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Abstract

We consider the global existence and asymptotic behavior of classical solutions to the ellipsoidal BGK
model for polyatomic molecules when the initial data starts sufficiently close to a global polyatomic
Maxwellian. We observe that the linearized relaxation operator is decomposed into a truly polyatomic
part and an essentially monatomic part, leading to a dichotomy in the dissipative property in the sense that
the degeneracy of the dissipation shows an abrupt jump as the relaxation parameter 6 reaches zero. Accord-
ingly, we employ two different sets of micro—macro system to derive the full coercivity and close the energy
estimate.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

The collective dynamics of rarefied gases at the mesoscopic scale is described by the cele-
brated Boltzmann equation. But the practical application of the Boltzmann equation has been
restricted by its highly resource-consuming features such as the complicated structure of the
collision operator, high dimensionality and stiffness problem. In this regard, Bhatnagar, Gross,
Krook [4] and, independently Welander [53], suggested a model equation by replacing the col-
lision operator with a relaxation operator which still keeps the most important features of the
Boltzmann equation such as the conservation laws, H-theorem and the correct hydrodynamic
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limit to the Euler equation. Ever since it was introduced, the BGK model has been widely used
in place of the Boltzmann equation because it reproduces the qualitative features of the Boltz-
mann dynamics very well at much lower computational costs.

Both the Boltzmann equation and the BGK model are derived under the assumption that the
gas consists of monatomic molecules. The necessity of kinetic equations that account for the
collisional dynamics of polyatomic molecules is apparent, considering that there are very few
elements in the nature which stay stable as monatomic molecules at room temperature. Any
attempt for the description of kinematics of polyatomic molecules, however, must allow some
simplifying assumptions or phenomenological description because the diversity of the inner con-
figuration of polyatomic molecules make it almost impossible to express the pre-post collision
process in an explicit form, except for some special cases. One such formulation is so-called the
internal energy formulation where a new variable [ is introduced to incorporate the information
on the non-translational internal energy due to the molecular structure [1,2,5,6,9,10,29,37,41,42,
49].

In this paper, we study the existence and asymptotic behavior for the polyatomic ellipsoidal
BGK model, which is a polyatomic generalization of the original BGK model using such internal
energy formulation: [1,2]:

0F+v- VxFZAv,G(MU,G(F) - F),
FO,x,v,I)=Fy(x,v,1I).

(1.1)

The velocity-energy distribution function F (¢, x, v, I) represents the number density on phase
point (x,v) € ']I‘?C X Rf’) with non-translational internal energy / 2/8 (1 > 0) at time ¢ > 0. The
parameter § > 0 measures the degree of excitation of non-translational mode of the molecules
such as the rotational or vibrational mode. The collision frequency A, is given by A, 9 =
(p“ Taﬁ)/(l — v +6v) for some 0 <, B < 1. (p and Ts are defined below.) Throughout this pa-
per, we fix o« = B =1 for simplicity. The relaxation parameters —1/2 <v <1l and0 <6 <1 are
introduced to reproduce the correct Prandtl number and the second viscosity coefficient in the
Chapman-Enskog expansion [2]. The number 1/6 is interpreted as the relaxation collision num-
ber, which is the average number of collisions needed to transfer the rotational and vibrational
internal energy into the translational energy [1,10].
We define the macroscopic density, momentum, stress tensor and total energy by

p(t,x)= / F(t,x,v,dvdl,
R3IxR+
1

U(t,x)=— / vF(t,x,v, Idvdl,
0

R3 xR+

1
O, x)=— / w—U)Q(w—-U)F(t,x,v, dvdl,
0
R3xR+
1
E(t,x) = f <§|v|2+l%)F(t,x,v,l)dvdl.

R3xR+
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The total energy is decomposed further into the following three parts:

E= Ekin + Etr + EI,(S

where the kinetic energy Ejy;,, the internal energy due to the translational motion E;,, and the in-
ternal energy attributed to the internal configuration of the molecules E; s are given respectively
by

Eiin = 2 plUJ?

ktn—zp s
1 2

EtrZE lv—=U|"F(t,x,v, I)dvdl,
R3xR+

Ers= f I3F @t x, v, Ddvdl.

R3xR+

We also define the total internal energy Ejs:

Es(t,x)=E,+Ejs

1
/ <§|v —UP+ 1§) F(t,x, v, Ddvdl,

R3xR+

from which we can define the corresponding temperatures 75, T3 and 77 s using the equipartition
principle:

3+6 3 )
Es = TPTa, Ey = E’OT”’ Ers= EPTI,S-

Consequently, Ty is represented by a convex combination of 7, and 77 s:

3 8

Ts= — T, + ——
=345 " 35,

Tys.

For —1/2 <v <1 and 0 <6 < 1, we define the relaxation temperature T, ¢ and the corrected
temperature tensor Ty by

To=0Ts +(1 —-0)T; 5,
Too =0Ts1d + (1 —0){(1 —v)T;1d + vO}.

Now, the polyatomic ellipsoidal Maxwellian M, g reads

2
Myo(F)= —L20exp (—5@ —) T w-U) - 7) ,
det@rToe) T, b
where Aj is the normalizing factor: As =1/ [ e~"""dl.
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The relaxation operator satisfies the following cancellation property:

1
/ My o(F) = F) v |dvdl=0,
R3 xR+ PP +15

which leads to the conservation of mass, momentum and energy:
/ F(t)dxdvdl = / Fodxdvdl,

/F(t)vdxdvdl:/FovdxdvdI, (1.2)

|U|2 2/8 _ |U|2 2/8
F(t) T+I dxdvdl = F() T+I dxdvdl.

The H-theorem for this model was established in [2] (see also [9,36]):

d
I / F@)In F(t)dvdI <0.
R3 xR+

In this paper, we study the dynamics of the polyatomic BGK model (1.1) near a global poly-
atomic Maxwellian:

A w1 _j2/8
§ e_lT_I / .

mw, )= (1.3)
V@)’
For this, we define the perturbation f around the equilibrium by
F=m+Jmf, Fo=m+Jmfy (1.4)

and rewrite (1.1) as

atf‘l‘v’vxf:Lv,Qf‘i‘rv,G(f)»
fO,x,v,1)= folx,v, 1),

where L, g denotes the linearized relaxation operator and I', o (f) is the nonlinear perturbation.
(See Section 2.) We then analyze this linearized polyatomic BGK model in the framework of
nonlinear energy methods developed in, for example, [24-26].

The most important step is to verify the dissipative nature of the linearized relaxation operator
L, . In this regard, we make a key observation that there exists a dichotomy in the coercive
estimate of L, ¢ (see Section 3):

~( = v 00 (Lug /. )2, 200U = P fI - (0<6<1),
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and
—(1 =v){Lyof, f)Lﬁ.z =1 =phId - Pm)f”i%[ 0 =0).

Note that the coefficient in the L.h.s. of the above dissipative estimates changes continuously as
6 goes to 0, while the coefficient in the right hand side jumps from 6 to 1 — |v| at 8 = 0. More
importantly, the macroscopic projection on the right hand side, which determines the degeneracy
of the dissipation, changes abruptly from the projection P, on

2 25
span{m, o/, L j% ‘”ﬂ} 0<6<1), (1.5)
to the projection P,, on
san{ﬁ v/ '”'2_3M 12/5_8\%} 6 =0) (1.6)
p : 7 5 —0). .

Therefore, the degeneracy at 6 = 0 is strictly stronger than the non-zero 6 case.
This agrees well with the similar dichotomy in the nonlinear entropy—entropy production
estimate observed in [36], of which the above estimates can be considered as a linearized version:

Dyo(f)=6A,0H(f|Mo,1) 0<6<1),

and

Dy,0(f) = min{l —v, 1 +2v}A, 0H(f|Mo,0) (6 =0).

Here, D, ¢ and H(f|g) denote the entropy production functional and the relative entropy for
(1.1) respectively. See [36] for the exact definition of the target polyatomic Maxwellians M 1
and My ¢. In [36], however, it is not clear whether such dichotomy is an intrinsic property of the
model, or can be resolved into a better estimate that continuously interpolates the two entropy
production estimates.

It is explicitly shown in Section 3 that the linearized relaxation operator L, g is divided into
a truly polyatomic part and an essentially monatomic part. We then prove that the polyatomic
dissipation is strictly stronger than that of the monatomic-like part in the range 0 < 6 < 1 so that
the whole coercivity is governed by the polyatomic part, whereas the coercivity for 6 = 0 case
is governed solely by the monatomic-like part. This shows that such dichotomy is intrinsic, and
cannot be avoided by developing a refined argument.

