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Abstract

We establish the existence of multiple sign-changing solutions to the quasilinear critical problem

−�pu = |u|p∗−2u, u ∈ D1,p(RN),

for N ≥ 4, where �pu := div(|∇u|p−2∇u) is the p-Laplace operator, 1 < p < N and p∗ := Np
N−p

is the 
critical Sobolev exponent.
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1. Introduction

This paper is concerned with the existence of sign-changing solutions to the quasilinear criti-
cal problem
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−�pu = |u|p∗−2u, u ∈ D1,p(RN), (1.1)

for N ≥ 4, where �pu := div(|∇u|p−2∇u) is the p-Laplace operator, 1 < p < N and p∗ :=
Np

N−p
is the critical Sobolev exponent.

It was recently shown in [6,14,15] that this problem has a unique positive solution, up to 
translations and dilations, given by

U(x) = aN,p

(
1

1 + |x| p
p−1

)N−p
p

,

where aN,p is a positive constant. This result extends the one for p = 2 which was proved in [3]. 
However, as far as we know, no sign-changing solutions to the problem (1.1) have been found, 
aside from the semilinear case p = 2.

For p = 2 the existence of sign-changing solutions was first established by W. Ding in [8], 
who took advantage of the invariance of the problem (1.1) under Möbius transformations to de-
rive the existence of infinitely many sign-changing solutions. Later, new sign-changing solutions 
were exhibited by del Pino, Musso, Pacard, and Pistoia in [7], who used the Lyapunov–Schmidt 
reduction method to establish the existence of sign-changing clusters of bubbles that solve prob-
lem (1.1) for p = 2.

Neither one of these methods applies to the quasilinear case. The p-Laplacian is invariant 
under Euclidean motions and dilations, but it is not invariant under the Kelvin transform, or any 
suitable version of it, except in the cases p = 2 and p = N ; see [11]. So the argument in [8]
cannot be extended to other values of p. On the other hand, the Lyapunov–Schmidt reduction 
method used in [7] cannot be applied to the quasilinear case because the linearized operator for 
the p-Laplacian is not well understood for p �= 2.

A different type of sign-changing solutions to the problem (1.1), for p = 2, was recently 
found by the first author in [4]. These solutions were obtained by combining the use of suitable 
symmetries with concentration arguments. We will show that this approach can be applied to the 
quasilinear case to prove the following result.

Theorem 1.1. Let N = 4n + m with n ≥ 1 and m ∈ {0, 1, 2, 3}. Then, for any 1 < p < N , the 
problem (1.1) has at least n nonradial sign-changing solutions.

It is worth noting that every solution to problem (1.1) belongs to C1,α
loc (RN) for some α ∈ (0, 1), 

and satisfies the decay estimates

|u(x)| ≤ C0(1 + |x|N−p
p−1 )−1 and |∇u(x)| ≤ C0(1 + |x|N−1

p−1 )−1,

for every x ∈ R
N . These estimates were recently obtained by Vétois in [15].

We also mention that positive and sign-changing solutions to the quasilinear equation (1.1)
in some bounded domains have been exhibited in [5,12,13]. Multiplicity of entire solutions to 
a related quasilinear critical problem, obtained by adding a suitable term to problem (1.1), was 
recently established in [1], although nothing is said about their sign.

The solutions given by Theorem 1.1 arise as limit profiles of minimizing φ-equivariant
Palais–Smale sequences for the energy functional associated to the problem
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−�pu = |u|p∗−2u, u ∈ D
1,p

0 (B), (1.2)

in the unit ball B in RN . A φ-equivariant function is a function with a particular type of 
sign-changing symmetries; the precise definition is given in the following section. We prove 
a representation theorem for these sequences; see Theorem 2.5 below. This result yields an ex-
istence alternative: it says that the energy functional has a φ-equivariant minimizer, either in the 
unit ball, or in a half-space, or in the whole Euclidean space RN . Moreover, we will prove that 
the energy of these minimizers is the same in any one of these domains; see Lemma 2.3. So, 
after trivial extension, this allows us to conclude that the energy functional has a φ-equivariant 
minimizer in RN .

If p = 2 it is well known that the problem (1.2) does not have a nontrivial solution, neither in 
the unit ball, nor in a half-space. But if p �= 2 it is not known whether this is true or not, because 
the validity of the unique continuation principle is still an open question. So, in principle, there 
could be solutions to the problem (1.1) which vanish in some open set.

