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Abstract

We consider the following two-species chemotaxis-competition system with signal-dependent diffusion
and sensitivity

uy =V -di@)Vuy) = V- (x1(0u; Vo) + pui(1 —uy —ajuz), x€, t>0,
uy =V - (da(W)Vuz) = V- (x20()up Vu) + poup(1 —up —apuy), x €, t>0,
vy =Av+bruy + brus — v, xe, t>0,
ui1(x,0)=uig(x), uz(x,0) =ur(x), v(x,0) =vy(x), x €L,

()

in a bounded smooth domain £ C R? with homogeneous Neumann boundary conditions, where u;, a;, b;
are positive constants for i = 1,2, and the functions d; (v), x; (v) satisfy the following assumptions:

e (d;j(v), ;i (v)) € [C?[0, 00)]? with d; (v), x; (v) > O for all v > 0, d/(v) < 0 and Jim d;(v) =0;

LX) L)
o lim £ ) and vl_l)moo FAM) exist.

vV—>00 dl

Since Ul_i)moo d; (v) =0 for i =1, 2, the diffusion may degenerate, which makes the analysis of system (x)

much more difficult. To overcome this problem, we shall use the functions d; (v) as weight functions and
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then employ the weighted energy estimates to establish the boundedness of solutions. Furthermore, by
constructing some appropriate Lyapunov functionals, we show that

e Ifay,ar €(0,1) and w1, uy are large enough, then the solution (u1, u3, v) exponentially converges to

1—a; l—ay bi+br—ajbi—arbhy
(1 —ayay’ l—ajay’ l—ajay )ast — 0o.
e Ifa; >1,ap € (0,1) and w, 1s large enough, the solution (u1, u3, v) converges to (0, 1, bp) as t — 0o

with algebraic decay when a; = 1, and with exponential decay when a; > 1.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we shall consider the following two species chemotaxis-competition system
with signal-dependent diffusion and sensitivity

u =V-(di)Vu)) = V- (x1(0u1 Vo) + piur (1 —uy —ajuz), xe€Q, t>0,
uy =V - (d(0)Vuz) = V- (x2(0)uzVu) + pous(1 —uz —asuy), x €, t>0,

vy = Av+bjuy + bupy — v, xe, t>0, (1.1)
) d )

G=t=g=0 vesQ 120
ui(x,0) =uyo(x), uz(x,0) =uz(x), v(x,0) = vo(x), xeqQ,

where u;(x,t) with i = 1,2 denote the densities of two populations, respectively, and v(x, f)
accounts for the concentration of chemical substance. The parameters u;, a;, b; are positive con-
stants for i = 1, 2. The terms V - (d; (v) Vu;) describe the diffusion of two species with coefficient
d; (v) respectively. —V - (x; (v)u; Vv) stand for the chemotaxis with coefficient y; (v) fori =1, 2,
where the coefficient of diffusion and chemotaxis may depend on the chemical concentration v.

When d; (v) =d; > 0 and yx;(v) = x; > 0 are constants, system (1.1) becomes the following
two-species chemotaxis system

uy =diAuy — 1V - @1Vo) + pui (1 — uy — ajuz),
uzy =daAup — 2V - 2 Vo) + pouz(l — uz — azuy), (1.2)
vy = Av+biuy + byuy — v,

which can be viewed as the generalized classical one species chemotaxis model [32,34] (see the
review paper [3] for details). System (1.2) is much more difficult to study than the single species
chemotaxis model due to the influence of chemotaxis, diffusion, and the Lotka—Volterra kinetics.
We recall some results on the system (1.2). First, the global existence and blow-up of solution
of system (1.2) with u; = o = 0 has been studied [4,5,8-10,19,36,37]. For the two-species
chemotaxis model (1.2) with Lotka—Volterra-type competition (i.e., @1, w2 > 0), the situation
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becomes more complicated. If the third equation of system (1.2) is replaced by the elliptic equa-
tion 0 = Av + biu; + bouy — v, based on some elaborate comparison techniques, under some
appropriate conditions on the parameters w;, x; for i = 1, 2, the global existence and stability of
steady states including either competitive exclusion or coexistence have been studied analytically
[6,28,33]. More precisely, the solution (u1, u>, v) will converge to the coexistence steady state
(1, fo, hith=abi—®h) when a) < 1,4 < 1 (see [6,33]), while when a) > 1, a3 < 1,
the competitive exclusion occurs, which means that (11, uz,v) — (0, 1, b) as t — oo in [28].
For the full parabolic system (1.2), the comparison techniques can not be used anymore, Bai
& Winkler [2] first established the global existence of classical solution in two dimensions by
deriving suitable a priori estimate, and then obtained the global stabilization and decay rate of
the solutions by means of the construction of suitable energy functionals. Moreover, the bound-
edness and asymptotic behavior of the two-species chemotaxis model with signal consumption
cases also were studied [7,12,16] recently.

When d; (v) =d; > 0, x; (v) is signal-dependent sensitivity, the global existence and large time
behavior of solution for the two species chemotaxis model with competitive kinetics have been
studied [21-24]. However, to the best our knowledge, the existed literatures do not provided any
qualitative information for the two species chemotaxis-competition model with signal-dependent
diffusion and sensitivity as described in system (1.1). If a; = b, = 0, the second species u» is
decoupled from the system (1.1) and the first and third equation of system (1.1) comprises a one
species chemotaxis model with signal-dependent diffusion and sensitivity

{uu =V -(di(W)Vuy) = V- (x1(0u1 Vo) + prur (1 — uy), (1.3)

v =Av+biuy —v,

which has been proposed in [11] to describe the stripe pattern driven by the density-suppressed
motility in the case of x1(v) = —d|(v) > 0. For system (1.3) with x;(v) = —d{(v) > 0,if u; =0
and d; (v) = 5—‘,3 co > 0,k > 0, Yoon and Kim [35] obtained the existence of the boundedness so-
lution in any dimensions provided cg > 0 is small. On the other hand, if d; (v) has a positive lower
and upper bound, Tao and Winkler [31] proved the existence of global classical solution in two
dimensions and global weak solutions in higher dimensions (n > 3). If | > 0, the boundedness,
stabilization and pattern formation have been studied in [14] without small assumption in [35]
or the lower-upper bound assumption in [31]. Recently, Jin [13] removed the structure assump-
tion x1(v) = —di (v) > 0 and obtained the boundedness and large time behavior of solutions for
system (1.3).

As recalled above, not many mathematical results of the two species chemotaxis-competition
model with signal-dependent diffusion and sensitivity are available up to date. Our goals are to
investigate the following two major questions:

(Q1) Whether the two species interaction itself is sufficient to preclude the population over-
crowding in spite of the aggregation effect of the chemotaxis?

(Q2) Whether the two species can coexist, exclude or extinct and how does the signal-dependent
diffusion and sensitivity affect the dynamics?