Recalling that 6! is interpreted as the average number of collisions needed for the non-
translational energy due to the molecular configuration to be transferred, we see that such
dichotomy has a nice physical interpretation: when 6 = 0, the relaxation collision number is infi-
nite, and therefore, no matter how many collisions occur, the exchange between the translational
energy and the non-translational energy does not happen, making the kinematics essentially —
though not exactly — that of the monatomic gases. (Note that in the kernel of P,,, the transla-
tional energy and the non-translational energy are completely split, whereas they are given in
an entangled form in the kernel of P,.) We, however, mention that such physical interpretation
alone does not give any hint that there has to be a discontinuity at 6 = 0.
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As a result of such dichotomy, we need to employ two different types of micro-macro decom-
position, namely, the polyatomic decomposition:

f=Pf+U—-Pyf O<O=1),

and the monatomic-like decomposition:

f=Puf+U—=Pyf (0=0).

Therefore, we need to study two different sets of micro-macro equations accordingly, in order to
fill up the degeneracy and to derive the full coercivity.

1.1. Main result

We define the high-order energy functional £(f(z)):

13
1
E(fW)=5 > IO + 3 /"33f(s)”i§v.,ds‘

X,

lal+BI<N lel+BI<N

Theorem 1.1. Let —1/2 <v <1,0<0 <1 and N > 4. Suppose that Fy = m + /m fo > 0 has
the same mass, momentum and energy with m:

f fo/m dxdvdl =0,
T3 xR3 xR}
/ fovﬂ dxdvdl =0,
T3 xR3 xR}

1
/ fo {§|v|2 + 12/‘3} m dxdvdl = 0.

T3 xR3 xR}

(1.7)

Then there exist ¢ > 0 and C = C(fy, N, v,0,8) > 0, such that if £(0) < ¢, then there exists a
unique global in time solution f for (2.12) satisfying:

(1) The distribution function is non-negative for all t > 0:
F=m+mf >0,

and satisfies the conservation laws:

/ f(x, v, t)/m dxdvdl =0,

T3 xR3 xR}
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/ F(x, v, Hv/m dxdvdl =0, (1.8)

T3 xR3 xR}

1
/ flx,v,10) {§|v|2 + 12/“} m dxdvdl = 0.

T3 xR3 xR}
(2) The high-order energy functional is uniformly bounded:
E@t) < CE(0).

(3) The initial perturbation decays exponentially fast:

D I5fOI,  =Ce™ .

|+ BI<N

A brief review on the related literature is in order. We start with the original monatomic BGK
model. The first mathematical study of the BGK model was made in [38] where Perthame estab-
lished the existence of weak solutions under the assumption of finite mass, energy and entropy.
Perthame and Pulvirenti then studied the existence of unique mild solutions in a weighted L*°
space in [39]. These results were extended, for example, to Cauchy problem for L?” data [54],
plasma [59] or gases under the influence of external forces [60]. Ukai studied the stationary prob-
lem in a bounded interval with a fixed boundary condition in [50]. For the application of BGK
type models to various macroscopic limits, see [7,16,31-33,44,45]. The existence of classical so-
lutions and their asymptotic behavior were studied in [3,13,55]. Some error analysis of numerical
schemes for BGK model can be found in [28,43].

Recently, the interest on the ES-BGK model [27], which is a generalized version of the
monatomic BGK model designed to reproduce the physical Prandtl number, revived after the
H -theorem was verified for this model in [2]. (See also [8,58].) For the existence results of this
model in various situations, see [17,35,56,57].

The study of the ellipsoidal BGK model for polyatomic molecules is in its initial stage. The
H -theorem was shown to hold in [2,9]. Entropy—entropy production estimate for this model was
established in [36], where the dichotomy in the entropy dissipation mechanism mentioned above,
was first observed. The extension of [39] arguments to the polyatomic case was made in [34]. In
the near-equilibrium regime, no existence result is available so far.

We mention that there has been an alternative approach besides the internal energy formula-
tion to construct BGK type model for polyatomic molecules, where the polyatomic gas is treated
as a mixture of monatomic gases endowed with discrete levels of internal energy [22,23].

We omit the reference review on the numerical results on BGK type models (monatomic or
polyatomic), since they are huge. Interested readers may refer to [1,2,10,15,18,19,21,28,29,40,
41,43] and references therein. For general review on the mathematical and physical theory of
kinetic equations, see [11,12,14,20,30,46-48,51,52].

The following are the notations and conventions kept throughout this paper:

e All the constants, usually denoted by C will be defined generically.
e Fork € R3, kT denotes its transpose.
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For symmetric n x n matrices A and B, A < B means that B — A satisfies kT{B — A}k >0
for all k e R”.

e When there is no risk of confusion, we use £(t) instead of £ ( f (t)) for simplicity. The latter
notation will be employed when the dependency needs to be clarified.

We slightly abuse the notation to define the summation on the index seti < j by

Zaij =aj2 + a3 +as;.

i<j

o (., '>L3.1 and (-, -)Li o denote the standard L? inner product on R3 x R} and T3 x R x R}
respectively:
<f7g>L%I= / f(vvl)g(vvl)dvdlv
R3xR+
(g = f fx v, Dg(x, v, Ddxdvdl.
T3 xR3 xR+
o |- ”L%,I and || - ”Li.m denote the standard L2 norms on R} x R} and T3 x R} x R} respec-
tively: '

1
171, =( [ 1r@.nPavar)’,

R3xR+

1122, = / £ G,v, DPdxdval )’

T3 xR3 xR+

o We use the following notations for the multi-indices and differential operators:

a=lag,ar,az,a3,04], B =I[B1,B2, B3],

and

8% = 37921 920% o120 97",

The paper is organized as follows: In Section 2, we consider the linearization of the relaxation
operator. Then section 3 is devoted to the coercivity estimate for the linearized relaxation op-
erator. We treat the case 0 < 6 < 1 and 6 = 0 separately, yielding different dissipation estimate
in each case. In Section 4, we derive various estimates for macroscopic fields. In Section 5, we
consider the existence of the local in time classical solution. Section 6 is devoted to the study of
the micro—macro systems, where, due to the dichotomy observed in Section 4, the case 0 <0 <1
and 0 = 0 are considered separately. Finally, we prove the main result in Section 7.
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2. Linearization of the polyatomic BGK model

In this section, we carry out the linearization of (1.1) around the normalized global polyatomic
Maxwellian (1.3).

2.1. Transitional fields

Let F, denote the transition from the solution F of (1.1) to the global polyatomic
Maxwellian m:

Fy=nF+(0—mm=m+nfJ/m  (0=<n=<1),
where f is defined in (1.4). In view of the following identities:
0= / Fdvdl, pU= / Fvdvdl,
R3xR4 R3xR,

6 1—v
wa—k;IEMUF1d+(L—®{—g—wuﬂhd+mpU®Ld

1 2
=0 / F——WwP?+=—=1%°)dvdI } Id
346 346
R3 XR+

]_
+(1-6) ./ F< 3‘ﬂmhd+uv®v)mu1

R3xR4

p%+1£—MUF=9 / F ! wF+—3—ﬂ” dvdI
346 3436 3434
R3IxR;

2
+A=0)173 / FI1*qvdl }
R3IxR,
we define transitional macroscopic fields: p,, Uy, Ty,9, and Ty, by
Py = / Fy,dvdl, p,U, = / Fyvdvdl,
R3xR4 R3xR4

6 2 I—v 2
pnﬂ,@n'i‘mpﬂ[]nl Id+(1—9) T:OU|UH| Id+Vp77U7]®U’I
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1 2
=0 f F, lv|? + 1?1 ) dvdI ¥ 1d
3456 3454

R3xR4
I—-v, 5
+(1-06) Fy, 3 [v|[“Id +vv®v | dvdl ¢, (2.1)
R3xR4
6 2
pnTGn+—3+(SPn|Un|
1 2
=0 /1 F, lv|? + 1?18 ) dvd 1
346 346

R3xR4

2
+A=0)15 f Fy1*°dvdl t
R3xR4

and the transitional polyatomic Maxwellian:

2
Pnl\s 1 _ I3
My () = ——————exp (—§<v —U) ' T, 5y —Uy) — T—) N )
Vdet2r Top) T(fﬂ on
For simplicity, we set

2 I—v 2
C(ﬂ)zpnﬂ,en Pn'Un| ld+(1-0) TPn|U7]| Id+UpTIU77®U77 ’

0
LTS
D(n) = PnTQn + Lpn“]ﬂz-

3446
Note that A(0) =1, B(0) =0, C(0) = Id, D(0) = 1 since F* = m, and the macroscopic
fields can be recovered from the following relations:

oy =A@,
_Bw
TAm)
ACo) ~ {5551 BoIP1d+ (1 = 0) (152 Bm)P +vBm @ B) | 23)
Toon = BOE ’

_ AD() = 3551B)
" [AGDI
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The following identity plays an important role throughout the linearization procedure.

d(py, Uy, 7;077 Tgn)
a(A®m),B(n),C(n),D(n))

Lemma 2.1. The Jacobian matrix J (n) = is given by

1 0 0 0 o 0 O O O o0 o
Unl 1
o o 0 0 o 0 O O O o0 o
UUZ 1
= 0 y 0 O 0 O O O o0 o
Ups 1
0_77 0 0 o O 0 O O O o0 o
11 Ui Upnp Uy 1
Al i oz 2= 0 0 0 0 0 0
22 U Up Unps 1
Jap=| AT Jgr S R 0 00000000,
33 Un Up Uz 1
A; - J,p J+pn 0 O o 0O 0 0 o0
12 _Up _,Un 1
A, v Vor 0 OOOpnOOO
23 Uy Unp 1
A,7 0 —vﬁ —vﬁ 0O 0 0 O o 0 O
31 _,Un Un 1
A77 vp,7 0 vpn o o0 o0 0 O o 0
20 Uni 20 Up 20 Us 1
@ 3%, "3, 35, 00 0 0 0 0 o
where A;{ Qy and J1 are
2
e -5 o)
{ v =0, Uy,
1
Qn—; _T9n+ |U|
0 1+2v
D GRS ,
+ {3+3+( ) }
AP B
346

Proof. It follows from a straightforward computation using the relations (2.3). We omit it.

