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Abstract

In the present paper, the reducibility is derived for the wave equations with finitely smooth and time-
quasi-periodic potential subject to periodic boundary conditions. More exactly, the linear wave equation
U — uxx + Mu + e(Vo(wt)uxx + V(wt, x)u) =0, x € R/2wZ can be reduced to a linear Hamiltonian
system with a constant coefficient operator which is of pure imaginary point spectrum set, where V is
finitely smooth in (7, x), quasi-periodic in time # with Diophantine frequency w € R”", and Vj is finitely
smooth and quasi-periodic in time ¢ with Diophantine frequency w € R". Moreover, it is proved that the
corresponding wave operator possesses the property of pure point spectra and zero Lyapunov exponent.
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1. Introduction
In the present paper, we investigate the reducibility of
Uy —Uxy + Mu+e(Vo(wtuxx + Viwt,x)u) =0, x e R/2xZ. (1.1)
To that end, we need the following conditions:
Assumption A. Assume M > 0 is a constant, and Vo, V| are CN-smooth and quasi-periodic

in time t with frequency w € R", which means, there are hull functions %)) € CN(T"; R),
Y (©O,x) e CN(T" x [0, 27]; R) such that

Vowt) = %0 |o=wr, V(wt,x) =70, X)gop . T" =R"/207",
where N > 200n.

Assumption B. Assume w € [1,2]" C R" satisfies Diophantine conditions

[(k, w)| = ke Z"\{0}, (1.2)

_r
|k|n+1 ’
where y is a constant and 0 < y <K 1.

We recall the reducibility problem for a time dependent linear system

¥=A(t)x, x eR", (1.3)

where A(t) is an n X n real or complex value matrix. If A(¢) is time T -periodic and continuous,
it follows from Floquet theory that there exists a continuous time 7 -periodic coordinate change

x=P(t)y (1.4)

such that (1.3) is changed into a constant system

y =By, (1.5)

where B is an n x n complex value matrix independent of time . However, there usually does
not exist the change (1.4) such that (1.3) is reduced to (1.5) when A(¢) is time quasi-periodic.
See [18]. Let us consider a special case: A(f) = A + eQ(t), where A is a constant, Q(¢) is time
quasi-periodic and ¢ is small. The well known KAM (Kolmogorov—Arnold—Moser) theory can
be applied to this case. See [11,17,24,27,28], for example. In recent decades, there have been
many literatures dealing with the reducibility of time quasi-periodic, infinite dimensional linear
systems via KAM technique. One model is the time-quasi-periodic Schrédinger operator

iin=(Ho+eWwt,x,—iV)u, xeR? or x e T =R /277, (1.6)
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where Hyp = —A + V (x) or an abstract self-adjoint (unbounded) operator while the perturbation
W is quasi-periodic in time ¢ and it may or may not depend on x or/and V. See [2—4,14-16,18,
19,34], and the references therein.

Another model is the time-quasi-periodic wave operator or linear wave equation

uyr = (—A+¢eV(po + wt, x; w))u. 1.7)

Up to now, the reducibility of (1.7) has not been explicitly dealt with. Note that a reducibility pro-
cedure has been included in classical KAM for the existence of lower-dimensional invariant tori
for infinitely dimensional Hamiltonian partial differential equations. It can be implicitly derived
from the classical KAM [13,25,31,35] that (1.7) with d = 1 and subject to Dirichlet boundary
conditions or periodic boundary conditions can be reduced to a constant coefficient equation for
“most'” frequency w, provided that V is analytic. For d = 1 and (1.7) with a finitely smooth
potential V and subject to Dirichlet boundary conditions, it has been recently proved that (1.7)
can still be reduced to a constant system for “most” frequency w. See [26].
In this paper, we will prove the following reducibility theorem:

Theorem 1.1. With Assumptions A, B, for any given 0 < y <K 1, there exists an €* with 0 <
e*=¢*(n,y) <y, and exists a subset T1 C [1, 2]" with

mesIl >1— 0()/1/3)

such that for any 0 < ¢ < &* and for any w € T1, there is a quasi-periodic symplectic change such
that

gy —uxy + Mu+e(Vy(wt)uyy + V(wt,x)u) =0, x e R/2xZ (1.8)

is reduced to a linear Hamiltonian system

{61L=(A+8Q)g7,~ (1.9)
p=—(A+e0)q,

where A =diag (Aj :j=0,1,2,-- ) Ao=pvM, Aj = p+/ j2+ MEy, p is aconstant close
10 1, Exn i:v a 2 x 2 unit matrix, and Q = diag(Qi :1=0,1,2,--) is independent of time with
Qo € R, Q; being a real 2 x 2 matrix, and |Q;| < C/i, i =1,2,---. Here | - | denotes the

sup-norm for real matrices, mes Il denotes Lebesgue measure for set I1.

The more exact statement of Theorem 1.1 can be found in Theorem 2.1 in Section 2. From
Theorem 1.1, the following two corollaries can be obtained.

Corollary 1.1. With Assumptions A, B, for w € T1 and 0 < ¢ < £*, the wave operator

ZLut,x) = 0> — >+ M+e(Vo(wt)d? + V(ot, x))u(t, x), x e R/2n7Z

' Here the word “most” means that for a given set [T C R” with Lebesgue measure which is equal to 1, there exists a
subset ITg C IT with measure IT \ [Tz — 0 as ¢ — 0 such that for “any w € I1;”.
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is of pure point spectrum property and of zero Lyapunov exponent.

Corollary 1.2. With Assumptions A, B, for any w € T1 and 0 < ¢ < &*, there exists a unique
solution u(t, x) with initial values (0, x), u; (0, x)) = (uo(x), vo(x)) € N x #N=L which
is almost-periodic in time and

1
E(”MO”.};{W + llvoll spn—1) < Nlu@ll v + lue O spv-1 < Cluoll v + llvoll pn-1),

where C > 0 is a constant, N = AN (T") is the usual Sobolev space.

Remark 1.1. Since Vy(wt)d,y appears in (1.1), the perturbation is unbounded. This kind of un-
bounded perturbation, which is of the highest unboundedness, can come from the linearization
of some quasi-linear perturbations. For quasi-linear KdV equations and quasi-linear Schrodinger
equations, there has been a progress about KAM theory [5-8,10,20-22,29]. It is still an open
problem whether or not there exists KAM theory for quasi-linear wave equations. In the present
paper, the potential Vy(wt) in (1.1) does not depend on the space variable x. The methods of
Baldi—Berti—-Montalto [5,29,30] and Feola—Procesi [21] are still valid for the Vy(wt) in (1.1).

Remark 1.2. Here we would like to compare the results of Theorem 1.1 with some existent
results. As mentioned before, without Vy(wt), when d = 1 and the potential V is analytic, the
reducibility of (1.7) can be implicitly derived from the classical KAM theorems. However, there
are some differences between the analytic potential V and the finitely smooth one, not to mention
the existence of V. In this paper, by elegant variable and symplectic changes for several times,
the wave equation (1.1) can be written as a linear Hamiltonian system with Hamiltonian

H=(Az,7)+¢ [(ﬁZZ(e)z, 2+ (RE0)2,7) + (RE0)3, z>] .

See (2.17) for more details. The basic task is to search a series of symplectic coordinate changes
to eliminate the perturbations R% ), R% (0) and I?H(B) except the averages of the diagonal of
R%(6). To this end, the symplectic coordinate changes are the time-1 map of the flow for the
Hamiltonian ¢ F where F is of the form

F = (F¥(0)z,2) + (F¥(0)z,2) + (F**(0)Z, 7).

e When the potential V(0) (0 = wt) is analytig in some §trip domgill [Imf| < s, (where v
is the KAM iteration step), the perturbations R**(8), R**(6) and R**(0) are also analytic in
[Imé| < s¥. An important fact in this analytic case is that s’s have a uniform non-zero below
bound:

s> 5>0, forall v=1,2,--.
2

e When the potential V (6) is finitely smooth of order N, by using Jackson—-Moser—Zehnder
approximate lemma, we can still make sure that R% ), Ezf(e) and Ei(e) are analytic in
[Im@| < s, at the v—th KAM step. However, the strip width s,,’s have no non-zero below
bound. Actually, s, goes to zero very rapidly:
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e For the analytic case, we can prove the Hamiltonian ¢ F = O(g,) at the v—th KAM step,
because s} > %" It follows immediately that the new perturbation is {¢ F, eR} = 0(85) =
O(&v+1)-

e For the finitely smooth case, the situation is much more complicated. At this case, we find
1— 2Gnt4)

eF =0(, " ) atthe v—th KAM step. Thus, for the finitely smooth potential V €
) . - 2(3n+4) )
CV, the new perturbation is {¢F, &R} = O(e, ~ ). In order to guarantee the quadratic
5 20n+4)

convergence of the KAM iterations, O(s, " )= 0(83/ 3) = O(&y+1), it is necessary to

assume the smoothness order N >> 1. It is enough to assume N > 200n. Clearly, this is not
sharp. In this paper, we do not pursuit the lowest smoothness for the potential V.
Remark 1.3. The reducibility of (1.1) with finitely smooth potential V subject to Dirichlet
boundary condition has been derived in a recent paper [26]. However, the results on the re-
ducibility between Dirichlet boundary conditions and periodic boundary conditions are different.

