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Abstract

We improve the decay argument by Bona and Li (1997) [5] for solitary waves of general dispersive 
equations and illustrate it in the proof for the exponential decay of solitary waves to steady Degasperis-
Procesi equation in the nonlocal formulation. In addition, we give a method which confirms the symmetry 
of solitary waves, including those of the maximum height. Finally, we discover how the symmetric structure 
is connected to the steady structure of solutions to the Degasperis-Procesi equation, and give a more intuitive 
proof for symmetric solutions to be traveling waves. The improved argument and new method above can be 
used for the decay rate of solitary waves to many other dispersive equations and will give new perspectives 
on symmetric solutions for general evolution equations.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

The Degasperis-Procesi (DP) equation

ut − uxxt + 4uux − 3uxuxx − uuxxx = 0 (1.1)
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is a unidirectional model for shallow water waves (see [15]) and can be reformulated as a nonlocal 
equation

∂tu + u∂xu + ∂xL(
3

2
u2) = 0, (1.2)

where the dispersive operator L = (1 − ∂2
x )−1 corresponds to the Fourier symbol m(ξ) = (1 +

ξ2)−1 and a convolution kernel function K(x) = 1
2e−|x|. Being completely integrable and having 

bi-Hamiltonian structure [15], this equation together with KdV and Camassa-Holm are three 
well-known representatives in both integrable system theory and water wave problems. Although 
firstly put forward from the perspective of integrability, this model was later rigorously derived 
as a model for shallow water waves and proved to have the same accuracy as the Camassa-Holm 
equation [13]. The Degasperis-Procesi equation is locally well-posed in the classical Sobolev 
space Hs , s > 3

2 , in both periodic and non-periodic settings [28], and it allows global weak and 
classical solutions [29,27] as well as solutions which blow up in the form of wave-breaking [19]. 
Soliton solutions of Degasperis-Procesi equation can be found by inverse scattering technique 
[16,12]. Later, traveling wave solutions (both periodic and solitary) to (1.1) were found in [26], 
and Lenells classified in [22] all possible traveling wave solutions, which include smooth waves, 
peaked waves, cusped waves, stumped waves and their reasonable composition. Very recently, 
Arnesen [4] worked on the non-local formulation (1.2) and proved that differentiable, symmetric 
traveling solutions with uniform bound have the wave speed as the upper bound and are smooth 
when wave height is strictly smaller than wave speed c. In addition, crests of periodic waves will 
turn to peaks when the wave height reaches the wave speed.

This paper focuses on solitary waves (steady solutions with decay at infinity) of the 
Degasperis-Procesi equation and the motivation comes from several aspects. Firstly, Bona and 
Li studied in [5] the decay and analyticity of solitary waves to a class of evolution equations in 
the steady form

f = k ∗ G(f ) (1.3)

where k denotes the convolution kernel function, and G(·) is locally bounded and has superlinear 
growth. The procedure of proving exponential decay of solitary waves mainly involves two steps: 
step 1 for algebraic decay in some Lp(R) spaces and step 2 for a delicate control of L1 norm of 
|x|nφ(x), n ∈ N , to guarantee exponential decay. We hope to simplify this two-step procedure. 
In fact, the following polynomial type convolution estimate (see also other similar estimates in 
[5, Lemma 3.1.1])

∞∫
0

|x|l
(1 + ε|x|)m(1 + |y − x|)m dx ≤ B

|y|l
(1 + ε|y|)m , |y| ≥ 1, (1.4)

is the key for the algebraic decay in [5]. We improve this polynomial type estimate to exponential 
type estimate. In this way, the algebraic decay estimate of solitary waves can be skipped in 
the argument by Bona and Li and we can prove the exponential decay directly. In view that 
the improved exponential type estimate (see Lemma 2.6 below) are independent of the form of 
dispersive equations, it is expected to simplify the proof for exponential decay of solitary waves 
for more general dispersive equations as (1.4) does for algebraic decay.
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The second aspect for motivation is related to symmetry issues of the highest solitary wave to 
nonlinear dispersive equations. Traveling waves solutions are often studied by a priori assuming 
that they are even or symmetric, and it raises the question whether there exist asymmetric travel-
ing waves. For dispersive equations where complete integrity is unknown, the inverse scattering 
technique for obtaining exact solutions will fail. In this case, the symmetry of solutions is often
obtained by the classical method of moving planes put forward by Aleksandrov [1] and Serrin 
[25] (see also [14] about this method for water waves). However, two obstacles will appear when 
applying the method of moving planes: one is to remove the a priori monotonicity condition on 
solitary waves (essentially, this condition assumes that the wave has only one crest); the other is 
to prove the symmetry for the solitary wave of the maximum height. These difficulties can be 
well-illustrated by the symmetry problem of supercritical solitary wave solutions to the steady 
Whitham equation (see [7])