The following corollary comes immediately.

O
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Corollary 2.1. When F° = m, the Jacobian is given by

1 0 00 0 0 0 O0OO0OO0OO0
0O 1.0 0 0 0 O OO0 OO
O 01 0 0 0 0 0 O0O00O0
0O 0 01 00O O0OO0O0OTO0
-1 0 001 00 0 0 0 O
JO=|-1 0000100000
-1 0 00 0OOO1T 0 0 0 O
O 00 0 O O0OO0OT1TUO0OTO0DO0
O 00 0 0O O0OO0OO0OT1TTUO0DO0
O 00 0 0 0 O0OO0OO0OT1T0O0
-1 0 0 0 0O OO 0 0 0 1
Lemma 2.2. We have
(y Moo _ Ly,
dpy Py

1
(2) Vo, Mug () =5 { @ = U+ @—=UpT ;;,,}Mv,e(m,

IMy o) 1 { 1 9(detTra)
2

3 = — —
) detTvoy 97"

3Tl +Hw-Up’ v,‘;n}%}Mv,e(m,
v,0n

v,0n

IMyg(m) 1 1 0(detTyn) — »
4 —_—=—-{ - — 2 _ ; _ )
@ Ty 2 { detTogy  o7d L@ = U Ty ghil Ty 0 = Un},

v,on v,0n
X Mu,@(n)»

IM,.9(n) 27%/% — 8Tpy
5 . = M .
( ) 3T9,, { 2T9217 U,Q(n)

Proof. (1), (2) and (5) follow from direct computations. The proofs for (3) and (4) are similar.
We only prove (4). We first compute

8M\) 1 1 da(d tﬂ 87:;_17
() :_{ (det7y.6) _(U_UU)T<8 ,’,97>(v—Ur,)}Mu,e(n).

871]977 2 det(ﬂﬂn) 877)%” Ul.,jQU

We then observe that for any invertible matrix A
A =-a"1{pay A", (2.4)
which is obtained by applying  on both sides of AA™! = I:

[0A}A™" +Ad{A~ "} =01 =0.
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Therefore,

—1

7, o [Ty _
(v— Un)T (aT—zfn> (v—=Uy =@~ Urz)T v,eln (aTifn> u,eln(v —Up.

v,0n v,0m

1]
v,0n

simplifies further:

Finally, since (377—’9”> is a matrix whose only non-zero element is i jth and jith elements, this

_1 (9T _ _ _
w—U)'Ty, ( o ) Tooy@ = Up) =2{0 Uy " T, )i{ Ty, (0 = Up)} ;.

v,0n

This completes the proof. O

Corollary 2.2. When n =0, we have

1y Mo © _
opy
oM, (0 .
2) %wm (i=1,2,3),
2
s —1
g Mee@ _vi=1 o3
d v!,lén 2
N (e Iy )
37:;;/(977
20125
(5 M0 :{ 3}m.
Ty, 2

Proof. Note that when n = 0, F;, reduces to m. Therefore, the result follows by inserting po = 1,
Uy=0,To=1d, To=1toLemma2.2. O

2.2. Linearized relaxation operator

We consider the transitional polyatomic Maxwellian as a function of n and set

g(m) = M,o (A(m), B(n), C(n), D(m)) .

Here, we view C as a 6 dimensional vector (Cu, C22, C33,C12, Ca3, C31) by symmetry. Note
that g(n) depicts the transition from the polyatomic local Maxwellian M, 4 (F) to the polyatomic
global Maxwellian m (v, I'). We expand it using the Taylor’s theorem:

1

g(l)=g(0)+g/(0)+/g”(77)(1 —n)dn. (2.5
0
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Clearly,
8(0)=m, and g(1) = M, 4 (F).

The calculation of the second and third terms in the right hand side of (2.5) is carried out in the
following theorem and Proposition 2.1 respectively.

Theorem 2.3. g'(0) is given by
g'(0) = (Pyo f)v/m,
where P, g is defined by
Poof=0P,f+ (1 —=O){Puf+v(PLf+Prf)}

(1) Py: polyatomic projection:

P, f = f Fmdvdl |

R3xR4

+ / fo/mdvdl | - vv/m

R3xR4
(lv* =3)+ (21% —94) (Jv|? = 3) + (1% —§)
1
¥ f f( — )Mdvd C e AN
RIxR4
(2) Py: monatomic-like projection:
Puf = / Fmdvdl | Jm
R3xR4
+ / Fomdvdl | - vym
R3IxR,
|v|2—3> <|v|2—3>
dvdl
w f( =) v =)
R3IxR;
+ f f 208 =9 Jmdvdl 215 5 Jm
m m,
: V28 N
RO xR
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(3) Py & P,: non-diagonal projections:

Pif=>Y f f(3v3:/lv|2)fd dl (%)ﬁ

<\ R3xR,

PZfZZ / foivj/mdvdl | vivj/m.
i< \R3xR,

Proof. By chain rule, we have

, IM, 4(0) IM, (0) IM, (0) IM, 4(0)
§10) = A'(0) =" + B (0) = 4 C(0) = 4 D (0)
= Va.5,c.00My6(0) - (A'(0), B'(0), C'(0), D'(0)) (2.6)

= (V.U Tooon T Mua 0T (@)} (A(0), B'(0), C'(0), D'(0)) ",

where J (1) denotes the Jacobian matrix between the translational macroscopic fields given in
Lemma 2.1. Recalling Corollary 2.1 and Corollary 2.2, we see that

V(0 Uy Ty . To) M0 (0) J (0)

v2o1 v3—1 v¥—1 205 =5
=1 1,v1,v2, v3, , , » U1V2, V203, V3V1, —— m J(0)

2 2 2
_(,_r=3 205 -8 -1 k-1 v} -1 205 -8
- 2 2 ,UI,UZ,U3, 2 ’ 2 ’ 2 ,U1U2,U2U3,U3U1, 2 m.
On the other hand, we note that
[ f/mdvdl
[ foi/mdvdl
[ fva/mdvdl
[ fus/mdvdl
2 _
A'(0) 0ff <ﬁ|v|2+ %Iﬁ)ﬁdvdljt(l —0) [ £ (352102 + vo?) mdvd 1)
B'(0 2 _
C/Eo; = fo<ﬁ|v|2+ﬁ15)\/n_1dvd1+(l—0){ff(1—”|v|2+vv2)ﬂdvd1}

D'(0) 9ff<ﬁ|v|2+3+518>J_dvd1+(1—6){ff(1 Loy 4 v2) imdvd )
(1 =0 [ fvivay/mdvdl
(1 =0 [ fvovs/mdvdl
(1 =0 [ fvsvi/mdvdl

0ff (ﬁw T %ﬁ) JmdvdI + (1 — 6) (%ff[%ﬁdudl)
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Inserting these identities into (2.6), we get

g/ (Oym™

2 _ 2
= ([ rmavar) (1= 222 2120
—i—(/fv«/mdvdl)-v

3
+§[9/f(3+8|v| +375! )«/mdvd[

+ (1—0){/f(lgv|v|2+vvi2>x/"_1dvd1” <”i22_1>

+ (1 —9)1)2(/ fvivj\/ﬁdvdl) ViV

i<j

1 2 2
0 —)? 15 ) Vmdvdl
+[/f<3+3|”'+3+3 ) mav

+(1-6) (%/fl%ﬂdvdlﬂ (2”2_5)

=h+hLh+L+1L4+Is.