To answer the above two questions, the global boundedness and the asymptotic behavior of
solutions should be explored. We assume the functions d;(z), xi(z) > 0 with i = 1, 2 satisfy the
following hypotheses
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(H1) (d;i(2), xi(z)) € [C*([0,00)]* with d;(z), xi(z) > 0 for all z > 0, di/(z) < 0 and
l_i)ngod,- (z) =0.

exist.

. ; . diz
() Jim % and Jim 5
Different from the two-species chemotaxis-competition model with linear diffusion [6,21-24,28,
33], the signal-dependent diffusion may degenerate due to d/(v) < 0 for i = 1,2, which may
cause many difficulties to obtain the uniform-in-time bound of solution. To overcome this prob-
lem, we use d; (v) (i = 1, 2) as the weight functions in the energy estimates motivated by the ideas
in [13,14]. More precisely, using the weighted diffusive dissipation along with the competition
effects, we derive the L2-boundedness of 1 and u», and then with the help of parabolic regular-
ity theory, obtain the boundedness of v from the third equation of system (1.1), which removes
the possibility of degenerate. At last, we apply the Moser iteration method to show the bound-
edness of u; (i =1, 2) and the existence of global classical solutions. Moreover, by constructing
Lyapunov functionals, we can show the large time behavior of solutions. The main results are
stated as follows.

Theorem 1.1 (Boundedness). Let 2 C R? be a bounded domain with smooth boundary and the
parameters a;, b;, (; be positive constants for i =1, 2. Suppose that the hypotheses (HI)—(H2)
hold. Assume (u19, 29, vg) € [Wl’f”(Q)]3 with some p > 2 and uig, uzg, vo > 0(£ 0). Then
the system (1.1) has a unique global classical solution (ui,us,v) € [C°([0,00) x ) N
C21((0,00) N xQ) N L ([0, 00); WL Q)P satisfying uy, uz, v > 0 for all t > 0. Moreover,
the solution satisfies

i Gy D)l Loy + llua (G, DliLe@) + lvG Dy < C forall 1 >0,
where C > 0 is a constant independent of t.

Theorem 1.2 (Stabilization and convergence rate). Let (u1,uy, v) be the solution obtained in
Theorem 1.1. Then we have the following results:

(1) Ifar,az € (0,1) and 1, po satisfy

U Y1) w3 (2) 1. 45 — ajar (1 + £)>
0<z<co | darpuidi(z)  4arpady(z) a1big) + axb3 — ararbiby(1 + &)’

(1.4)

where & > 0 is a constant fulfilling 4| — a1a>(1 + £)% > 0 and

1—a N 1—an
_ uh =

_ b1+ by —ai1by —axby
T l—aia’ -

1—ajar’ 1 —aiar

u

*
1 )

then for all t > 0, the classical solution (u1, uz, v) of system (1.1) satisfies

lur (-, 1) — ufllpoo() + llua (1) — ubll Loy + lv(, 1) — v* [ ooy < Cre 1,

where C| and L are positive constants independent of t.
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a1 > 1 and ap € (0, 1) and suppose that for some a7 € (1, a1] and afay < 1, we have
(2) [ 1 and (0, 1) and supp hat ]“(1 ]d’l“ 1 h

(@ib2&; + arb3 — afarbiba(1 + £2))Erx3(2)
W2 > max 1245 — 2ol 5 (1.5)
0=z=<00 ar (46 — ajax(1+£2)°)d2(z2)

with some constant & > 0 satisfying 45, — aTaz(l + 52)2 > 0, then it holds that

1 (-, )l o) + lua -, 1) — Ulpee (@) + 1v(-, 1) — ball ooy < Cae 2!

forall t > 0, where Cy and Ay are positive constants independent of t.
(3) Ifa1 =1, ap € (0, 1) and p satisfies (1.5) with af = 1, then there exist constant C3, A3 > 0
independent of t such that for all t > 0

lur (-, Ol ooy + Nlua (o 1) = Ulpeo@) + (G, 1) = ball ey < Ca3(t + 1),

Remark 1.1. When d;(z) and y;(z) are constants for i = 1,2, Theorem 1.2 covers the results
derived by Bai and Winkler in [2].

Notation. Without confusion, we use [, f and fot Jo f to represent [, f(-,t)dx and

fot Jo f (. 8)dxds for short, respectively. Moreover, we denote || - [|zr() = |l - llzr, and ¢; (i =
1,2,3,---) stand for generic constants which may alter from line to line.

2. Boundedness of solutions: proof of Theorem 1.1

In this section, we focus on proving the global existence of classical of solution for system
(1.1). We first obtain the local existence of solution based on the Schauder fixed point theorem.
After that, we shall obtain a priori estimates to extend the local solution to the global one. To this
end, we shall use the motility function d; (v) (i = 1, 2) as weight functions to obtain the bounded-
ness of [luy(-, t)||;2 and ||ua(:, t)|| ;2 inspired by the ideas in [13,14]. With the L2-norm of u; and
uy, we can obtain the uniform boundedness of ||v(-, )| L~ immediately thanks to the parabolic
regularity, hence the possibility of degeneration is excluded. Then we can show ||u1(-, ?)|| .~ and
lluz(-, t)|| Lo is uniform bounded via conventional methods for chemotaxis-competition models
with linear diffusion.

Based on the Schauder fixed point theorem, the local existence of solutions to system (1.1)
can be established by the similar arguments as in [14, Lemma 2.1], we omit the details for
convenience.

Lemma 2.1 (Local existence). Let 2 C R? be a bounded domain with smooth boundary and the
constants a;, b;, i be positive for i = 1, 2. Suppose that (u19, u20, Vo) € [WLP ()13 with some
p > 2 and (419, u20, vo) > 0(z£ 0) and the hypotheses (HI)—(H2) hold. Then there exists Tpqy €
(0, oo] such that system (1.1) has a unique classical solution (w1, uy, v) fulfilling uy,u>,v >0
forallt >0 and

up € COQ x [0, Truax)) N CHHQ X (0, Trar)),
uz € CUQ X [0, Tax)) N CH1(Q x (0, Trax)),
v e CYUQ X [0, Trax)) N CH(Q x (0, Trnax)) N LEALO, Truax); WP (Q)).
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Moreover, either Ty, = 00 or
lur (s Lo + lual, Olle + VG, Do = 00 as t /7 Tinax-
2.1. Lower order estimates

Lemma 2.2. Let the assumptions in Lemma 2.1 hold. There exists a constant C > 0 independent
of t such that the solution of system (1.1) fulfills