For Dirichlet boundary conditions, the eigenvalues A; (j = 1,2, ---) are simple. Thus, we can
reduce the Hamiltonian

H=(Az,7) + e((R¥(0)z.2) + (RZ(0)2.2) + (RF(0)Z.7))
to
Hoo = (Az.2),
where 7{ :diag(xj j=12,--9) andxj = \/m—l—sj. Moreover, (1.1) can be reduced to
U — Uxx + Mgu =0,

where M is a Fourier multiplier. However, for periodic boundary conditions, the eigenvalues
Aj(j=0,1,---) are double:

g g .
)\.0=1, X]:Z, J=071, .
In this case, the Hamiltonian H can be reduced to
Hoo = ((A +£Q)u, ),
where A and @ are matrices defined as (1.9), u is a vector defined as (2.21). Although we can
still get some dynamical behaviours from this reducibility, (1.1) can not be reduced to a linear

wave equation with a Fourier multiplier as in Dirichlet boundary conditions.

Remark 1.4. Since Ag = 2, the homological equations are no longer scalar. For example, in

order to eliminate the term (R“*(8)u, u) (see (2.22)—(2.25) for more details), the homological
equations have the form:
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w-0F —i(AF — FA)=R, (1.10)

where F = F(0) is the unknown matrix of order 2, A is a 2 x 2 constant matrix, R = R(6)
is known matrix of order 2. It is more complicated to find the solution of this matrix equation
(1.10) than that of scalar homological equations. In this case, the delicate small divisor problem
becomes one dealing with the inverse of the matrix

A=—(k,o)1QD+1®A-AR]1 (1.11)

(see (7.5) for more details). A usual method dealing with (1.11) is to investigate 83) det A. See
[11] and [13], for example. In the present paper, we use the variation principle of eigenvalues
to deal with the inverse A~!. The advantage of the variation principle of eigenvalues is that the
method dealing with scalar small divisor problems [31] can be recovered.

Remark 1.5. In [9], it is proved that there is a quasi-periodic solution for any d-dimensional
nonlinear wave equation with a quasi-periodic in time nonlinearity,

Uy —Au—Vx)u=cf(wt,x,u), x e’]I‘d,

where the multiplicative potential V isin C4(T¢; R), w € R" is a non-resonant frequency vector
and f € C4(T" x T? x R; R). Because of the application of multi-scale-analysis, it is not clear
whether the obtained quasi-periodic solution is linear stable and has zero Lyapunov exponent. As
a corollary of Theorem 1.1, we can prove that the quasi-periodic solution by [9] is linear stable
and has zero Lyapunov exponent, when d = 1.

Remark 1.6. When d > 1, it is a well-known open problem that (1.7) subject to Dirichlet or pe-
riodic boundary conditions is reduced to a linear Hamiltonian system with a constant coefficient
linear operator. See the series of talks by L.H. Eliasson [38—40]. Also see a recent paper [30]
where the perturbation is a finite rank operator.

This paper is organized as follows. In Section 2, we redescribe Theorem 1.1 as Theorem 2.1.
In Section 3-10, to prove the main results of the paper, some preliminary work and many lemmas
will be given. The proof of Theorem 2.1 is in the last section.
2. Passing to Fourier coefficients

Consider the differential equation:

Lu=uy —tyx + Mu~+e(Vo(@)uyy + V(wt, x)u) =0 2.1

subject to periodic boundary condition

u(t,x)=u(t,x +2km), ke. 2.2)

It is well-known that the Sturm—Liouville problem

d
-+ My=»xry, "= e xeR/2nZ
X
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has the eigenvalues and eigenfunctions, respectively,

M=k>+M, keZ,
o(x) =", keZ.

Set —dyx + M as D, the wave equation can be seen as
urr = —Du+eVo(wt)Du — eVi(wt, x)u, (2.3)
where Vi (wt, x) = V(wt, x) + MVy(wt). Let u; = v, we have
vy =—(1 —eVy(wt))Du — eVi(wt, x)u. 2.4)
Step 1: Rescale
u=p©)D| #q,

v=(B(®)"|D|%p.

Then

(%
D2 p — @BO

qr = 52(9) B0)

= —(1 = £Vo(@)B(©O)|D|2q + “2EO p — | D| =% 2(6) Vi (@t )| DI 1q.
Choose a suitable (), such that 8(0) = (1 — eVo(G))’i. Then

= (1 —eVo(wt))B*(B) £ ap(8).

RG]

Also, set “gGi = ea1(6), B7(0)V1 (6. x) = V1 (6, x), we have

1
qr =ao(0)|D|2 p — ea1(6)q,
1 1~ 1
pr=—ao(®)|D|2q +ea1(@)p —e|D|"4V1(0, x)|D|*q.

Clearly, we can see ag, V; € CV(T" x [0,27],R) and a; € CV~1(T" x [0, 2], R).
Step 2: Now we consider the complex variables

g—ip _ q+ip

Zzﬁ, Z—ﬁ.

Then, we have

Please cite this article in press as: Y. Sun et al., Reducibility for wave equations of finitely smooth potential with
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. 1 _ . —_19,0,x) _1 _
w - 3z =lap(0)|D|2z — a1 (0)z + &i|D|” 4 —5=|D|"%(z + 2),
1 1y 1 23)
- 057 = —iap(0)|D|2% — £ay (0)z — £i| D73 &2 D73 (: + ).

Step 3: Now we introduce a time variable change, a diffeomorphism of the torus T” of the
form

=04+ wa(@), 6=04 wa(®). (2.6)
For any function 4(6, x) and ﬁ(ﬂ, x), we introduce operators A and A~L where

h(0,x) = (A" )@, x) = [R](9, x) = h(D + wa(?), x),

- - N 2.7
h(,x)=(Ah)(@,x) =h( + wa(0), x).
Our aim is to rewrite the equation (2.5) in the new time variable ¥. Thus, we can set
2(0,1) = z(¥ + wa(¥), x) = [z](D, x),
a;(0) = a;(¥ + wa(¥)) =[a;1(#), i =0,1,
2.8)

Vi(0,x) = Vi(® + wa(®), x) = [V11(9, x),
14+ wdga(@) =1+ woga (¥ + wa(P)) =[1 + wigal(®P),

_l Vi, _1 _
- 9plz] =il DI 2 (2] — e Ul (2] + i D71 COL D=1 (] + [2)),

_ . 1 _ -1 _1 -
- y[Z] =~ |D|2[Z] — e (2] — £i| D] %|D| 2 ([z] + [ZD).

We want to choose a function a so that [ag] is proportional to [1 + wdga]. Thus, it is enough to
solve the equation

o(1 +wdpa®)) =ap®), peR. (2.9)

Integrating on T" we fix the value of p as

o= /ao(O)dQ. (2.10)

Tn

1
Q)"
By (2.9), we get

a(®) = (w~ae)*‘[%° — 11(0). @2.11)

[ai] [Vo(0.%)]

For notational simplicity, rename @, [z], [Z], Moial’ [Ttedya]

as 6 z,z,bg, V. Then, we have

2 =ip|D|2z — eboZ + £i| D|~ 4V|D| H(z+7),
T

_ . 1_ . _1 _1 _
% = —ip|D|2Z — eboz — il D| 73 £|D| 74 (z + 2).
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By Sobolev embedding theorem and inverse function theorem, we see a € CN=2"=2(T" x
[0,27]) and @ € CN=2"=2(T" x [0, 27r]). Thus, we can get by, V € CN=2"=3(T" x [0, 27]). In
the following section, we will rename N — 2n — 3 as N for notational simplicity.