For later computation, we further decompose /7 and 5 as follows:

I Z/f\/%dvdl, If:—(/fﬂdvd[)(|v|22—3)’

2

P=- (/ fﬁdvdl) (2132_5),

and

2
1 2 215 —§
d=ol [ 1 (e + 51t ) vmavar| (2270)

2 _
2182 8)'

12=(1-0) (%/flgﬁdvdl)(

We now rearrange these terms so that (1) the polyatomic part and monatomic-like part are sep-
arated, and (2) the orthogonality between the components are clearly revealed, as is given in the
statement of the Lemma 3.2 later. For this, we need some preliminary calculations:
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eStepl: 5 =A; + Ay + Aj.
First we compute the summation in /3 to obtain

2
B [v|> 4215 [v|> =3
I3—9{/f< 355 )«/mdvd]} 5

1— -3
+(1 —Q)T" (/f|v|2Mdvd1> 0] 3 2.7)
2 vl.2 —1
+(1=0) Z fvi/mdvdl -
1<i<3
The last term can be decomposed as
2_1q 302 — |v|? 302 — |v|?
Z /fvizdvdl vt /f Ul—|v| Vmdvdl M
, 2 , 3 6
1<i<3 1<i<3
+ 2
== (2.8)

+

1<i<3

The second and third terms vanish due to

and the last term is

lv|* -3

{/f|v|ZMdvd1} —

so that (2.8) is reduced to

(] i) 5 3 (] (525 ) 52

1<i<3 1<i<3

2
+ </f|v|2ﬂdvd1> vl 6_3.
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We plug this into (2.7),

_ vl + 215 Jvl? -

13—0!/]‘( 355 )«/mdvdl} >

l—v ) lv]? =3
+(1—9)T(/f|v| dvd]) 5

+a-op Y {/f(3 |U|2)fd dI]w

1<i<3

2
+ (=0 (/f|v|2dvd1> |v|6 3

and put together the second and fourth terms to get

~ |2 + 213 ]2 -3
2 2
+(1—0)</fud dI) '”'2

-6 Y {/ ( |U|2)fd dz}@

1<i<3

=Al+ A%+ A3,

o Step I: 0 (13 + I7) + A" + 1.
We combine the first term of /5 with AL:

Al+Ii=0 [f i +213 Jmdvdl ((Ivl2—3)+(212/5—3)>
> 346 3 :

Therefore, adding 6 portion of the second, third term of I; to I5 + A!, we obtain

o(17+17)+A"+14

2 208 _
o [ ) (L3t =)

. w2+ 213 Jrdvdl ((|v|2—3)+(212/5—5)>
* /f 346 mav 2

) 2 2 25 _
:9{/f<(|v| 3;4:3215 8))ﬂdvd1}((lv| 3)+2(21 5)>.
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e Step III: Now, we rewrite /] + --- + I5 as

h+bh+L+14+ 15
=l + I+ 1)+ L+ (A1 + Ay + A3) + L+ (I3 + I3)

=1l + L+ {0(R+ 1) + A+ 1] + Ax+ Ay + (1 =) (17 + 1) + Ly + 12
and insert the above computations in step I and step II, to derive

L+ +1s

([
+ </ fvﬂdvdl) ‘v

. P =D+ Q=8 ((|v|2—3>+<212/8—a>>
+ ff 316 mdv 7

+(1—0) (/fﬁ\/_d dI) ('”'22_3>

+u(i-6) :/ ( '”'2)fd dI}M

1<i<3

—-( —9){/fﬁdvd1} ('”'22_3>

2

_(1_9){/ ffdvd]}(znz 8)

+(1—-0) (/fvlv/\/_dvd1>v,vj

i<j

+(1-6) {% (/ flﬁdvcu)} (2”2_8> .

Note that the 4th and the 6th terms on the r.h.s. put together give

1-6) (/f|v|2_3dvdl> vl? 3
NG N

Likewise, the 7th and the 9th term on the r.h.s. can be combined to yield

(1—9){/]0(2]\/_ )\/—dvdl}<2152_;8>.
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In conclusion,

11+'~~+15=</f\/n_1dvdl>

+ (/ fvﬂdud1> v

) 2 2 25 _
+9[/f<(|v| 3)+ (215 ‘”)ﬂdmz](“”' 3) + (21 5))

V2B +98) V2B +98)

ol () ] ()
) el )
+V(1—9)Z{/f W dl}( i '”'2>

+ (1 —9)2{/fvlv]\/—dvdl}vlv]

i<j

Finally, we split the first two terms as

(/ fﬁdvcu) + (/ fuﬂdvdl)-u
:9{(/ f\/Edwu) + (/ fvﬂdwu)-v}
+(1—9){(/ fﬂdvcH) +(/ fvﬂdudl).v},

and gather terms with 6 and (1 — 0) separately, which are P, f and Py, f + v(P; + P») f respec-
tively. O

We now move on to the nonlinear term. In the following, the polynomials
generically defined in the sense that their exact form may vary line after line, but can be explicitly
computed in principle. Note that explicit form is not relevant as long as they satisfy the structural
assumptions H ¢ below.

Proposition 2.1. g”(n) is given by

1
PMpyv—U,, T L 1% Ty,
" i,j P m Tv,6n’ > o
g ()= E {/ M ,e(n)(l—n)dn}<.ﬁ6i>Lz (frejdp2 s

U Ry, det Ty, To) '
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where Pi{\j/l (x1,...,xp) and Rl/\;‘ (x1,...,xp) are generically defined polynomials satisfying the
following structural assumptions (H aq):

e (Hpml) P M is a polynomial such that P; ;(0,0,...,0) =0,
o (Ha?2) R is a monomial,

and

€1 = \/E9
€i+]1 = viﬂ (i = 1, 21 3)7

o( s —213)+a-0
e; = v _
J 3456 3+5

eg =v(l —0)viva/m,
e9 = V(1 — )vav3a/m,
e1o=v(1 — 0)vzvi/m,

e11={ <3+3| | +312L8 5>+(1—9)( )}ﬂ

Proof. For a matrix A, let Ay and Ay, denote the k-th column of A and the k¢ element respec-
tively. For simplicity, we set

”|v|2+vu§)}ﬂ (j=5.6.7),

N

Xy = (:077’ Uy, Tv.on, Ten)v
Y(n) = (A(m), B(n), C(n), D).

Observe that each component of Y () takes the form

/ FyP(v, Idvdl = /(m +n/mf)P (v, Ddvdl
for some polynomial P. Therefore, Y'(n) does not depend on 7, and we can write

Y'(n) =Y'(0).
Hence, applying the chain rule, we compute

/ vG(’?) BMV o(n) an o(n) aMu o (n)
gm=A (O)T +B (O)T +C’ (0)76, + D (O)T

=Vu.5.c,00Myvem) - (A'(0), B'(0),C'(0), D'(0))
= Vo, Uy, Toon Tomy Moo (M I (Y (0) T

= (V.0 T Ty Moo (D) - Ti ()} Y/ (0).

i
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Taking the derivative again,

g'(n) = Z {(V(p,,,Un,ﬂ,gn,Tgn)Mu,e(77))/ : Ji(’?)} Y/ (0)

i

+ 30 Toan 1o Moo G - (5:00)' } ¥ 0)
i

=141l

Now, since we have

(Vo0 T 1 Mus D) =V, (T, Mus )} T (¥ )T
= Vx, | Vx, Mo} Jm{Y' )"
=(ay,---,a),

where
ax ={Vx, {Vx, Mua} s} -¥'©
= {vx, VMoot ) Yio),
4
and

T = Vx, I op {Y' o}
= Vx, Ji(mJ Y (0)"

=Y Vx,Ji(n) - J;(n)Y;(0),
J

we can derive the following expression for I:

1

1=y {(ZZ [Vx, {Vx,Muo0n) J(n)}HYg(m)Jki(m} A0
k¢

> Ak i ()Y (0)Y] (0)
ik,

D Awdi)(foee) 2 (foeipz,

ikt

with

Axe = {Vx, {Vx, Muoan} ) .

5587

(2.9)

(2.10)
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In view of Lemma 2.1 and Lemma 2.2, it can be easily verified that Ay Ji; (1) takes the following
form:

M
P,"j (on, Unyv_Un’Tg,’, ,TGU)M o ()
v,
RM (py. det Ty 6y, Toy)
for some polynomials P/ i Rif‘;‘ satisfying the structural assumptions. Il can be treated in a

similar manner. O
Finally, we consider the linearization of the collision frequency.

