉
+ |�κ|2 〈�κ,ψ〉 〈�κ,φ〉

)
dsf̄ ,

(3.3)

where 〈·, ·〉 = 〈·, ·〉euc, s = sf̄ and �κ = �κf̄ .

This calculation is given in B.3 in the appendix.
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3.3. The Fredholm property

In this section we show that the operator L associated to the second variation of E (defined in 
(2.4)) in 0 is Fredholm of index 0 (cf. Remark 3.3). To do so, we derive the Fredholm property 
for the leading term (which is associated to the bilinear form defined in Definition 3.9 below) 
and then use compact embedding theorems for the perturbation. More precisely, we first show 
the following result:

Proposition 3.8. Let f̄ ∈ H 5(I ; Rd) be a regular curve. Then the operator

∇4
s : H 4,⊥

c (dsf̄ ) → L2,⊥(dsf̄ ) (3.4)

is Fredholm of index 0.

We start by considering the following bilinear form.

Definition 3.9. Let f̄ be as in Definition 2.2 and denote the subspace of normal vector fields by

H
2,⊥
0 (dsf̄ ) = H 2

0 ((I,dsf̄ ),Rd) ∩ L2,⊥(dsf̄ ) .

We let af̄ be the form given by

af̄ : H 2,⊥
0 (dsf̄ ) × H

2,⊥
0 (dsf̄ ) → R, (φ,ψ) �→

∫
I

∇2
s φ · ∇2

s ψ dsf̄ .

Here s = sf̄ .

Lemma 3.10. The bilinear form af̄ defined above is bounded, symmetric and H 2,⊥
0 -elliptic, i.e. 

there exist constants ω, μ > 0 such that

af̄ (φ,φ) + ω
∥∥φ

∥∥2
L2(dsf̄ )

≥ μ
∥∥φ

∥∥2
H 2(dsf̄ )

for all φ ∈ H
2,⊥
0 (dsf̄ ). (3.5)

Proof. Symmetry and boundedness are straight forward. Moreover notice that, due to

∫
I

|∂sφ|2 dsf̄ = −
∫
I

〈φ, ∂2
s φ〉euc dsf̄ (3.6)

and the Cauchy–Schwarz inequality, the norm ‖φ‖H 2(dsf̄ ) is equivalent to the norm ‖φ‖ :=
‖φ‖L2(dsf̄ ) + ‖∂2

s φ‖L2(dsf̄ ). Here and in the following s = sf̄ and �κ = �κf̄ (and we omit the index 

f̄ for the sake of simplicity of notation). Using that ‖�κ‖L∞, ‖∂s �κ‖L∞ ≤ C(f̄ ), (B.21), (3.6) and 
Young’s inequality it follows that for any ε > 0
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af̄ (φ,φ) =
∫
I

|∇2
s φ|2 dsf̄ ≥

∫
I

(
1

2
|∂2

s φ|2 − C|∂sφ|2 − C|φ|2)dsf̄

≥
∫
I

1

2
|∂2

s φ|2 dsf̄ − εC

∫
I

|∂2
s φ|2 dsf̄ − Cε

∫
I

|φ|2 dsf̄ ,

with a constant Cε depending only on f̄ and ε. Hence, for any ω > 0

af̄ (φ,φ) + ω
∥∥φ

∥∥2
L2(dsf̄ )

≥
∫
I

(
1

2
− Cε)|∂2

s φ|2 + (ω − Cε) |φ|2 dsf̄ .

Choosing ε small enough and subsequently ω large we find that the last term is larger than 
1
4 (‖φ‖2

L2(dsf̄ )
+ ‖∂2

s φ‖2
L2(dsf̄ )

), which proves the claimed ellipticity. �
Lemma 3.11. Let af̄ be the bilinear form defined in Definition 3.9 and ω as in Lemma 3.10. 
Then there exists a unique operator A : D(A) → L2,⊥(dsf̄ ) such that

D(A) = {φ ∈ H
2,⊥
0 (dsf̄ )

∣∣∃ ξ ∈ L2,⊥ s.t. (3.7)

af̄ (φ,ψ) = 〈ξ,ψ〉L2,⊥(dsf̄ ) for all ψ ∈ H
2,⊥
0 (dsf̄ )}

Aφ = ξ. (3.8)

The domain D(A) with norm ‖φ‖D(A) := ‖φ‖H 2(dsf̄ ) + ‖Aφ‖L2(dsf̄ ) is a Banach space and the 

operator A + ωI is an isomorphism from D(A) to L2,⊥(dsf̄ ).

Proof. By Lemma 3.10 the bilinear form af̄ (·, ·) + ω〈·, ·〉L2(dsf̄ ) on H 2,⊥
0 (dsf̄ ) is bounded, 

symmetric and H 2,⊥
0 -elliptic. Hence, for any h ∈ L2,⊥(dsf̄ ) by Lax–Milgram Theorem there 

exists a unique φ ∈ H
2,⊥
0 (dsf̄ ) such that

af̄ (φ,ψ) + ω〈φ,ψ〉L2(dsf̄ ) = 〈h,ψ〉L2(dsf̄ ) for all ψ ∈ H
2,⊥
0 (dsf̄ ). (3.9)

This defines an injective and linear operator

Ãω : L2,⊥ → H
2,⊥
0 , Ãω(h) = φ with φ solving (3.9).

The continuity of the operator follows from its coercivity and (3.9) since

‖Ãω(h)‖2
H 2(dsf̄ )

= ‖φ‖2
H 2(dsf̄ )

≤ 1

μ
(af̄ (φ,φ) + ω〈φ,φ〉L2(dsf̄ ))

= 1

μ
〈h,φ〉L2(dsf̄ ) ≤ 1

μ
‖h‖L2(dsf̄ )‖φ‖H 2(dsf̄ )

= 1

μ
‖h‖L2(dsf̄ )‖Ãω(h)‖H 2(dsf̄ ),

with μ as in Lemma 3.10.
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Then Ãω is a linear and continuous bijection on its range R(Ãω) ⊂ H
2,⊥
0 (dsf̄ ), where

R(Ãω) = {φ ∈ H
2,⊥
0

∣∣∃ ξ ∈ L2,⊥ s.t.

af̄ (φ,ψ) + ω〈φ,ψ〉L2(dsf̄ ) = 〈ξ,ψ〉L2(dsf̄ ) ∀ψ ∈ H
2,⊥
0 (dsf̄ )} .

Let

Aω := ( Ãω

∣∣∣
R(Ãω)

)−1 : D(Aω) → L2,⊥(dsf̄ )

with D(Aω) = R(Ãω) ⊂ H
2,⊥
0 and such that for φ ∈ D(Aω)

〈Aω(φ),ψ〉L2(dsf̄ ) = af̄ (φ,ψ) + ω〈φ,ψ〉L2(dsf̄ ) for all ψ ∈ H
2,⊥
0 (dsf̄ ).

One immediately sees that Aω is a closed operator. Indeed, let (xn)n∈N be a sequence in D(Aω)

with xn → x in H 2,⊥
0 and Aωxn → y in L2,⊥. Let yn := Aωxn ∈ L2,⊥ for all n ∈N. By definition 

of Aω , Ãωyn = xn. Since yn → y in L2 and Ãω is continuous, it follows that Ãωyn → Ãωy =: x̃
in H 2,⊥

0 . The closedness of Aω follows directly once we have shown that x = x̃ in H 2,⊥
0 . This 

follows since for any ε > 0 we have

‖x − x̃‖H 2(dsf̄ ) ≤ ‖x − xn‖H 2(dsf̄ ) + ‖xn − x̃‖H 2(dsf̄ ) <
1

2
ε + ‖Ãωyn − Ãωy‖H 2(dsf̄ ) < ε ,

for n sufficiently big.
Since Aω is a closed operator, D(Aω) with norm ‖φ‖H 2 + ‖Aωφ‖L2 is a Banach space and 

the operator Aω is an isomorphism from D(Aω) to L2,⊥, by the open mapping theorem. We 
observe that

D(Aω) = R(Ãω) = D(A) as defined in (3.7) .

The claim follows considering the operator A : D(A) → L2,⊥ acting as follows Aφ = Aωφ −ωφ

for all φ ∈ D(A) and observing that on D(A) the two norms

φ �→ ‖φ‖H 2(dsf̄ ) + ‖Aωφ‖L2(dsf̄ ) and φ �→ ‖φ‖H 2(dsf̄ ) + ‖Aφ‖L2(dsf̄ )

are equivalent. �
We now characterize the domain of the operator A defined in the Lemma 3.11. Precisely, we 

show that D(A) = H
4,⊥
c (dsf̄ ) (see (2.2)).

Lemma 3.12. Let A be the operator defined in the Lemma 3.11 and assume that f̄ ∈ H 5(I ; Rd)

is a regular curve. Then, D(A) = H
4,⊥
c (dsf̄ ), ‖ · ‖D(A) and ‖ · ‖H 4(dsf̄ ) are equivalent norms and 

(with s = s ¯) Aφ = ∇4
s φ for all φ ∈ D(A).
f
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Proof. Observe that if φ ∈ H
4,⊥
c , then φ ∈ H

2,⊥
0 and

af̄ (φ,ψ) =
∫
I

∇4
s φ · ψ dsf̄ = 〈∇4

s φ,ψ〉L2(dsf̄ ) for all ψ ∈ H
2,⊥
0 (dsf̄ ),

with ∇4
s φ ∈ L2,⊥. Then φ ∈ D(A) and

Aφ = ∇4
s φ for all φ ∈ H 4,⊥

c (dsf̄ ) . (3.10)

We prove now the other inclusion, namely D(A) ⊂ H
4,⊥
c . Since D(A) ⊂ H

2,⊥
0 , we only 

need to show that any φ ∈ D(A) admits weak derivatives of order three and four and that these 
are in L2. It is convenient here for a vector field ψ : I → R

d to write ψ = ψ� + ψ⊥ with 
ψ� := 〈ψ, ∂sf̄ 〉euc∂sf̄ . We show first that for φ ∈ D(A)∣∣∣∣∣∣

∫
I

∂2
s φ · ∂sψ dsf̄

∣∣∣∣∣∣ ≤ C‖ψ‖L2(dsf̄ ) for all ψ ∈ H 1
0 (dsf̄ ) . (3.11)

Then by [3, Prop. 8.3] it follows that the weak derivative ∂3
s φ exists and belongs to L2. By (B.21)

since ‖�κ‖∞, ‖∂s �κ‖∞, ‖∂2
s �κ‖L2 ≤ C and ‖φ‖H 2 ≤ C we find for all ψ ∈ H 1

0 integrating by parts

∣∣∣∣∣∣
∫
I

∂2
s φ · ∂sψ dsf̄

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
I

∇2
s φ · ∂sψ dsf̄

∣∣∣∣∣∣+ C‖ψ‖L2(dsf̄ ) . (3.12)

It remains to estimate the integral on the right-hand side.
Let χ : [0, 1] → [0, 1] be smooth, 0 ≤ χ ≤ 1 and such that χ ≡ 0 on [0, 14 ], χ ≡ 1 on [ 3

4 , 1], 
0 ≤ χ ≤ 1, |χ ′|, |χ ′′| ≤ C. Consider

ψ̃(x) :=
x∫

0

ψ(y)|∂xf̄ (y)|dy + αχ(x), x ∈ [0,1] ,

with

α := −
1∫

0

ψ(y)|∂xf̄ (y)|dy.

Then, using that |∂xf̄ | ≥ δ > 0 in I for some δ > 0,

∂sψ̃(x) = ψ(x) + α∂sχ(x), |α| ≤ C‖ψ‖L2(dsf̄ ), (3.13)

‖ψ̃‖L2(dsf̄ ) ≤ C‖ψ‖L2(dsf̄ ), ‖∂sψ̃‖L2(dsf̄ ) ≤ C‖ψ‖L2(dsf̄ ) ,
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and since ψ ∈ H 1
0 , then ψ̃ ∈ H 2

0 . Then we can write the integral on the right hand side of (3.12)
as ∫

I

∇2
s φ · ∂sψ dsf̄ =

∫
I

∇2
s φ · ∂s(∂sψ̃ − α∂sχ)dsf̄ (3.14)

=
∫
I

∇2
s φ · ∇s(∇sψ̃

⊥ − 〈ψ̃⊥, �κ〉euc∂sf̄ + ∂sψ̃
� − α∂sχ)dsf̄ .