Make the ansatz

(6,0 =S @) =) @), 20,0 =SC)=) u®O@®  (2.12)

keZ keZ

and

Vot x) = v (o) (x).

keZ

Then (2.1) can be transformed as

dzx . - CjlkVj _
o= ipy/ Azp — ebozi +ie Z Z (z1 +21),

4
I€Z je. 23k
. (2.13)
Zk CjlkVj -
——= = —ip/ M2k — ebozx — ie Z Z (z1 +z1),
I€Z jel 29k
where
2
0, j +l —k#0,
0
Endow a symplectic transformation with —idz A dz. Thus (2.13) is changed into
a=if, kel
(2.15)
7k =—1i gli keZ,
where
k k
H(z,2) = Zp\/ kZkZk +81Zbo( ) +EZZZc/1k2m (z1+21) 2k +21) .
keZ keZ keZ I€Z jeZ
(2.16)

For two sequences x = (x; € C, jeZ), y=(y; €C, j €Z), define

Y=Y xiyj.

JEZ

Please cite this article in press as: Y. Sun et al., Reducibility for wave equations of finitely smooth potential with
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Then we can rewrite (2.16) as follows:

HeD = (pRe D+ (2.0 - 0) +e [0, 0 + (R0 9 + (RO,

(2.17)
where
K:diag(/)?:jeZ), 0 = wt,
RZ0) = (R56) :k,l€Z), ﬁ;;(e)zéé%, (2.18)
RE0) = (Ri®) :kiez), Ry =y @ (2.19)
JEZ Vs

R0 = (Rif©):k1e2), R = %/% —i\f/’%’é/(i_l) (2.20)

For the sequence z = (z; € C, j € Z), we can rewrite z as
2=(20,2j, 2—j: j=1,2,- ) 2u=(u;: j=0,1,2,--), (2.21)
where ug = z0, u; = (2, z,j)T, j=12,---. Here (z;, z,j)T denotes the transpose of the
vector (2, z—j). Let Ag = /Ao, Aj = (\/3_] )?_j), j=1,2,---.Notethat A\; =A_; =

j2—|—M, j=1,2,---.Then Aj = /AjE», j=1,2,---, where Ep; is a 2 x 2 unit matrix. For
uj=(zj,2-p)" andii; = ;.37 define u; - ifj = 2,7j +2-7j, j=1,2,---.
Then we can also rewrite (2.16) as

_ boy_ _ - _ —
B = (pAu, ) + 817((% ) — (u, u)) te [(R““(e)u, W) + (R (O)u, @) + (R™ (0)7, u)] ,
(2.22)

where

A=diag(Aj:j=0,1,2,---), 0 =or,

R™(0) = (R (6) :k,1=0,1,2,---), R“We):(Rz,“(e):k,l:o, 1,2,~~~), (2.23)
__ __ __ 1 -
R7T(9) = (R;;l“(e) k1=0,1,2, ) . Rif'©) = R 0) = SR ©). (2.24)

where
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Ro,0(0), k=1=0;
(Ro,1(0), Ro,—1(0)), k=0,1=1,2,---;
R (0) = { (Rio(0), Rk 0(0)7, =0, k=12, (2.25)
Ri1(0)  Ri,—1(6)
, . L kl=1,2,---,
(R—k,z(G) R—k,—l(9)>
and
1 ciikvi(0)
Rei(0)==) Z—=—2 kleZ.
NO=3 )
Define a Hilbert space A as follows:
hy=f{x=(eC:ke): |xF=>_ k> |xl. (2.26)
keZ
Similarly define a Hilbert space &y as follows:
o
hy={y=0k:k=0,1--):lIylIR =D k" Iy, 2.27)
k=0

where yo € C, yx = (zx, 2-1)T, 2z, 22k €C, k=1,2,---, and |yx|* = |zx)* + |z—x|%. In (2.26)
and (2.27), we define |k|*Y = 1,if k =0. For z = (20, zj, z—j: j=1,2,---) €hg, u=(u;:
j=0,1,2,"')EhN,WhereM():ZO,ujZ(Zj,ij)T, j=1,2,---.It can be obtained that

lully =Nzl 5-
Recall that
(0, x) e CN(T" x [0, 27], R).
Note that the Fourier transformation (2.12) is isometric from u € S#N[0,27] to (ux : k =
0,1,---) € hy, where N[0, 27] is the usual Sobolev space.

Now we state a lemma, which will be used in the next section.

Lemma 2.1.

sup || D 9FTR“O) llny—ny <C.

6eTn la|<N
sup || D 95 TRO) llny—ny <C. (2.28)
et Jaj=n

sup | Y 3§ TR (O) ] |lny—ny < C.
6eTn le|<N

Please cite this article in press as: Y. Sun et al., Reducibility for wave equations of finitely smooth potential with
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where || - ||ny—sny IS the operator norm from hy to hy, and a = (a1, a2, -+ , o), || = |ag| +
leea| + - - - + |y |, @j’s are positive integers, and J = diag(J;: j=0,1,---), Jo= Yo, Jj=

,4/)LjE22,j: 1,2,---.

Proof. By (2.23), (2.24) and (2.25), we have that

STR™O)] = (AL (©) 1k, 1=0,1,---),

where
%Zjezcwoag‘v,-(e), k=1=0;
(% ZjeZCﬂOagvj(@)’ %Zjezcjezoag‘vj((?)), k=0,1=1,2,---;
Av@)={ GXjezciondfvj©), 3 jczciokdfvjO)T, [=0,k=1,2,---:

%Zjezcjlkagvj(e) %ZjEZC./_lkagvj(G) kil=1.2 ...
32 ez Cil-k05v0) 33 ez ci—1-kdgvj©) )7 T T

Forany u = (ux :k=0,1,---) e hy,
> IRO) |u= Z( > A l=0,1,--- | (2.29)
le|<N k=0 |a|<N
Suppose J= diag(Yxj:jeZ). Thenforany z=(zx € C:k e Z) € hy,
~ e~ ~ 1
> g TREO)T | 2= EZZCﬂk( > agvi@nuc:lel]. (2.30)
la|<N JEZ ke la|<N
A combination of (2.26), (2.27), (2.29) and (2.30) gives

2
H Zag‘JR“”(G)J u

le| <N

SRV CY At

=0 k=0 |a|<N

2

Z P IZZC/H«( > v @) - (2.31)

€L keZ jeZ le|<N
Let

I+ ))J
Yij = ] ;

where [, j=1,2,---

Note that
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[0, j+I—k#0,
“i=Vom, j+1—k=0.

By (2.31), one has

2
H > IR0 | u

la|<N

N
2 2
1 1
2N
=D P15 D Crann( 3 i ONars| = 7|3 cios( Y 800z
IeZ jez la|<N jez la|<N
2
! 2N
7 2 WP eon (Y2 dvo@)a+ Y2 Ciuarp( Y 50Oz
leZ)\{0} la|<N JEZ\{0} lo|<N

sc| Xy aev,(e)] PP+ e Y u Y o] 1l

JEZ le|<N JEZ 1eZ\{0} la|<N
2
Y| v ININCY o v @)
1eZ\{0} jeZ\{0} la|<N
1
<clzz+c Y 2 v > P Y agv@f i i P
leZ\{0} \j€eZ\{0} JEZ\{0} le| <N
<claec Y 1Y Y av@| 1}
JEZ\{0} le| <N
<Cllzlk+C  sup | > agaNv@.0|lzl}

0,x)eT" x[0,27] la|<N

2
<Clizl} =Cluly,

where C is a universal constant which might be different in different places. It follows that

sup || D 95 JR"(0) ] llny—ny < C. (2.32)
e la|<N

The proofs of the last two inequalities in (2.28) are similar to that of (2.32). O

Now our goal is to find a symplectic transformation W, such that the term £i= ((u u)—{u, u))
disappears. To this end, let G be a linear Hamiltonian of the form

G= —b1(9)<<A—1u, w) + (A i, ﬁ)), (2.33)

where 6 = wt and b1 (0) need to be specified. Moreover, let
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V= X;gli=1, (2.34)

where X éG is the flow of Hamiltonian, X, is the vector field of the Hamiltonian ¢G with the
symplectic idu A du. Let

Hy=HoW. (2.35)

Recall that
~ _ Doy _ - _ =
B = (pAu, @) + m?(w, ) — (u, u)) te [(R""(e)u, u) + (R O)u, @) + (R™ (0)7, u)] .