φ(c − φ) = Kw ∗ φ2, (1.5)

where Kw denotes the kernel function for the Whitham equation. The monotonicity condition 
on solitary waves was removed by using the exponential decay of solitary waves and inspired 
by the idea in [8] for integral equations induced from fractional Laplacian. However, when the 
solitary wave φ reaches the maximum height c

2 at the crest, the left side of (1.5) will generate a 
factor c − φ(x) − φ(2λ − x) for some λ ∈ R close to that crest. This factor approaches 0 as x
approaches λ and causes singularity when it is moved to the right side of the equation. In this 
case the argument for symmetry in [6] fails to give a contradiction. This obstacle also appears 
for DP equation in the nonlocal form when φ reaches the maximum height c. In this paper, we 
get around this obstacle by studying the local structure of the solitary wave near the crest φ = c, 
and then manage to prove the symmetry also for the highest wave. This new idea is expected to 
work after modification for the symmetry of the highest solitary wave to the Whitham and other 
dispersive equations. It is worth to point out that the appearance of a peak at the crest for the 
highest wave is in line with the fact that Stokes waves of the extreme form present peaks at crests 
for the governing equation of water waves ([2,3], see also [9,10] for the motion of particles in 
Stokes waves).

The third aspect of motivation comes from the classification of symmetric solutions to general 
evolution equations. In [17], the authors put forward a principle for a class of equations for 
which solutions with a priori spatial symmetry must be traveling waves. This principle was later 
extended to cover nonlocal equations and differential systems in [6], where two new principles 
were also found. The Degasperis-Procesi equation satisfies the principle in [17] so that symmetric 
solutions must be traveling waves. The beautiful proof in [17], however, is quite constructive and 
does not give further information about how symmetric structure is related to the steady structure 
of those waves. In this paper, we study the two restriction conditions that symmetric solutions 
satisfy and find that each of them determines one aspect of the steady structure of these solutions: 
the fixed shape of wave profile and the constant propagation speed. In this way, we give a more 
intuitive, straightforward proof for symmetric solutions to be traveling waves. This idea can be 
used for a family of equations whose structure satisfies Principle P1 in [17,6], including KdV and 
Benjamin-Ono equation. The corresponding results for symmetric waves to be traveling waves 
for the full water wave problem can be found in [17,6,21].

The final aspect of motivation comes from the classification of solitary waves to the 
Degasperis-Procesi equation. Inserting the ansatz u(t, x) = φ(x−ct) for traveling wave solutions 
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into (1.1), one obtains the Degasperis-Procesi equation in steady form with some integration pa-
rameter a. According to the value of a, all possible traveling wave solutions, periodic or solitary, 
were completely classified by Lenells in [22], including smooth waves, peaked waves, cusped 
waves, stumped waves and their proper composition. In this paper, we work on DP equation in 
the nonlocal form (1.2) and get the following steady equation

φ

3
(2c − φ) = Lφ2 + a, (1.6)

where a denotes the integration constant. Unlike the Whitham equation and many others, it is 
not possible to use Galiean transformation to remove the constant a in (1.6). However, we prove 
that the constant a must be trivially 0 for solitary waves with decay (meaning that φ(x) → 0 in 
as |x| → ∞) so that these waves actually solve the steady equation

φ

3
(2c − φ) = Lφ2. (1.7)

In addition, we prove that these waves are symmetric with respect to the only symmetric axis 
at crest at some point and are strictly monotone on each side of the crest. Therefore, a solitary 
solution φ with decay only has one crest at a single point, excluding stumped solutions in [22]
and the possibility to compose solitary waves with different propagation speeds into new solitary 
waves.1 Moreover, the peaked wave defined and found in [22] is only locally symmetric at the 
peak of a solitary wave, so our result improves this local symmetry near the peak to global 
symmetry for the whole solitary wave. It is worth to point out that this finding does not contradict 
with the fact that the Degasperis-Procesi allows for multipeakon solutions [11,23], which are not 
steady solutions.