Since ψ̃⊥ ∈ H
2,⊥
0 and φ ∈ D(A) we find

∫
I

∇2
s φ · ∇2

s ψ̃⊥ dsf̄ = af̄ (φ, ψ̃⊥) = 〈Aφ, ψ̃⊥〉L2(dsf̄ ) . (3.15)

Writing ψ = ψ⊥ + 〈ψ, ∂sf̄ 〉euc∂sf̄ and since ∇s(η∂s f̄ ) = η�κ for any η : I →R, the other terms 
in (3.14) may be written as

∇s(−〈ψ̃⊥, �κ〉∂s f̄ + ∂sψ̃
� − α∂sχ)

= 2〈ψ,∂sf̄ 〉euc�κ + 2∂sχ〈α, ∂s f̄ 〉euc�κ + 〈ψ̃, �κ〉euc�κ
+ 〈ψ̃, ∂s f̄ 〉euc∇s �κ − α⊥∂2

s χ .

From (3.14), since ‖�κ‖∞, ‖∂s �κ‖∞ ≤ C with (3.13) we obtain

∣∣∣∣∣∣
∫
I

∇2
s φ · ∂sψ dsf̄

∣∣∣∣∣∣ ≤ ‖Aφ‖L2(dsf̄ )‖ψ‖L2 + C‖∇2
s φ‖L2(dsf̄ )‖ψ‖L2

≤ C‖ψ‖L2(dsf̄ ) . (3.16)

Combining (3.12) and (3.16), (3.11) follows. Hence D(A) ⊂ H 3 ∩ H
2,⊥
0 .

To show the inclusion D(A) ⊂ H
4,⊥
c it remains to show that for φ ∈ D(A),

∣∣∣∣∣∣
∫
I

∂3
s φ · ∂sψ dsf̄

∣∣∣∣∣∣ ≤ C‖ψ‖L2(dsf̄ ) for all ψ ∈ H 1
0 (dsf̄ ) . (3.17)

At this point we use that f̄ ∈ W 5,2(I ; Rd). By (B.22) since ‖�κ‖∞, ‖∂s �κ‖∞, ‖∂2
s �κ‖∞ ≤ C and 

also ‖∂3
s �κ‖L2 ≤ C, ‖φ‖H 3 ≤ C integrating by parts we find for all ψ ∈ H 1

0∣∣∣∣∣∣
∫
I

∂3
s φ · ∂sψ dsf̄

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
I

∇3
s φ · ∂sψ dsf̄

∣∣∣∣∣∣+ C‖ψ‖L2(dsf̄ ) . (3.18)
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It remains to estimate the integral on the right hand side. By a density argument we can restrict 
to consider test-functions ψ in H 2

0 . Then∫
I

∇3
s φ · ∂sψ dsf̄ =

∫
I

∇3
s φ · ∇sψ dsf̄ = −

∫
I

∇2
s φ · ∇2

s ψ dsf̄ .

Writing as before ψ = ψ� + ψ⊥ we compute

∇2
s ψ = ∇2

s ψ⊥ + ∇2
s (〈ψ,∂sf̄ 〉euc∂sf̄ )

= ∇2
s ψ⊥ + ∇s(〈ψ,∂sf̄ 〉euc�κ)

obtaining ∫
I

∇3
s φ · ∂sψ dsf̄ = −

∫
I

∇2
s φ · ∇s(〈ψ,∂sf̄ 〉euc�κ)dsf̄ − af̄ (φ,ψ⊥) ,

since ψ⊥ ∈ H
2,⊥
0 . Due to the bounds on the curvature, since φ ∈ H 3, integrating by parts and 

using (3.8), it follows∣∣∣∣∣∣
∫
I

∇3
s φ · ∂sψ dsf̄

∣∣∣∣∣∣ ≤ C‖ψ‖L2(dsf̄ ) + ‖Aφ‖L2(dsf̄ )‖ψ‖L2(dsf̄ ) ≤ C‖ψ‖L2(dsf̄ ) .

Hence D(A) = H
4,⊥
c and (3.10) holds for all φ ∈ D(A).

It remains to show that the norms ‖ · ‖D(A) and ‖ · ‖H 4 are equivalent on D(A). From its defi-
nition it is clear that ‖φ‖D(A) ≤ ‖φ‖H 4 for all φ ∈ D(A). For the other inequality it is sufficient 
to show that there exists some constant C such that

‖∂3
s φ‖L2(dsf̄ ) + ‖∂4

s φ‖L2(dsf̄ ) ≤ C(‖φ‖H 2(dsf̄ ) + ‖∇4
s φ‖L2(dsf̄ )) for all φ ∈ D(A).

Since φ is normal using (B.22) and (B.23) and the bounds on the curvature and its derivatives we 
find

‖∂3
s φ‖L2(dsf̄ ) + ‖∂4

s φ‖L2(dsf̄ ) ≤ C(‖φ‖H 2(dsf̄ ) + ‖∇3
s φ‖L2(dsf̄ ) + ‖∇4

s φ‖L2(dsf̄ )) ,

and hence we only need that the L2-norm of ∇3
s φ can be controlled by ‖φ‖H 2 and ‖∇4

s φ‖L2 . This 
follows from [11, Lemma C.4]. Indeed that result gives the existence of a constant (depending 
only on the length of the curve f̄ ) such that for all ε ∈ (0, 1)

‖∇3
s φ‖L2(dsf̄ )

≤ C[ε(‖∇2
s φ‖L2(dsf̄ ) + ‖∇3

s φ‖L2(dsf̄ ) + ‖∇4
s φ‖L2(dsf̄ )) + 1

ε
‖∇2

s φ‖L2(dsf̄ )].

Choosing ε small enough the claim follows. �
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Proof of Proposition 3.8. By Lemmas 3.11 and 3.12, the operator ∇4
s + ω : H

4,⊥
c (dsf̄ ) →

L2,⊥(dsf̄ ) is an isomorphism and hence a Fredholm operator of index zero. Since the embedding 

H
4,⊥
c (dsf̄ ) ↪→ L2,⊥(dsf̄ ) is compact we find that

∇4
s : H 4,⊥

c (dsf̄ ) → L2,⊥(dsf̄ )

is also Fredholm of index 0 (see [35, Example 8.16 (ii)]). This yields the claim. �
Corollary 3.13. Let f̄ ∈ H 5 be a regular curve. The Fréchet derivative

L := (dE)′(0) : H 4,⊥
c → L2,⊥ (3.19)

of dE at zero is a Fredholm operator of index 0.

Proof. The operator L is associated to the second variation E′′(0) (recall (A.2)) which is given 
in Proposition 3.6. For φ ∈ H

4,⊥
c we find using partial integration and the boundary value

Lφ =
(
∇4

s φ + (∇2
s φ · �κ)�κ + 3

2
|�κ|2∇2

s φ + 3(�κ · ∇s �κ)∇sφ (3.20)

+ 2(∇sφ · �κ)∇s �κ + 2(φ · �κ)∇2
s �κ + 3(φ · ∇s �κ)∇s �κ

+ (φ · ∇2
s �κ)�κ + |�κ|2(�κ · φ)�κ

)
|∂xf̄ |

= |∂xf̄ |∇4
s φ + B(φ) ∈ L2,⊥ ,

for a linear operator B : H
4,⊥
c → L2,⊥ which is compact since the embeddings H 4 ↪→

L2, H 1, H 2 are all compact and the coefficients are uniformly bounded since f̄ ∈ H 5. By 
Proposition 3.8 and since |∂xf̄ | is uniformly bounded from above and below, it follows that 
H

4,⊥
c � φ �→ |∂xf̄ |∇4

s φ ∈ L2,⊥ is a Fredholm operator of index 0. Since B is compact, the claim 
follows using that the sum of a Fredholm operator of index zero and a compact operator is again 
a Fredholm operator of index 0. �
4. Proof of the Łojasiewicz–Simon inequality for all directions

In the previous section we have shown the Łojasiewicz–Simon inequality for the functional E
(see (2.4), Theorem 3.1 and Remark 3.2), i.e. we have considered only variations in the normal 
direction. This is needed to get the desired Fredholm property of the second variation. In this 
section we want to show the existence of constants C1 ≥ 0, θ ∈ (0, 12 ] and σ > 0 such that the 
Łojasiewicz–Simon inequality

|E(0) − E(ψ)|1−θ ≤ C1
∥∥∇E(ψ)

∥∥
L2(dsf̄ +ψ)

, (2.7)

is actually satisfied on a σ -ball around zero of the whole space of variations ψ ∈ H 4
c . This can be 

achieved starting from Theorem 3.1 and Remark 3.2 and by noticing that variation vector fields 
that are tangent to a fixed immersion f̄ correspond to reparametrizations of f̄ .
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Lemma 4.1. Let f̄ ∈ H 5(I ; Rd) be a regular curve. There exists a σ = σ(f̄ ) > 0 such that for 
any ψ ∈ H 4

c with 
∥∥ψ

∥∥
H 4 ≤ σ , there exists a H 4-diffeomorphism � : I → I such that

(f̄ + ψ) ◦ � = f̄ + φ (4.1)

for some φ ∈ H 4,⊥
c .

Moreover, for σ̃ > 0 given, there exists σ = σ(σ̃ , f̄ ) > 0 such that for any ψ ∈ H 4
c with ∥∥ψ

∥∥
H 4 ≤ σ , (4.1) is valid and the normal vector field φ satisfies the inequality 

∥∥φ∥∥
H 4 ≤ σ̃ .

Remark 4.2. As can be easily seen from the proof (see (4.5) below), one can achieve higher 
regularity of the diffeomorphism in the previous lemma by assuming more regularity in the data. 
More precisely, if for some m ≥ 4, m ∈ N, f̄ ∈ Hm+1(I ; Rd) then there exists a σ = σ(f̄ )

such that for any ψ ∈ H 4
c ∩ Hm with 

∥∥ψ
∥∥

H 4 ≤ σ , there exists a Hm-diffeomorphism � and 

a φ ∈ H
4,⊥
c ∩ Hm so that (4.1) is valid. Similarly (adapting the arguments given in B.5) also 

the second part of the claim of Lemma 4.1 remains true, that is for given σ̃ > 0 there exists 
σ = σ(σ̃ , f̄ ) > 0 such that for any ψ ∈ H 4

c ∩Hm with 
∥∥ψ

∥∥
Hm ≤ σ , (4.1) is valid and the normal 

vector field φ satisfies the inequality 
∥∥φ∥∥

Hm ≤ σ̃ .

To show the existence of �, we use the implicit function theorem in the following form.

Theorem 4.3 ([35, Theorem 4.B]). Let X, Y , Z be real Banach spaces, (x0, y0) ∈ X ×Y , � ×�

be an open neighborhood of (x0, y0) in X × Y and F : � × � → Z such that

1. F(x0, y0) = 0;
2. ∂yF exists as partial Fréchet-derivative on � × � and ∂yF (x0, y0) : Y → Z is bijective;
3. F and ∂yF are continuous at (x0, y0).

Then there exist positive numbers r0 and r such that Br0(x0) × Br(y0) ⊂ � × � and for every 
x ∈ X satisfying 

∥∥x −x0
∥∥

X
≤ r0, there is exactly one y = y(x) ∈ Y for which 

∥∥y −y0
∥∥

Y
≤ r and 

F(x, y) = 0. Moreover, if F is continuous in a neighborhood of (x0, y0), then y(·) is continuous 
in a neighborhood of x0.

Proof of Lemma 4.1. Let X := H 4
c , Y := Z := H 3 ∩ H 1

0 (I ; R) and (x0, y0) := (0, 0) ∈ X × Y . 
Let � := Bρ(0) ⊂ X be small enough such that f̄ + ψ is immersed for all ψ ∈ � and 
� := BR(0) ⊂ Y be small enough such that 

∥∥ϕ′∥∥∞ < 1
2 for all ϕ ∈ �. Note that this is pos-

sible since Y ↪→ C1(I ; R). Moreover, notice that this choice of � implies that idI + ϕ is a 
C1-diffeomorphism of I for all ϕ ∈ �.