Then we have H = N + 0 + Ry, where

N = (pAu, ), Q:ib—zo((ﬁ, ) — (u,u)), (2.36)
Ro = [(R”“(e)u, u) + (R (O)u, w) + (R™(O)u, E)] ) (2.37)

Since the Hamiltonian H = H (wt, u, u) depends on time ¢, we introduce a fictitious action [/ =
constant, and let 6 = wt be angle variable. Then the non-autonomous H (wt, u, ) can be written
as

ol + HO,u, )

with symplectic structure dI A d6 +idu A du. See Section 45 (B) in [1]. By Taylor formula, we
have

Hy=Ho X},

1
=N +¢eQ +¢{N, G} +82/{Q, G)o XIsdt
0 (2.38)

1
+ &2 /(1 —D){{N,G},G}o X zdt +eRoo X,
0

where (N, G} = w - db ((A—lu, w) + (A1, ﬁ)) —i2pby ((ﬁ, i) — (u, u)). Let by = 20 then
we have Hy = N + R, where

R=c¢w- 0pb (<A—1u, W)+ (A 'a, ﬁ)) (2.39)

1
+82/{Q, G)o Xl zdt (2.40)
0
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1
+82/(1 —D){{N, G}, G} o X[ dr (2.41)
0
+eRpo X} (2.42)

The aim of the following section is to estimate R.
e Estimate of (2.39).

Let
-39 by —1
o (w4—9p°A 0 ) sz_(
— w1 |, =
0 w-lubo

Then, we have (2.39)= (¢G &, &i). Obviously,

sup | Y 95TG (O] lny—ny < C.
oeTn la|<N—1

e Estimate of (2.42).

Let
p_( R“06.0 R0, w) = 0 —iid
"\ IR0, 0) R"@O,0) ) 7 “\iid 0

and
by A —1
_ —0A 0
G = 4p bo -1 |- (2.43)
0 —%A
Then we have
-~ u u
Ro—(R(9)<ﬁ),<ﬁ>)~

It follows that
¢?{Ro, G} =4¢*(R(6) Z G(0)i, ). (2.44)
Let G = /6(9) and [R, G]= RG + (kVG\)T. By Taylor formula, we have
(2.42) =¢e(R{a, i),

where

- ) A o0 2j+18j PR PR
Rf=R+2%RG+) i [---[R,Gl,---,GIG. (2.45)

j=2 j—1-fold
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Thus, we can see

sup | Y 3¢ TRTO)J llny—ny <C.

0T |a<n
e Estimate of (2.40).
b2
{0.GY=—2(A" u i) = (K*ii, 7i),
0
where
bZ
0 —52 A7
Ki= by A —1 N
_EA 0

By Taylor formula, we have
(2.40) = > (K*it, it),
where

© 9i=lgi

K*ZKT"' il
=

j—2—fold

Now we have

sup || > IFTKFO) llny—ny <C.
oeT” le|<N—1

e Estimate of (2.41).
By directly calculation, we have

{{N,G},G}Y=(Hu,u),
where

b2
0 AT
Hi=| 20
250 0
By Taylor formula, we have

(2.41)= &> (H*ii, it),

where

[---Kf,---,G]G.
—_——

YJDEQ:9518

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)
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H* 0 2j_28j_1 PN
Ll T .. HF ...
H* == +; L GIG. (2.51)
= j—3—fold

Now we have

sup || > 9T HF(O0) T lny—ny < C.
oeTn la|<N

To simplify the notation, we rename N — 1 as N

sup || Y 9 TR llny—ny <C.
T =N

Now, Theorem 1.1 can be transformed into a more exact expression.

Theorem 2.1. With Assumptions A, B, for given 1> y > 0, there exists €* with 0 < &* =
e*(n,y) <y, and exists a subset T1 C [1, 2]" with

mesII>1— 0(7/1/3)

such that for any 0 < ¢ < &* and any w € T, there is a time-quasi-periodic symplectic change

u i
(3)=wen )
such that the Hamiltonian system (2.22) is changed into

<~ . 0H
=1=, Z,
Ul I k e

i =—igl, ke,

where
o0
H(i, o) = AyFTotio + Y _(Ai)) ).
j=1
AY =pvro+eQo, AF =p\/AjEn+eQ;
with

(i) Qoand Qi (k=1,2,---) are independent of time t, and Qo € R, Qy is a 2 x 2 real matrix
('@:1721"'); ~

(i) Q=diag(Q;) satisfies ||J QJ |lny—ny <C, J=diag(J;:j=0,1,--+), Jo= o, Jj =
JAjE»n, j=1,2,--+;
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(ili) ® = ®(wr) is quasi-periodic in time and close to the identity map:
[®(wt) —idlpy—ny = Cé,
where id is the identity map from hy — hy.
3. Analytical approximation lemma

We need to find a series of operators which are analytic in some complex strip domains to
approximate the operators R*“ (), R**(0) and R*¥(#). To this end, we cite an approximation
lemma (see [23,32,33] for the details). This method is used in [36], too.

We start by recalling some definitions and setting some new notations. Assume X is a Banach
space with the norm || - ||x. First recall that C*(R"; X) for 0 < u < 1 denotes the space of
bounded Holder continuous functions f : R” — X with the form

Ilf () — fnllx
[fllcr,x = sup —————"—— sup || f(x)llx-
O<|x—y|<l1 |x - Y| xeR”

If w =0, then || f||cr x denotes the sup-norm. For £ =k + p withk e Nand 0 < u < 1, we de-
note by C*(R”; X) the space of functions f : R” — X with Holder continuous partial derivatives,
ie., 3% f € C*(R"; X,) for all multi-indices & = («q, -+, ,) € N" with the assumption that
loe| ;= o]+ -+ -+ || <k and X, is the Banach space of bounded operators 7T : ]—[la‘ R > X
with the norm

ITNx, =sup{l|T (ui,uz, -~ ,uje)llx : luill =1, 1 <i <|af}.

‘We define the norm

1 f1lce = sup [[0% fllcw x,-

o] <€

Lemma 3.1. (Jackson-Moser-Zehnder) Let f € C*(R"; X) for some £ > 0 with finite C* norm
over R". Let ¢ be a radial-symmetric, C* function, having as support the closure of the unit
ball centered at the origin, where ¢ is completely flat and takes value 1. Let K = a be its Fourier
transform. For all o > 0, we define

1 —
fo) =Ko x f = [ K200y,
Rll

Then there exists a constant C > 1 depending only on £ and n such that the following holds: for
any o > 0, the function f5(x) is a real-analytic function from C"/(xZ)" to X such that if A}
denotes the n-dimensional complex strip of width o,

A} :={x e C"||Imx;| <0, 1 < j <n},

then for any o € N" such that |a| < £ one has
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3PT £ (Rex)

sup [10fo () = (V=Tmr)?lx, < ClIfllea’ ),

n !
xehs |Bl<t—la| p
and forall 0 <s <o,

sup [} fo (x) = 8% s ()1, < CIIfllceo ™.

n
XEAT

The function fs preserves periodicity (i.e., if f is T-periodic in any of its variable xj, so is
fo ) Finally, if f depends on some parameters & € T1 C R" and

1 G NG ) = sup 9 £ (5. &)llctcxy

are uniformly bounded by a constant C, then all the above estimates hold true with || - || replaced
by |- 1.

The proof of this lemma consists in a direct check which is based on standard tools from
calculus and complex analysis. It is used to deal with KAM theory for finite smooth systems
by Zehnder [37]. Also see [12] and [36] and references therein, for example. For simplicity of
notation, we shall replace || - ||x by || - ||. Now let us apply this lemma to the perturbation P (¢).