We now state the structure of this paper. Section 2 starts with an estimate where the kernel 
K(·) is convoluted with exponential type functions. Based on this lemma, we prove that solitary 
solutions decay exponentially at infinity and the decay rate is at least as good as the decay rate 
of the kernel K(·). Section 3 focuses on the symmetry of solitary waves. In particular, we prove 
symmetry for solitary waves with height smaller than the wave speed in section 3.1, while the 
wave with the maximum height are treated in section 3.2. Finally, we give a new proof in sec-
tion 4 for the classification principle that classical symmetric solutions to the Degasperis-Procesi 
equation must be traveling wave solutions.2

2. Exponential decay of solitary waves at infinity

For a traveling wave solution u(t, x) = φ(x −ct) with speed c, the sign of c distinguishes only 
the direction of the propagation of the wave. So, we will only work with c > 0 in the following. 
As mentioned above, direct calculation by Fourier analysis gives that

F [Lf ](ξ) = 1

1 + ξ2 F [f ](ξ) = F [K ∗ f ](ξ), (2.1)

1 This is because solitary waves with different propagation speeds will separate from each other during later propaga-
tion so that their composition will not be a solitary solution to the steady equation (1.7).

2 Such classification principle could also be formulated similarly in the weak setting with distribution theory, see 
[17,20], but it is not our focus here.
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where F denotes the usual Fourier transform and K(x) = 1
2e−|x| denotes the convolution kernel 

of L. By definition, the operator L lifts a L∞-bounded function to a continuous function (see 
[18,4] for details), so we will work with continuous solutions in the following. We also need some 
elementary concepts from topology (see [24] for details). A pointed space is a topological space 
with a distinguished point called basepoint. A map g from a pointed space (X, x0) to another 
pointed space (Y, y0) is a homomorphism if g is a continuous map from X to Y and preserves 
the basepoints, namely g(x0) = y0. In particular, we call g a homomorphism on (X, x0) if it is 
a homomorphism from (X, x0) to itself. We can choose the origin as basepoint so that (R, 0)

forms a pointed space with the usual Euclidean metric topology. We start with the proof for 
integration constant a to vanish for solitary waves to steady Degasperis-Procesi equation (1.6), 
which follows directly from the lemma below for the structure of general convolution equations.

Lemma 2.1. Let G be a homomorphism on the pointed space (R, 0). Let k ∈ L1(R) decay at 
infinity and H be a continuous function on R. If the following convolution equation

f = k ∗ G(f ) + H(f ) (2.2)

has a solution f (x) which is continuous and decays at infinity. Then, H is a homomorphism on 
(R, 0).

Proof. It suffices to prove that H preserves the origin as the basepoint, i.e., H(0) = 0. Since 
f (x) decays at infinity, we only need to prove that k ∗ G(f ) vanishes as |x| → ∞ in (2.2). Note 
that

k ∗ G(f )(x) =
∫

|x−y|<N

k(y)[G(f )](x − y)dy +
∫

|x−y|>N

k(y)[G(f )](x − y)dy (2.3)

for some N > 0. For any small η > 0, we can choose N large enough such that |f (x)| < η
2 for 

all |x| > N . Then, we have

∣∣∣∣∣∣∣
∫

|x−y|>N

k(y)[G(f )](x − y)dy

∣∣∣∣∣∣∣
<

∣∣∣∣∣ sup
|f |< η

2

G(f )

∣∣∣∣∣
∫

|x−y|>N

|k(y)|dy ≤
∣∣∣∣∣ sup
|f |< η

2

G(f )

∣∣∣∣∣‖k‖L1(R).

(2.4)
Note that k decays at infinity, so we can fix the above N and η, and choose M1 > 0 large enough 
such that k(y) < η

8NG(‖f ‖L∞(R))
for all |y| > M1. Then, for any y such that |x − y| < N and 

|x| > M1 + N , we have

M1 < |x| − N < |y| < |x| + N.