Consider the functional

F : � × � → Z, (ψ,ϕ) �→ 〈
(f̄ + ψ) ◦ (idI + ϕ) − f̄ , ∂xf̄

〉
euc , (4.2)

which is well defined since the composition of a function Hm(I, R) with a function in Hm, that 
is also a C1-diffeomorphism, is an element of Hm(I, R) for m ≥ 2. Indeed, by [3, Prop. 9.5] we 
see that since f̄ + ψ ∈ H 1, we have (f̄ + ψ) ◦ (idI + ϕ) ∈ H 1 and its weak derivative is (as 
expected) given by

(1 + ϕ′) (f̄ + ψ)′ ◦ (idI + ϕ) .
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Since (f̄ +ψ)′ ∈ H 1 we can repeat the same argument and we obtain (f̄ +ψ) ◦ (idI +ϕ) ∈ H 2. 
The case m > 2 can be treated repeating the same arguments. From the definition, one sees also 
that the function F is continuous.

We now show that with these choices the assumptions of Theorem 4.3 are satisfied. By defi-
nition F(0, 0) = 0 and writing for h sufficiently small

F(ψ,ϕ + h) − F(ψ,ϕ) − h
〈
(∂x(f̄ + ψ)) ◦ (idI + ϕ), ∂xf̄

〉
euc

=
n∑

i=1

[
idI +ϕ+h∫
idI +ϕ

∂2
x ((f̄ + ψ)i)(t)(idI + ϕ + h − t) dt]∂xf̄

i

we see that the Fréchet derivative of F with respect to the second component exists and is given 
by

∂yF (ψ,ϕ) :H 3(I,R) ∩ H 1
0 (I,R) → H 3 ∩ H 1

0 (I ;R)

h �→ h
〈
(∂x(f̄ + ψ)) ◦ (idI + ϕ), ∂xf̄

〉
euc ,

a linear and continuous operator. In particular, ∂yF (0, 0) is the scalar multiplication with |∂xf̄ |2
acting from H 3 ∩ H 1

0 to H 3 ∩ H 1
0 . This is an invertible and continuous operator since f̄ is an 

immersion.
Since F and Fy are continuous in a neighborhood of (0, 0), it follows from Theorem 4.3 that 

there exist some 0 < r0 ≤ ρ and 0 < r ≤ R such that for any ψ ∈ H 4
c with ‖ψ‖H 4 ≤ r0 there 

exists exactly one ϕ̃ : I →R ∈ H 3 ∩ H 1
0 , 

∥∥ϕ̃′∥∥∞ < 1
2 and ‖ϕ̃‖H 3 ≤ r , such that

〈
(f̄ + ψ) ◦ (idI + ϕ̃) − f̄ , ∂xf̄

〉
euc = 0 on I. (4.3)

Moreover, using the continuity of ∂yF we may choose r , r0 small enough such that

〈
∂x(f̄ + ψ) ◦ (idI + ϕ̃), ∂xf̄

〉
euc ≥ 1

2
|∂xf̄ |2 �= 0 on I. (4.4)

We have already used that idI + ϕ̃ is a diffeomorphism on I . Since F is continuous, ‖ϕ̃‖H 3 de-
pends continuously on ‖ψ‖H 4 . We show now that ϕ̃ is actually in H 4 and that also the H 4-norm 
of ϕ̃ depends continuously on ‖ψ‖H 4 .

Differentiating (4.3) one sees that

1 + ϕ̃′ = |∂xf̄ |2 − 〈
(f̄ + ψ) ◦ (idI + ϕ̃) − f̄ , ∂2

x f̄
〉
euc〈

∂x(f̄ + ψ) ◦ (idI + ϕ̃), ∂xf̄
〉
euc

. (4.5)

Since the right-hand side is in H 3(I, R), it follows that ϕ̃ ∈ H 4(I, R). The first part of the claim 
follows by letting � := id + ϕ̃ and φ := (f̄ + ψ) ◦ � − f̄ . Then � is a H 4-diffeomorphism and, 
by construction (see (4.3)) φ is normal to ∂xf̄ .

The proof of the second part of the claim is quite technical and it is given in the ap-
pendix B.5. �



2186 A. Dall’Acqua et al. / J. Differential Equations 261 (2016) 2168–2209
By virtue of this lemma we may now derive the Łojasiewicz–Simon inequality for all direc-
tions from the one already proven for normal directions.

Proof of Theorem 2.4. As already observed, since f̄ ∈ H 4(I ; Rd) is a regular curve and a 
critical point of the elastic energy, it is smooth. By Theorem 3.1 there exists a σ̃ > 0 and constants 
C2, θ such that for all φ ∈ Bσ̃ (0) ⊂ H

4,⊥
c inequality (3.1) holds. By choosing σ as in Lemma 4.1

we find that for any ψ ∈ Bσ (0) ⊂ H 4
c there exists a H 4-diffeomorphism � as well as a normal 

vector field φ with ‖φ‖H 4 ≤ σ̃ such that, by the geometric invariance of the functional E , we can 
write

E(ψ) = E(f̄ + ψ) = E((f̄ + ψ) ◦ �) = E(f̄ + φ) = E(φ).

Hence, with the constants C2, C3 and θ from Theorem 3.1 and Remark 3.2 we obtain

|E(ψ) − E(0)|1−θ = |E(φ) − E(0)|1−θ ≤ C2
∥∥dE(φ)

∥∥
L2(dx)

≤ C3‖∇E(φ)‖L2(df̄ +φ).

Recalling the explicit formulas for the gradients given below Definition 2.3 we see that 
‖∇E(φ)‖L2(dsf̄ +φ) ≤ ‖∇E(φ)‖L2(dsf̄ +φ). Using now the geometric invariance of the gradient of 

the energy we find that ‖∇E(φ)‖L2(dsf̄ +φ) = ∥∥∇E(ψ)
∥∥

L2(dsf̄ +ψ)
and therefore

|E(ψ) − E(0)|1−θ ≤ C3
∥∥∇E(ψ)

∥∥
L2(dsf̄ +ψ)

.

The claim follows with these choices of σ and θ and choosing C1 = C3. �
5. Main result: convergence to elastica

In this section we turn to the geometric problem under consideration, that is we consider the 
evolution of smooth regular open curves with fixed endpoints, fixed unit tangents at the boundary, 
and moving according to the L2-gradient for the elastic energy Eλ. A precise formulation has 
already been given in (1.5). Note that now the arc-length element dsf = |fx(x, t)| dx is time 
dependent. Moreover note that the claim of Theorem 2.4 holds also for the functional Eλ since 
only lower order terms have been added (recall Corollary 3.7).

By Theorem 1.1 one is able to find sequences of curves f (ti), ti → ∞, converging smoothly 
(after an appropriate reparametrization) to a smooth regular curve f∞. As we mentioned in the 
introduction, in principle for different (sub-)sequences we could find different limits. Here we 
want to show that this is not the case: that is, for a chosen initial data f0 the flow evolves (after 
a suitable reparametrization) to one critical point. This claim can be achieved by application of 
the Łojasiewicz–Simon inequality as described in the following.

Proof of Theorem 1.2. In the proof of long-time existence of the flow it is shown that the 
length of the curve remains uniformly bounded from above and below along the evolution (with 
constants independent of time: see [17, equations (41), (43), (47)]). However, the arc-length 
element |fx | might degenerate in the limit and this is the reason why a reparametrization of the 
curves f (ti) is necessary for the sub-convergence result. (In fact uniform bounds in time for f
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and its derivatives are obtained when the curve is considered reparametrized by arc-length.) With 
this in mind let us introduce the smooth map � : [0, ∞) × [0, 1] → [0, 1],

�(t, x) := 1

L(f (t))

x∫
0

|fx(t, ξ)|dξ.

For any fixed t the map � gives a smooth diffeomorphism by which we can reparametrize the 
curve f (t).

As already pointed out, by Theorem 1.1 we know that the flow exists for all times and it is 
smooth. By construction of the L2-gradient flow we have that

d

dt
Eλ(f (t)) = 〈∇L2Eλ(f (t)), ∂tf 〉L2(dsf ) = −∥∥∂tf

∥∥2
L2(dsf )

≤ 0. (5.1)

Thus Eλ(f (t)) decreases in time. Moreover by the subconvergence result there exists a sequence 
ti → ∞ such that

f (ti ,�
−1(ti , ·)) converges to f∞ in Ck for all k ∈N, (5.2)

with f∞ a critical point of the functional Eλ. (This critical point f∞ will be kept fixed throughout 
the following arguments.) It then follows that

Eλ(f (t)) = Eλ(f (t,�−1(t, ·))) ≥ Eλ(f∞) for all t . (5.3)

In particular we observe that possibly different critical points, that are limit to different sequences 
of times, share the same energy level Eλ(f∞). We distinguish now between two cases, namely 
whether the final energy level is attained in finite time or not.

If there exists t̄ ∈ (0, ∞) such that Eλ(f (t̄)) = Eλ(f∞), then necessarily Eλ(f (t)) = Eλ(f∞)

for all t ∈ [t̄ , ∞). Then f (t, ·) = f (t̄, ·) for all t ∈ [t̄ , ∞) since ∂tf ≡ 0. Due to the subconver-
gence result we additionally find

f (t,�−1(t, ·)) = f∞ for all t ≥ t̄ ,

and the claim follows.
Hence in the following we may assume that Eλ(f (t)) > Eλ(f∞) for all t . By Theorem 2.4

(now adapted with the obvious changes to the functional Eλ) and since f∞ is a regular critical 
point for Eλ we conclude that there exists θ ∈ (0, 12 ] and C1, σ > 0 such that the Łojasiewicz–
Simon gradient inequality

|Eλ(0) − Eλ(ψ)|1−θ ≤ C1
∥∥∇Eλ(ψ)

∥∥
L2(ds(f∞+ψ))

(5.4)

holds for all ψ ∈ H 4
c such that 

∥∥ψ
∥∥

H 4 ≤ σ . Here Eλ(ψ) = Eλ(f∞ + ψ) = E(f∞ + ψ) +
λL(f∞ + ψ) and (5.4) can be written as

|Eλ(f∞) − Eλ(f∞ + ψ)|1−θ ≤ C1
∥∥∇L2Eλ(f∞ + ψ)

∥∥
2 . (5.5)
L (ds(f∞+ψ))



2188 A. Dall’Acqua et al. / J. Differential Equations 261 (2016) 2168–2209
For reasons that will become clearer shortly and in order to highlight the dependence of some 
important parameters, let us now fix δ = δ(f∞) > 0, such that for any map f̃ with

‖f̃ − f∞‖C1[0,1] < δ

we have that |∂xf̃ | ≥ M > 0 with M := 1
2 minI |∂xf∞| (recall that f∞ is a regular curve), as well 

as

|ν⊥| ≥ 1

2
|ν| (5.6)

for any ν vector field that is normal to f∞. Here ν⊥ denotes the normal component of ν with 
respect to f̃ . Note that the above inequality makes sense, since for ν orthogonal to τ∞ := ∂xf∞

|∂xf∞| , 
we find

ν⊥ = ν − 〈ν, ∂s f̃ 〉∂sf̃ = ν − 〈ν, ∂s f̃ − τ∞〉∂sf̃ ,

and |ν⊥| ≥ (1 − a)|ν| for a small when ‖f̃ − f∞‖C1 is small enough. Next, without loss of 
generality we may assume that σ < δ, with σ as in the Łojasiewicz–Simon gradient inequality 
(5.5) above.

Let ε > 0 to be chosen. From (5.2) it follows that there exists k ∈ N such that

‖f (tk,�
−1(tk, ·)) − f∞‖H 5 < ε . (5.7)

With this fixed choice of k = k(ε), we define

f̂0(x) := f (tk,�
−1(tk, x)) for x ∈ [0,1] .

Then f̂0 is a regular smooth curve satisfying the clamped boundary conditions of (1.5). For the 
next steps, we follow quite closely the method of proof presented in [5]. The idea is to start with 
f̂0 as a initial data, and show the existence of an elastic flow that can be written as a graph over 
f∞. This is possible because we start really close to the critical point (closeness in norm and 
hence, so to say, in parametrization). Subsequently we will show that this flow exists for all time 
and differs from the original one by a suitable reparametrization. The reason for this somehow 
cumbersome ansatz lies in the fact that although we already have long-time existence of the flow 
for f , we have very little control on its parametrization. In particular, once we fix a limit point 
f∞, we automatically pick a parametrization and there is no reason to believe that f should 
converge to it in suitable norms.