/ul +/u2 <C, vt € (0, Trax) 2.1

and

1+t t+t

/[u +//M%SC, VIG(O,TmaX_T)7
Q

where T = min{l, T“ia" }-

Proof. The integration of the first equation of system (1.1) with respect to x gives

d

dt ul—m/ul—m/u%—mm/uluz, Vt € (0, Tiax)-
Q Q Q

Since u; > 0 for i = 1,2, by using Young’s inequality and picking ¢; = (’“H) |2|, we derive
that

d

dt
Q

s +/u1 +—/ul <ci, Vi€ T, 2.2)

which, together with Gronwall’s inequality, leads to

/ ur<ca Vi€ 0, Toay), 23)
Q

where co = c1 + ||u10l| 1. Moreover, integrating (2.2) over (¢, ¢t 4 ) for all t € (0, Tnax — 7) and
noting (2.3), we obtain

t+1 t+t

—1//u%fqr—/ul(-,t+r)+/u1(ut)—//u1561t+62,
t Q Q Q rQ

which implies
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t+7

/ fu% <c3, Vt€(0, Tmax — 1), (2.4)

_ 2(attc)

where ¢3 =
w1

. Similarly, from the second equation of system (1.1), we can derive

d

dt
Q

us +/u2 + —/uz <cq4, Vte(0,TThax) (2.5)

2
with ¢4 = % |2|. From (2.5), we can find a constant c5 = ¢4 + |[u2ol| 1 > O such that

/u2 <cs, Vt€(0, Thax)
Q

and

t+t

2
//M%§$s vt € (0, Tnax — 7).

This together with (2.3) and (2.4), completes the proof. O

Lemma 2.3. Suppose the assumptions in Lemma 2.1 hold. Then the solution (41, us, v) of system
(1.1) satisfies

/|Vv|2 <C, vt € (0, Tmax) (2.6)

and

t+7

/ /|Av|2 <C, vt € (0, Trax — ), (2.7)
Q

where T = min{l, T‘gﬂ"} and C > 0 is a constant independent of t.

Proof. Multiplying the third equation of system (1.1) by —Aw, then integrating the result with
respect to x and using Young’s inequality, we end up with

1d
2ar V| /lAv| blfulAv—bz/uzAv—i-/vAv

Q Q

<- 5/|Av|2+b%fu%+b2f /|Vv| V1 € (0, Tna),
Q Q
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that is
d 2 2 2 2 2 2 2
o[ Ivel s [1avP 42 [IVoP <207 [ud+253 [ Vi€ T, (28)
Q Q Q Q Q

Integrating the first and second equations of system (1.1) with respect to x, respectively, and
using Young’s inequality, we end up with

d M1 2
E uj + ui + 7 ul S Cl, Vt € (07 Tmax) (2'9)
Q Q Q

and

d “2 2
7 ur + | ur+ > u; <cz, YVt € (0, Tmax) (2.10)
Q Q Q

2 2 2 2
where ¢ = %Kﬂ and ¢y = %Kll. We multiply (2.9) by %‘ and (2.10) by %, respec-
tively, and add the resulting estimates to (2.8), to obtain

. 5 dcib? Acrb3
Y+y+ [ |Aav) < —+—=, Vre (0, Tha) (2.11)
J J78 2

2 2
where y = [, |[Vv|]> + % Jour+ % Jo u2. Then applying the Gronwall’s inequality to (2.11)
and noting (2.1), one has (2.6). Moreover, integrating (2.11) over (¢, t+1t) forall ¢t € (0, Tipax — T)
and using (2.6), we obtain (2.7). Then the proof of Lemma 2.3 is completed. O

2.2. Boundedness of ui,us in L and v in L™

Lemma 2.4. Let the assumptions in Lemma 2.1 hold. Then it holds that

lur G Oll2 + llua G, Ol g2 + € Dlie < C, Vvt € (0, Tnax). (2.12)
where the constant C > 0 independent of t.

Proof. Based on the hypothesis (H2), we can find two positive constants K and K> such that

d/
| I(Z)| < Kl and |X1(Z)| < K2 for all 220 and t € (O, Tmax)~ (213)
di(z) di(z)

Noting the facts that u1, u» > 0, we apply u as a test function to the first equation of (1.1) and
integrate the result over 2 to obtain
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1d
EE/”%-F/GII(UNVMHZ-FMI/M?+Cl]ﬂ1/u%u2
Q Q

Q Q

/ 1(w)u1Vuy - Vv+u1/u%
Q
1
2

x2(v) 1641
di ()| Vur|* + = /dl() ut|Vol? +7fu?+ 12|
Q

for all ¢ € (0, Ty,4x), that is

d
Efu%+/d1(v)|wl|2+mfuf5/fll(()) Vvl 4, Ve, Tha),  (2.14)
Q Q Q

where ¢ = 32’“ |2|. Motivated by the ideas in [13,14], we shall use the term [o, d) (v)|Vu; 1 to

control fQ 21 ((v)) 2|Vv|2 To this end, we first note that

d’(v)
V(d (v)ul)_d W)Vu + = uiVo, vVt € 0, Trnax),
oz1 (v)
which gives
l|V(rﬁ<v>u1>|2—1'di(”)'2uz|W|2<dl(v)|w1|2 Vt € (0, Tax) (2.15)
2! 4 di(v) ! = ’ P omax :

by noting the inequality %Az — B% < |A — B|?. Substituting (2.15) into (2.14), and using the fact
(2.13), one derives

d 1 1
E/”“ 5/|V(df(v)u1)|2+mfu?

Q
ld] () , xi () 20
549/611@) W2V |+/d()1|v|+c
K2 (2.16)
< (Tl +K22) fdl(v)u%|vU|2+c1

Q

K2 1 % %
< (TI+K%) [ttt | | fivor] wen Ve T
Q Q

Since dj(v) < 0 in the hypothesis (H1), we have di(v) < d;(0) =: c;. Then, applying the
Gagliardo—Nirenberg inequality, one has
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1
2

1 1
/ dE || = ldE url?,

1 1 1 (2.17)
< aa(IV@] @un) 2] @l g2 + lldf W l72)
1
<aa(IV@f @un)lg2llutllg2 + luill72), Vi€ ©, Tax),
1
where c4 = c3 (c22 + ¢2). To proceed, we recall the inequality [14, Lemma 2.5]
1 1
IVullgs < esUlAv LIV, + 1VVllL2), vt € (0, Tinax),
which together with the estimate (2.6), gives
1
2
41 _ 2 2
[ routt | =1vuiRs <co (101219000 + 19012, o)
<c7 (”AUHLZ + 1), vr € (0, Tmax) .
Combining (2.17) with (2.18), and using the Young’s inequality, one derives that
1 1
K12 2 3 4 4
T+K2 |d1 (v)uq| [Vl
Q
K2
Tl C4C7(||V(d @un) g2 llurll g2 + a7 (A2 + 1)
(2.19)

K2
Tl >C4C7(||V(d WuD) 2 llurll2 | Avliz2

/_\

+ IV(d @un) g2l ll 2 + 172 1A g2 + e l72)

1
EIIV(dl @un 72 +cslurll72 1AV, +c3lluillza, V€O, Tnar),

2 2 2
where cg = 2c4c7 (% + K%) and c9 = c4c7 (% + K22> + % Substituting (2.19) into (2.16)