Therefore, for |x| > M1 + N , we have

∣∣∣∣∣∣∣
∫

k(y)[G(f )](x − y)dy

∣∣∣∣∣∣∣
< 2NG(‖f ‖L∞(R)) sup

|y|>M1

k(y) <
η

4
. (2.5)
|x−y|<N
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Now, for any small ε > 0, we can choose η < ε sufficiently small so that 
∣∣∣sup|f |< η

2
G(f )

∣∣∣ <
ε

4‖k‖
L1(R)

due to the fact that G is a homomorphism on (R, 0). Then, we insert (2.3), (2.4), (2.5)

into (2.2), and get

|H(f )(x)| ≤ |f (x)| + |k ∗ G(f )(x)| < ε (2.6)

for all |x| > M1 + N . The lemma then follows directly from the decay of f at infinity and the 
continuity of H . �
Remark 2.2. The Galilean transform as a usual trick to remove integration constants fails here. 
The idea in the Lemma 2.1 is expected to work for more general settings where the kernel func-
tion is integrable and has decay at infinity, such as the Whitham equation [6].

As a direct consequence of Lemma 2.1, we have the following corollary for the integration 
constant a to be trivially 0.

Corollary 2.3. The integration constant a in (1.6) vanishes for continuous solitary waves with 
decay.

Proof. By using Lemma 2.1 with G(φ) = φ2 and H(f )(x) = a, we see that lim
x→∞H(f )(x) = 0

which implies a = 0. �
To proceed, we first give the lower and upper bounds of solitary waves.

Lemma 2.4. Nontrivial continuous solitary waves with decay to (1.7) satisfy

0 < φ ≤ sup
x∈R

φ < 2c. (2.7)

Proof. The strict positiveness of K(x) implies that L is a strictly monotone operator on continu-
ous bounded functions, i.e., Lf > Lg if f ≥ g but f 	= g. In addition, straightforward calculation 
shows that LC = C for any constant C. Therefore, we derive from (1.2) that

φ2 − 2cφ = −3Lφ2 < 0, (2.8)

which implies φ ∈ (0, 2c). The decay of φ indicates that supx∈R φ must be reached at some finite 
x0 ∈ R so that (2.7) follows. �
Remark 2.5. A recent work [4] by Arnesen shows that all L∞-bounded traveling waves has 
wave speed c as upper bound. However, we do not need this better upper bound for the estimate 
of decay rate of solitary waves.

With the above bounds for solitary waves ready, the decay argument by Bona-Li in [5] could 
be used to prove the exponential decay for solitary waves. To proceed, we recall the two-step 
procedure by Bona and Li: firstly derive algebraic decay of solitary waves; then improve the 
algebraic decay to exponential decay by making delicate control of some Lp(R) norm of solitary 
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waves with monomial weight |x|n for each n ∈N . The key in the algebraic decay is a convolution 
estimate for functions of polynomial type. In fact, let F1(x) and F2(x) be given by F1(x) :=

|x|l
(1+σ |x|)m and F2(x) := (1 + |x|)−m. Then, it is proved essentially by Bona and Li that

F1 ∗ F2(x) � F1(x) (2.9)

where � means ≤ up to some constant relying on the indices l and m. Intuitively, this statement 
claims that the convolution of two polynomial functions of negative order could be controlled by 
the one with higher order. We find that this philosophy also holds if polynomials are replaced by 
exponential functions in proper formulation. In particular, let G1(x) := el|x|

(1+σe|x|)m and G2(x) :=
e−m|x|. Then it is true that

G1 ∗ G2(x) � G1(x). (2.10)

With this new estimate (2.10) for exponential functions, neither the algebraic decay of solitary 
waves nor the delicate control of the L1(R) norm of |x|nφ for each n ∈ N is needed, while 
the exponential decay of solitary waves could be directly obtained. In this way, the proof for 
exponential decay can be considerably simplified. We formulate the new estimate for exponential 
functions in the following Lemma.

Lemma 2.6 (Convolution estimate of exponential type). For 0 < l < m and any σ > 0, the fol-
lowing inequatlity holds

∫
R

el|x|

(1 + σe|x|)mem|x−y| dx ≤ B
el|y|

(1 + σe|y|)m
, y ∈ R, (2.11)

where B = (min{l, m − l})−1.