By Lemma 4.1 and Remark 4.2 and choosing ε < σ(f∞) (with σ(f∞) as defined in Re-
mark 4.2 with m = 5) there exists a diffeomorphism �0 ∈ H 5(I ) such that

f̂0 ◦ �0 = f∞ + N0

with N0 ∈ H 5(I ; Rd) and normal along f∞. Moreover, the same lemma and remark give the 
existence of a constant K(ε) such that K(ε) ↘ 0 for ε ↘ 0 and such that

‖N0‖H 5 = ‖f̂0 ◦ �0 − f∞‖H 5 < K(ε) <
1
σ <

1
δ (5.8)
2 2
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for ε small enough. Since f∞ is smooth and also f̂0 is smooth, proceeding as in the proof of 
Lemma 4.1 one sees that �0 and N0 are also smooth.

With (1.5) in mind, we now look for a solution f̃ of

⎧⎪⎪⎨
⎪⎪⎩

∂⊥
t f̃ = −∇L2Eλ(f̃ ) in (0, T ) × I,

f̃ (0, ·) = f̂0 ◦ �0 = f∞ + N0 on I

f̃ (t,0) = f−, f̃ (t,1) = f+ for t ∈ (0, T )

∂s f̃ (t,0) = T−, ∂s f̃ (t,1) = T+ for t ∈ (0, T )

(5.9)

of type f̃ = f∞ + N with N normal to f∞. Here ∂⊥
t f̃ := ∂t f̃ − 〈∂t f̃ , ∂sf̃ 〉∂sf̃ with s = s

f̃
. 

Moreover T− = (f∞)x
|(f∞)x | (0), T+ = (f∞)x

|(f∞)x | (1), f∞(0) = f−, f∞(1) = f+.

Let {Ni}d−1
i=1 be a smooth (time-independent) frame in Rd orthogonal to f∞ and orthonormal. 

Then we may write

f̃ = f∞ + N = f∞ +
d−1∑
i=1

ϕiNi with ϕi : [0, T ) × I → R .

We find

∂t f̃ =
d−1∑
i=1

(∂tϕ
i)Ni, ∂⊥

t f̃ =
d−1∑
i=1

(∂tϕ
i)N⊥

i

and there exists some vector-valued function �P depending smoothly on its arguments as well as 
f∞ and the frame {Ni}d−1

i=1 such that

∇L2Eλ(f̃ ) = 1

|∂x(f∞ + N)|4
d−1∑
i=1

(∂4
xϕi)N⊥

i + �P (·, ϕ, ∂xϕ, . . . , ∂3
xϕ) ,

where we abbreviate ϕ = (ϕ1, . . . , ϕd−1).
We claim that for t sufficiently small, {N⊥

i }d−1
i=1 is a basis of {∂sf̃ }⊥. Indeed we have seen that 

(5.6) holds when ‖f̃ − f∞‖C1 is small enough. Hence in a short interval of time {N⊥
i }d−1

i=1 is a 
basis of the normal bundle of f̃ and (5.9) becomes equivalent to the following PDE-system for 
ϕ = (ϕ1, . . . , ϕd−1):

⎧⎪⎪⎨
⎪⎪⎩

∂tϕ = − 1
|∂x(f∞+N)|4 ∂4

xϕ − P(·, ϕ, ∂xϕ, . . . , ∂3
xϕ) in (0, T ) × I,

ϕ(0, ·) = ϕ0 on {0} × I

ϕ(t,0) = 0 = ϕ(t,1) for t ∈ (0, T )

∂xϕ(t,0) = 0 = ∂xϕ(t,1) for t ∈ (0, T )

(5.10)

with some function P with the same dependencies as �P above and with N0 = ∑d−1
i=1 ϕi

0Ni . Since 
|∂x(f∞ + N)| is bounded away from zero for ‖N‖C1 small enough (which is guaranteed at the 

initial time by (5.8)) and since the initial data belongs to C4, 1
2 ([0, 1]) by embedding results, one 

can show that there exists some maximal time interval (0, T ′), 0 < T ′ ≤ ∞, such that the above 
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system admits a unique solution in the parabolic Hölder space C1+α/4,4+α([0, T ′) × [0, 1]) for 
α ∈ (0, 12 ] (notation as in [20, § 5.1]). This short-time existence result follows from classical re-
sults for strictly parabolic quasi-linear systems [20,19,13]. The main strategy involves obtaining 
optimal regularity results for the linear parabolic problem and then applying a fixed-point argu-
ment in the appropriate Hölder spaces. A detailed proof in the context of Sobolev-spaces will 
soon appear in the Ph.D. Thesis of Spener.

Let T ∈ (0, T ′] be maximal such that

‖f̃ (t) − f∞‖H 4 < σ < δ for all t ∈ [0, T ). (5.11)

In particular observe that the above inequality implies that {N⊥
i }d−1

i=1 is a basis of {∂sf̃ }⊥ since 
σ < δ (recall (5.6)), as well as |f̃ (t)x | ≥ M > 0 uniformly in time.

We want to show that T = T ′ = ∞. Assume that this is not the case, hence either 0 < T <

T ′ = ∞ or 0 < T ≤ T ′ < ∞. Let T ′′ := min{T ′, T + 1}. We claim now that

sup
[0,T )

‖ϕ(t)‖C4,γ ([0,1]) ≤ C(σ,T ′′), (5.12)

and hence

sup
[0,T )

‖f̃ (t) − f∞‖C4,γ ([0,1]) ≤ C(σ,T ′′) (5.13)

for some γ ∈ (0, 12 ). The above upper bounds can be obtained by applying parabolic Schauder 
estimates. For completeness, we present here a possible method to derive such estimates. First 
of all note that by (5.11) and embedding theory the map f̃ and hence ϕ belong to C3, 1

2 ([0, 1])
uniformly in time on [0, T ]. In particular sup[0,T ] ‖P(·, ϕ, ∂xϕ, . . . , ∂3

xϕ)‖
C

0, 1
2 ([0,1]) ≤ Cσ and 

sup[0,T ] ‖ 1
|∂x(f∞+N)|4 ‖

C
0, 1

2 ([0,1]) ≤ Cσ . By [12, Theorem 2.1 with g(t, x) = ϕ0(x) for all t ] and 

(5.8) it follows that ϕ satisfies (in the notation of [12])

[ϕ] 2+ 1
2

4 , 1
2 ,[0,T ]×[0,1]

+ [ϕx] 1+ 1
2

4 , 1
2 ,[0,T ]×[0,1]

+ [ϕxx] 1
2
4 , 1

2 ,[0,T ]×[0,1]
≤ C(σ,T ′′).

That is, the derivatives with respect to x up to order two of ϕ are Hölder continuous in time and 
space. In order to apply standard regularity theory we need the same regularity result also for the 
third derivative with respect to x of ϕ. We obtain this as follows. Since ∂xϕ is continuous in time 
and space, by [7, Thm. 2.1] we obtain for all p ∈ (1, ∞)

ϕ ∈ W 1,p(0, T ;Lp(0,1)) ∩ Lp(0, T ;W 4,p(0,1)) .

By real interpolation (see [21, Prop. 1.1.3], [1, Thm. 3.1] and [30, 2.3.1(7)]) one has for θ ∈ (0, 1)

such that 4θ /∈ N

W 1,p(0, T ;Lp(0,1)) ∩ Lp(0, T ;W 4,p(0,1))

↪→ (W 1,p(0, T ;Lp(0,1)),Lp(0, T ;W 4,p(0,1)))θ,p

= W 1−θ,p(0, T ;W 4θ,p(0,1)) .
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Letting p > 5 we find some θ ∈ (0, 1) such that the Sobolev Embedding Theorem [1, (3.2), (3.3)]
yields

W 1−θ,p(0, T ;W 4θ,p(0,1)) ↪→ Cγ1([0, T ];C3+γ2 [0,1])

for some γ1, γ2 ∈ (0, 12 ). We have finally obtained that the third derivatives of ϕ are Hölder in 
time and space on [0, T ] ×[0, 1]. Hence we can now see the PDE-system (5.10) as a linear system 
with Hölder coefficients. Hence by classical results as [13, Theorem VI.21] or [29, Thm. 4.9] we 
get (5.12) and hence (5.13).

We may now finally employ the Łojasiewicz–Simon gradient inequality to finish the proof. 
To do so we let

G(t) :=
(
Eλ(f̃ (t)) − Eλ(f∞)

)θ

for t ∈ (0, T )

with θ the parameter from the Łojasiewicz–Simon gradient inequality (see (5.4)). Since f̃ is in 
fact a reparametrization of f as we will see below after (5.17) we may infer from (5.1) and (5.3)
that G is monotonically decreasing to zero. Moreover for t ∈ (0, T ) using (5.5), (5.9), and (5.11)
we get

− d

dt
G(t) = −θG(t)

θ−1
θ

〈
∇L2Eλ(f̃ (t)), ∂t f̃

〉
L2(ds

f̃
)

= −θG(t)
θ−1
θ

〈
∇L2Eλ(f̃ (t)), (∂t f̃ )⊥

〉
L2(ds

f̃
)

= θG(t)
θ−1
θ

∥∥∇L2Eλ(f̃ (t))
∥∥

L2(ds
f̃
)

∥∥(∂t f̃ )⊥
∥∥

L2(ds
f̃
)

≥ θG(t)
θ−1
θ

1

C1

(
Eλ(f̃ (t)) − Eλ(f∞)

)1−θ ∥∥(∂t f̃ )⊥
∥∥

L2(ds
f̃
)

= θ

C1

∥∥(∂t f̃ )⊥
∥∥

L2(ds
f̃
)
. (5.14)

Since 〈N, τ∞〉 = 0, then also 〈∂tN, τ∞〉 = 0 and hence

(∂t f̃ )⊥ = ∂tN − 〈∂tN, ∂s f̃ 〉∂sf̃

= ∂tN − 〈∂tN, ∂s f̃ − τ∞〉∂sf̃ .

By (5.6) and (5.11) we get

∥∥(∂t f̃ )⊥
∥∥

L2(ds
f̃
)
≥ 1

2

∥∥∂tN
∥∥

L2(ds
f̃
)
= 1

2

∥∥∂t f̃
∥∥

L2(ds
f̃
)
.

Hence we find by (5.14) and the boundedness of |f̃x(t)| from below

− d
G(t) ≥ θ

√
M ‖∂t f̃ ‖L2 for t ∈ (0, T ) . (5.15)
dt 2C1
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This inequality together with an interpolation argument allows us to prove that T = ∞. We first 
observe that for t ∈ (0, T ) by (5.15) and the definition of G

∥∥f̃ (t) − f∞
∥∥

L2 ≤ ∥∥f̃ (0) − f∞
∥∥

L2 +
t∫

0

∥∥∂t f̃
∥∥

L2 dτ

≤ ∥∥f̃ (0) − f∞
∥∥

L2 − C(G(t) − G(0))

≤ ∥∥f̃ (0) − f∞
∥∥

L2 + C
(
Eλ(f̃ (0)) − Eλ(f∞)

)θ

≤ C
∥∥f̃ (0) − f∞

∥∥θ

C2 , (5.16)

since θ < 1 and for ε small enough. Then by real interpolation (see [31, (i) of Thm. at page 29 
and (ii) of Thm. at page 5], [2, Thm. 6.4.5(3)] and [30, Thm. 4.6.1(e), page 328]) there exists 
some 0 < β < 1 such that for all t ∈ (0, T )

∥∥f̃ (t) − f∞
∥∥

H 4 ≤ C‖f̃ (t) − f∞‖C4([0,1]) ≤ C
∥∥f̃ − f∞

∥∥β

L2‖f̃ − f∞‖1−β

C4,γ ([0,1]) .