. 4c8
and choosing ¢19 =c¢1 + ng |2], one has
M1

d
Sl 172 <csllAvliZ,lluill?, +cio. V1€ (0, Tnax), (2.20)

which, together with the results in Lemmas 2.2 and 2.3, allows us to obtain (2.12). To be exact,
for all ¢ € (0, Tj;4x), in the cases ¢t € (0,7) and ¢t > t with T = mln{l Tnax}, we can find
to € ((t — T)+, 1) such that #p > 0 and
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2
/ul(X,lo)SCu- 2.21)
Q

Moreover, Lemma 2.3 shows that

o+t

/ / |AU|2 =12, Vi € (0, Tipax — 7). (2.22)
n Q

Next, integrating (2.20) over (#p, t), and applying (2.21) and (2.22), we derive

t
" Av( d o [ . ‘
1D < N1 to) |2y - e T 1806 N2do e [ 1avel 2ds
L L L
fo

< 1€ +c1pe™

for all ¢ € (0, T,4x — T), Which yields

lur G )l 2 < cis, Vi € (0, Tinax)- (2.23)
Similarly, we can obtain

luz (- Dl 2 < c14, V1 € (0, Tnax)- (2.24)
Then, the combination of (2.23) and (2.24) gives

lb1ur (-, 1) + bous (-, 1)l 2 < biciz + bacia. (2.25)

By applying the parabolic regularity to the third equation of (1.1), and using (2.25) we obtain

lv(, Dllwrs < cis, V1 € (0, Tnax), (2.26)

which gives ||[v(-,?)||Le < c16 for all t € (0, Tjpqyx) directly. Then we complete the proof of
Lemma24. O

2.3. Boundedness of u1,us in L, and vin WH>

Lemma 2.5. Assume that the conditions in Lemma 2.1 hold. Then there exists a constant C > 0
independent of t, such that

lur (- Ollzoe 4+ llua (-, Dl + vl Dlwre < C, vt € (0, Tnax)- (2.27)

Proof. Multiplying the first equation of (1.1) by uf and integrating the result equation over €2,
we have
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1d
ZE/M?+3/C{1(U)M%|VUI|2+MI/M?-l-alll«l/u?llz
Q Q Q

Q
=3/x1(v)u?Vu1-Vv+,u1/u?
Q Q

(2.28)

for all r € (0, Tjpqy)- Noting the fact that ||v(:,#)||L~ < c¢; in Lemma 2.4 and the hypotheses
(H1)—(H2), one obtains

di(v) >di(c1):=c2>0 and [x1(v)| <c3, V1 €(0, Tnax)-
This allows us to rewrite (2.28) as follows, for all € (0, Ty,4x)

1d 2, 1 4
17 u1+3cz u1|Vu1| 1 uj
Q

Q

1
fu1|w1||w|+ (Z+m)/u‘1‘—m/u? (2.29)
Q Q g

3e2 [ 2 30%/ 41,2
< — \Y% — \Y% ,
= /ull ui +262 uilVol“+cs
Q

Q

5
where ¢4 = (4’“5—+1) %. For the second term on the right hand side of (2.29), we invoke the re-

1
sult [Vu(-, t)||;4 < cs from (2.26). Then, using Cauchy—Schwarz inequality and the Gagliardo—
Nirenberg inequality, and applying the fact ||u%|| = lu1 ||i2 < ¢ (see Lemma 2.4), one has

2
3c2 3c2
3w v <=2 /le|4
2¢y 2¢)
Q
2
5

Q

|| uillys (2.30)

3 1
212 202 212
(nwlnzznuln;l + ||u1||L1)
_2

= ”VM] ||L2 + cs, Vvt € (0, Thnax),

where cg = 66

d
< fuls4(c4+cg) Vi € (0, Tona),

Q
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which, together with Gronwall’s inequality, implies

lur GOl 3a < lur G 0)l s +4(ca+c), V1€ (O, Tuax). (2.31)

In addition, applying the similar process to the second equation of system (1.1), we obtain

luz (O} 4 < lua( 04 +4co, VYt € (0, Tynan). (2.32)

With (2.31) and (2.32) in hand, we can apply the parabolic regularity to the third equation
again to find a constant c19 > 0 such that ||[Vv(:, ) |lj1..c < c10 in two dimensional spaces. With
these results in hand and using the well-known Moser iteration procedure (cf. [29,32]), we have
2.27). o

Proof of Theorem 1.1. Theorem 1.1 is a consequence of the combination of Lemma 2.1 and
Lemma?2.5. 0O

3. Stabilization and convergence rate

In this section, we will show that the classical solution of (1.1) converges to the constant
steady state by constructing some Lyapunov functionals under certain conditions motivated by
some ideas in [2,15,30].

3.1. Competitive coexistence: ai € (0, 1) and ap € (0, 1)

In this subsection, we shall study the asymptotic behavior of the solution of system (1.1) with
a; € (0,1) fori =1, 2 based on the following energy functional

I10) :=/<u1—uT—uTlnM—i>+§1/<u2—u§—uglnu—i>
uy Uz
Q Q
ﬂ k2
T3 /(v v,
Q

where ¢; and n; are two positive constants which will be chosen later. Here (u*{, uz v*) is the
constant steady state defined by

3.1)

" 1—a 1—ap
Ltl:i,
1—ajay

*

_bi+by—aiby —ab
1 —ajay’ o 1 —ajay '

us =

Lemma 3.1. Assume that a; € (0,1) (i =1,2) and £(¢) is defined by (3.1). Then E((t) > 0 for
all t > 0. Moreover, if 1 and .y satisfy (1.4), there exists a constant €1 > 0 such that

d
Efl(t) < —e1F1(0), (3.2)
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where
Fit) := /(ul —u)? + /(”2 —u3)? + /(v —v%)2, (3.3)
Q Q Q
Proof. Since 0 <a; < 1and 0 < ap < 1, we can find a constant & > 0 such that

48] —arar(1 +£)* > 0, (3.4)

and hence

a1b}g) 4+ azb3 — ajazbibr(1+£1) > 0 (3.5)

by noting the discriminant of (3.5) is negative (A := alazbg[alaz(l +£1)2 —4£1<0).
Since 1, wo satisfy (1.4), there exists a constant 1y > 0 such that

e(u;almslxav) wixi (v) aip (461 —ara(l +60°) ) 3.6)

4azpuada (v) 4di(v) T arbig + ab — avarbibr(1+ &)

Choosing {1 = “(‘Z i‘ lf' and n; defined by (3.6), we can rewrite &£ (¢) as follows

E(t) =Lt + 2 :‘ fl L)+ m (1), 3.7)

where

I1(1) —fg(ul _u 7In *)
I (1) —fQ(uz —u2 In u%
1) =§fQ<v—v 2.