Proof. By symmetry of the structure in (2.11), it suffices to prove for the case y > 0. Note that

∞∫
0

el|x|

(1 + σe|x|)mem|x−y| dx =
⎛
⎝

y∫
0

+
∞∫

y

⎞
⎠ elx

(1 + σex)mem|x−y| dx =: I1 + I2.

For I1, we have

I1 =
y∫

0

elx

(1 + σex)mem(y−x)
dx ≤ ely − 1

emy(σ + e−y)ml
≤ ely

l(1 + σey)m
.

For I2, we have

I2 =
∞∫

elx

(1 + σex)mem(x−y)
dx ≤ emy

(1 + σey)m

∞∫
e(l−m)xdx ≤ (m − l)−1ely

(1 + σey)m
.

y y
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On the other hand, we have

0∫
−∞

el|x|

(1 + σe|x|)mem|x−y| dx =
⎛
⎝

y∫
0

+
∞∫

y

⎞
⎠ elx

(1 + σex)mem(y+x)
dx =: I3 + I4.

For I3, we have

I3 ≤ e−my

(σ + e−y)m

1

2m − l
(1 − e(l−2m)y) <

ely

(σey + 1)m

1

2m − l
, (2.12)

where in the last inequality we used the fact 0 < 1 − e(l−2m)y < ely . For I4, we have

I4 ≤ e−my

(σey + 1)m

1

m − l
e(l−m)y <

ely

(σey + 1)m

1

m − l
. (2.13)

The inequality (2.11) and hence this lemma follow directly. �
We now illustrate how the estimate of exponential type could be used to prove directly the ex-

ponential decay of solitary solutions φ to the Degasperis-Procesi equation (1.2). For convenience, 
we introduce the notation M := supx∈R φ.

Theorem 2.7 (Exponential decay of solitary waves). The image of the map x 
→ e|x|φ(x) is a 
bounded, simply connected set in [0, ∞).

Proof. We first prove that

eα|·|φ(·) ∈ Lq(R) (2.14)

holds for any α ∈ (0, 1) and q > 1. Since eα|x|K(x) ∈ Lp(R) for any α ∈ (0, 1) and p > 0, we 
can introduce a constant Cα,p given by

Cα,p := 3(2c − M)−1‖eα|·|K(·)‖Lp(R),

where p is chosen to be the conjugate of q , i.e., 1
p

+ 1
q

= 1. By (1.7) and Hölder’s inequality, we 
have

φ = 3

2c − φ

∫
R

[
K(x − y)eα|x−y|] φ2(y)

eα|x−y| dy ≤ Cα,p

⎛
⎝∫
R

|φ2(y)|q
eαq|x−y| dy

⎞
⎠

1
q

. (2.15)

Let l ∈ [0, α) and define

hε(x) := el|x|
|x| α

φ(x) (2.16)

(1 + εe )
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for small ε ∈ (0, 1). Then, for each fixed ε ∈ (0, 1), the function hε is bounded in Lq(R) by the 
choice of l and boundedness of φ. We now prove that {hε | ε ∈ (0, 1)} is uniformly bounded in 
Lq(R), which then implies that limε→0 hε = el|x|φ belongs to Lq(R) by dominated convergence 
and confirms (2.14).

Since φ tends to zero as |x| → ∞, the quadratic nonlinearity guarantees that for every δ > 0
there exists a constant Rδ > 1 such that

|φ2(x)| ≤ δ|φ(x)| for |x| ≥ Rδ.

Since

‖hε‖q

Lq(R)
=

∫
R

|hε(x)|q dx ≤ C +
∫

|x|≥Rδ

|hε(x)|q dx, (2.17)

where C = C(Rδ) > 0 is a constant independent of ε, it suffices to study the last integral on the 
right-hand side of (2.17).

Let r ∈ (0, q). By (2.15) and Hölder’s inequality, we have

∫
|x|≥Rδ

|hε(x)|qdx ≤
∫

|x|≥Rδ

|hε(x)|q−r

(
el|x|

(1 + εe|x|)α

)r

|φ(x)|rdx

≤
∫

|x|≥Rδ

|hε(x)|q−r

(
el|x|

(1 + εe|x|)α

)r

Cr
α,p

(∫
R

|φ2(y)|q
eαq|x−y| dy

) r
q

dx

≤ Cr
α,p

[ ∫
|x|≥Rδ

|hε(x)|qdx

] q−r
q

[ ∫
|x|≥Rδ

elq|x|

(1 + εe|x|)αq

⎛
⎝∫
R

|φ2(y)|q
eαq|x−y| dy

⎞
⎠dx

] r
q

.