By (5.16), (5.13), and (5.8) we find for ε small enough and for all t ∈ (0, T )

∥∥f̃ (t) − f∞
∥∥

H 4 ≤ C
∥∥f̃ (0) − f∞

∥∥βθ

C2 ≤ C(ε) <
1

2
σ ,

which gives a contradiction to the maximality of T as in (5.11) if T < T ′. Thus T = T ′ (with 
(5.11) holding up to T ′). But then if T ′ < ∞, since (5.13) holds up to time T ′, we can start the 
flow again. Hence it must be T ′ = ∞ and (5.11) holds for t ∈ (0, ∞). Finally notice that the flow 
is not just eternal but also smooth (see [28, Theorem 8.1]). Using (5.15) we immediately infer 
that 

∥∥∂t f̃
∥∥

L2 ∈ L1(R+). Furthermore from ‖f̃ (t) − f̃ (t ′)‖L2 ≤ ∫ t

t ′ ‖∂t f̃ ‖L2 it follows that there 
exists

f̃∞ := lim
t→∞ f̃ (t, ·) in L2 . (5.17)

It remains to establish the relation between f and f̃ . We will see that f̃ is a reparametrization 
of f . From (5.9) it follows that f̃ satisfies the differential equation

∂t f̃ + ξ∂xf̃ = −∇L2Eλ(f̃ ) on (0,∞) × I ,

for some smooth function ξ . The tangential term can be generated via diffeomorphism. In fact, 
by [16, Theorem 9.48] for t > 0 there exist smooth diffeomorphisms �(t, ·) : I → I such that

{
∂t� = ξ ◦ � in (0,∞) × I,

�(0, ·) = idI .
(5.18)

Then the function f̃ (t, �(t, x)) satisfies the equation
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∂t [f̃ (t,�(t, x))] = (∂t f̃ )(t,�(t, x)) + (∂xf̃ )(t,�(t, x))∂t�(t, x)

= −∇L2Eλ(f̃ )(t,�(t, x)) − ξ(t,�(t, x))(∂x f̃ )(t,�(t, x))

+ (∂xf̃ )(t,�(t, x))∂t�(t, x)

= −∇L2Eλ(f̃ )(t,�(t, x)) = −∇L2Eλ(f̃ (t,�(t, x)))

and the initial condition

f̃ (0,�(0, x)) = f̃ (0, x) = f̂0 ◦ �0(x) = f (tk,�
−1(tk,�0(x))) .

Due to the uniqueness of the solution of the elastic flow (recall also [22,15]) we find f (tk + t) ≡
f̃ (t, � ◦ (�−1(tk) ◦ �0)

−1), or equivalently

f̃ (t, ·) = f (tk + t,�−1(tk) ◦ �0 ◦ �−1(t)(·))
and, by (5.17), the claim follows. �
Remark 5.1. Thanks to the Łojasiewicz–Simon gradient inequality we have also information 
about the rate of convergence. With the same notation as in the proof of Theorem 1.2 and com-
puting as in (5.14) (recall also (5.5)) we find

− d

dt
G(t) = θG(t)

(θ−1)
θ

∥∥∇L2Eλ(f̃ (t))
∥∥2

L2(ds
f̃
)

≥ θG(t)
(θ−1)

θ
1

C2

(
Eλ(f̃ (t)) − Eλ(f∞)

)2(1−θ) = θ

C2
G(t)

(1−θ)
θ ,

from which it follows that G(t) is O(e−ct ) for θ = 1
2 and O(t−

θ
1−2θ ) for the other values of θ . 

By (5.15) we have

∥∥f̃ (t) − f̃∞
∥∥

L2 ≤
∞∫
t

∥∥∂t f̃
∥∥

L2 dτ = 2C

θ
G(t) , (5.19)

from which we derive the following rate of convergence

∥∥f̃ (t) − f̃∞
∥∥

L2 ∈
{

O(e−ct ) θ = 1
2

O(t−
θ

1−2θ ) θ ∈ (0, 1
2 )

(5.20)

as t → ∞.
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Appendix A. Corollary 3.11 in [6]

Our proof of the Łojasiewicz–Simon Inequality is based on [6, Corollary 3.11]. For complete-
ness we recall the setting in [6] and then show how it is sufficient to prove 1., 2., 3. in Remark 3.3
to apply [6, Corollary 3.11].

In [6] the following framework is considered. Let V be a Banach space, U ⊂ V open and E ∈
C2(U, R) be the considered energy functional. Then the first order derivative of E (denoted by 
M) is in C1(U, V ∗) and the second order derivative of E (denoted by L) is in C(U, B(V, V ∗)). 
As usual V ∗ denotes the dual of a Banach space V and B(X, Y) denote the Banach space of 
linear bounded operators from a Banach space X to a Banach space Y .

Let ϕ be a critical point for E in U , that is M(ϕ) = 0.

Hypothesis A.1. ([6, Hypothesis 3.2]) There exists a projection P ∈ B(V, V ) such that

ImP = KerL(ϕ) =: V0 .

In this case we have V = V0 ⊕ V1 (topological sum) with V1 = KerP . Let P ∗ ∈ B(V ∗, V ∗)
be the adjoint projection. Then

V ∗ = ImP ∗ ⊕ KerP ∗ =: V ∗
0 ⊕ V ∗

1 .

Notice that this notation makes sense since we may identify V ∗
0 with ImP ∗ and V ∗

1 with KerP ∗.

Hypothesis A.2. ([6, Hypothesis 3.4]) There exists a Banach space W such that

(i) W ↪→ V ∗ with continuous embedding;
(ii) Let P be the projection from Hypothesis A.1. Then the adjoint P ∗ ∈ B(V ∗, V ∗) leaves W

invariant;
(iii) M ∈ C1(U, W);
(iv) ImL(ϕ) = KerP ∗ ∩ W .

We may state now Corollary 3.11 in [6].

Corollary A.3. ([6, Corollary 3.11]) Let ϕ be a critical point for E in U and assume Hypoth-
esis A.1 and A.2. Assume in addition that there exist Banach spaces X ⊂ V and Y ⊂ W such 
that

1. the spaces X and Y are invariant under the projections P and P ∗ respectively;
2. the restriction of the derivative M to U ∩ X is analytic in a neighborhood of ϕ with values 

in Y ;
3. KerL(ϕ) is contained in X and finite dimensional, and
4. Im L(ϕ)|X = KerP ∗ ∩ Y .

Then the functional E satisfies the Łojasiewicz–Simon Inequality near ϕ, that is there exist σ > 0, 
θ ∈ (0, 12 ], and C ≥ 0 such that for every v ∈ U with ‖v − ϕ‖V ≤ σ

|E(v) − E(ϕ)|1−θ ≤ C‖M(v)‖W .
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We discuss now how, in our situation, it is sufficient to prove 1., 2., 3. in Remark 3.3 to apply 
[6, Corollary 3.11].

We take: X = V := H
4,⊥
c , Y = W = H := L2,⊥, E as defined in Definition 2.3 and ϕ = 0 as 

a critical point. That is, we consider the case that f̄ is a critical point for the elastic energy E . To 
verify the assumptions of [6, Corollary 3.11] we take advantage of the Hilbert structure of H as 
follows.

Since V = H
4,⊥
c embeds densely into the Hilbert space L2,⊥ = H , we have the usual Gel’fand 

triple

V ↪→ H ∼= H ∗ ↪→ V ∗.

As discussed below Definition 2.3 the Fréchet-derivative E′ may be identified with the 
L2,⊥-gradient of E, dE : U → H defined by

E′(ψ)φ = 〈dE(ψ),φ〉L2(dx) ∀ψ ∈ U,∀φ ∈ V. (A.1)

By 2. in Remark 3.3 dE is analytic and we may consider its derivative

(dE)′ : U → B(V ,H).

Let L = (dE)′(0) : V → H . For φ and ψ ∈ V we can write

〈Lφ,ψ〉L2(dx) = 〈(dE)′(0)φ,ψ〉L2 = 〈 d

dt
dE(tφ)|t=0,ψ〉L2

= d

dt
〈dE(tφ),ψ〉L2 |t=0 = d

dt
E′(tφ)ψ |t=0

= E′′(0)(φ,ψ) (A.2)

which is symmetric in φ and ψ since E is analytic by 1. in Remark 3.3 and hence in particular 
E ∈ C2(U, R) (an expression for the second variation of E is provided in Proposition 3.6).

Set

V0 := KerL ⊂ V ⊂ H.

First of all consider V0 as a subset of H , thus endowed with the L2-scalar product. If φ ∈ KerL
and ψ ∈ V , then from 0 = 〈Lφ, ψ〉L2 = 〈φ, Lψ〉L2 we infer that KerL and ImL are orthogonal 
subspaces in H , namely

KerL⊥L2 ImL. (A.3)

Now we use 3. in Remark 3.3, namely that L : V → H is Fredholm, that is dim KerL < ∞, 
ImL is closed in H and codim ImL < ∞ (see for instance [3, page 168]). Then, V0 (the kernel 
of L) is finite dimensional and hence closed. There exists then a complementing subspace V1 :=
V ⊥

0 such that

V = V0 ⊕ V1,
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and a linear continuous projection P : V → V with ImP = V0 [34, III.1 Thm. 1, Thm. 2]. Thus 
Hypothesis A.1 (namely [6, Hypothesis 3.2]) is satisfied. Moreover any v ∈ V can be written as 
v = ṽ0 + w, with ṽ0 ∈ V0, w ∈ KerP .

The adjoint operator P ∗ ∈ B(V ∗, V ∗) is again a linear and continuous projection and hence 
we can write

V ∗ = ImP ∗ ⊕ KerP ∗ = V ∗
0 ⊕ V ∗

1 .

We show now that ImL = H ∗ ∩ V ∗
1 : indeed (after the canonical identification of y∗ ∈ H ∗ with 

〈y, ·〉L2 for y ∈ H ) we can write using the density of V in H , the continuity of P , and (A.3)

H ∗ ∩ V ∗
1 = {y∗ ∈ H ∗ ∩ V ∗ : P ∗y∗(v) = y∗(P v) = 0 ∀v ∈ V }

= {y ∈ H : 〈y,Pv〉L2 = 0 ∀v ∈ V }
= {y ∈ H : 〈y,Px〉L2 = 0 ∀x ∈ H } = (ImP)⊥ = V ⊥

0 = ImL.

This gives Hypothesis A.2 (iv) and 4. in [6, Cor. 3.11]. Next notice that

H ∗ ∩ V ∗
0 = ImP ∗ ∩ H ∗

= {y∗ ∈ H ∗ ∩ V ∗ : y∗ = P ∗v∗ for some v∗ ∈ V ∗}
= {y∗ ∈ H ∗ ∩ V ∗ : y∗(x) = v∗(Px) for some v∗ ∈ V ∗ and ∀x ∈ V }.

Thus we infer that for y∗ ∈ H ∗ ∩ V ∗
0 and w ∈ KerP ⊂ V we have y∗(w) = 0.

Finally we can show that P ∗ leaves H ∗ invariant in the sense that for y∗ ∈ H ∗ ∩ V ∗
0 (which 

we canonically identify with 〈y, ·〉L2 for y ∈ H ) we have that P ∗y∗ = y∗. Indeed for v ∈ V , 
v = ṽ0 + w, with ṽ0 ∈ V0, w ∈ V1 = KerP , we can write

P ∗y∗(v) = y∗(P v) = 〈y,P ṽ0〉L2 = 〈y, ṽ0〉L2 = y∗(ṽ0) = y∗(ṽ0) + y∗(w) = y∗(v).

We have just verified Hypothesis A.2 (ii). Assumptions Hypothesis A.2 (i), (iii) follow from the 
choice of the spaces and 2. in Remark 3.3.

The assumptions of [6, Corollary 3.11] are also satisfied. Thus, by virtue of this corollary, 
E satisfies the Łojasiewicz–Simon inequality near 0, i.e. there exists σ̃ ∈ (0, ρ), θ ∈ (0, 12 ] and 
C2 > 0 such that for all φ ∈ V, 

∥∥φ
∥∥

V
< σ̃ ,

|E(0) − E(φ)|1−θ ≤ C2
∥∥dE(φ)

∥∥
L2(dx)

. (A.4)

Appendix B. Technical proofs

B.1. Analyticity

Proof of Lemma 3.4.