Then, applying the similar arguments as in [2, pp. 568-569], we can derive that /1 and I, are
nonnegative and hence £;(r) > 0.
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Next, we shall prove (3.2). To this end, we first show that

d ut
EII(I)Z/ (un - u—ildn)
Q
* * 1
=1 /(ul —u)(1 —u —a1u2)+u1/d1(v)VM1 V<u—l>

Q Q
" 1
—u1/X1(v)u1Vv~V<u—l> (3.8)
Q
= —mf(ul —uP)? —aim /(ul —u})(uz — ub)
Q Q

Vu
—u’f/dl(v) v
Q

where we have used the fact that u} 4 aju3 = 1. Similarly, noting axu} + u; =1, we deduce

d uz
b —/ =
Q

=—u /(uz —u3)? —aapn /(ul —u)(up — u3) (3.9)
Q Q

v 2
—szdz(v) v
Q

" Vuy
+u5 | xo(v)— - Vu.
up u
Q

2 " Vu
+uy [ xi(v)— - Vo,
ui
Q

Moreover, with the identity byu} + bouj = v*, it holds that
—Ia(t) —f(v—v )Vt
_—/|VU|2+b1/(M1—MT)(U—U*) (3.10)
Q Q
+b2/(u2 —us)(v—v*) — /(v — "2,
Substituting (3.8)—(3.10) into (3.7), one has

d
E&(l):—/xlAleT—/YlBlYlT, (3.11)

Q Q
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where X | and Y] are vector functions defined as

Xi(x, 1) == (uy(x, 1) —uj, uz(x, 1) —uj, v(x, 1) —v*)
and

\% , \% ,
Vi) = <| szzixt;)l’ | ;Zixt;)" |Vv(x,t)|>

in € x (0, 00), and the matrices A; and Bj are defined by

a 14+&1) b
i 1/11(2 &1 7]121
| e (1+€) ajpié _mb
Api= 2 @ 2
n1b; niby
Tz 7 m
and
ui x1(v)
uid (v) 0 ——15-—=
o uyaip1§1dz (v) uyai 1§12 (v)
By = 0 azpn 2ap 2
_uix@  waiméip®)
2 2a 2 n

Next, we prove that the matrices A1 and Bj are positive definite. Owing to (3.4) and (3.6), one
derives

lu1l >0
and
ajpui (1+§)) 2
M1 s E— ary 2
arp (1+£1) amzl& = 4a (451 —ajax(1+§1) ) >0
2 ap 2
as well as

%
A1 = (@ (481 — (1460 = m(@bié +ab} —aabibs(1+))) > 0

aipnién

due to a; > 0 (i = 1,2). Hence the matrix A is positive definite by using the Sylvester’s crite-
rion. On the other hand, noting ¢} = iy 0, we obtain

* ] 0
" 6(U) witida(v)| uuz1di (v)d2(v) > 0,
2

luidi(v)| >0 and

which together with (3.6) gives
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ujaipni§1da(v) _usaim €1 x2(v)
* 2
|By| = uid(v) _uzafﬁ’fam(v) a2
2ay o m
saié1da (v)
| 0 Hambeo
) _upa  uiaipiéipe®)
2 2az 12
wiutap&; wrai i E1di (W x2(w)  wrda(v)x3(v
_ w1 4y (v)da (V)7 — 2 wié ()Xz( i )Xl()
az2 dazr 4
> 0.

Hence applying Sylvester’s criterion again, we show the positive definiteness of Bj.
Since the matrices A1, B; are positive definite, we can find a constant ¢; independent of ¢,
such that

Xi(x,DAIX] (x, 1) = &1 X1 (x, D
and
Yi(x,)B1Y{ (x,1) =0,

which together with (3.11) yields (3.2). Hence, the proof is completed. O

With Lemma 3.1 in hand, we in fact show that £(¢) is a Lyapuonv functional under the
assumption (1.4). Next, we shall apply the LaSalle’s invariant principle (e.g. see [18, Theorem
3] or [27, pp. 198-199, Theorem 5.24]) to show the solution (u1, u2, v) of (1.1) converges to the
steady state (ui‘, u;, v™) in the sense of L°°-norm motivated by the ideas in [15].
Lemma 3.2. Suppose the assumptions in Lemma 3.1 hold. Then we obtain

ot G, 1) = s + ua (1) = w3l + [0, 1) = v lloo = 0 as t > 00 (3.12)

Proof. Denote Z(¢) := (uy, ua, v)(t) be the unique global classical solution to system (1.1) with

initial data Zo = (u19, u20, Vo), which defines a semi-flow (or trajectory) on X = (wlr))?
with p > 2 (see [1]) due to Theorem 1.1. Suppose £1(Z) = £1(¢t), that is

u a u
El(ul,ug,v)zf ul—uT—uTIn—l + IMIEI/ uz—ué—uﬁln—i
J uj ar J uj
m *\2
+ = v—v)°.
s [
Q

For a given ¢* > 0, we have ¢ — ¢* —¢* In & > 0 for all positive constants ¢ # c*. Hence, it yields
&1(Z) >0 forall Z# (u],u3,v*) and £1(Z) =0 if and only if Z = (u7, u3, v*). Moreover,
we derive from (3.2)~(3.3) that ££(Z) <0, where £4-.&;(Z) = 0 if and only if Z = (u}, u3}, v*).
Then applying the LaSalle’s invariance principle (e.g. see [18, Theorem 3] or [27, pp. 198-199,
Theorem 5.24]), we obtain (3.12) directly. O
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3.2. Competitive exclusion: a1 > 1 and ap < 1

When a; > 1 and a> < 1, we shall show that the competitive exclusion will occur based on
the following energy functional

&) I=/u1 +§2/(M2 —1—1Inus)+ %/(v—bz)z, (3.13)
Q Q Q

where ¢, and 7, are some positive constants, which will be chosen later.

Lemma 3.3. Assume that a; > 1 and ay € (0, 1). Let £>(t) be defined as (3.13). Then it holds
that £(t) > 0 for all t > 0. Moreover, if 1, satisfies (1.5) with some constant aj € (1, a1] and
afay < 1, then we have

d
Efz(t) < —&rfat) —pilai — 1 / ut, (3.14)
Q

where &3 is a positive constant and

fmr=/ﬁ+/wr4f+fw—wﬂ
Q Q

Q

Proof. First, by using the similar way in Lemma 3.1, we apply the Taylor formula to derive that
Jo(u2 — 1 —1Inuz) > 0, which implies that £(¢) > 0.