Lemma 2.4. The collision frequency A, g can be linearized around the normalized global
Maxwellian as follows:

1
M=l Xt |

2<i<7,11

where

1 1
2 ) 4 .
—8 |U,7| dn, a;= m Un,idﬁ (i=23,4),
0 0

)
| =5.6,7), =
s @@ ), an 355

‘ B

a; =

(O8]

Proof. We compute

oTs = / F L|U—U|2+i12/‘S dvdI
348 348

R3xR,
2
- f mr+J_ﬁ(§I§|V aﬂ”>mﬂ1+§1—NUV @.11)
RBXR+
2 2/8 2 2
R3XR+

Then, observe

o> +21%/% = e5 + e5 + e7 + Seq
to write the second term in the last line of (2.11) as

1

2 8
2 2/ _ _
m 1) dvdl = —— , ,
/ f<3_|_3|v| +3+5 ) v +8i:567(f61)L%’[+3+5(f611)L1

R3xR4
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For the third term, we define

1B
A

R() = pylUy1* =

Note that R(1) = p|U|? and R(0) = 0. Therefore, applying Taylor’s theorem and the chain rule
with

A'(m)=A'(0), B'(n)=B"0),
yields

1

R(1) = R(0) + / R'(n)dn
0

1
/ {%A’(m + g—RB’«))}dn
0

0A B

1

1
|B()|? , / 2B(n) )
d A0 —d -B'(0
J Taamr” O+ | 4y | 2O

0

1
=- /IUnlzdn (frenp2 +
0 T =23,

1
/2Ur;,id77 (f,ei)Lgl-
34\ '

This completes the proof. O
2.3. Linearized polyatomic BGK model

Now we finish our linearization process. To further simplify the presentation of the linearized
relaxation operator, we denote

M —1 72/8
i (,Or]av_Un, 7:,,9",1 / aT«‘)n)

oM () = i/ d My = mdn,
Y \/% 0 R,’/j\'/l (pn: detﬂ,@nv Tﬂn)

—3%5 Jo 1UyPPdy i =1)
25 [y Upidn (=234

Q' ()= — (i=5.6.7)
3 (i=11)
0 otherwise

so that we can represent the linearized operators more succinctly as



5590 S.-B. Yun / J. Differential Equations 266 (2019) 5566-5614

Myo(F) = F=(Puof = )Vm+ D Qi (frei 2 (frej)y2 Vm,

ij

and

Av,G_l_v+9 { +ZQ fel }

We summarize all the computations of this section in the following proposition.

Proposition 2.2. The polyatomic relaxation operator can be linearized around the global poly-
atomic Maxwellian m as follows:

Ay (M, o(F)—F) =

1

e (1RO )

X {(Pv,ef - f) + Z fol(f’ ei)L%,/ (s ej)L%” }ﬂ’
L]

where

Poof=0Ppf+ A —0){Pnf+v(PrLf+Pf)}

We now substitute F = m + /m f into (1.1) and apply Proposition 2.2 to obtain the perturbed
polyatomic BGK model:

atf"'v'vxf:Lv,Gf'i'ru,G(f)y

2.12)
FO,x,v, )= fo(x,v, ),

where

Fo(x,v,I) —m(v, 1)
vm, I) '

The linearized relaxation operator L, g is defined as follows:

folx,v, 1) =

1
Lv,@f=m{Pu,9f—f},

where the precise form of the polyatomic projection P, g is stated in Theorem 2.3. The nonlinear
perturbation I'), o (f) is given by

Too(N) =) Qf (fe)2 {Poof — [}

YO fee (feei)s2,

iJ
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+ QM QS (e (fredz,
i,j,k

Erl(f’f)+F2(fvf)+r3(fﬂf’f)

The conservation laws in (1.2) now take the following form:

/ F()/m dxdvd = / fo/m dxdvdl,
/f(t)v\/ﬁdxdvdl:/fov\/n_’tdxdvdl, (2.13)
[f(t) {%|v|2+12/5} Jm dxdvdl =/f0 {%|u|2 +12/5} Jm dxdvdl.

Therefore, if initial data shares the same mass, momentum and energy with m, the conservation
laws reduce to (1.8).

3. Coercivity of the linearized relaxation operator

The main goal of this section is to establish the following dissipative property of the linearized
polyatomic relaxation operator. Note that the coefficient and the degeneracy in the right hand side
see an abrupt jump at 6 = 0.

Theorem 3.1. Let —1/2 <v < 1 and 0 < 6 < 1. Then we have the following dichotomy.
(1) For0 <0 <1, L, satisfies
(I=v+ O (Luof, [z < =010 =P Sl .
(2) If6 =0, L, o satisfies
(=){Loof. gz == =D I =P fl7: .
Before proving this theorem, we first need to establish several technical lemmas.
Lemma 3.2. The projection operators Py, Py, P1, P satisfy
(1) Pp, Py, Py and P, are orthogonal projections:
2 2 2 2
P2=P, P.=P, Pl=P, P;=P,.
(2) Py, P1 and P> are mutually orthogonal in the following sense:

P,P =P P,=P,Ph=PP,=P P,=P,P =0.
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Proof. (1) The first, second and the last identities follow from the fact that the sets (1.5), (1.6)
and

{vivav/m, vavs/m, v3vi/m]}

are orthonormal, which can be checked by a direct calculation. The identity for P; needs more
consideration. We first compute

(G0 =PV, 3o} —wP)vim) , =12 (1=1.2.3).

(Gu? = P vim, Gu? = pPvm) | ==6 i #)).

Ly,
Let us denote ¢; (v) = (31)1,2 — |v|%)/3+/2, and use the above computations to see that

PLf=Pi{(fic1) et t(fiea)p eat(fies) c3)

=(f Cl)L%J{Plcl} +{fiea)2, {Pc2} + (f. €32, {P3c3})

1

= g(faC1>L%J{201 — ¢ —c3}
1

+ §<f’C2>L3,{ —c1 +2c2 — c3}
1

+ 5(f,C3)L%I{ —c —C2+263}.

The last term can be rewritten as

261—62—C3> < —Cl+202—C3> < —C]—C2+2C3>
<f, 3 L%Jm +{fs 3 L5‘102+ /s 3 2

v, I

which, in view of ¢{ + ¢ +¢3 =0, is
(fs Cl)Lg ot (f, C2)L§ et (f, C3>L§ €3

Therefore, we have P12 f=Pf.
(2) We observe from direct computation that the following quantities all vanish:

(@ = 8))m. Sm) 2 A1 = 8)Vm ve/m) 2

(@ = 8))m. (Jo? =3)m) 2 . (V. Guf = v)vm) 2 .
(wev/m, Bvf — [IP)m) 2 (= 3)v/m, Gvf = [v)v/m) 2
(wivj/m, Gui = [pIP)m) 2 . (wivp/m, (2170 = 8))/m) 2

which implies (2). O
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Lemma 3.3. For 0 <6 < 1, we have
— A=+ Lo f, )2
=0l —P)flI7, +(1—6) {n(l —P)fl3  —vIPL+P) ST, }
x,v,1 x,v,1 x,v,1

Proof. From the definition of L, g, we have

— A=+ (Lo f, )z
=—0(Ppf = f fl2, = (A=) Puf = f+v(PL+ PO 2 ()
=07+ (1 —0)l.

Then, the desired result follows from (1) and (2) below.

(1) The estimate of I: Lemma 3.2 (1) immediately gives
(Ppf = f. oz, = =10 =P fI: -

(2) The estimate of II: As in the previous case, we have from Lemma 3.2 (1)
(Puf = £ )2, == = Puf)l2 -

On the other hand, we observe from Lemma 3.2 that

(Pi+ P)*= P2+ PP, + PP, + P}
=P+ P,

to derive

(PL+P)S [z = ((Pr+ P f f)p2
=((Pi+ P)f (P + P2)f>Lgy,
=P+ PS5
where we used the symmetry of P; + P,. We combine these estimates to derive
= —(Puf = f+v(Pi+P)f.f)2,
=—(Puf = £ fh2, =V (PL+PDf )2

=1 = Pu Sl —vIPL+P)fI, . O

An immediate but important ramification of the above dissipation estimate is that the null
space of the linearized relaxation operator has the following dichotomy:
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Proposition 3.1. For 0 <6 <1 and —1/2 <v < 1, the kernel of the linearized relaxation oper-
ator is given by

(Jv]> = 3) + (21%/% - 5)

Ker{Lv,o}ZSpan{x/ﬁ v/m, \/E} 0 #0), (3.2

V2B +9)
and
Ker(Lyo) {J‘~F'W_3 Im_%F} 6=0. (33
er{L, o} = spani/m, v/m, m, m =0). .
OF=AP V6 V28

Proof. For simplicity, set

AN =10 =PSI7:

B =N =P flia = vIPr+P)fl:

so that, in view of Lemma 3.3, we write

—(A=v+0){Loof. flp2  =0A) + A =0)B(f). (3.4
The non-negativity of A(f) is clear. We claim that it is the case for B(f) too:
Claim. B(f) >0 for —1/2<v < 1.

Proof of the claim. Lemma 3.2 says (P; + P») L Py, so that
1P+ Pl = 1P+ PO = P f17 (35)
Then, since (P; + Pz)2 = P| + P, we see that

ICP A+ POU = Pa) flig2 = {(Pr+ PO = Pu) f, (P + P = Pu) f) 2
= ((P1+ P> = Pu) f.(I = Pu)f) 2
=((Pr+ P = Pu) f.(I = Pu) f)2

< WP+ P = Pu) fll2 I = Pu) f 2 -

(3.6)

Therefore, (3.5) and (3.6) give

1P+ PO fl2 < ICT = P fl 2 - (3.7)
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Hence, we have
B() == Pu)fII3 = WIIU = Pu) fII32
v,/ v,/

=(1—IVI)||(1—me)|IizI (3.8)

> 0.
This proves the claim. O

Now we return to the proof of the proposition. Consider

Luof=0A(f)+ (1 —0)B(f)=0. (3.9)
We divide it into the following two cases:
(1) (The case & = 0): In this case, (3.9) reduces to

B(f)=0.