1. The map U → H 3(I, Rd), φ �→ ∂x(f̄ + φ) is well-defined, affine and continuous, hence it 
is analytic. Moreover, by definition of U and since H 3(I, Rd) embeds into C0(I, Rd), its 
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image is contained in

V := {ψ ∈ H 3(I,Rd) : ψ(x) �= 0 for all x ∈ [0,1]} ,

that is an open set of H 3(I, Rd). Since the Euclidean norm | · | : V → H 3(I, R) is analytic, 
we see that F1 is given as the composition of two analytic mappings and hence analytic itself.

2. Let consider the following open subset of H 3(I, R)

W := {ψ ∈ H 3(I,R) : ψ(x) �= 0 for all x ∈ [0,1]} .

Since H 3(I, R) embeds in C2([0, 1], R), for all ψ ∈ W there exists δ1 = δ1(ψ) > 0 such 
that |ψ(x)| ≥ δ1 > 0 for all x ∈ [0, 1] and hence 1/ψ is twice differentiable and its second 
derivative is given by

(
1

ψ

)′′
= −ψ ′′

ψ2
+ 2

(ψ ′)2

ψ3
.

It follows from the definition of weak derivative that 1/ψ ∈ H 3(I, R) and hence that the map

G : W → H 3(I,R), ψ �→ 1

ψ
,

is well defined. We claim now that G is also analytic. Let ψ0 ∈ W and |ψ0(x)| ≥ δ1 > 0 for 
all x ∈ [0, 1]. We may assume w.l.o.g. that ψ0 > 0 on I . By continuity, there is a δ2 > 0 such 
that ψ(x) ≥ 1

2δ1 > 0 and ‖ψ −ψ0‖∞ ≤ 1
2δ1 for all ψ ∈ Bδ2(ψ0) ⊂ H 3. For such ψ we write

1

ψ(x)
= 1

ψ0(x)

1

1 − (1 − ψ(x)
ψ0(x)

)
= 1

ψ0(x)

∞∑
k=0

(
1 − ψ(x)

ψ0(x)

)k

.

Since there is a universal constant c such that ‖g1g2‖H 3 ≤ c‖g1‖H 3‖g2‖H 3 , for all g1, g2 ∈
H 3, we can write,

G(ψ) =
∞∑

k=0

1

(ψ0)k+1 (ψ0 − ψ)k

for ψ such that

‖ψ − ψ0‖H 3 < c−1‖ 1

ψ0
‖−1
H 3 and ‖ψ − ψ0‖H 3 < δ2 .

This gives first the analyticity of G in ψ0 and then the analyticity of G in W since ψ0 was 
arbitrary.
Since the map F1 has values in W , G ◦ F1 : U → H 3(I, R) is analytic. Since H 3(I, R) is a 
Banach algebra and F2(φ) = G(F1(φ))(∂x(f̄ + φ)), we see that F2 is an analytic function 
as product of analytic functions.
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3. The map from U to H 2(I, Rd) that associates to φ the vector field ∂xF2(φ) is analytic as 
composition of analytic mappings. With the same notation as in the previous part of the 
proof, since H 3 embeds continuously into H 2 also the function G ◦ F1 : U → H 2(I, R) is 
analytic. Since H 2(I, R) is a Banach algebra, it follows that the mapping

F3(φ) = G(F1(φ))∂xF2(φ)

is well defined and analytic.
4. Due to the continuity of the embedding H 2 ↪→ L2, the mapping φ �→ F3(φ), from U to 

L2(I, Rd) is analytic. Since | · |2 : L2(I ; Rd) → L1(I, R) is also analytic, then the mapping

U � φ �→ |F3(φ)|2 ∈ L1(I,R) ,

is analytic as composition of analytic functions. The mapping U � φ �→ F1(φ) ∈ C0(I, R)

is also analytic. Using that the product of a continuous function with a L1-function, is a 
L1-function and that this product is bilinear and continuous we find that

F4 : U → L1(I,R), φ �→ |F3(φ)|2F1(φ) ,

is analytic.
5. Since the Euclidean scalar product induces a bilinear continuous product from H 2(I, Rd) ×

H 2(I, Rd) into H 2(I, R) one sees that the mapping φ �→ |F3(φ)|2, from U to H 2(I, R)

is analytic. Reasoning similarly and since H 3 ↪→ H 2, one gets the analyticity of the map 
φ �→ |F3(φ)|2F3(φ)F1(φ) from U to H 2(I, Rd). Due to the embedding H 2 ↪→ L2, it follows 
that 1

2 |�κ|2�κ|f̄x + φx | is analytic from U to L2.
To show that |f̄x + φx |∇2

s �κ : U → L2,⊥ is analytic, we write it explicitly in order to see it as 
product of analytic functions. We have

∂s �κ = 1

|∂x(f̄ + φ)|∂x �κ ,

∇s �κ = 1

|∂x(f̄ + φ)|∂x �κ + |�κ|2∂s(f̄ + φ) ,

∂s∇s �κ = 1

|∂x(f̄ + φ)|2 ∂2
x �κ − 1

|∂x(f̄ + φ)|4 〈∂x(f̄ + φ), ∂2
x (f̄ + φ)〉euc∂x �κ

+ |�κ|2�κ + 2〈�κ, ∂s �κ〉euc∂s(f̄ + φ)

from which it follows that

|f̄x + φx |∇2
s �κ

= 1

|∂x(f̄ + φ)|∂
2
x �κ − 1

|∂x(f̄ + φ)| 〈∂
2
x �κ, ∂s(f̄ + φ)〉euc∂s(f̄ + φ)

+ |�κ|2�κ|f̄x + φx | − 1

|∂x(f̄ + φ)|3 〈∂x(f̄ + φ), ∂2
x (f̄ + φ)〉euc∂x �κ

− 1

|∂x(f̄ + φ)|2 〈∂x(f̄ + φ), ∂2
x (f̄ + φ)〉euc|�κ|2∂s(f̄ + φ) .
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The analyticity of this mapping from U to L2 is established with the arguments used in the 
previous claims. Hence F5 is analytic as sum of analytic functions. �

B.2. Calculation of the second variation

Proof of Proposition 3.6. For simplicity of notation in this proof we denote the Euclidean 
scalar-product simply by 〈·, ·〉 and we write s = sf̄ and �κ = �κf̄ . For φ, ψ ∈ U ⊂ H

4,⊥
c we find 

using (2.6)

E′′(0)[φ,ψ] = d

dε

∣∣∣∣
ε=0

d

dσ

∣∣∣∣
σ=0

E(f̄ + εφ + σψ)

= d

dε

∣∣∣∣
ε=0

d

dσ

∣∣∣∣
σ=0

E(εφ + σψ) = d

dε

∣∣∣∣
ε=0

E′(εφ)(ψ)

= d

dε

∣∣∣∣
ε=0

〈∇2
sf̄ +εφ

�κf̄ +εφ + 1

2
|�κf̄ +εφ |2�κf̄ +εφ,ψ〉L2(dsf̄ +εφ) . (B.1)

We write sε := sf̄ +εφ and �κε := �κf̄ +εφ . Since ∂s = |∂xf̄ |−1∂x , one finds that

∂ε|∂x(f̄ + εφ)|
∣∣∣
ε=0

= ∂ε

〈
∂x(f̄ + εφ), ∂x(f̄ + εφ)

〉 1
2
∣∣∣
ε=0

= 1

2|∂xf̄ |2
〈
∂xφ, ∂xf̄

〉 = 〈
∂xφ, ∂s f̄

〉 = −|∂xf̄ | 〈φ, �κ〉 . (B.2)

From this and the fact that 
〈
φ, ∂sf̄

〉 = 0 is constant we see that the variation of the volume form 
ds is given by

∂εdsε

∣∣∣
ε=0

= −〈φ, �κ〉 ds. (B.3)

Using (B.2) again one also finds that the variation of the derivative with respect to arc length is 
given by

∂ε

(
∂sεη

) ∣∣∣
ε=0

= ∂x(∂εη)

|∂xf̄ |
∣∣∣
ε=0

+ (∂xη)|ε=0 ·
(

− 1

|∂xf̄ |2 |∂xf̄ |(−〈φ, �κ〉)
)

= (∂s∂εη)|ε=0 + 〈φ, �κ〉 (∂sη)|ε=0, (B.4)

where η is any sufficiently smooth function on I × (−δ, δ). This allows us to calculate

∂ε∂sε (f̄ + εφ)

∣∣∣
ε=0

= ∂sφ + 〈φ, �κ〉 ∂sf̄ = ∇sφ (B.5)

and

∂ε�κε

∣∣∣
ε=0

= ∂ε

(
∂2
sε

(f̄ + εφ)
) ∣∣∣

ε=0

(B.4)= ∂s

[
(∂sε (f̄ + εφ))

] ∣∣∣ + 〈φ, �κ〉 ∂s(∂s f̄ )

ε=0
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(B.5)= ∂s∇sφ − 〈
∂s∇sφ, ∂s f̄

〉
∂sf̄ + 〈

∂s∇sφ, ∂s f̄
〉
∂sf̄ + 〈φ, �κ〉 �κ

= ∇2
s φ − 〈∇sφ, �κ〉 ∂s f̄ + 〈φ, �κ〉 �κ (B.6)

where we used the definition of ∇s and the orthogonality in the last line. Hence for ψ ∈ U we 
get

d

dε

∣∣∣∣
ε=0

⎛
⎝1

2

∫
I

|�κε|2 〈�κε,ψ〉 dsε

⎞
⎠

(B.3)= 1

2

∫
I

2 〈∂ε�κε, �κ〉
∣∣∣
ε=0

〈�κ,ψ〉 + |�κ|2 〈∂ε�κε,ψ〉
∣∣∣
ε=0

− |�κ|2 〈�κ,ψ〉 〈�κ,φ〉 ds

(B.6)=
∫
I

(〈
∇2

s φ, �κ
〉
+ 〈〈φ, �κ〉 �κ, �κ 〉) 〈�κ,ψ〉

+ 1

2
|�κ|2(

〈
∇2

s φ,ψ
〉
+ 〈φ, �κ〉 〈�κ,ψ〉) − 1

2
|�κ|2 〈�κ,ψ〉 〈�κ,φ〉 ds

=
∫
I

〈
∇2

s φ, �κ
〉
〈�κ,ψ〉 + |�κ|2 〈�κ,ψ〉 〈�κ,φ〉 + 1

2
|�κ|2

〈
∇2

s φ,ψ
〉

ds

=
∫
I

〈
∇2

s φ, �κ
〉
〈�κ,ψ〉 + |�κ|2 〈�κ,ψ〉 〈�κ,φ〉

− 〈∇s �κ, �κ〉 〈∇sφ,ψ〉 − |�κ|2
2

〈∇sφ,∇sψ〉 ds (B.7)

where the last equality stems from the following calculation:∫
I

1

2
|�κ|2

〈
∇2

s φ,ψ
〉

ds

=
∫
I

1

2
|�κ|2 〈∂s∇sφ,ψ〉 ds

=
∫
I

1

2
|�κ|2 [(∂s 〈∇sφ,ψ〉)− 〈∇sφ,∇sψ〉]ds

= 1

2
|�κ|2 〈∇sφ,ψ〉

∣∣∣∣
∂I

−
∫
I

〈∂s �κ, �κ〉 〈∇sφ,ψ〉 + 1

2
|�κ|2 〈∇sφ,∇sψ〉 ds

= −
∫
I

〈∇s �κ, �κ〉 〈∇sφ,ψ〉 + 1

2
|�κ|2 〈∇sφ,∇sψ〉 ds ,

since the boundary term vanishes in the last line as ψ was assumed to be in H 1
0 . Furthermore by 

definition of ∇s and application of equations (B.4) and (B.5) in the second line one finds
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∂ε

(∇sεηε

) ∣∣∣
ε=0

= ∂ε∂sεηε

∣∣∣
ε=0

− ∂ε

〈
∂sεηε, ∂sε (f̄ + ηεφ)

〉
∂sε (f̄ + εφ)

∣∣∣
ε=0

= ∇s∂εηε

∣∣∣
ε=0

+ 〈φ, �κ〉 ∂sηε

∣∣∣
ε=0

− 〈〈φ, �κ〉 ∂sηε, ∂s f̄
〉
∂sf̄

∣∣∣
ε=0

− 〈∂sηε,∇sφ〉 ∂sf̄

∣∣∣
ε=0

− 〈
∂sηε, ∂s f̄

〉∇sφ

∣∣∣
ε=0

= (∇s (∂εηε) + 〈φ, �κ〉 ∇sηε − 〈∇sηε,∇sφ〉 ∂sf̄ + 〈ηε, �κ〉 ∇sφ
) ∣∣∣

ε=0
(B.8)

for ηε which is normal to f̄ at ε = 0. Hence one finds that for ψ which is not depending on ε
and orthogonal to ∂sf̄ , putting ηε := ∇sεψ in the first step and η = ψ in the second:

∂ε∇2
sε

ψ

∣∣∣
ε=0

= ∂ε∇sε

(∇sεψ
) ∣∣∣

ε=0

(B.8)= ∇s[∂ε∇sεψ]
∣∣∣
ε=0

+ 〈φ, �κ〉 ∇s (∇sψ)

− 〈∇s∇sψ,∇sφ〉 ∂sf̄ + 〈∇sψ, �κ〉 ∇sφ

(B.8)= ∇s

[〈φ, �κ〉 ∇sψ − 〈∇sψ,∇sφ〉 ∂sf̄ + 〈ψ, �κ〉 ∇sφ
]

+ 〈φ, �κ〉 ∇2
s ψ −

〈
∇2

s ψ,∇sφ
〉
∂sf̄ + 〈∇sψ, �κ〉 ∇sφ.