The multiplicity statement in Theorem 1.1 is obtained by considering various symmetries 
which give rise to different solutions.

This paper is organized as follows: in Section 2 we introduce our symmetric setting and prove 
a representation theorem for minimizing φ-equivariant Palais–Smale sequences in a bounded 
symmetric domain. In Section 3 we prove our main result. Some facts needed for the proof of 
the representation theorem are proved in the appendix.

2. The limit profile of a nodal symmetric minimizing sequence

As in [4], we consider the following symmetric setting.
Let G be a closed subgroup of the group O(N) of linear isometries of RN and let φ : G →

Z2 := {1, −1} be a continuous homomorphism of groups. Recall that the G-orbit of a point 
x ∈ RN is the set Gx := {gx : g ∈ G}.

Hereafter, we will assume that G and φ have the following properties:

(S1) For each x ∈ R
N , either dim(Gx) > 0 or Gx = {x}.

(S2) φ : G → Z2 is surjective.
(S3) There exists ξ ∈RN such that {g ∈ G : gξ = ξ} ⊂ kerφ.

Let � be a G-invariant domain in RN , i.e., Gx ⊂ � if x ∈ �. A function u : � → R will be 
called φ-equivariant if

u(gx) = φ(g)u(x) for all g ∈ G, x ∈ �.

Note that, as φ is surjective, every nontrivial φ-equivariant function is nonradial and changes 
sign.

Let D1,p(RN) := {u ∈ Lp∗
(RN) : ∇u ∈ Lp(RN, RN)} be the Banach space whose norm is 

given by

‖u‖ :=
⎛
⎜⎝ ∫

N

|∇u|p
⎞
⎟⎠

1
p

.

R
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As usual, we write D1,p

0 (�) for the closure of C∞
c (�) in D1,p(RN). We define

D
1,p
0 (�)φ := {u ∈ D

1,p
0 (�) : u is φ-equivariant}.

Property (S3) ensures that this space is infinite dimensional; see [2].
The φ-equivariant solutions to the problem

−�pu = |u|p∗−2u, u ∈ D
1,p
0 (�),

are the critical points of the C1-functional J : D1,p
0 (�)φ →R given by

J (u) := 1

p
‖u‖p − 1

p∗ |u|p∗
p∗ ,

where |u|p∗
p∗ := ∫

�
|u|p∗

; see Lemma A.1. The nontrivial ones belong to the set

N φ(�) := {u ∈ D
1,p
0 (�)φ : u �= 0, ‖u‖p = |u|p∗

p∗}.

Define

cφ(�) := inf
u∈N φ(�)

J (u).

The following facts are well known. We include their proof for the sake of completeness.

Lemma 2.1.

(a) There exists a0 > 0 such that ‖u‖ ≥ a0 for every u ∈N φ(�).
(b) N φ(�) is a C1-Banach submanifold of D1,p

0 (�)φ , and a natural constraint for J .

(c) Let T :=
{
σ ∈ C0

(
[0,1],D1,p

0 (�)φ
)

: σ(0) = 0, σ (1) �= 0, J (σ (1)) ≤ 0
}

. Then,

cφ(�) = inf
σ∈T

max
t∈[0,1]J (σ (u)).

Proof. (a): By Sobolev’s inequality, there exists C > 0 such that

F(u) := ‖u‖p − |u|p∗
p∗ ≥ ‖u‖p − C‖u‖p∗

for every u ∈ D
1,p
0 (�).

Hence, there exists a0 such that F(u) > 0 if 0 < ‖u‖ < a0. This proves (a).
(b): It follows from (a) that N φ(�) is closed in D1,p

0 (�)φ . Moreover, as

F ′(u)u = p‖u‖p − p∗|u|p∗
p∗ = (p − p∗)‖u‖p < 0 for every u ∈ N φ(�),

we have that 0 is a regular value of F : D
1,p
0 (�)φ � {0} → R. Hence, N φ(�) is a C1-Banach 

submanifold of D1,p
(�)φ . This inequality also implies that N φ(�) is a natural constraint for J .
0
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(c): For each u ∈N φ(�), the function

t 
→ J (tu) =
(

tp

p
− tp

∗

p∗

)
‖u‖p

is strictly increasing in (0, 1) and strictly decreasing in (1, ∞), and there exists su > 1 such 
that J (suu) < 0. So, setting σu(t) := tsuu we have that σu ∈ T and maxt∈[0,1] J (σu(t)) = J (u). 
Therefore,

inf
σ∈T

max
t∈[0,1]J (σ (u)) ≤ inf

u∈N φ(�)
max

t∈[0,1]J (σu(t)) = inf
u∈N φ(�)

J (u) = cφ(�).