Next, we shall show (3.14) holds under the condition (1.5). Since af € (1,a1] and ajaz < 1,
we can find a constant &, > 0 such that 4&, — afaz(1 + 52)2 > 0, and hence

alb&) + arb} — atarbiby(1 4 &) > 0 (3.15)

aj b

n
azp and

for the discriminant of (3.15) is negative. Then we choose ¢ =

afmibax; ) ajpui (4 — afar (1 +£)%) 3.16)
darprdr(v) T aib3Er + axbl — atarbiby(1 + £) '
such that £ (¢) can be rewritten as
n2 2
Sg(t):/u1+§2/(u2—1—lnu2)+?/(v—b2)
a Q Q (3.17)

=J1(t) + 52 J2(t) + n2J3(2),

where
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Ji() ZfQuh
L) = [ouz—1—1nuy),
(0 =3 [ —b)%

Accordingly, we have

d d
Efl(t)=5/u1=m/u1(l—u1 —ajuy)

Q Q

——leu%—alﬂlful(’/Q_1)_M1(a1_a1)/u1u2 (3.18)

—mi(ay — 1)/

and
d VM2 2
Elz(f)——/xz/(uz— 1>2—azu2/u1<uz— 1)—/d2(v) vie
@ @ @ (3.19)
Vu,
+ | x2(v)— - Vo,
uy
Q
as well as
9 rw=[w—bv=— [ 1voP — [y
dt 3 = 2)Vr = v v b
Q Q Q
(3.20)
+b1/M1(v—b2)+b2/(u2— D= b).
Q Q
Consequently, substituting (3.18)—(3.20) into (3.17) gives that
d
Egz(l) =—X2A2X] — V2BoYs — i —a]k)/uluz — pi(al — 1)/141
Q Q
(3.21)
< — X2A2XT — V2B Y] — pui(af — 1)/141,
Q
where X = (u1,up —1,v—>by) and Yp = (‘VMZZI |Vv|) and
aju(14+&) b
1 e = Gubd0) b
| afm+E) aipié b — a2 2az 12
Azi=| =995 > - and Be=| e
_mb _mb 2yt "
2 2 n
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Next, we consider the leading principle minors of A, and B;. Noting 4§, — a’l“az( 1+ 52)2 >0,
it follows that

lu1l >0
and
aj i (1+6) % 2
M1 2 _ 4 " 2
atuy (148) ime | = g (452 —ajax(1+&) ) > 0.
2 ap

Furthermore, since 1, satisfies (3.16), we obtain

nin2
(A2) = T (af i (48 — afar +£°) — m(@ibite + bl — afadbiba(1 + ) > 0.

Continuously, we know that

afu1&2d>(v)
a2

>0

and
2
Byl = aj1&rdx(v) _ajpibay; (v) =0
aun 4azpads (v)

* 2
thanks to 1, > %. It follows from Sylvester’s criterion that A, and B, are positive

definite. Consequently, (3.21) together with the positivity of u; (i =1, 2) shows (3.14). O

Lemma 3.4. Suppose the assumptions in Lemma 3.3 hold. Then it holds that

lur (o Ollzee + luz(, 1) = Uiz + [[v(-, 1) = ballLe — 0 as t — +oo. (3.22)

Proof. From Lemma 3.3, we derive that £ () > 0, %Sz(t) <0 and %Ez(t) =0 if and only if
(u1,u2,v) = (0, 1, by). Then applying LaSalle’s invariance principle again as in Lemma 3.2, we

obtain (3.22) immediately. O
3.3. Convergence rates

In this subsection, we shall show the convergence rates of solutions in L°°-norm. To this aim,
we first derive the decay rate of solution with L”-norm for some p > 1 based on the energy
functionals constructed in Lemma 3.1 and Lemma 3.3. Then using the higher energy estimate
of solution, we shall show that there exists a positive constant of C independent of ¢ such that
IVurllgs + IVuzll s + llvllyro < C for some ¢ > 1, which combined with the decay rate of
solution with L?”-norm and the Gagliardo—Nirenberg inequality gives convergence rates of solu-
tions in L°°-norm. First, we improve the regularity of solutions as follows.
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Lemma 3.5. Let (uy, ua, v) be the nonnegative global classical solution of system (1.1) obtained
in Theorem 1.1. Then there exist o € (0, 1) and C > 0 such that

| <C, forall t>1. (3.23)

[v]| c2Hol+g @x[rr+1]) =
Proof. The Theorem 1.1 entails us to find three positive constants cy, ¢z, c3 such that
O<ui(x,t),ur(x,t) <c;,0<v(x,t) <czyand |Vv(x,t)| <c3

for all x € Q and ¢ > 0. Next, we shall apply the Holder regularity for quasilinear parabolic
equations [25, Theorem 1.3 and Remark 1.4] to show that

luill co.% Ggrrgnyy = €40 Torallz > 1. (3.24)

In fact, we can rewrite the first equation of system (1.1) as follows
u;;=V- f(x,t,Vuy) + g(x, 1) forallx e Qand ¢ >0
with
f(x,t,Vuy) :=di(v)Vu; — x1(v)u; Vo
and
g(x, 1) == prui(1 —uy —ajuz).
Using the assumptions in (H1) and the Young’s inequality, then we obtain

Fx,t,Vuy) - Vuy = di (v)|Vu [* — x1(v)u1 Vo - Vuy
> dy (0)[Vur 1> = |1 (0)|u1| V|| Vi |

d](v)IV 12— |§:z(v)| W2 Vo] (3.25)
1(v)
dl(Cz)|V = cs
and
| f(x, £, Vup)| < d(0)|Vuy| +cq, and |g(x, 1) < ¢z (3.26)

for all x € Q and ¢ > 0. Then the application of Holder regularity, we obtain (3.24) directly by
noting (3.25) and (3.26). Similarly, from the second equation of system (1.1), we have

<cg

””2||c“’%(§zx[z,z+1]) <

for all # > 1. Then applying the standard parabolic schauder theory [17] to the third equation of
(1.1), one has (3.23). Then the proof of Lemma 3.5 is completed. O
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Lemma 3.6. Assume that Q@ C R? and (u1, us, v) is a global classical solution to system (1.1).
Let i, a; >0 fori = 1,2. Then, for all p > 1, there exists a constant C > 0 such that for all
t>1

Vur G Ol 2p + IVua (- Dl 2 < C.

Proof. We differentiate the first equation of (1.1) once and test the result with |Vu|?~2Vu; to
obtain

1 d

%E/|Vu1|2”=flwl|21)*2w1 V(V- di(0)Vur)
Q

—/|Vu1|2”—2w1 -V(V - (x1(v)u1 Vv))
o (3.27)

+M1/IVu1|2”_2Vu1 V(uy —ut —ajuiua)
Q
=:G1+ G+ Gs.