That is,
10 =P flz2  +VICP+ PO =0,
which, in view of (3.7), implies
I = Pu) f1I72 = =Vl Py + P f Iz < WA — Pa) £l .3
Therefore,
(L= DIT = P fliz2 =0,
so that

f=Puf (3.10)

From this, we can conclude that, when 6 = 0, the kernel of L, o is given by (3.2).
(2) (The case 6 # 0): Since both A and B are non-negative, we have from (3.9)

A(f)=B(f)=0.

First,
AN =10 =PSI7: =0,

clearly gives
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f=Pyf.
On the other hand, it was shown in the previous case that B(f) = 0 implies
f=Puf
Therefore, when 0 < 6 < 1, we have
f=Ppf=Pnf

Hence, the kernel is given by the intersection of (3.2) and (3.3). This gives the desired result
since (3.2) is a subspace of (3.3). O

We are now ready to prove the main theorem of this section.
3.1. Proof of Theorem 3.1

(1) (The case of 0 < 6 < 1): In the proof of Proposition 3.1, we have shown that the degeneracy
of B(f) is strictly bigger than that of A(f). Therefore, we can ignore B in (3.4) to obtain

~( v+ 00 (Loof iz, 2610 = PfIG,

(2) (The case of & = 0): In this case, we are left with
—(L=W)(Luof. iz, = B().
Recall that we have shown in (3.8) that
B(f)=d—wDIU - Pm)f”ig_,’

to see

~(={Luof. )iz, = (A= PDIT = P fI}2 -
This completes the proof.
4. Estimates on the macroscopic fields

4.1. Estimates on the macroscopic fields

In this section, we establish estimates on the macroscopic fields which will be crucially used
to control the nonlinear term I'y ¢ (f).
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Lemma 4.1. Assume E(t) is sufficiently small, then there exists a positive constant C > 0 such
that

(D) [oy(x, 1) = 1] = CYE@),

Q) U} (x, )| < CVE®) (1<i=<3),
() [Tilp,(x. 1) = 1] < CVE®) (1<i<3),
@) [T, (x. 0 < CYE®) (I1<i<j<3),

) [Ton(x, 1) — 1] = CVEQ@).

Proof. (1) Since
|Fy —m| = nf/m| <|flv/m,
Holder inequality and Sobolev embedding yield
lon(x,7) = 1] =/|f|«/ﬁdvdl =Clfllpz, =CVED.
(2) Note that
[andvdl =/(m +nf/mvdvdl = n/fv\/%dvdl.

Therefore, recalling the lower bound estimate of p;; in (1), and employing Holder inequality and
Sobolev embedding, we have

U ! vmdvdl C”f”L%' C\€&
< < Y < t
|n|_p,7 [fvmv =1 ok (1)

for sufficiently small £ ().
(3) We recall (2.1) to write the diagonal elements of o7, ¢, as

)
Pn v,0n

1 2 1
=6 F 2 1% ) dvdl § — ——p,|U,|?
/ ”<3+5'”' T3 v 335701l
R3xR4

I—v 5 2 1—v 2 2
+(1-96) F, 3 [v|” +vv; ) dvdl § — T,on|U,,| +voa Uy ;

R3IxR4
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Therefore, using

1 2
/m — PP+ ——1*%)dvdl =1,
3468 344

we have
pﬂ’Tvi,iGn
140 —— o)+ —— 1) dvdI Uyl
+ f nff(3+8|| = — 35710
R3XR+
1—v
+(1-6) /nﬁr( |W+w)mm-——;MWﬁ+WW%}
| (R3xR4

<146 /’an_(

R3xR4

2
[v]> + ——1%% ) dvdI
344 348

+(1-6) / nfﬁ(

R3xR4

§1+C0,5||f||L31~

|v| +vv; )dvdl

In the last line, we used Holder inequality. Now, the estimate (1) above on p, and Sobolev
embedding gives

1—pg +C0,a||f||L51

vl,lén -1 = 00
CVED +Coall 2,
< .
- 1 —+/E(@)

< Cysv/E@). 4.1

Similarly, we compute
Pn 7-1},19 n

=146 — P+ ——1*% ) dvdl } — ——p,|U,|*
* /‘”fJ_<3+a|' Iy 355701

R3IxR4
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1—v l—v
+(1-6) / nfﬂ( 3 |v|2+vvi2>dvd1 —{—pnlUnlz-f-v,OnU,ii}

3
R3xR4
o 172 11172
>1-06 C5||f||L%J + mﬁ% —(1-9) 77Cv||f||L§J +Cvﬁ%
2
Z1=Cosull Iz
>1—Cysv/EQ®),
yielding
i > 1 —pg—Cos50VE®)
von = Lo
- —Co,5,0/E(1) 4.2)
= 1+VE0

> —Cps5,0V E).

(4.1) and (4.2) give the desired result for 7'y (i =1,2,3).
(4) Non-diagonal entries of 7, g, are given by

pnﬁ{én =(1-6) / Fy (vvivj) dvdI — vp, U, U
R3xR4

=(1-0) / (m +nf/m) (vvivj)dvdl—v,onU,‘;U,{
R3XR+

=(1-6){nv / fN/mvividvdl —vp,ULUJ
R3xR4

Hence

Ipnﬁf;nlslvl‘ / fopvi/mdvdl| + vl | UL U} |
R3xR+
<ICIflz +IVICEW)

= ICVE®).
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(5) The estimate follows by similar argument using the following identity

1

1 2 1
Tpy=6{ — Fp| —— v + ——1%% ) dvdl — —— U, |?
= o / ”<3+5|”' 355 vdl = 3510l
RSXR+

21
+1-0)15— / Fyl*?dvdl
nR3><R+

We omitit. O
In the following, we estimate the derivatives of the macroscopic fields.

Lemma 4.2. For sufficiently small £(t), we have
(1) [9%py(x, )] < Ca/E(),

(2) 10Uy (x, 1)] < Cay/E@),
(3) 10%T,1%, (x. O] < Cay/E@),

(4) [0%Tyn(x, )] < Cav/E().

Here 0 denotes derivatives in x, t.

Proof. (1) Since 8% [‘mdvdl =0, we have

0% py| = |0 / (m +nf/m)dvdl =77/|3°‘f|x/ﬁdvd15II8“f||L51'

R3IxR4
(2) We apply 9% to U = % [ fvy/mdv and use Leibniz rule to derive

|

C
10U < = | D f 9 fllvlmdvd L | | 14 Y7 13|

n ‘“1|5NR3><]R+ loa| <N

Then, we have from Holder inequality and Sobolev embedding that

||

C
o e o] o
10Ul = Gggmer | 22 19 ez || 1+ D 10

a|<N le2| <N

||
<Cay X |I8°”f|IL51+< > ||8°”f||L51>

lai|<=N lat|=N
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CovVE()

for sufficiently small £(¢).
(3) Similar argument as in (2) above, applied to p7, g, gives

Ol
19T,
Jee]

Clal,8.6
<l / |a“1f|{|v|2+213/2}ﬂdvd1 1+ Y 19%p,

n lar|=N la2| =N

R3xR4

||

C
+ 2‘\(2(“ Z / |3a1f||v|ﬂdvd1 1+ Z |30{2pn|

n loe1 [ <N, lea|<N

R3xR4

e
<Claly D IIB“‘fIILg‘IﬂL( > ||8°”f||L5Y,)

lor|=N log|[=N
(4) The estimate for 0% Ty;; is similar. We omitit. O

Lemma 4.3. Let £(t) be sufficiently small. Then the determinant of T, ¢, satisfies

(1) [8% det (Ti,.04) | < Cav/E(),
) |det(Ty0)| 2 1 = Cav/E®),

for some Cy > 0.