Fix a sequence of fast decreasing numbers s, | 0, v > 0, and 59 < % For an X-valued function
P(¢), construct a sequence of real analytic functions P @) (¢) such that the following conclusions
hold:

(1) PW)(¢) is real analytic on the complex strip T%, of the width s, around T".
(2) The sequence of functions P")(¢) satisfies the bounds:

sup | P (¢) — P(9)|| < C|IP|lcest, (3.1)
peTn
sup | PUTR@) = PU@)I < CliPlcesy. (3.2)
¢€ S?U+l

where C denotes (different) constants depending only on n and £.
(3) The first approximate P? is “small” with the perturbation P. Precisely speaking, for arbi-
trary ¢ € T’S’O, we have

IPO) < CIPlce, (3.3)

where the constant C is independent of sg, and the last inequality holds true due to the
hypothesis that sg < %
(4) From the first inequality (3.1), we have the equality below. For any arbitrary ¢ € T",

+00
P¢)=PO@)+ ) (PUTD(§) — PV (). (34)

v=0
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e¢]

Now take a sequence of real numbers {s, > 0}72, with s, > 5,11 going fast to zero. Let

RP4(0) = P(0) for p,q € {u, u}. Then by (3.4) and (2.28), for p, g € {u, u}, we have,

RP4©) =Ry (©0)+ > R ©), (3.5)
=1

where R{*¥ () is analytic in T}, with

sup IR O)llpy—ny <C. (3.6)
Ge'JI‘{go

and R"?(0) (I = 1) is analytic in T}, with

sup |JR(©0) T lny—ny <Cs}. 3.7
QeTg

4. Iterative parameters of domains

Let
4\v . . .
e g0=¢,6,= e(3) ,v=0,1,2,---, which measures the size of perturbations at v — th step.
° 5, = siﬂ/, v=0,1,2, -, which measures the strip-width of the analytic domain T’;v, ’]I‘g‘v =

{06 € C"2rZ" : |ImB| < s,}.
e C(v) is a constant which may be different in different places, and it is of the form

C(v)=C2%",

where C1, C» are constants.
e K, =100s;,'2"|loge|.
e =% 0<y<l
e A family of subsets IT, C [1,2]" with [1,2]" DTl D>--- DI, D---, and

mesIl, > mesIl,_| — CVvlﬁ-

e For an operator-value (or a vector-value) function B(¢, ), whose domain is (0, w) € T{ X
IT,. Set

IBllry, xm, = sup  [|BO, ®)lny—ny-
(0,0)€T? X1,

where || - ||ny—#y 1S the operator norm, and set

1Bl v, = sup [180BO. Dllny—sny-
v (0,w)€T?, xI1,
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5. Iterative lemma

In the following, for a function f(w), denote by 9, the derivative of f(w) with respect to w
in Whitney’s sense.

Lemma 5.1. For p,q € {u,u}, let R0 0 = Rp 4 Rlpoq Rlp’q, where Rg’q, Rlp’q are defined by
(3.5), (3.6) and (3.7). Assume that we have a famtly of Hamiltonian functions H,:

H, —A(()”)uouo+Z(A(") - uj—i-Zel(R w,u) + (R, @) + (RIE, 7)),
j=1 I>v

v=0,1,---,m, 5.1
where R, R1“" R”“ are operator-valued functions defined on the domain T§ x T1,, and

Ly MLy

0=wt, o= (w1,wy, - wy).
(Al),

A = py/ho. A()—p\/_+z€zu(’) vl (52)

A =p/3jEn, MY =p /i Ezz+28,u(’), i=1,2,, v=1, (53)

where
i) ,u(()l) = MO)(a)) I1; — R with

g m, = sup | (@) < CG), 0<i<v—1, (5.4)
well;
i), ._ i) _
lig If, = sup max |8a,,;L0 (W) <C@U),0<i<v-—1. (5.5)
well; 1=i=<

Here | - | denotes the absolute value of a function.

(ii) My) —,uj)(a)) (G=12,---,0<i<v—1, v=>1)are2 x?2real symmetry matrices
with
11, = sup 1 (@)] < @)/, (5.6)
well;
1 = sup max 18, 1 @)] = CG)/j. 5.7
well;

Here | - | denotes the sup-norm for real matrices.
(A2), For p,q € {u,u}, Rl’?]’}q = Rl‘j")q (0, w) is defined in ']I‘?l x IT,, with | > v, and is analytic in
0 for fixed w € I1,,, and
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1 RY Tl xm, < C ), (5.8)
1R] TN, cn, < CO). (5.9)

Then there exists a compact set I, C I, with

1/3

mesIl, 41 > mesIl,, — Cyy'~, (5.10)
and exists a symplectic coordinate change
v, :']I‘?m+1 x g1 — ']I";m x I,,, (5.11)
W — idllny—ny <€7% 0,0) €TE | X Tpupy (5.12)
such that the Hamiltonian function H,, is changed into
Hpt1 £ Hy o Wy
oo oo
1 — 1 —
= AU it + Z(A?H ujy-u;+ Z er [(RI™,, yu, u) (5.13)
j=1 I>m+1
(R0, T) + (REp T |
which is defined on the domain T?nm x 41, and A§m+l) s satisfy the assumptions (A1)py41

and R{,’;’V(l]-‘rl (p, q € {u, u}) satisfy the assumptions (A2)n+1-
6. Derivation of homological equations

Our end is to find a symplectic transformation W, such that the terms R;'"”, Rl“z, RlﬁvE (with
[ = v) disappear. To this end, let F be a linear Hamiltonian of the form

F = (F*“(0, w)u, u) + (F* 6, o)u,u) + (F*“(0, w)u, u), 6.1)

where 6 = or, (F0,0)" = F"0.0), (F"0,0)" = F"0,0), (F"0.0)" =
F**(6, w). Moreover, let

V=W, =X, ;| _. 6.2)

where X ém  is the flow of the Hamiltonian, X, r is the vector field of the Hamiltonian &, F
with the symplectic structure idu A du. Let

Hyy1 = Hpy oWy, (6.3)
By (5.1), we have

H, =N, + Ry (6.4)
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with
00
N = ol + A" ugiio + Y (Auy) ;. (6.5)
j=1
00
Ry = Z &1 Rm, (6.6)
I=m
Rip = (R}, 0)u, u) + (Rj (O)u., 1) + (R} ¥ (0)u. ), (6.7)

where (Ri (0)7 = Ri™ (8), (R () = RI™ (8). (R, (0))T = R™ (0).

I,m
Recall that the sequence z=(z; €C, j € Z) can be rewritten as

z2=1(20, zj, 2-j: j=12,--)=u=(u;: j=0,1,2,--),

where ug = zo, u; = (z;, Z_j)T, j=1,2,---.Suppose {, -} is the Poisson bracket with respect
toidz Adz, i.e.

(H(29), F(, z)}_l( (OF _9H aF

Define

oH _oH OH _OH BH ;. OH 9F , OH OF
dug  dz0" ou; 9z dz; 7 C Lagu; om;  ou oa

We can verify that

o0H OF 0H OF
u Jdu ou Jdu

{H(z,2), F(z,2)} ={H @, w), F(u, )} =i (—-—_——_-—

So {-, -} is also the Poisson bracket with respect to idu A du. By combination of (6.1)—(6.7) and
Taylor formula, we have

Hyy1=HpyoX] p

1
= Ny + em{Nim, F} + €2 /(1 — O{{Nm. F}, FYo X! odT +eno- 05 F

1

o0

1 2 T

+&m Roum + ( Z eiRim) o X} o +ep, / {Rum, F}o X[ pdr. (6.8)
I=m+1 0

Let I'k,, be a truncation operator. For any

fO) =3 Fe ™" 6T

keZl
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Define, for any given K, > 0,

l—‘Km f) = (FK,,, £)(0) S Z f(k)e’ (k,9)7

[k|<Km
(1-Tk,) O =(1=Tx)NEO 2 Y Flke*?,
Ik‘>K”l
Then
f©O)=Tg, f(0)+ 1A —-Tk,)[f(©).
Let
{Nm, F} + Tk, Rym = ([RIE 1u, ), (6.9)
where
[RY 1:=diag (R;‘;;n” ©):j=0, 1,2,---), (6.10)
and Rr”n‘fm i (6) is the matrix element of R“” n(0) and R,'%l /(k) is the k-Fourier coefficient of
R;%l ; (6). Then
Hm+1 :Nm—H +Cm+1Rm+la (611)
where
_ o0
N1 = Non + e (R . @) = A Vugtio + (A" Vuj) -7, (6.12)
j=1
AV = A e, RIT L (0) =AY )—i-Zsm(/l), pi"™ = R (0), (6.13)
1=0
Chnt1Rpy1=6en(1— l-‘Km)Rmm (6.14)
+531/(1 — O){{Nw. F}, FYo X[ pdrt (6.15)
+8r2n/{Rmms F}OX;”FdT (6.16)

0
+ ( > e,le) o X! p. (6.17)

I=m+1

The equation (6.9) is called the homological equation. Developing the Poisson bracket {N,,, F'}
and comparing the coefficients of u;u j, u;u;, u;u;(i, j=0,1,2,---), we get
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w- 3 F" (O, w) +i(A™F"™ (0, w) + F"(©,0)A™) =Tk, R (0), (6.18)

mm
-3 F" "0, 0) —i (A F0, w)+ F*" O, w)A"™) =Tk, R"" 6), (6.19)
®- 09 F"(0, ) + i (F™ (0, 0) A" — A" F"" (0, 0)) =Tk, R, () — [Rum], (6.20)

where
A :diag(AE.m) Lj=0,1,2,--), 6.21)
and we assume
Tk, F* (6, 0) = F"(0,), Tk, F"(0,0) = F*(0,0), Tk, F""(0,0) = F*" (0, w).