Using the identity VAu; - Vu| = lA|Vul |2 — |D2u1 |2, the term G can be rewritten as follows

G = —/ Vit P2 AV - (dy () Vi) — / VIViL 2272 VgV - (dy (0)Viry)
Q Q

=/d1(u)|vm|2P*ZVAu1-w1 —/d;(v)V|w1|2P*2-w1w1 Vv

¢ ¢ (3.28)

1 _ _
=5/d1<v)|w1|21’ 2A|wl|2—fd1<v>|wl|2p 2|D%uy |

Q

Q
—(p— 1)/ T Vu P74V Vuy - Vuy Vg - Vo.
Q

To proceed, we integrate the first term in the right hand side of (3.28) by parts

1
5fd](vnw]|2"—2A|w1|2
Q

5 0|Vuy|? 1 -

2p—2 2p—2 2

P TdS— 5/dl(v)Vlwll P2 V|V | (3.29)
02 Q

1
=5/d1<v>|w1|

1
— E/d{(v)|Vu1|2p_2V|Vu1|2-Vv.
Q
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Noting the fact that ||v(:, #)|ly1. is bounded and the hypothesis d;(v) € C?([0, 00)), then we
can find positive constants c1, ¢2, ¢3 and ¢4 such that

0<cr=di(v) <, Vv, 1]l e < c3, and ld} (v)] < cs.

Invoking the inequality EWB# <2k|Vu; |2 with some constant ¥ > 0 on 02 ([20, Lemma 4.2])
and the trace inequality [26, Remark 52.9]

Pl 200) = llVOl2q) + cell@l 2

for any ¢ > 0, we get

1 3| Vuy |

E/dl(v)wu 2p—2 'a”” dS<czK/|Vu1|2”dS
Q2 Q2

= ook |||[Vur 1”113,

_ 2c1(p—1)

(0€2)

IV |Vuy|? 2

||L2(Q) + CS|||VM1 |p

2
||L2(Q)’

which together with (3.29) implies that

1 )
E/dl(v)IVullz’J 2A Vi
Q

calp—1 e3¢
—/w PPV Va2 + /w P2V V) (3.30)

—i—Cs/IVMll P

Then substituting (3.30) into (3.28) and using the Young’s inequality, one has

ci(p—1) _ _
Grs——7— IVur PPV IV 212 = o1 | [Vu P72 D?ug 12

+c6/|Vu1|2P*2|V|Vu1|2|+c5f|w1|2p

(3.31)

c —1
—%/Wunz"—ﬂwwnzﬁ—cl/|w1|2"—2|1)2u1|2

+c7/ IV, PP
Q
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2
with ¢7 = 72“?;6—1) + c¢5. Furthermore, noting the boundedness of uj, v and Vv and the fact
x1(-) € C%([0, 00)), one has

V- (aui Vo) <cg(1 4+ |Vur| + |Av]).

Noting |Au;| < /n|D?u;| and using the Cauchy—Schwarz inequality, we can find a positive

9c2(6(p—1
constant cg = W such that

Gz=/V|w1|2P*2-w1v(m(v)uIVva|Vu1|2"*2muv(m(v)ulvw
Q

<cs(p— 1)/ [Vur |2 73|V Vg |2+ es(p — l)f |Vur P72 |V |V ||

+c8<p—1)/|w1|21’—3|ku1|2|mv|+cs/|w1|2"—2|Au1|

(3.32)
+csf|Vu1|2P*‘|Au1|+c8/|Vu1|2"*2|Au1||Av|
Q Q

c 1
1(” )fw P4V 2| +c9/|Av|2p

Cl _
+3/|w1|2ﬁ 2|Dzul|2+c9/|w1|21’+c9|9|.
Q

Using the boundedness of u; (i =1, 2) again, we can estimate G3 as follows

G =/(M1 — 2uquy — arpau2) [ Vur [P — ayp /M1IVM1|2”_2VM1 -Vuy
Q

5010/|VM1|2p+ClO/|Vu1|2p_l|V’/l2| (3.33)

1
SCn/IVullz”—F—/IVMzIZ”
2p
Q Q

1
with ¢11 = c10 (1 + 21’p‘ o ‘). Substituting (3.31)—(3.33) into (3.27), we derive
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Vu 2P + = / Vu, |*P
o~ f V] V]
- CI(P 1)) Vi P4V |V 2wy 1202 D2y 12
S———— | Vuil IVIVuy | I”— [Vui] [D7u| (3.34)

+c9/|Av|2P+cu/|Vu1|2"+5f|w2|21’+c9|sz|,
Q Q

where c1p = % + ¢7 + c9 + c11. On the other hand, we use the Young’s inequality and the bound-
edness of ||u1(-, )| L~ derived in Theorem 1.1 to get

/|Vu1|21’=f|w1|2p—2w1'Vul
Q Q

=—(p- 1)/M1IVM1|2P74VIVM1I2-Vm —/mIVullzp*zAul

Q

ci(p—1) _ c1 _

<2 [ Vui PPV PP 4 — | [Vur |72 D%y |
24c1n 4cip

1
+§/|VM1|2”+613,

Q
which implies
-1
c12/|w1|2"< fw 249 Va2
(3.35)
C1l _
+5/|Vu1|2” 2|D%u1 | + 212013
Q

Combining (3.34) with (3.35), one has

d 2 2 2 2

o IVu [P +2 [ [Vur|*? <2pco | [AV|P + | [Vua|? + c1a, (3.36)

Q Q Q

where c14 = 2p(2c12¢13 4 ¢9|€2|). Furthermore, applying the similar arguments to 17, one derives

d
E/IVM2I2”+2/IVM2|2PSClS/IAUI2p+/IVullz”—i-Cls,
Q

Q Q Q

which, together with (3.36), gives
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d 2 2 2 2
o IVur |7 + | [Vual™ | + [Vur [P + [ |Vua|™?
Q Q Q Q (337)

< (2PC9+Cls)fIAv|2p+Cl4+Cls-
Q

We combine (3.37) with (3.23) to obtain that

Vur (Ol 2p + IVua (- Dl 20 < 16
for all t > 1. Then, the proof of Lemma 3.6 is completed. O

Next, we show the convergence rate of solution solving system (1.1) for the case: 0 < aj < 1
and 0 <ap < 1.

Lemma 3.7 (Decay rate: ay,az € (0, 1)). Let the assumptions in Lemma 3.1 hold true. Then
there exist two positive constants A and C1, such that

lur G, 1) = willzoe + luaC, 1) = 3l o+l 1) = v¥|| oo < Cre™™ (3.38)
holds for all t > 0.