To prove the opposite inequality, we define κ : D1,p

0 (�)φ → R as

κ(u) :=
⎧⎨
⎩

|u|p∗
p∗

‖u‖p if u �= 0,

0 if u = 0.

This function is continuous thanks to Sobolev’s inequality. Note that κ(u) = 1 iff u ∈ N φ(�). 
Moreover, if J (u) ≤ 0 and u �= 0, then κ(u) ≥ p∗

p
> 1. So, if σ ∈ T , then κ(σ (0)) = 0

and κ(σ (1)) > 1. Hence, there exists t0 ∈ (0, 1) such that σ(t0) ∈ N φ(�) and, consequently, 
maxt∈[0,1] J (σ (t)) ≥ J (σ (t0)) ≥ cφ(�). This implies that

inf
σ∈T

max
t∈[0,1]J (σ (u)) ≥ cφ(�),

and finishes the proof of (c). �
Lemma 2.2. There exists a sequence (uk) such that

uk ∈ D
1,p

0 (�)φ, J (uk) → cφ(�), and J ′(uk) → 0 in (D
1,p

0 (�)φ)′.

Proof. This follows immediately from statements (a) and (c) of Lemma 2.1, and [16, Theo-
rem 2.9]. �

Next, we shall describe the limit profile of these sequences.
If X is a G-invariant subset of RN , we denote by

XG := {x ∈ X : Gx = {x}}

the set of G-fixed points in X. We start with the following lemmas.

Lemma 2.3. If � is a G-invariant domain in RN and �G �= ∅, then

cφ(�) = cφ(RN) =: cφ∞.
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Proof. Clearly, cφ∞ ≤ cφ(�). For the opposite inequality, we fix x0 ∈ �G and consider a se-
quence (ϕk) in N φ(RN) ∩ C∞

c (RN) such that J (ϕk) → c
φ∞. Since ϕk has compact support, we 

may choose εk > 0 such that the support of ϕ̃k(x) := ε
−(N−p)/p
k ϕk(ε

−1
k (x − x0)) is contained 

in �. As x0 is a G-fixed point, ϕ̃k is φ-equivariant. Thus, we have that ϕ̃k ∈N φ(�) and, hence,

cφ(�) ≤ J (ϕ̃k) = J (ϕk) for all k.

Letting k → ∞ we conclude that cφ(�) ≤ c
φ∞. �

Lemma 2.4. If G satisfies (S1) then, for every pair of sequences (εk) in (0, ∞) and (xk) in RN , 
there exists a sequence (ξk) in RN such that, after passing to a subsequence,

ε−1
k dist(Gxk, ξk) ≤ C0 for all k (2.1)

and some positive constant C0, and one of the following statements holds true:

(a) either ξk ∈ �G,
(b) or, for each m ∈N, there exist g1, ..., gm ∈ G such that

ε−1
k |giξk − gj ξk| → ∞ as k → ∞ if i �= j.

Proof. Write xk = zk + yk with zk ∈ (RN)G and yk ∈ (
(RN)G

)⊥
.

If (ε−1
k yk) contains a bounded subsequence, taking such a subsequence and setting ξk := zk

we obtain the statements (2.1) and (a).
If (ε−1

k yk) does not contain a bounded subsequence, passing to a subsequence we have that 
ε−1
k yk �= 0 and

ε−1
k yk

|ε−1
k yk|

= yk

|yk| → y as k → ∞.

Since the G-orbit of every point which is not in (RN)G has positive dimension, for each m ∈ N

there exist g1, ..., gm ∈ G such that giy �= gjy if i �= j . Hence, there exist k0 ∈N and δ > 0 such 
that

∣∣∣∣gi

yk

|yk| − gj

yk

|yk|
∣∣∣∣ ≥ δ for all k ≥ k0 if i �= j.

It follows that

ε−1
k |gixk − gjxk| ≥ ε−1

k |giyk − gjyk| ≥ δε−1
k |yk| → ∞.