(B.9)

To apply these formulas in the calculation of the second derivation, we need the following for-
mulas of partial integration with respect to ∇ for arbitrary (not necessarily orthogonal) functions 
η and ξ which are differentiable once or twice, respectively:∫

I

〈∇sη, ξ 〉 ds =
∫
I

〈∂sη, ξ 〉 − 〈
∂sf̄ , ξ

〉 〈
∂sη, ∂s f̄

〉
ds

=
∫
I

(
∂s 〈η, ξ 〉)− 〈η, ∂sξ 〉 − 〈

∂sf̄ , ξ
〉 〈

∂sη, ∂s f̄
〉
ds

= 〈η, ξ 〉∣∣
∂I

+
∫
I

− 〈
η,∇sξ + 〈

∂sξ, ∂s f̄
〉
∂sf̄

〉 − 〈
∂sf̄ , ξ

〉 〈
∂sη, ∂s f̄

〉
ds

= 〈η, ξ 〉∣∣
∂I

−
∫
I

〈η,∇sξ 〉 + 〈
∂sξ, ∂s f̄

〉 〈
η, ∂s f̄

〉 + 〈
∂sf̄ , ξ

〉 〈
∂sη, ∂s f̄

〉
ds.

(B.10)

And thus∫
I

〈
∇2

s η, ξ
〉

ds =
∫
I

〈∇s(∇sη), ξ 〉 ds

(B.10)= 〈∇sη, ξ 〉∣∣
∂I

+
∫

−〈∇sη,∇sξ 〉 − 〈
∂sξ, ∂s f̄

〉 · 0 − 〈
∂sf̄ , ξ

〉 〈
∂s∇sη, ∂s f̄

〉
ds
I
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(B.10)= 〈∇sη, ξ 〉 − 〈η,∇sξ 〉∣∣
∂I

+
∫
I

−
(
−

〈
η,∇2

s ξ
〉
− 〈

∂s∇sξ, ∂s f̄
〉 〈

η, ∂s f̄
〉 − 〈

∂sf̄ ,∇sξ
〉 〈

∂sη, ∂s f̄
〉)

− 〈
∂sf̄ , ξ

〉 〈
∂s∇sη, ∂s f̄

〉
ds

= 〈∇sη, ξ 〉 − 〈η,∇sξ 〉∣∣
∂I

+
∫
I

〈
η,∇2

s ξ
〉
+ 〈

∂s∇sξ, ∂s f̄
〉 〈

η, ∂s f̄
〉 − 〈

∂sf̄ , ξ
〉 〈

∂s∇sη, ∂s f̄
〉
ds

(B.11)

Furthermore it holds for the normal vector fields ψ , φ by (B.5), (B.6) and orthogonality:

∂ε

〈
∂sε (f̄ + εφ), �κε

〉 〈
∂sε∇sεψ, ∂sε (f̄ + εφ)

〉∣∣∣
ε=0

(B.12)

= 〈∇sφ, �κ〉 〈∂s∇sψ, ∂s f̄
〉 − 〈

∂sf̄ , ∂s f̄
〉 〈∇sφ, �κ〉 〈∂s∇sψ, ∂s f̄

〉 = 0,

∂ε

〈
∂sε (f̄ + εφ),ψ

〉 〈
∂sε∇sε �κε, ∂sε (f̄ + εφ)

〉∣∣∣
ε=0

(B.5)= 〈∇sφ,ψ〉 〈∂s∇s �κ, ∂s f̄
〉 = −〈∇sφ,ψ〉 〈∇s �κ, �κ〉 (B.13)

and

∂ε

〈
�κε,∇2

sε
ψ
〉∣∣∣

ε=0
=

〈
∂ε�κε,∇2

s ψ
〉 ∣∣∣

ε=0
+

〈
�κ, ∂ε∇2

sε
ψ
〉 ∣∣∣

ε=0

(B.6)=
〈
∇2

s φ,∇2
s ψ

〉
+ 〈φ, �κ〉

〈
�κ,∇2

s ψ
〉

(B.9)+ 〈�κ,∇s

[〈φ, �κ〉 ∇sψ − 〈∇sψ,∇sφ〉 ∂sf̄ + 〈ψ, �κ〉 ∇sφ
]〉

+ 〈φ, �κ〉
〈
�κ,∇2

s ψ
〉
+ 〈∇sψ, �κ〉 〈�κ,∇sφ〉 . (B.14)

Using (B.10) we note putting ξ = �κ and η = 〈φ, �κ〉 ∇sψ + 〈ψ, �κ〉 ∇sφ since η vanishes on the 
boundary of I that∫

I

〈�κ,∇s

[〈φ, �κ〉 ∇sψ − 〈∇sψ,∇sφ〉 ∂sf̄ + 〈ψ, �κ〉 ∇sφ
]〉

ds =

=
∫
I

〈�κ,∇s

[〈φ, �κ〉 ∇sψ + 〈ψ, �κ〉 ∇sφ
]〉

ds +
∫
I

〈�κ, ∂s

[−〈∇sψ,∇sφ〉 ∂sf̄
]〉

ds

(B.10)= −
∫
I

〈∇s �κ,∇sψ〉 〈φ, �κ〉 + 〈∇s �κ,∇sφ〉 〈ψ, �κ〉 + (− 〈
∂s �κ, ∂s f̄

〉︸ ︷︷ ︸
=−|�κ|2

〈∇sψ,∇sφ〉)ds

and hence by (B.14)
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∫
I

∂ε

〈
�κε,∇2

sε
ψ
〉∣∣∣

ε=0
ds =

∫
I

〈
∇2

s φ,∇2
s ψ

〉
+ 〈φ, �κ〉

〈
�κ,∇2

s ψ
〉
− 〈∇s �κ,∇sψ〉 〈φ, �κ〉

− 〈∇s �κ,∇sφ〉 〈ψ, �κ〉 − |�κ|2 〈∇sψ,∇sφ〉
+ 〈φ, �κ〉

〈
�κ,∇2

s ψ
〉
+ 〈∇sψ, �κ〉 〈�κ,∇sφ〉 ds. (B.15)

Now we use (B.11) with η := �κε, ξ := ψ, f̄ = f̄ + εφ. Due to the choice of the space the 
boundary terms disappear. Indeed, 

〈∇sε �κε,ψ
〉∣∣

∂I
vanishes since ψ ∈ H 1

0 and for the derivative of 
the other boundary term we find

∂ε

〈�κε,∇sεψ
〉∣∣

ε=0
=

〈
∇2

s φ − 〈∇sφ, �κ〉 ∂sf̄ + 〈φ, �κ〉 �κ,∇sψ
〉

+ 〈�κ, 〈φ, �κ〉 ∇sψ − 〈∇sψ,∇sφ〉 ∂sf̄ + 〈ψ, �κ〉 ∇sφ
〉

=
〈
∇2

s φ + 〈φ, �κ〉 �κ,∇sψ
〉
+ 〈�κ, 〈φ, �κ〉 ∇sψ + 〈ψ, �κ〉 ∇sφ

〉
(B.16)

by (B.6), (B.8) and orthogonality. Since ψ, φ ∈ H 2
0 by definition of H 4,⊥

c we find that (B.16)
vanishes on the boundary of I . Hence

d

dε

∣∣∣∣
ε=0

∫
I

〈
∇2

sε
�κε,ψ

〉
dsε

(B.11)= d

dε

∣∣∣∣
ε=0

(∫
I

〈
�κε,∇2

sε
ψ
〉
+ 〈

∂sε (f̄ + εφ), �κε

〉 〈
∂sε∇sεψ, ∂sε (f̄ + εφ)

〉

− 〈
∂sε (f̄ + εφ),ψ

〉 〈
∂sε∇sε �κε, ∂sε (f̄ + εφ)

〉
dsε

)
(B.3)=

∫
I

(〈
�κ,∇2

s ψ
〉)

(−〈φ, �κ〉)ds +
∫
I

∂ε

〈
�κε,∇2

sε
ψ
〉∣∣∣

ε=0
ds

+
∫
I

∂ε

〈
∂sε (f̄ + εφ), �κε

〉 〈
∂sε∇sεψ, ∂sε (f̄ + εφ)

〉∣∣∣
ε=0

ds

−
∫
I

∂ε

〈
∂sε (f̄ + εφ),ψ

〉 〈
∂sε∇sε �κε, ∂sε (f̄ + εφ)

〉∣∣∣
ε=0

ds

=
∫
I

−
〈
�κ,∇2

s ψ
〉
〈φ, �κ〉 ds

(B.15)+
∫
I

〈
∇2

s φ,∇2
s ψ

〉
+ 〈φ, �κ〉

〈
�κ,∇2

s ψ
〉

− 〈∇s �κ,∇sψ〉 〈φ, �κ〉 − 〈∇s �κ,∇sφ〉 〈ψ, �κ〉 − |�κ|2 〈∇sψ,∇sφ〉

+ 〈φ, �κ〉
〈
�κ,∇2

s ψ
〉
+ 〈∇sψ, �κ〉 〈�κ,∇sφ〉 ds

(B.12)+ 0

(B.13)−
∫

−〈∇sφ,ψ〉 〈∇s �κ, �κ〉 ds
I
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=
∫
I

〈
∇2

s φ,∇2
s ψ

〉
− 〈∇s �κ,∇sψ〉 〈φ, �κ〉 − 〈∇s �κ,∇sφ〉 〈ψ, �κ〉

− |�κ|2 〈∇sψ,∇sφ〉 + 〈φ, �κ〉
〈
�κ,∇2

s ψ
〉
+ 〈∇sψ, �κ〉 〈�κ,∇sφ〉

+ 〈∇sφ,ψ〉 〈∇s �κ, �κ〉 ds.