Fi" (), F;;F ), Fgﬁ(e) are written as the matrix elements of F¥*(0, ), F*™ (0, w), F**(0, w),
respectively. More exactly, for p, g € {u, u},

ao,0(0), i=j=0;
(a0, (0), ao,—;(6)), i=0,j=12-;
Fi(0) =1 (@i00), a—io®)", Jj=0,i=1,2,---;

a; j©0) a,_;j@) ) o
(a_i,j(e) a_,-’_j(g) » L= 1,2, ,

where a; ;(0): Ty — R, i,j=0,1,2,--.. Then (6.18)-(6.20) can be rewritten as:

Sm

- 0 F1(0) +i(A™ F(0) + Fli* (9))1\5.'”) =Tk, Rt (0). (6.22)
- 3 FL"(0) —i (A FI(0) + FEE(Q)AE”’)) =T, R (0), (6.23)
w09 Fi"(0) —i (A" FI"(0) — FiF0)A(") =T, Rt (0). i # . (6.24)
w- 9 FL () —i (A F(0) — F0)AM™) = Tk, R .(8) — Rypmii (0), (6.25)
where i, j =0,1,2,---.
7. Solutions of homological equations
Lemma 7.1. There exists a compact subset H;I_l c I, with
mes(l’I:;I_l) > meslIl,, — Cy,},ﬂ (7.1)

such that for any w € HL__I, the equation (6.20) has a unique solution FY(0, w), which is

defined on the domain T" . x I, with

Sm+1 m+1’
_ _ 23n+4)
17O, )T lly = <Clmt Den ™ (72)
JFQ, ) J||Z <C e W 7.3
IF 0. @) I, pe <ClmtDen ™ (7.3)
Sm+1 m
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Proof. By passing to Fourier coefficients, we can rewrite (6.24) as

— (k. @) () + (AT () = B AT =1 Ry K, (74)

mmij

wherei, j=0,1,2,---,i%# j, k € Z" with |k| < K,,,. In the following, we always by “1” denote
the identity from some finite dimensional space to itself. By applying “vec” to both sides of (7.4),
we have

(—(, o)A@ 1)+ 1® A — (AT ® Dvee F¥ (k) = vec (i R, (k). (7.5)

mmi j

where A ® B is the tensor product of A and B. Let Hk, . be the /-th eigenvalue of 1 ® A(m)
(AT @1, 1=1,2,3,4. Let

Ag = k[P 48,

and
(li = jI+ 1Dy
Q,ﬁ’}?ﬁ{wen | — (ko) + pth| < A—k’” : (7.6)
where i, j =0,1,2,---,1=1,2,3,4, k € Z" with |k| < K,,;, and k 20 when i = j. Let
oo oo 4
+— (m)
1—Im+1 - Hm\ U U U rii’;l’
k1<K i=1j=11=1
Then for any w € l'[m+1, we have
(li = jl+ 1Dy
| = (ko) + pig| = ————=. (1.7)
k
Then
(m) MNT o 1y=1 Ak
=k, o)A@ D +1RA™ = (A7) @D 2= —————. (7.8)
(i = jl+Dym
Here || - ||2 denotes the spectral norm of matrices. Recall that R““ (0) is analytic in the domain
']I‘_’Jm for any w € I1,,,
RS ()2 < ——= Cm) s, (7.9)
\/_
which implies that
|Ivec (i Ry (k)2 < —— Cm) pmsmi
Vij
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By (7.5), we have

A C(m)e=snlkl

|lvec(i Ry, (k)|l2 < — —
iy ym(li=jl+1D  Vij

_~ = Ay
llvec F{i* ()|l < ——————
' (i = jl+ D¥m

Then

(|k|2n+4+8) C(m)efsmlkl
ym(li —jl+D Vi

Now we need the following lemmas:

I ()l < i (7.10)

Lemma 7.2. [/]] For0 <8 < 1,v > 1, one has

Z e 2B g < G)v (131?".

keZ

Lemma 7.3. If A = (A;;) is a bounded linear operator on hy, then also B = (B;j : i, j =
0,1,2,---) with

Al . .
|| l]||2_| lj| l9J=071’25"',l#J7
and |B|| < C||A||, where || - || is hy — hy operator norm,
bo,0, i=j=0,
(bO,j, bo,fj)’ l=03 ]=1727 5
Bij =1 (bio, b—i0)7, j=0,i=12,-.-,

’ ’ 5 i, = 11 29 M)
(b—i,j b-i—j /
Wl'thbi,j eR, i,j:O, 1,2,---
The proof of this result is similar to that of Theorem A.1 of [31] and so is omitted. See [31]

for the details.
Therefore, by (7.10), we have

sup (IIJzF“"(O,w)lelz)
96']1‘?, xIT41

= Z (|k|2n+4 + 8)6—(sm—s,’n)|k| &
Kl <Kin ym(li = jl+ 1)
2 4 2n+4 2 3n+4 C
< c( n+ ) a +e)"< ) COM o Lemma72)
‘ Sm = S ym (i = jI+1)

T Gm =) (i = I+ D)
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_23n+4) C m
<Cep Vo
Ym(li = jI+1)

where C is a constant depending on n, s;, = s, — ““—"*.. By Lemma 7.3, we have

2(3n+4) _2Gn+4

||JF“V(9,w)J||T§an;11 <CCmy;'em ¥ <Cm+De, " . (7.11)

It follows s/, > sp,+1 that

_23n+4)

IJEO, ) llgy it S NFO, ) llgy, s < Cont Do 7
ing d,, (I =1,2,---,n) to both sides of (7.4), we have
Applying 8, ( =1,2 ) to both sides of (7.4), we h
— (K, @)y F (k) + (A" oy F (k) — oy F () A ™) =1, Rl () + (), (7.12)
where
(6) = ki 7 (k) — 0y A" F1 () + F1 (k) A7 (7.13)
By applying “vec” to both sides of (7.12), we have

(—(k,)1@ 1) +1®A™ — (Ag.’"))T ® 1)vec o, F1 (k) = vec (i 8y, R (k) + (%)),
(7.14)

Recalling k| < K, = 100s,;12’”| log €|, and using (5.2)—(5.7) with v = m, using (7.13), we have,
onw € I,;,41,

1®)12 < CKml FS ()12 (7.15)
According to (5.9),
~ C (m)e=Snlk
100y Ry (K2 < 7 (7.16)
By (7.10), (7.14), (7.15) and (7.16), we have
P AZCK, C(m)emlkl
JiduF (k) |12 < =~ for i # j. 7.17
||1a),]()]||2_ )/,%,(|l_]|+l) 75] ( )
Note that s, > ), > Spm+1. Again using Lemma 7.2 and Lemma 7.3, we have
_ o _ _ 6Gn+4)
||JF’“‘(6,a))JII‘,]rsmﬂXl_[;11 = ||J8wF’”‘(9,a))J||TSm+l XIS <Cm+le, ¥ . (7.18)

The proof of the measure estimate (7.1) will be postponed to Section 10. This completes the
proof of Lemma 7.1. O
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Lemma 7.4. There exists a compact subset 1 +1 c I, with

1/3

mes(ITHE ) > mesTly, — Cyp (7.19)

the equation (6.18) has a unique solution F**(0), which is defined
with

such that for any w € Hn1+l’

n
on the domain Tf it X Hm+1’

_ 20n+4)

||JFMM(9’ CU)J”T? " XH;;L < C(m + 1)8m N )

& 6(3n+4)
||JF"“(9,w)J||' X <C(m+ gy, ¥
Lemma 7.5. There exists a compact subset 11, | C Il,, with
__ 1/3
mes(l'[mH) > mesIl,, — Cyy (7.20)
such that for any w € 11 ", the equation (6.19) has a unique solution F™(9), which is defined
on the domain T¢ < I1, "\ with

_ 20n+4)

||JFW(9’CU)J”']1‘¥ Hxnr—n:rl <C(@m+ l)g, M

_ @ _ 6Gn+4)
JF" (0, w)J __ <C@m+Dg, "V
I9FT@ )T, g = Cln+ e

The proofs of Lemma 7.4 and Lemma 7.5 are simpler than that of Lemma 7.1, so we omit
them.
Let

g1 = m+1 ﬂ Hm+1 ﬂ Hm+1
By (7.1), (7.19) and (7.20), we have

mesIl,;,+1 > mesIl,, — Cy1/3.