Setting ξk := xk we obtain the statements (2.1) and (b). �
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Theorem 2.5. Assume (S1)–(S3). Let � be a G-invariant bounded smooth domain in RN and 
(uk) be a sequence such that

uk ∈ D
1,p
0 (�)φ, J (uk) → cφ(�), and J ′(uk) → 0 in (D

1,p
0 (�)φ)′.

Then, up to a subsequence, one of the following two possibilities occurs:

(I) either (uk) converges strongly in D1,p

0 (�) to a minimizer of J on N φ(�),
(II) or there exist a sequence of G-fixed points (ξk) in RN , a sequence (εk) ∈ (0, ∞) and a 

nontrivial solution W to the problem

−�pw = |w|p∗−2w, w ∈ D
1,p

0 (H), (2.2)

with the following properties:
(i) εk → 0, ξk → ξ , ξ ∈ (�̄)G, and ε−1

k dist(ξk, �) → d ∈ [0, ∞].
(ii) If d = ∞, then H =R

N and ξk ∈ �.
(iii) If d ∈ [0, ∞), then ξ ∈ ∂� and H = {x ∈ RN : x ·ν > d̄}, where ν is the inward pointing 

unit normal to ∂� at ξ and d̄ ∈ {d, −d}. Moreover, HG �= ∅ and �G �= ∅.
(iv) W ∈N φ(H) and J (W) = c

φ∞.

(v) lim
k→∞

∥∥∥∥uk − ε
− N−p

p

k W
(

x−ξk

εk

)∥∥∥∥ = 0.

Proof. As p > 1 and

1

N
‖uk‖p = J (uk) − 1

p∗ J ′(uk)uk ≤ C + o(1)‖uk‖, (2.3)

the sequence (uk) is bounded and, after passing to a subsequence, uk ⇀ u weakly in D1,p
0 (�)φ . 

Then, J ′(u) = 0; see Lemma A.3. We consider two cases:
(I) If u �= 0, then u ∈N φ(�) and from (2.3) and our assumptions we obtain

cφ(�) ≤ J (u) = 1

N
‖u‖p ≤ lim inf

k→∞
1

N
‖uk‖p = cφ(�) + o(1).

Hence, uk → u strongly in D1,p
0 (�)φ and J (u) = cφ(�).

(II) Assume that u = 0. As

∫
�

|uk|p∗ = N

(
J (uk) − 1

p
J ′(uk)uk

)
→ Ncφ(�),

for a fixed δ ∈ (0, N2 cφ(�)) there are bounded sequences (εk) in (0, ∞) and (xk) in RN such 
that, after passing to a subsequence,

δ = sup
x∈RN

∫
B (x)

|uk|p∗ =
∫

B (x )

|uk|p∗
,

εk εk k
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where Br(x) := {z ∈R
N : |z− x| < r}. For these sequences we take (ξk) as in Lemma 2.4. Then, 

|gkxk − ξk| ≤ C0εk for some gk ∈ G and, as |uk| is G-invariant, setting C1 := C0 + 1, we have 
that

δ =
∫

Bεk
(gkxk)

|uk|p∗ ≤
∫

BC1εk
(ξk)

|uk|p∗
. (2.4)

This implies, in particular, that

dist(ξk,�) ≤ C1εk. (2.5)

We claim that ξk ∈ (RN)G. Otherwise, for each m ∈ N, Lemma 2.4 would yield m elements 
g1, ..., gm ∈ G such that BC1εk

(giξk) ∩ BC1εk
(gj ξk) = ∅ if i �= j , for k large enough, and from 

(2.4) we would get that

mδ ≤
m∑

i=1

∫
BC1εk

(giξk)

|uk|p∗ ≤
∫
�

|uk|p∗ = Ncφ(�) + o(1),

for every m ∈N, which is a contradiction. This proves that ξk ∈ (RN)G.
Define �k := {y ∈R

N : εky + ξk ∈ �} and, for y ∈ �k , set

wk(y) := ε
(N−p)/p
k uk(εky + ξk).