Proof. (1) A straightforward computation gives

det(7,, o) =T, 0r;7:) 0n7:) on + 2T1 T23 7:)3,57)

23 31 12 @3
- {771,@ } 7;071 {771,9 } 7;071 {T }7; on:
Therefore, 0% det 7, 9, takes the following form:
0" det(Toom) = Y Cijormnd™1 T, %, 0T 5, 0 T
a=a1t+ar+a3
Now, we recall from Lemma 4.1 and Lemma 4.2 that
=1 +0(VED) (=1.23), Tl =0 (VED) G #)). 4.4)

and

09T, | < Cav/EQ®. 4.5)
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to deduce

|8a detﬂ,ﬂﬂ = Ca\/ ).
(2) Inserting (4.4) and (4.5) into (4.3), we get

det Ty 0p = {1+ 0E))) —2 {0(\/%)}3 -3 {0(\/%)}2 [1+0(/e0)]
> 1 - Ca/EW),

for sufficiently small £(f). O

Lemma 4.4. Let 0 <6 <1 and —1/2 < v < 1. Suppose E(t) is sufficiently small. Then, there
exist positive constants C1, Co such that

(1) X T, )Y < (1= CEDYIXIIYI,
@) X UT, g3 X = {1+ CEOYIXI1,
forany X, Y in R3.
Proof. We start with proving the following claim:

Claim. For sufficiently small E(t), we have

{1—c1\/%}1d57;,9,,5{1+c2\/%}1d. (4.6)

Proof of the claim. For x € R3, we have

T i 2 ij
K« Toonk = Z vl,(-)nKi + Z Tu,en"i"j-
i=1,2,3 1<i,j<3

In view of Lemma 4.1 (3), (4), this gives

KTTv,gnlcz Z {1+C\/5(t)}Kl~2+C Z VEWKiK

i=1,2,3 1<i,j<3
=Y Kf+c,/5(t){ SNkt > Kin]
i=1,2,3 1<i<3 1<i,j<3

= {1+ avEn] .

Likewise,

K T = {1 = CoVED | Ik,

This completes the proof of the claim. O
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(1) Let {A;} denote the eigenvalues of 7, ¢, so that we can write

Tv.on = P diag{ii, -+, A1} P,

for some orthogonal matrix P. Here diag{a, b, - - -} denotes the diagonal matrix whose diagonal
entries are a, b, - - -. Therefore, since the above claim implies

1-CiE@) <A <14+ CE(1) (I1<i<ll

for sufficiently small £(t), we have

XTT Y =X PTdiagi', -+ A7) P] ¥
_ T g0 -1 —1
={PX} diag{r; " ,---, A HPY}
=D A H{PXL(PY);

i
< max{x " HPX|IPY]
= max{A; "} X[ Y]].
<{1—=CEO XY

(2) Lower bound can be computed in a similar way as follows:
X' X=X"P Tdiag{rl, —oaghex
= Z AP XY

> min{A; '}|PX ||
= min{2; "} X|I?
> {1+ GEOY X O

In the next lemma, we prove an estimate for derivatives of 7, g,).

Lemma 4.5. Let 0 <0 <1 and —1/2 <v < 1. Assume E(t) is sufficiently small. Then we have
8% (7, ¢ )|| = CaVE).

Proof. Applying 9 { u,_el,n} =-T7, 9 0 {87} 0. ,,} ’7; 0.y Tecursively, we can derive a“ { UTQI’,]} =

P('Tv 0.0 0Tv.6.n, "+ » 8"‘7],9,,7) for some polynomial P. Therefore, by Lemma 4.1 (4), (5) and
Lemma 4.2 (3), we get the desired result. O
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5. Estimates on nonlinear perturbation and local existence

In this section, we establish the local in time existence of smooth solutions. For this, we first
need to estimate the nonlinear part.

Lemma 5.1. The nonlinear perturbation I',, o (f) satisfies:

(1) ' / 9T 0 (f)gdvd

<C > 18NSl 1% f gz gl 2

ey |+]az | <o

+C Y 19l I8 Fl2 lgl2
lor [+lor2 | <o

1Bil=IBI
ag [0%) o3
S S et VRSN e RN iy PR PR

oy [+lez |[+|as | <|e|

(@) ”/Fl,z(f, g)hdvdl

"

/ I'12(g, h)hdvdl

< C sup |vy 1h|su
<Csup vy rhlsup £l Nglz2 -

2 2
L2 L2 x,v,1 x

+

H/F3(f,g,h)rdvd1 + H/Fg(g,f, hyrdvdl /F3(g,h,f)rdvdl
L3

L3 L3

< C sup |vy rr|su su h
= Csup vy rrlsuplflz, supliglyz Ilz

where vy 1 = (1 + |v[*)(1 + ).

Proof. We prove this lemma only for I'>. Other terms can be treated similarly. We first need to
estimate Bg Ql/]Vl

M R 12/
Claim. |05 0;}"| < Ca.pexp (__ - _)

Proof of the claim. Note that there exist a homogeneous polynomial P, g and a monomial My g
such that

_ | Pap (84, 90Uy, 3(v — Uy), 3T5,0y, 3Tay, 01%/%))|
Ma,ﬂ (det(ﬂ,en), T@n)

‘%‘%‘Mwe (pn, Uy, To.om T0n’)

1 _— 72/8
X exp (—E(v -Uy) ’7;79,](1) -Uy) — ?) .
n

Here we slightly abused the notation to let d denote any of Bg such that @ < || and 8 < |B]. Re-
calling the upper and lower bound estimates on the macroscopic fields in Lemma 4.1, Lemma 4.2,
the determinant estimates in Lemma 4.3 and the estimates on the temperature tensor made in
Lemma 4.4, Lemma 4.5, we have



S.-B. Yun / J. Differential Equations 266 (2019) 5566-5614 5605

|P0‘v/3 (apr], aUﬂ’ (v — U77)7 87;,97]7 aTény 128)|
Ma,ﬂ (det(ﬂ,an), T977)

< Cop(1+|v]* + 122ym@)]

for some Cy g, m(a) > 0. On the other hand, Lemma 4.1 (2), (5) and Lemma 4.4 (2) give the
following lower bound:

1 T 1?5 2 lv—Uyl*> (2 5/
S (0= Uy V’GU(U—UU)-FEZ 3t +(3+e 1%/

> (% +8>|v|2 + <§ +8)12/(S +o(EM),

for some small ¢ > 0. This gives

1 12/5
9 Q#\ < Ca,pexp (Z'“'2 + T) (1+ o>+ 17/5ym@

xexp(—<%+a>|v|2—<§+£>12/5+0(5(1))> G.D

This completes the proof of the claim. O

We now return to the proof of the lemma. In view of (5.1), we denote throughout this proof

for simplicity.
(1) From (5.1) and Holder inequality, we have

[ srangidvar

R3IxR,

= Y[ lgesten e, 00 s, gldu
|0t1|+£t|é\|+|0t3 ‘R3xR+

sc ¥ ([ lgoy g|dvd1) 1% fll2 19 fl2
\061|+|0!2||+|0l3\

—lo R3xR4

<Cp Y ( rz|g|dvd1>||aa2f||L3_1||a“3f||Lg,

\Ol||+|012||+|013\ R3

:|‘1 XR+
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<Cap Y 18%fl2 18l lgll2,

oy [+ loz |+ o|
=|a|

<Cap Y 10N Flg2 N0 F12 N2 -

oy [+ lo2 | <l

Here we omitted ) _; i for simplicity of presentation.

(2) Note that when o = 8 = 0, we have much simpler estimate: |Q{}4| < Cm directly from
Lemma4.1, Lemma 4.3 (2) and Lemma 4.4 (2). Therefore, applying Holder inequality, we obtain

[ raronaar=c [ e, ([ )
R3

R3x R RO xRy
<C h
< “f”L%J”g”Li[” ”Lf,z

< Csup vy rhl[sup | fll2 lgll2 -
U,I x v, 1 v, 1

We then take L)ZC norm to get the result. The proofs for other terms are similar. O
5.1. Local existence

Now, the local existence theorem can be proved by standard arguments (see, e.g., [25]).
Theorem 5.2. Let 0 <0 <1 and —1/2 <v < 1. Let Fo = m + /mfo > 0 and fy satisfy
(1.8). Then there exist My > 0, Ty > 0, such that if £(0) < %, then there is a unique solution

ft,x,v, 1) to(2.12) defined on [0, T), such that:

(1) The high order energy € ( f (t)) is continuous in [0, T *) and uniformly bounded:

sup E(f (1) < Mo.

0<t<Ti

(2) The distribution function is non-negative on [0, Ty):

F(it,x,v,)=m+/mf(t,x,v,I)>0.
(3) The conservation laws (1.8) hold for all [0, T).

Proof. We consider the following scheme:

nTn
FF" v VT = " —pv—iev {Mv,e(F”) - F"“], (5:2)

with
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pn A(S
[det@r T T} 19/

where p", U", ’7;79 and T} denote the local density, bulk velocity and the temperature tensor
associated with F" =m + /m f". Making use of Lemma 5.1, the local existence follows from
a standard argument. (See [25].) The only difference from the usual proof is that the strict posi-
tiveness of 7;% and T§' should be secured in each step, so that M, ¢ (F") is well-defined. This
is guaranteed by Lemma 4.1 (5) and Lemma 4.4. 0O

1 1 ]2/5
M, (F") = eXP(g(U—Un){Tv?,le} v-U")— )

Ty

6. Micro-macro system

In this section, we study the micro—macro system of (2.12) to fill up the degeneracy in the
dissipation estimates in Theorem 3.1. The dichotomy in the dissipation estimate observed in
Theorem 3.1 indicates that we should employ two different sets of micro—macro decomposition.