8. Coordinate change ¥ by ¢,, F

Recall ¥V =V, = XS Fli where X A F is the flow of the Hamiltonian ¢, F and X, F is
the vector field with symplectlc idu ANdu. So

.. . OF p
u=¢,—, - lu=¢&,—, 0 =w.
" ou " ou

More exactly,
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it =g, (FU O, w)u+2F" 0, w)u), 0 = wt,
—iu =6, QF"™(0,w)u + F*“ (0, w)u), 6 = wt,
6=w.

Let'zZ:( ),

NN

g (iFT0.0) “20F"0, 0)
"TN2F 0, 0) iF0, )

) . Recall that 6 = wrt.

Then

du(t)

- =emBn (O, 6 =w.

Letu(0)=1up€hy x hy, 0(0) =6, Tgmﬂ be initial value. Then

u(t) = o+ [y emBm (00 + )i (s)ds,
0(t) =6y + wt.

By Lemmas 7.1, 7.4 and 7.5,

_ 2Gn+4)

1 Bn@)J s iy <COnt Doy

_ 6(G3n+4)

17 Bn @71, m,,, <COnt Den "

It follows from (8.3) that

t t

u(t) — g = / &m Bm (8o + ws)ods + / EmBm 0y + ws) (U (s) — up)ds.
0 0

Moreover, for ¢ € [0, 1], |luolly <1,

t

_ 2Gn+4)
@) —uolly <emClm+ Dem "~ + / Em || Bm (60 + ws)|[|u(s) —uollnds,
0
where || - || is the operator norm from hy X hy — hy x hy. By Gronwall’s inequality,
t
_ N _ 20n+4) 12
@) —tolly <Cm+Den " exp melle(Oo +ws)llds | <en”.
0
Thus,
v, :']I";m+1 x Moy — T;’m x I,

8.1)

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

8.7)

(8.8)
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and
. 1/2
”\ym - ldl'h[v—)h]v =&m - (89)

Since (8.2) is linear, W, is a linear coordinate change. According to (8.3), construct Picard
sequence:

uo(t) = o,
Fj41(t) =10+ [y emBO0 + @9)ij(s)ds, j=0,1,2,--- .

By (8.9), this sequence with r = 1 goes to
Wy (o) = (1) = (id + P (60))uo, (8.10)

where id is the identity from Ay X hy — hy X hy, and P, (6p) is an operator form hy X hy —

hn x hy for any fixed 6y € T?mﬂ ,w € I,,11, and is analytic in 6y € T’;mﬂ with

1/2

1P @) lITn gy = Em (8.11)

Note that (8.2) is a Hamiltonian system, so P,,(8p) is a symplectic linear operator from hy X hy
tohy X hy.

9. Estimates of the remainders
The aim of this section is devoted to the estimates of the remainders:
Conp1 Ry = (6.14) + -+ (6.17).

e Estimate of (6.14).

By (6.7), let
5 Rt (0) 3R (6)
Roum = R = m,m 2 m.m
mm mm(g) ( %R;I:;um(e) R,'fffm (9) ,
then
Rmm = (Emm <;) s (;))
So

A ~ u u
(1 - l—11(,,,)Rmm = ((l - 1-‘Km)Rmm (ﬁ) ) <ﬁ>>

By the definition of truncation operator I'x

m?

(I =Tk, )Rum= D Run®e & 0Tl well,.
[k|> K

Please cite this article in press as: Y. Sun et al., Reducibility for wave equations of finitely smooth potential with
periodic boundary conditions, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.08.044




YJDEQ:9518

32 Y. Sun et al. / J. Differential Equations eee (eeee) eee—eee

Since Rym = Ry (9) is analytic in 6 € Ty ,

~ ~
sup 1 =Tk, ) R TNy iy < D I R () T 3K 15m1

(Q,a))ET?erl XMy [k|> K

S D DI
Sm
k> K

< C2%(m)e,, e HKnlsn=sms1) (hy (5.8))

< C*(m)e;,.
which leads to
19 =Tk, Rum I 172 x40 < EmClm + 1),
Thus,
lem I (1= T&,) Rum Jllmy  xtty < € Cm+ 1) < ems1 Clm + 1),
Similarly,

<e2Cm+1) <enp1Cm +1).

1 xMpy1 =

lemJ (1 =Tk, ) R J

e Estimate of (6.16).
Let

¢ _( F“0.0) FFO.0)
"\ LF0,0)  FU0,0) )

Then we have

Then
sfn{Rmm, F}= 4831<§mm(9)/5m(9)ﬁ, u). ©.1)
Note T?m x I1,,, D Tg’mH X ITyp41. By (5.8) and (5.9) with l =m, v =m,
1 R @) Iy <ttt < I R )T 17, 11, < Cam), ©.2)
1 R @Iy e, < COm). 9.3)
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Let §m (0) = _# S (0). Then by Lemmas 7.1, 7.4 and 7.5, we have

_ 2Gn+4)

1ISu@ ez |« < Clmt Dy ™ 0.4
~ & _ 6(n+4)
17Sw@TNF,  n,, <COontDen 9.5)

and

~ ~ ~ _2(3n+4)
”JRmm/SmJ”T’S’mJrl xIpt1 = ”JRmmSmJ”']I‘?mJrl X T p41 = C(m)C(m + 1)8m N

(9.6)
Set
[ﬁmm’ S:m] = ﬁmmgm + (Emmgm)T-
Note that the vector field is linear. So, by Taylor formula, one has
__ 2 px* ~ o~
(6.16) =¢;, (R, (0)u, u),
where
~ ey o~ ° 2j+lgr/;,l_l ~ ~ ~ o~
R;;(@) =2 RmmSm + Z T [ o [Rmm» Sm]v ety Sm] Sm-
j=2 j—1—fold
By (9.2) and (9.4),
= ComCom+ Vel ey ¥ )
~ m)C (m em (&m
1IR3 @) lmy <t <D i
j=1
_20n+4)
<CmCm+ e, "
By (9.3) and (9.5),
- ¥ _ 6(3n+4)
IR @ TN xm,y, < COMCOn+ e *
Thus,
g 5 2Gnt4)
|Ié?mJRf;Jl|1rgm+I )My <Cm)Cm+Dey ¥ < Clm+ Dépyr, 9.7
and
g o ¥ 5 6Gn+4)
llend Ry dWidy e, SCoMCm+ Dy ¥ <ContDegr. (98)
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e Estimate of (6.15)
By (6.9),

(N, F} = ([R“ Yu, u) — Tk, Rum = RS,

Thus,
(6. 15)—8 /(1 —r){Rmm,F}oX;ana). 9.9)

Note R . is a quadratic polynomial in # and u. So we write

= (B (0, ), 10, U = (;) (9.10)
By (5.6) and (5.7) with [ = v = m, and with (9.4) and (9.5),
2(3n+4) 6(3n+4)
”J%mJ”'ﬂ‘;‘meHmH <Cimen " ||J«%)m~7||qrn o = <Cm)e, "V , (9.11)
where || - || is the operator norm in hy x hy — hy x hy. Recall F = (S, (0, ), u). Set
[%m» §m]:<%m§m +(<%m§m)T' (912)

Using Taylor formula to (9.9), we get

2 J

E &
(61%>——{Rmm,F}+--~+7”}{ ARE, FY, - FY 4
j—fold
28 ~ ~ ~
=< Z L Sl S0l S u,u>
j=2 j—1-fold

LB, )i, ).
By (9.4), (9.11) and (9.12), we have

[REAMCAONS | VI e

<Z—_||J% 0,0 Ity w11, 1S 7, xT1p18m)

2(3n+4) ]
= E C( ) (gmc(m+1)8m (N )
j!

Jj=2

<Cm+Des? =Cm+ Depar. (9.13)
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Similarly,
12O, )T Fy  n,,, < COn+ Dem. (9.14)
e Estimate of (6.17)
o0
6.17)= > e(Rmo X, p). (9.15)
I=m+1

We can write
Rim = (Rip ()T, T0).