As uk is φ-equivariant and ξk is a G-fixed point, wk is φ-equivariant. Moreover (wk) is bounded 
in D1,p(RN). Hence, a subsequence satisfies that wk ⇀ W weakly in D1,p(RN)φ , wk → W a.e. 
in RN and wk → W strongly in Lp∗

loc(R
N). Note that W is φ-equivariant. Choosing δ sufficiently 

small and using (2.4), a standard argument shows that W �= 0; see, e.g., [16, Section 8.3].
Passing to a subsequence, we have that ξk → ξ ∈ (RN)G and εk → ε. Moreover, ε = 0; oth-

erwise, as uk ⇀ 0 weakly in D1,p
0 (�), we would have that W = 0. Furthermore,

ε−1
k dist(ξk, ∂�) → d ∈ [0,∞] as k → ∞.

We consider two cases:

(a) If d = ∞ then, by (2.5), we have that ξk ∈ �. Hence, for every compact subset X of RN , 
there exists k0 such that X ⊂ �k for all k ≥ k0. In this case we set H :=R

N .
(b) If d ∈ [0, ∞) then, as εk → 0, we have that ξ ∈ ∂�. If a subsequence of (ξk) is contained in 

�̄ we set d̄ := −d , otherwise we set d̄ := d . We define

H := {y ∈ R
N : y · ν > d̄},

where ν is the inward pointing unit normal to ∂� at ξ . Since ξ is a G-fixed point, so is ν. 
Thus, �G �= ∅, H is G-invariant and HG �= ∅. It is easy to see that, if X is compact and 
X ⊂ H, there exists k0 such that X ⊂ �k for all k ≥ k0. Moreover, if X is compact and 
X ⊂ RN

� H̄, then X ⊂ R
N
��k for k large enough. As wk → W a.e. in RN , this implies, 

in particular, that W = 0 a.e. in RN
�H. So W ∈ D

1,p
(H)φ .
0
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If ϕ, ψ ∈ C∞
c (H), ϕ is φ-equivariant and ψ is G-invariant, we define

ϕk(x) := ε
−(N−p)/p
k ϕ(ε−1

k (x − ξk)), ψk(x) := ε
−(N−p)/p
k [ψT (wk − W)](ε−1

k (x − ξk)),

where T is the truncation given by (A.2). Then, ϕk and ψk are φ-equivariant. As supp(ϕ) ∪
supp(ψ) ⊂ �k for k large enough, we have that supp(ϕk) ⊂ � and supp(ψk) ⊂ � for k large 
enough and, since the sequences (ϕk) and (ψk) are bounded in D1,p

0 (�)φ , we get that

∫
�k

|∇wk|p−2∇wk · ∇ϕ −
∫
�k

|wk|p∗−2wkϕ = J ′(wk)ϕk = o(1),

∫
�k

|∇wk|p−2∇wk · ∇[ψT (wk − W)] −
∫
�k

|wk|p∗−2wk[ψT (wk − W)]

= J ′(wk)ψk = o(1).

It follows from Lemma A.3 that W is a nontrivial solution to (2.2).
From Lemma 2.3 we obtain that cφ(�) = cφ(H) = c

φ∞. Hence,

c
φ∞ ≤ 1

N
‖W‖p ≤ lim inf

k→∞
1

N
‖wk‖p = lim inf

k→∞
1

N
‖uk‖p = c

φ∞.

Therefore, J (W) = c
φ∞ and wk → W strongly in D1,p(RN). After a change of variable,

o(1) = ‖wk − W‖p = ‖uk − ε
−(N−p)/p
k W(ε−1

k (x − ξk))‖p.

This finishes the proof. �
3. Entire nodal solutions

In this section we prove our main result.

Theorem 3.1. Let G be a closed subgroup of O(N) and φ : G → Z2 be a continuous homo-
morphism which satisfy (S1)–(S3). Then J attains its minimum on N φ(RN). Consequently, the 
problem (1.1) has a nontrivial φ-equivariant solution.

Proof. The unit ball � := {x ∈R
N : |x| < 1} is G-invariant for every G. As 0 ∈ �, we have that 

�G �= ∅. So, by Lemma 2.3, cφ(�) = c
φ∞.

By Lemma 2.2 there exists a sequence (uk) such that

uk ∈ D
1,p

0 (�)φ, J (uk) → cφ(�), and J ′(uk) → 0 in (D
1,p

0 (�)φ)′.