(B.17)

From equations (B.1), (B.17) and (B.7) we finally have

E′′(0)(φ,ψ) = d

dε

∣∣∣∣
ε=0

(∫
I

〈
∇2

sε
�κε,ψ

〉
euc

dsε + 1

2

∫
I

〈�κε, �κε〉 〈�κε,ψ〉 dsε

)

=
∫
I

〈
∇2

s φ,∇2
s ψ

〉
− 〈∇s �κ,∇sψ〉 〈φ, �κ〉 − 〈∇s �κ,∇sφ〉 〈ψ, �κ〉

− |�κ|2 〈∇sψ,∇sφ〉 + 〈φ, �κ〉
〈
�κ,∇2

s ψ
〉

+ 〈∇sψ, �κ〉 〈�κ,∇sφ〉 + 〈∇sφ,ψ〉 〈∇s �κ, �κ〉 ds

+
∫
I

〈
∇2

s φ, �κ
〉
〈�κ,ψ〉 + |�κ|2 〈�κ,ψ〉 〈�κ,φ〉

− 〈∇s �κ, �κ〉 〈∇sφ,ψ〉 − |�κ|2
2

〈∇sφ,∇sψ〉 ds

=
∫
I

〈
∇2

s φ,∇2
s ψ

〉
− 〈∇s �κ,∇sψ〉 〈φ, �κ〉 − 〈∇s �κ,∇sφ〉 〈ψ, �κ〉

− 3

2
|�κ|2 〈∇sψ,∇sφ〉 + 〈φ, �κ〉

〈
�κ,∇2

s ψ
〉
+ 〈∇sψ, �κ〉 〈�κ,∇sφ〉

+
〈
∇2

s φ, �κ
〉
〈�κ,ψ〉 + |�κ|2 〈�κ,ψ〉 〈�κ,φ〉 ds

which yields the claim after rearranging the terms. �
B.3. Calculation of the second variation of the length functional

Proof of Corollary 3.7. For simplicity of notation in this proof we denote the Euclidean scalar-
product simply by 〈·, ·〉 and we write s = sf̄ and �κ = �κf̄ . The length of f̄ + εφ is given by

L(f̄ + εφ) =
∫
I

|∂xf̄ + ε∂xφ|dx

and hence by (B.2) L′(f̄ )φ = − 
∫
I
〈�κ,φ〉 ds. Thus the L2-gradient of the length functional is 

given by ∇L2(ds)L(f̄ ) = −�κ . Furthermore, for the second variation we find by (B.3), (B.6) and 
orthogonality that
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L′′(f̄ )[ψ,φ] = − d

dε

∣∣∣∣
ε=0

∫
I

〈
�κf̄ +εφ,ψ

〉
dsf̄ +εφ

= −
∫
I

(�κ · ψ)(−φ · �κ) +
〈
∇2

s φ − (∇sφ · �κ)∂s f̄ + (φ · �κ)�κ,ψ
〉

ds

= −
∫ 〈

∇2
s φ,ψ

〉
ds =

∫
〈∇sφ,∇sψ〉 ds,

applying (B.10) with η = ∇sφ and ξ = ψ and the facts that ψ is in H 1
0 and ∇sφ, ψ are orthogonal 

to ∂sf̄ . Together with (3.2) this shows the claim. �
B.4. Technical lemmas

Lemma B.1. Let f : I → R
d be a smooth regular curve, φ : I → R

d be a smooth vector field, 
and s = sf . Then

∂sφ = ∇sφ + 〈∂sφ, ∂sf 〉euc∂sf , (B.18)

∂2
s φ = ∇2

s φ + 〈∂2
s φ, ∂sf 〉euc∂sf + 〈∂sφ, ∂sf 〉euc�κ . (B.19)

If φ is normal to f , i.e. 〈φ, ∂sf 〉euc = 0 on I , then

∂sφ = ∇sφ − 〈φ, �κ〉euc∂sf , (B.20)

∂2
s φ = ∇2

s φ − 2〈∇sφ, �κ〉euc∂sf − 〈φ,∇s �κ〉euc∂sf − 〈φ, �κ〉euc�κ , (B.21)

and

∂3
s φ = ∇3

s φ − 3〈∇2
s φ, �κ〉euc∂sf − 3〈∇sφ,∇s �κ〉euc∂sf − 〈φ,∇2

s �κ〉euc∂sf (B.22)

− 3〈∇sφ, �κ〉euc�κ − 2〈φ,∇s �κ〉euc�κ − 〈φ, �κ〉euc∂s �κ ,

∂4
s φ = ∇4

s φ − 4〈∇3
s φ, �κ〉euc∂sf − 6〈∇2

s φ,∇s �κ〉euc∂sf − 6〈∇2
s φ, �κ〉euc�κ (B.23)

− 4〈∇sφ,∇2
s �κ〉euc∂sf − 8〈∇sφ,∇s �κ〉euc�κ − 4〈∇sφ, �κ〉euc∂s �κ

− 〈φ,∇3
s �κ〉euc∂sf − 3〈φ,∇2

s �κ〉euc�κ − 3〈φ,∇s �κ〉euc∂s �κ − 〈φ, �κ〉euc∂
2
s �κ .

Proof. The first formula is exactly the definition of the operator ∇s . Differentiating once more 
we obtain

∂2
s φ = ∇2

s φ + 〈∂s∇sφ, ∂sf 〉euc∂sf + 〈∂2
s φ, ∂sf 〉euc∂sf

+ 〈∂sφ, �κ〉euc∂sf + 〈∂sφ, ∂sf 〉euc�κ
= ∇2

s φ + 〈∂2
s φ, ∂sf 〉euc∂sf + 〈∂sφ, ∂sf 〉euc�κ,

since ∂2
s f = �κ .

If φ is normal to f , then 〈∂sφ, ∂sf 〉euc = −〈φ, �κ〉euc and hence (B.20) follows directly from 
(B.18). Differentiating (B.20) once we get
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∂2
s φ = ∇2

s φ + 〈∂s∇sφ, ∂sf 〉euc∂sf − 〈∇sφ, �κ〉euc∂sf

− 〈φ,∇s �κ〉euc∂sf − 〈φ, �κ〉euc�κ
= ∇2

s φ − 2〈∇sφ, �κ〉euc∂sf − 〈φ,∇s �κ〉euc∂sf − 〈φ, �κ〉euc�κ ,

that is (B.21). Proceeding similarly,

∂3
s φ = ∂s∇2

s φ − 2〈∇2
s φ, �κ〉euc∂sf − 2〈∇sφ,∇s �κ〉euc∂sf − 2〈∇sφ, �κ〉euc�κ

− 〈∇sφ,∇s �κ〉euc∂sf − 〈φ,∇2
s �κ〉euc∂sf − 〈φ,∇s �κ〉euc�κ

− 〈∇sφ, �κ〉euc�κ − 〈φ,∇s �κ〉euc�κ − 〈φ, �κ〉euc∂s �κ
= ∇3

s φ − 3〈∇2
s φ, �κ〉euc∂sf − 3〈∇sφ,∇s �κ〉euc∂sf

− 3〈∇sφ, �κ〉euc�κ − 〈φ,∇2
s �κ〉euc∂sf − 2〈φ,∇s �κ〉euc�κ − 〈φ, �κ〉euc∂s �κ ,

and

∂4
s φ = ∂s∇3

s φ − 3〈∇3
s φ, �κ〉euc∂sf − 3〈∇2

s φ,∇s �κ〉euc∂sf − 3〈∇2
s φ, �κ〉euc�κ

− 3〈∇2
s φ,∇s �κ〉euc∂sf − 3〈∇sφ,∇2

s �κ〉euc∂sf − 3〈∇sφ,∇s �κ〉euc�κ
− 3〈∇2

s φ, �κ〉euc�κ − 3〈∇sφ,∇s �κ〉euc�κ − 3〈∇sφ, �κ〉euc∂s �κ
− 〈∇sφ,∇2

s �κ〉euc∂sf − 〈φ,∇3
s �κ〉euc∂sf − 〈φ,∇2

s �κ〉euc�κ
− 2〈∇sφ,∇s �κ〉euc�κ − 2〈φ,∇2

s �κ〉euc�κ − 2〈φ,∇s �κ〉euc∂s �κ
− 〈∇sφ, �κ〉euc∂s �κ − 〈φ,∇s �κ〉euc∂s �κ − 〈φ, �κ〉euc∂

2
s �κ

= ∇4
s φ − 4〈∇3

s φ, �κ〉euc∂sf − 6〈∇2
s φ,∇s �κ〉euc∂sf − 6〈∇2

s φ, �κ〉euc�κ
− 4〈∇sφ,∇2

s �κ〉euc∂sf − 8〈∇sφ,∇s �κ〉euc�κ − 4〈∇sφ, �κ〉euc∂s �κ
− 〈φ,∇3

s �κ〉euc∂sf − 3〈φ,∇2
s �κ〉euc�κ − 3〈φ,∇s �κ〉euc∂s �κ − 〈φ, �κ〉euc∂

2
s �κ . �

B.5. Completion of the proof of Lemma 4.1

Second part of the claim of Lemma 4.1. For the second part of the claim we need to prove 
some estimates. We may rewrite (4.5) as

ϕ̃′ = |∂xf̄ |2 − 〈
(∂xf̄ ) ◦ (idI + ϕ̃), ∂xf̄

〉
euc − 〈

ψ ◦ (idI + ϕ̃), ∂2
x f̄

〉
euc〈

∂x(f̄ + ψ) ◦ (idI + ϕ̃), ∂x f̄
〉
euc

+ − 〈
f̄ ◦ (idI + ϕ̃) − f̄ , ∂2

x f̄
〉
euc − 〈

(∂xψ) ◦ (idI + ϕ̃), ∂x f̄
〉
euc〈

∂x(f̄ + ψ) ◦ (idI + ϕ̃), ∂xf̄
〉
euc

.

In order to proceed we recall that if g1, g2 ∈ H 3 then ‖g1g2‖H 3 ≤ c‖g1‖H 3‖g2‖H 3 . If further-
more g2 ≥ 1

2 |∂xf̄ |2, then

∥∥∥ 1 ∥∥∥
3
≤ C(f̄ )

(
1 + ‖g2‖H 3 + ‖g2‖2

H 3 + ‖g2‖3
H 3

)
≤ C(f̄ )

(
1 + ‖g2‖3

H 3

)
.

g2 H
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While considering the composition if 1
2 ≤ |g′

2| ≤ 3
2 , then

‖g1 ◦ g2‖H 3 ≤ C‖g1‖H 3(1 + ‖g2‖H 3) .

By using several time these estimates we find writing

∂xf̄ ◦ (idI + ϕ̃) − ∂xf̄ =
idI +ϕ̃∫
idI

∂2
x f̄ (y) dy

that

‖∂xf̄ ◦ (idI + ϕ̃) − ∂xf̄ ‖H 3 ≤ C(f̄ )(‖ϕ̃‖H 3 + ‖ϕ̃‖
1
2
L2),∥∥ |∂xf̄ |2 − 〈

∂x(f̄ ) ◦ (idI + ϕ̃), ∂xf̄
〉
euc

∥∥
H 3 ≤ C(f̄ )(‖ϕ̃‖H 3 + ‖ϕ̃‖

1
2
L2),

‖f̄ ◦ (idI + ϕ̃) − f̄ ‖H 3 ≤ C(f̄ )‖ϕ̃‖H 3,∥∥∥〈f̄ ◦ (idI + ϕ̃) − f̄ , ∂2
x f̄

〉
euc

∥∥∥
H 3

≤ C(f̄ )‖ϕ̃‖H 3,∥∥∥〈ψ ◦ (idI + ϕ̃), ∂2
x f̄

〉
euc

∥∥∥
H 3

≤ C(f̄ )‖ψ‖H 3(1 + ‖ϕ̃‖H 3),∥∥〈∂xψ ◦ (idI + ϕ̃), ∂xf̄
〉
euc

∥∥
H 3 ≤ C(f̄ )‖ψ‖H 4(1 + ‖ϕ̃‖H 3),

and ∥∥∥ 1〈
∂x(f̄ + ψ) ◦ (idI + ϕ̃), ∂xf̄

〉
euc

∥∥∥
H 3

≤ C(f̄ )
(
1 + ∥∥〈∂xf̄ ◦ (idI + ϕ̃), ∂xf̄

〉
euc + 〈

(∂xψ) ◦ (idI + ϕ̃), ∂xf̄
〉
euc

∥∥3
H 3

)
≤ C(f̄ )(1 + ‖ϕ̃‖3

H 3 + ‖ψ‖3
H 4(1 + ‖ϕ̃‖H 3)

3) .

From these inequalities and the fact that ‖ϕ̃‖H 3 depends continuously on ‖ψ‖H 4 we get

‖ϕ̃‖H 4 ≤ C(f̄ ,‖ψ‖H 4) ,

with a constant depending continuously on ‖ψ‖H 4 and such that when ‖ψ‖H 4 ↘ 0 then also 
‖ϕ̃‖H 4 ↘ 0. Since � = id + ϕ̃ and φ = (f̄ + ψ) ◦ � − f̄ with estimates similar to the ones 
above, we find

‖φ‖H 4 ≤ C(f̄ )‖ϕ̃‖H 4 + C(f̄ )‖ψ‖H 4(1 + ‖ϕ̃‖2
H 4) .

This gives the claim. �
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