6.1. Micro—macro system I (0 <6 <1)

Define

a(x,t)= / f\/ﬁdvdl,

+
Rng,

bi(x,t) = / fuivmdvdl  (i=1,2,3),

R3 xR}
2 _ 2/8 _
c(x,t) = / f<(|vl j% 8)>ﬂdvd1,
R3xR}

so that the polyatomic projection operator P, is written

2 _ 2/8 _
Ppf =ale,)v/m+ Y bi(x, 0yviv/m + c(x, 1) <(|v| 3+ @I 5))

V2B +9)

Since L, p{Pp f} =0 for 0 <6 <1 by Proposition 3.1, the linearized polyatomic BGK model
(2.12) is decomposed into the macroscopic part and the microscopic parts as follows:

{0 +v - Vil{Pp f}=—{0 +v-ViHU = Pp) f} + Lovo{ — Pp) f} +T00(f).

We then expand the Lh.s. and r.h.s. with respect to the following basis (1 <i, j <3):

{Vm, viv/m, vivj/m, i m, vif ol + QPP = &))m, @I —8)m}.  (6.1)
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Comparing the coefficients on both sides, we derive the following micro—macro system:

3,a - 3A58;c = Za + hu,
0rb; + axia - 3A58x,-c =Lapi + havi,
O bj+0x;bi =Lij +hij (i #)),
‘ (6.2)
Asorc + 8x,- b = Lpei + hpeis
Asdy,c =4Lei + hei,
Asdic =Ler + ey,
fori,j=1,2,3. Here, As = 1/4/2(3 +6), and L4, Lapcis Lij, Loei> Lei and £, denote the co-
efficients of projection of —{9; + v - Vy}{({ — Pn) f}+ Ly.o{(I — Py) f} onto the basis (6.1),
and hg, hapeis hij, hpei, hei and he are the projection of I'y, ¢ (f) onto (6.1). Adding the last two
equations to the first and second line, we get
ra= Ly +her) +3{ley + her},
3bi + 0x;a = {Lapi + havi } + 3{lei + heil,
O bj+0x;bi =Lij +hij (i #])), (6.3)
Asdrc + axi b; = Lpei + hpei,
ABBXiC =L + hei,
Asoic="Ler + ey
The first 5 lines are, up to constant multiplication on the L.h.s. and additional slight complica-

tion in r.h.s., identical to the micro—macro system derived in [24,25] and the last line is easy to
estimate. Hence, following the same line of argument, we arrive at

> {na“ang+||a“b||i§+65||a“c||i%]sc Yo 1%+ huol. (64
le|<N ' le|<N—1 ‘

Note that we have slightly abused the notation to denote £, o = (€4, £api, Lij, Lpci, Leis Ler) and
hve = (ha, hapeis hij, Rpeis Beiy her). Now, £, 9 and hy g can be controlled in a standard way
using Lemma 5.1 as follows:

3% (L hyo)lI?, <C I— P f)? CvM 2, .
D 1% Ca i =C 30 I =P fliz, +CVMo D 19°fI7

le|<N-1 la|<N . le|<N

Combining this with (6.4), we derive

X wrafiy s 3 fa vt vioer; |

le|<N le] <N

<C YN0 =Py fliz  +CVMo 30 I fIl72

lo|<N la|<N
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which gives

D IPp Sl =C Y= PO fl (6.5)

la|<N le|<N

Then, we conclude from Proposition 3.1 and (6.5) that there exists C), g > 0 such that

D Lugd £0°f)2 = =Cog D 10 F O (6.6)

le] <N le|<N
for sufficiently small ().
6.2. Micro—macro system Il (6 = 0)

Recalling Proposition 3.1, we see that in this case, (2.12) should be decomposed with respect
to the monatomic-like projection Py, f. In view of this observation, we define

a(x,t) = / f/mdvdl,

3 RT
Ry xRy

bi(x,t)= f fuiv/mdvdl (i =1,2,3),

R3xR}
wﬁ—3>
c(x,t)= \/r?dvdl,
() /f( V6
RIxR}
21%% —§
d(x,t)= / (7>ﬂdvd1,
/ A28
R3xR}
to write
|v|2—3> (212/5—3)
P, f=aym+ b;v; m—}—c(i Jm+d | ———
nf = ay/m Zf 7 75

We recall from Proposition 3.1 that L, o(Py, f) =0, and divide (2.12) into the macroscopic part
and the microscopic part as follows:

{0r +v - Vil{Pn f} = {0 +v- Vi {( — Pp) [} + Lo,o{l( — Pu) f} + To0(f).

Comparing coefficients corresponding to the following basis:

m, viNm, vivim, vim, viv|Pm, (217 = 8)/m, (21 — §)vi/m),  (6.7)
J i
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we obtain (i, j =1, 2, 3):

da —3/36d;c =104+ hq,
dibi + dy,a — 3/3/63y,¢ = Lapei + habei
Oy bj + 0x;bi = Lij + hij, (6.8)
e, bi + 1/3/63¢ = Loei + hpei,
1/v/605,¢ = €ei + hei,
0rd =L + har,
Oy, d ="Laxi +haxi,
where £, Lapeis Lijs Locis Leir £ar and £q4y; are obtained by taking the inner product of —{d, +
v-ViH{(I = Py) f} + Ly o{(I — Py) f} with the basis in (6.7), and ha, hapei, hij, Rpcis Peis Bar
and hgy; are the inner product of I', o(f) with (6.7). Settinga =a — 3/\/6c and ¢ = 1/\/6c, we
derive from (6.8)
0:a =1Ly + hg,
0:b; + 0x,a = Lapi + hapi,
Oy bj + 0x;bi = Lij + hij, (6.9)
Ox; bi + 0:C = Lpe1 + hper,
Ox, ¢ =4Lei + hei,
0rd ="Lgr + ha,
Oy, d ="Lgxi +haxi.
Except for the last two lines, which are decoupled from the other equations, and therefore, es-

timated easily, this is identical to the micro—macro system for the usual Boltzmann equation or
BGK model. Therefore, we can derive

> {na“ani%+||a“b||i%+||a“’c“||i§+||a“dni%}sc Y 8%+ Rl
le|<N } : le|<N—1 ’

Here we used the simplified notation again: £, 0 = ({4, Lapcis Lijs Loeis Leis Lar Laxi) and hy o =
(has habeis hijs hocis Bei s har, haxi). We now take % <e?< % and set

C, = min {(1 —V6e?), 3/5 — «/6/(282)} >0
to obtain

Ce Y [ua“auig+||a“b||i%+||a“c||§%+||a“d||§%}sc > 1890+ ol
le|<N le]<N—1
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Then, by a similar argument as in the previous case, we can control P, f by (I — Ppy,) f:

2 2
D IPnd*flp <€ 31U =P flig (6.10)

le| <N le|<N

which, combined with the dissipation estimate in Theorem 3.1 (2), implies

D (Lood”£,3% )2 ==Co D IO fOIT . (6.11)

la|<N lo|<N
7. Proof of Theorem 1.1

We have derived all the necessary estimates to close the energy estimate. Let f be the smooth
local in time solution obtained in Theorem 5.2. Take derivatives on x, ¢t and I of (2.12):

3% f +v-Vyd* f =L, 0% f + 0T 0(f),
and take inner product with 3% f to get

1d

S NI < (Lo £,0% ()2 40 Twa ()9 )2 -

Making use of the coercivity estimate in the previous section yields

1d
E§: SI0%fl5,  +C Y 19 fl. = CVEHDW),

la|<N

where D(t) = Z [10% f ||iz . For the energy estimate involving velocity derivatives, we apply
x,v,1
dg to (2.12)

{0 +v-Vitanplog f= " 9pv-Vedi_p f+0pPosd* f+5T0o(f, ),
181170

where a, g = 1/(1 — v + v0). Then, take inner product with Bg‘ f and use Holder inequality with
Lemma 5.1 to derive

1d .
Ej: S W05 fI:  +aneld5fiz,  =C N0 flie 195 f N2,
1
+CI9 fllz 1052 | +CVEDOD),

where ¢; (i = 1,2, 3) is the standard basis of Ri. By Young’s inequality, we can split the first
two terms in the r.h.s. as

a+te; a+e; 2 2
0520 Fliz MOR ANz, < CalOf e FI2, el I,

o o o 2 o 2
10 Flliz, M35 Pz, < Cold*F U2 +eldf fIs
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whose ¢ terms can be absorbed in the production term in the Lh.s. to get

1d 1 )
Ej: 195 f17:  +35a0l05fl7:  =Ce Z 19575 Iz |+ Cella £l
l

EE x,v,1
+ CVEM)D().

We then observe that the rh.s. of 3 5, 41 Ej can be absorbed into the production terms in the
lower order estimate: Cy, ZI Bl<m Eg for sufficiently large C,,. This observation enables one to

find constants C),, C2 inductively such that

d
> {C},,Ena,‘;fniz AL I}SCN\/S(t)D(l‘)-
lo|+BI<N,

[Bl<m

Now, the standard continuity argument gives the global existence for (2.12) [25]. This completes
the proof.
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