Then, Theorem 2.5 asserts that there are two possibilities: either there exists u ∈ N φ(�) with 
J (u) = c

φ∞, or there exists W ∈ N φ(H) with J (W) = c
φ∞. As N φ(�) ⊂ N φ(RN) for ev-

ery G-invariant domain � in RN , in either case we conclude that J attains its minimum on 
N φ(RN). �
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It is worth noting that in the semilinear case p = 2 the unique continuation principle excludes 
the possibility that a solution to the problem (1.1) vanishes in an open subset of RN . There-
fore, if �G �= ∅, option (II) with H = R

N is the only possible option in Theorem 2.5; see [4, 
Theorem 2.3]. For other values of p the validity of the unique continuation principle is an open 
question; see, e.g., [9]. So one cannot exclude the existence of solutions which vanish in an open 
subset of RN .

In order to prove our main result, we need to show that there are groups and homomorphisms 
with the properties stated in the following lemma.

Lemma 3.2. Let N = 4n + m with n ≥ 1 and m ∈ {0, 1, 2, 3}. Then, for each j = 1, ..., n, there 
exist a closed subgroup Gj of O(N) and a continuous homomorphism φj : Gj → Z2 with the 
following properties:

(a) Gj and φj satisfy (S1)–(S3).
(b) If u, v : RN → R are nontrivial functions, u is φi -equivariant and v is φj -equivariant with 

i < j , then u �= v.

Proof. Let � be the group generated by {eiθ , � : θ ∈ [0, 2π)}, acting on C2 by

eiθ (ζ1, ζ2) := (eiθ ζ1, eiθ ζ2), �(ζ1, ζ2) := (−ζ̄2, ζ̄1), for (ζ1, ζ2) ∈C
2,

and let φ : � → Z2 be the homomorphism given by φ(eiθ ) := 1 and φ(�) := −1. Note that the 
�-orbit of a point z ∈ C

2 is the union of two circles that lie in orthogonal planes if z �= 0, and it 
is {0} if z = 0.

Set �j := O(N − 4j) if j = 1, ..., n − 1, and �n := {1}. Then the �j -orbit of a point y ∈
R

N−4j is an (N −4j −1)-dimensional sphere if j = 1, ..., n −1, and it is a single point if j = n.
Define Gj := �j × �j , acting coordinatewise on RN ≡ (C2)j ×R

N−4j , i.e.,

(γ1, ..., γj , η)(z1, ..., zj , y) := (γ1z1, ..., γj zj , ηy),

where γi ∈ �, η ∈ �j , zi ∈C
2 and y ∈ R

N−4j , and let φj : Gj → Z2 be the homomorphism

φj (γ1, ..., γj , η) := φ(γ1) · · ·φ(γj ).

The Gj -orbit of (z1, ..., zj , y) is the product of orbits

Gj(z1, ..., zj , y) = �z1 × · · · × �zj × �jy.

So, clearly, Gj and φj satisfy (S1)–(S3) for each j = 1, ..., n.
Now we prove (b). If u is φi -equivariant and v is φj -equivariant with i < j , and u(x) =

v(x) �= 0 for some x = (z1, ..., zj , y) ∈ (C2)j ×R
N−4j , then, as

u(z1, ..., �zj , y) = u(z1, ..., zj , y) and v(z1, ..., �zj , y) = −v(z1, ..., zj , y),

we have that u(z1, ..., �zj , y) �= v(z1, ..., �zj , y). This proves that u �= v. �
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Proof of Theorem 1.1. Let N = 4n + m with n ≥ 1 and m ∈ {0, 1, 2, 3}. For each j = 1, ..., n, 
let Gj be the closed subgroup of O(N) and φj : Gj → Z2 be the continuous homomorphism 
given by Lemma 3.2. Let Wj be the φj -equivariant solution of the problem (1.1) given by Theo-
rem 3.1. Lemma 3.2 asserts that the solutions W1, ..., Wn are pairwise distinct. �

Theorem 1.1 is certainly not optimal. As the proof of Lemma 3.2 indicates, there might be 
other possible symmetries that yield further solutions.

Appendix A

Here we prove Lemma A.3, which was used in the proof of Theorem 2.5.
Let � be a G-invariant domain in RN . Set

C∞
c (�)φ := {ϕ ∈ C∞

c (�) : ϕ is φ-equivariant},
C∞

c (�)G := {ψ ∈ C∞
c (�) : ψ is G-invariant}.

Recall that ψ is G-invariant if it is constant on every G-orbit of �.