Proof. We shall use a nice idea in [2, Lemma 3.7] to prove this lemma. First, we introduce the
function ¢(w) :=w — u} Inw for w > 0 and use the L"Hopital’s rule to derive

. opw)—ey) @' (w) 1
w—ut (W —uy) w—ui 2(w —uy)  2uj

Noting the fact |lu(-, 1) — uT||Loo — 0 as t — oo (see Lemma 3.2), we can find a #; > 0 such
that for all r > 1

uj 1
/ <u1 —uf — u’flnﬁ) = /(w(ul) —oy)) < F/(ul —up)? (3.39)
Q ! Q 'S
and
1
/(ul—u’f—u’lklnu—i)2—*/(u1—u’1")2. (3.40)
uy 4uy
Q Q
Similarly, the fact ||ua (-, t) — u’z‘ [[Lee — 0 as t — oo implies that there exists #» > 0 such that for
allt > 1
1 *\2 < k *l I/l2 < 1 *\2 341
4'43 (U2 —us)” < uz—uz—uznu—§ _@ (u2 —u3)”. (3.41)
Q Q Q
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Let 13 = max{l1, 71, t»}. Noting that £ (t) and F;(¢) are defined in (3.1) and (3.3), then the com-

bination of (3.39) and the right inequality of (3.41) gives that £ (¢) < (ul—* + 1% + 7771) F1(t) for
1 2
all ¢ > t3, which together with (3.2) implies that

d
551 (1) < —e1Fi1(t) < —c1&1(t), Vi>13, (3.42)

2uiule) . . . . . .
R Therefore, invoking Gronwall’s inequality to (3.42) and noting

£1(13) is bounded, we obtain

where ¢ =

E1(t) <cre™ ', Vi>n3,
which combined with (3.40) and the left inequality of (3.41) gives

/(ul —ul)?+ /(u2 —ul)? + /(v — v <cze, V>t (3.43)

Q Q Q

Choosing p =2 in Lemma 3.6 and using the boundedness of ||v| 1. in Theorem 1.1, we
have [Ju1 (-, £) |14 + llu2(, ) |lwra + [V, £) |14 < cq for all £ > 3. Accordingly, applying the
Gagliardo—Nirenberg inequality to u1 — u}, one has

2 1 1
lur —ufllzoe < esIVurll)ylluy —uill;), + lur —uill2) < collur — uill;,. (3.44)

Using the similar arguments, we can derive

1 1
lluz — w5l < crlluz —u3ll;, and flv—v*|lLe < cgllv — v}, (3.45)
The combination of (3.43)—(3.45) shows
<
lur — uillzoe + luz — u3llLoe + v — vill Lo < coe™ o7,

which yields (3.38) with A; = < for ¢ > t3. Furthermore, by choosing the constant C; large
enough, the result (3.38) becomes valid forr > 0. O

Next, we show the decay rate of solutions for the case a; > 1, az € (0, 1), in which case the
solution will converge to (0, 1, 7).

Lemma 3.8 (Decay rate: a1 > 1,as € (0, 1)). Let the assumptions in Lemma 3.3 hold true. Sup-
pose ay > 1. Then there exist two positive constants Ay and Co, such that

lur G, D)l + lua, 1) = Uiz + [0, 1) = ball L < Cae™ (3.46)

holds for all t > 0.

Please cite this article in press as: H.-Y. Jin et al., Boundedness and stabilization in a two-species
chemotaxis-competition system with signal-dependent diffusion and sensitivity, J. Differential Equations (2019),
https://doi.org/10.1016/j.jde.2019.01.019




YJDEQ:9713

28 H.-Y. Jin et al. / J. Differential Equations eee (eeee) eee—eee

Proof. Using a similar argument as in obtaining (3.41), we can find a 7o > 1 such that
1 2 2
1 w2—1D"< | (ua—1—=Inup) < | (up — 1=, Vt>r. (3.47)
Q Q Q

Defined F3(¢) := fQ up + fQ(uz -2+ fQ(v — by)%. In view of (3.13), it follows from the right
inequality of (3.47) that there exists a constant ¢; > 0 such that

&) <aF3(1), V>t (3.48)

Noting that aj > 1 and 0 < as < 1, and combining (3.14) with (3.48), we obtain

d
S60) < —e2Folt) — i} — 1) / ul
J (3.49)

< —aF3(1) = —c3&(1), Vi > 1o,
which, together with Gronwall inequality, gives
E@) < cae” 3 Vi > to

due to the fact & (fp) is bounded. Then we use the definition of £ (¢) in (3.13) and the left
inequality of (3.47) to derive

/ul +/(u2— 1)2+/(u—b2)25c5e—c3f, vt > 1o. (3.50)
Q Q

Q

Moreover, Lemma 3.6 shows that [|[Vu (-, t)|l 74 + [[Vua(:, t)] 14 < ce for all ¢ > tp. Using The-
orem 1.1 and the Gagliardo—Nirenberg inequality, we derive that

4 1 1
lurllpe <7 <IIW1 I allar ]y + Ny IILI) <csllurll};. (3.51)
Similarly, one has
2 1 1
lluz = Tflzee < c9 (IIW2IIZ4Iqu = Ul + lluz — 1|IL2) <ciolluz — I}, (3.52)
and
2 1 1
lv—"ballLe <cni (IIVUIIZ4IIU —ballj, + v — b2||L2> <cilv=>ball},. (3.53)

Combining (3.51)—(3.53) with (3.50) gives that

_ar
llurllpoe + lluz — 1o + llv — ballpe < ci13e” 6, Vt>1,
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which implies that (3.46) holds by choosing C, large enough. Then the proof of Lemma 3.8 is
completed. O

When a; = 1, then af = 1, then the term —u(a] — 1)f9u1 in (3.14) will disappear. Then
we can not use (3.14) to obtain the inequality as in (3.49), which is important to obtain the

exponential decay. However, in fact we can still obtain the algebraical decay as follows.

Lemma 3.9. Suppose the assumptions in Lemma 3.3 hold and ay = 1. There exist positive con-
stants C3 and A3, such that

lur G0l + lua G 0) = Uz + [[v¢. 1) = byl < C3(+ 1) (3.54)
holds true for all t > 0.

Proof. Since af =1, then (3.14) can be rewritten as

d
E&(r) < —&yFo(t), Vt=>0. (3.55)

Moreover, noting the definition of £ () in (3.13) and the fact (3.47), and using Holder inequality
and the boundedness of u;, u> and v, we have

(1) <1 /u1+/<u2— 1>2+/(v—b2>2
Q Q Q

1
2
1
<c1|Q2 fu% +e /(u2—1)2 +c3 /(v—b2)2
Q Q

Q

Bl—

1
<c4F5 (1),

which together with (3.55) gives

d
Lot < —eFa) < —2EW), Vi >1. (3.56)
dt c

Then solving the ODI (356), we end up with
gz(l)< —63 vt 1 (35/)
5 > . .

Recalling the inequalities (3.47), (3.57) allows us to find a constant ¢4 > 0 such that

/ul-i-/(uz— 1)2+/(”_b2)25ti—41’ Vi > 1. (3.58)
Q Q Q

By the similar way in Lemma 3.8, we apply the Gagliardo—Nirenberg inequality to derive that
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1 1 1
lurllzoe +lluz — iz + [lv = b2llL= < c4 (HMIHZI +lluz = 17, +llv = b2||zz>

for all ¢ > #p, which together with (3.58) gives (3.54) by picking a suitably large constant. O
Proof of Theorem 1.2. The combination of Lemmas 3.7-3.9 gives Theorem 1.2. O
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