Then, by Taylor formula, one has
= 1
Rimo X! p=Rim+) =7 (R 1,70,
j=t"

where

ﬁlmj = 2j+1 [--- [ﬁlmv §m]s o] §m81£1~

j—1-fold

By (5.8), (5.9),

1 Rim T g e,y < €O 1T R T 1y e, < €.

m — —_

Combining the last inequalities with (9.4) and (9.5), one has

I JlejJ”’]I‘g‘] XTI 41

< W Rim I Wm0y (1 ST 18 <1101 4€m)?

5 _20Gn+4) .
<C (m)(emem ~ ),

where ||J_l||T§’,xH,,,+1 < C is used, and

5% <z
19 R W1y 1,

< I R 11y ., (1 S 1z e, . Aem)

m+1

HI1T R 112y 11,00 T S TNy e, Em)

) _6Gn+4)
<C*(m)(emem N )j.
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Thus, let

Rl m—+1 —le+2 le/a

j= 1
then
OO R—
6.17) = Z e1(Ry 110, T0) (9.16)
I=m+1
and

19 Rms1 112 11,000 <€) < Cm+ 1), 1R L1 11y sy, < C0m) < Clm+ 1),

m+1 —
(9.17)
As a whole, the remainder R,,+1 can be written as
o0
Cont1Rur1= Y (R O)u, u) + (RO, @) + (R (O, ), v=m+1,
I=m+1

where, for p, g € {u, u}, Rl‘?"f’ satisfies (5.8) and (5.9) with v =m + 1, [ > m + 1. This shows
that Assumption (A2), with v =m + 1 holds true.
By (6.13), we know

" = R (0).

mmjj

Taking p = u, g =u into (5.8) and (5.9), we have

14", < [RS8, 0)|/j < Cm)/j,
I < 10RO, w)I/j < Cm)/j.
This shows that Assumption (A1), with v =m + 1 holds true.
10. Estimates of measure

In this section, C denotes a universal constant, which may be different in different places.

Lemma 10.1. If |i|, | j| > 1, then

Wi =ov/hi — pf+0< (ﬂ) (10.1)

where A\ = k*+ M, k € Z, uﬁl] is the [-th eigenvalue of 1 ® Al(m) - (A;m))T ®1,i,j=
1,2,---,i#j,1=1,2,3,4 (for more details, see Section 7, the proof of Lemma 7.1).
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Proof. Recall that

o, .
AP = p\aiEn + 00, i 0.

By computation, we have
1@ A" — (A @ 1= py/Ai(Exa ® Ex) — py/A;(Exa ® Em) + En ® Gi + G} ® En
=o(/hi —/A)Eu+En®G; +G; ® En, (10.2)

where G; is a 2 x 2 matrix such that |G;| < Cg" . Then

m m C
1 A" = (A @1 - p(y/ai — \/_>E44|_(ﬂ e

Note that 1 ® Agm) — (A;m))T ® 1 is Hermitian. By the perturbation theory for eigenvalue of
matrices, we obtain (10.1). O

Now let us return to (7.6)

| = (k. o) + | < Ap = k)P + 8. (10.3)

Jjl+ Dy
ol 2 {oem,|| - LA A v,

Ag

Case 1.7 # j. If Q,(f';lj)l = o, then mes leﬂ = 0. So we assume leﬂ # . Then there exists
w € I1,, such that

li —jl+1

. 10.4
Ax Ym ( )

| = (k, ) + ups| <

(1.1) k#£0.
By Lemma 10.1,

il = 1py/ai — pf+0( >+0< >|_2|f—\/_|. (10.5)

Furthermore, it is easy to verify that

|\/)\_i_\/fj|zw. (10.6)

Ak

Then by (10.4), (10.5) and (10.6), one has

(i = jl+Dym _ 1 J1+ Dy,
|k, )] > || — ———— > = |V/A — /A — de= g1+ Dym
Ay 2 Ay

1 1
zZI\/Ti—\/lezEIi—jl-
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So
li — jl < Clik, w)]. (10.7)
(L1.1) i >ip, j = jo.

By (10.1), we have that, when w € IT,, such that (10.4) holds true, the following
inequality holds true:

| = (k, ) + pi — pj| = |(—{k, )+Mk,,)+(pl Mk,,)l
i — |+ 1 Ci(M) Cx(M
§|l Jl v + 1(.)+ 2(.)
Ag i j
i — |+ 1 Ci(M) Cy(M
e I L T Y
Ay io Jo
where C{(M) > 0 and C,(M) > 0 are constants.
Thus
~ ] +1 CIOM) | Co(M)
Q,E’,”,’,c{wenm||—<k,w>+pl|< Yt 20,
k 10 JO
(10.9)
By (10.7), one has
7] < Cl{k, »)| < CIK|. (10.10)
Note that k # 0. Then
d(—(k, nHo1 1
detkoyrph 1, o1
dw 2 2
It follows that
- T +1 Ci(M) Ca(M
mest7§4<||+ ym 4 1) G )>. (10.11)
Ag iy Jo
Take
jo=io = kI"*2y, ', (10.12)
Then

~  Clk Ci(M) Cy(M
U QTS | |Vm+c Z 1l( ) 2( ))
1<T<CIK| Ak 1<(T/<CIk] Jo
_ Clklym 43 Clk|

ey Vm |k|n+2

1/3
< CV .
|k|”+]
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It follows from (10.9) that

1/3

mes U o= |Ck’|’n’”+l . (10.13)
1>
j=Jo
li —jl < Clk|

(1.1.2) i <ig or j < jo.
By (10.7), one has |i — j| < C|k|. In addition, 1 ® A{"™ — (A!")T @1 is obviously
Hermitian. Then by the variation of eigenvalues for Hermitian matrix, we have

d I'L,]k 1
)@( (k, ) +M,]k)’_|k| —‘ 3
Therefore,
4(li = jI+ Dym _ Clklymio
(m)
mes U leﬂ < Z AL < AL
1 <i<ip 1<i<iy
li —jl < Clk| li — jl < Clk|
2/3
1 C
< O™y = (10.14)
Similarly, one has
2/3
Cy,
mes | Q,ﬁ’j;), < |k|,;”+] . (10.15)
I<j<Jo
li —jl < Clk|
(12) k=0.
By (10.5) and (10.6), one has Q,ﬁ’;;)l — o, then
mesQ,ﬁ’l';), —0. (10.16)
Case 2.i = j, one has k #0.
At this time, by Lemma 10.1,
— (k. ) + ppts = — (k. ) + 0(—) (10.17)

2/3
(2.1) Suppose |(k,a))| > 2VA—";
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2.1.1) i ng/ik.
By(lO 17), one has

2/3 2/3
2}/ CSO Ym
|—(kvw)+MkU|_ ; >A—k~

It follows from (10.4) that Q,(:m = @&. Then
mes Q") = 0. (10.18)

(2.12) i< C;g/‘;k L%

Note that
d(—tk, o) + i)
7 = |k| + 0(—) > =
® 7]
Then
4%
mes | 05 < ”’” <cpll. (10.19)
1<k
22
(2.2) Suppose |{k, w)| < A
Let
2/3
- 2
Oc = {o e Maltk, @)l < =
Note that [4W%-20| — |k| > 1. Then
2/3
~ 4Ym
<
mes Q. A
and
~ CV2/3 1/3
mes | ) Ok > = <Cn / (10.20)
keZm\(0) kezmoy Ok

Combining (10.13), (10.14), (10.15), (10.16), (10.18), (10.19) and (10.20), we have

o0

oo 4
mes | J UUU 01 < Cym 13 (10.21)
i=1[1=1

k<K i=1j
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Let
oo 4
+—- (m)
g1 = T U U UQkijl'
‘k‘SKm l,]=1 [=1
Then we have proved the following Lemma 10.2.

Lemma 10.2.

_ 1/3
mesl'I;Jrl > mesIl,, — Cym/ .

11. Proof of theorems

Theorem 2.1 is a more exact statement of Theorem 1.1. Let
o0
Moo = 1) M-
m=1
and

VYoo= lim YogoWjo---0,.
m—0o0
By (5.11) and (5.12), one has

Weoo : T" X Moo = T" X Mg,
Woo —id|| < &'/2,

and, by (5.13),

[o)0]
Ho = H oWy = Z(A?ouj,ﬁﬂ,
j=0

where A% = pAEO) + Q;O), and Q;O) is independent of time, Qo € R, Q; € gl(R, 2) with j #0.
This completes the proof of Theorem 2.1.
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