Lemma A.1. If u ∈ D
1,p
0 (�)φ and J ′(u)ϕ = 0 for every ϕ ∈ C∞

c (�)φ , then J ′(u)ϑ = 0 for every 
ϑ ∈ C∞

c (�), i.e., u is a solution to the problem

−�pu = |u|p∗−2u, u ∈ D
1,p
0 (�). (A.1)

Proof. Let ϑ ∈ C∞
c (�). Define

ϕ(x) := 1

μ(G)

∫
G

φ(g)ϑ(gx)dμ,

where μ is the Haar measure on G. Then ϕ ∈ C∞
c (�)φ and, therefore, J ′(u)ϕ = 0. Note that, as u

is φ-equivariant, φ(g)∇u(x) = g−1∇u(gx) for all g ∈ G and x ∈ �. So, using Fubini’s theorem 
and performing a change of variable, we get

0 =
∫
�

(
|∇u(x)|p−2∇u(x) · ∇ϕ(x) − |u(x)|p∗−2u(x)ϕ(x)

)
dx

= 1

μ(G)

∫
�

∫
G

(
|∇u(x)|p−2∇u(x) · φ(g)g−1∇ϑ(gx)

− |u(x)|p∗−2u(x)φ(g)ϑ(gx)
)

dμdx

= 1

μ(G)

∫
�

∫
G

(
|∇u(gx)|p−2g−1∇u(gx) · g−1∇ϑ(gx)

− |u(gx)|p∗−2u(gx)ϑ(gx)
)

dμdx
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= 1

μ(G)

∫
G

∫
�

(
|∇u(gx)|p−2∇u(gx) · ∇ϑ(gx)

− |u(gx)|p∗−2u(gx)ϑ(gx)
)

dx dμ

= 1

μ(G)

∫
G

dμ

∫
�

(
|∇u(y)|p−2∇u(y) · ∇ϑ(y) − |u(y)|p∗−2u(y)ϑ(y)

)
dy

=
∫
�

(
|∇u(y)|p−2∇u(y) · ∇ϑ(y) − |u(y)|p∗−2u(y)ϑ(y)

)
dy,

i.e., 0 = J ′(u)ϕ = J ′(u)ϑ , as claimed. �
Consider the truncation function

T (t) :=
⎧⎨
⎩

t if |t | ≤ 1,

t

|t | if |t | ≥ 1.
(A.2)

The proof of the following lemma is similar to that of [5, Lemma 3.5]. We give the details for 
the sake of completeness.

Lemma A.2. Let (vk) be a sequence in D1,p(RN)φ and v ∈ D
1,p

0 (�)φ be such that vk ⇀ v

weakly in D1,p(RN). Assume that, for every ψ ∈ C∞
c (�)G,

lim
k→∞

∫
�

ψ
(
|∇vk|p−2∇vk − |∇v|p−2∇v

)
· ∇(T (vk − v)) = 0. (A.3)

Then, after passing to a subsequence, ∇vk → ∇v a.e. in �.

Proof. From the inequalities (4.3) and (4.4) in [10] we obtain that

(|η|p−2η − |ξ |p−2ξ) · (η − ξ) ≥

⎧⎪⎨
⎪⎩

C0 |η − ξ |p if p ≥ 2,

C0 |η − ξ |2
(|ξ |p + |η|p + 1)2−p

if 1 < p < 2,
(A.4)

for every η, ξ ∈ R
N and some positive constant C0 which depends only on p.

Set

wk := (|∇vk|p−2∇vk − |∇v|p−2∇v) · (∇vk − ∇v).

By the inequality (A.4), it suffices to show that, after passing to a subsequence, wk → 0 a.e. 
in �.

Note that (A.4) implies that wk ≥ 0. Let ψ ∈ C∞
c (�)G with ψ ≥ 0 and set X := supp(ψ). 

For each k, we split X into Ak := {x ∈ X : |vk(x) − v(x)| ≤ 1} and Bk := {x ∈ X :
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|vk(x) − v(x)| > 1}. After passing to a subsequence, we have that vk → v in Lp(X). Hence, 
|Bk| → 0. Moreover, as T (vk − v) = vk − v in Ak and ∇(T (vk − v)) = 0 a.e. in Bk , we have that∫

Ak

ψwk =
∫
�

ψ
(
|∇vk|p−2∇vk − |∇v|p−2∇v

)
· ∇(T (vk − v)).

Fix s ∈ (0, 1). Since (vk) is bounded in D1,p(RN), using Hölder’s inequality and assumption 
(A.3) we get that

0 ≤
∫
�

(ψwk)
s =

∫
Ak

(ψwk)
s +

∫
Bk

(ψwk)
s

≤ |Ak|1−s

⎛
⎜⎝∫

Ak

ψwk

⎞
⎟⎠

s

+ |Bk|1−s

⎛
⎜⎝∫

Bk

ψwk

⎞
⎟⎠

s

≤ |X|1−so(1) + o(1) = o(1).

So, passing to a subsequence, we have that ψwk → 0 a.e. in �.
Observe that the set �m := {x ∈ � : |x| < m, dist(x, ∂�) > 1

m
} is G-invariant for each m ∈N. 

It is easy to construct a G-invariant function ψm ∈ C∞
c (�) such that ψm ≥ 0 and ψm(x) = 1 for 

every x ∈ �m. Therefore, passing to a subsequence, wk → 0 a.e. in �m for each m ∈ N. A stan-
dard diagonal argument yields a subsequence such that wk → 0 a.e. in �, and finishes the proof 
of the lemma. �
Lemma A.3. Let (vk) be a sequence in D1,p(RN)φ and v ∈ D

1,p
0 (�)φ be such that vk ⇀ v

weakly in D1,p(RN). Assume that

J ′(vk)ϕ = o(1) and J ′(vk)[ψT (vk − v)] = o(1),

for every ϕ ∈ C∞
c (�)φ and ψ ∈ C∞

c (�)G. Then v is a solution to the problem (A.1).

Proof. First, we claim that ∇vk → ∇v a.e. in �. To prove this claim, we apply Lemma A.2. Let 
ψ ∈ C∞

c (�)G. After passing to a subsequence, we have that vk → v a.e. in �. Then, Egorov’s 
theorem asserts that for every δ > 0 there exists Aδ ⊂ supp(ψ) such that |Aδ| < δ and vk → v

uniformly in supp(ψ) �Aδ . So |vk(x) − v(x)| ≤ 1 for all x ∈ supp(ψ) �Aδ and k large enough. 
Hence, ∣∣∣∣∣∣

∫
�

ψ |∇v|p−2∇v · ∇(T (vk − v))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

RN�Aδ

ψ |∇v|p−2∇v · ∇(vk − v)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∫
Aδ

ψ |∇v|p−2∇v · ∇(T (vk − v))

∣∣∣∣∣∣∣
≤ o(1) + Cδ,
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because vk ⇀ v weakly in D1,p(RN). Therefore,

lim
k→∞

∫
�

ψ |∇v|p−2∇v · ∇(T (vk − v) = 0. (A.5)

On the other hand, as J ′(vk)[ψT (vk − v)] = o(1), from Hölder’s inequality and the dominated 
convergence theorem we get that

∣∣∣∣∣∣
∫
�

ψ |∇vk|p−2∇vk · ∇(T (vk − v))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
�

|∇vk|p−2∇vk · ∇(ψT (vk − v))

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
�

|∇vk|p−2∇vk · T (vk − v)∇ψ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
�

|vk|p∗−2vk(ψT (vk − v))

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
�

|∇vk|p−2∇vk · T (vk − v)∇ψ

∣∣∣∣∣∣ + o(1)

≤ C

⎛
⎝∫

�

|ψT (vk − v)|p∗
⎞
⎠

1
p∗

+ C

⎛
⎝∫

�

|T (vk − v)∇ψ |p
⎞
⎠

1
p

+ o(1) = o(1).

Therefore,

lim
k→∞

∫
�

ψ |∇vk|p−2∇vk · ∇(T (vk − v) = 0. (A.6)

From Lemma A.2, and identities (A.5) and (A.6) we get that ∇vk → ∇v a.e. in � and, as vk → v

a.e. in �, using again Egorov’s theorem we obtain that

lim
k→∞

∫
�

|∇vk|p−2∇vk · ∇ϕ =
∫
�

|∇v|p−2∇v · ∇ϕ,

lim
k→∞

∫
�

|vk|p∗−2vkϕ =
∫
�

|v|p∗−2vϕ,

for every ϕ ∈ C∞
c (�)φ . Hence,

J ′(v)ϕ = lim
k→∞J ′(vk)ϕ = 0 for every ϕ ∈ C∞

c (�)φ.

So, by Lemma A.1, v is a solution to the problem (A.1), as claimed. �
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