Dividing both sides of the inequality by 
[∫

|x|≥Rδ
|hε(x)|qdx

] q−r
q

, we find that3

∫
|x|≥Rδ

|hε(x)|qdx ≤ C
q
α,p

∫
|x|≥Rδ

elq|x|

(1 + εe|x|)α

⎛
⎝∫
R

|φ2(y)|q
eαq|x−y| dy

⎞
⎠dx =: Cq

α,pT . (2.18)

By Fubini’s theorem and Lemma 2.6, we obtain that

3 Note that the term we are dividing by vanishes if and only if φ = 0 everywhere in {|x| ≥ Rδ}, in which case the 
lemma is obviously true.
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T =
∫
R

|φ2(y)|q
[ ∫
|x|≥Rδ

elq|x|

(1 + εe|x|)αqeαq|x−y| dx

]
dy

≤
∫

|y|≥Rδ

|φ2(y)|q Belq|y|

(1 + εe|y|)αq
dy +

∫
|y|<Rδ

|φ2(y)|q
∫

|x|≥Rδ

elq|x|

(1 + εe|x|)αqeαq|x−y| dxdy,

(2.19)

where B = B(l, q, α) > 0 does not depend on ε. Since 0 < l < α, the last integral in (2.19)
is bounded by a constant C1 which depends on l, α, q, ‖φ‖∞ and Rδ but independent of ε. 
Combining (2.18), (2.19) and in view that |φ2(y)| < δ|φ(y)| for all |y| ≥ Rδ , we have

∫
|x|≥Rδ

|hε(x)|qdx ≤ C
q
α,p

⎡
⎢⎣δqB

∫
|x|≥Rδ

|hε(x)|qdx + C1

⎤
⎥⎦ . (2.20)

For δ small enough so that Cq
α,pδqB < 1

2 , (2.20) implies that

∫
|x|≥Rδ

|hε(x)|qdx ≤ C2,

where C2 = C2(l, α, p, ‖φ‖∞, Rδ) > 0 is a constant which does not rely on ε.
Hence, we have shown that

∫
R

|hε(x)|qdx � 1.

Letting ε → 0, the dominated convergence theorem ensures that

∫
R

elq|x||φ(x)|qdx � 1,

which implies in particular x 
→ el|x|f (x) ∈ Lq(R) for q = p
p−1 and l ∈ [0, α), and therefore 

confirms (2.14).
We now prove that solitary waves decay exponentially by using (2.14) and Young’s inequality 

in the steady DP equation (1.7). Note that

eα|x|φ(x) � 3

2c − M

[(
eα|·|K(·)) ∗

(
eα|·|φ2(·)

)]
(x) ∈ L∞(R) (2.21)

for any α ∈ (0, 1). With this decay estimate, we can use the structure of the DP equation to 
improve the decay rate to cover the case α = 1 so that φ decays at least as good as the kernel K . 
In fact, we have

e|x|φ(x) ≤ 1

2c − M

∫
K(x − y)e|x−y| (φ(y)e

|y|
2

)2
dy ≤ ‖e|·|K(·)‖L∞‖φe

|·|
2 ‖2

L2 < ∞.
R
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The above shows that φ(x) decays as fast as e−|x| at infinity. The fact that the image e|x|φ(x)

forms a simply connected set follows from the continuity of φ. �
Remark 2.8. This argument with exponential type convolution estimate is expected to work also 
for the Whitham and other dispersive equations in proper nonlocal formulation, where a kernel 
with exponential decay is convoluted with a superlinear nonlinearity.

3. Symmetry and one-crest structure of solitary waves

With the decay estimates above, we are ready to prove the symmetry for solitary waves to 
(1.2). Note that Arnesen recently studied in [4] the Degasperis-Procesi equation in the nonlocal 
formulation and proved that traveling waves had wave speed c as the upper bounded. In the 
following, we will prove that both solitary waves with height smaller than c and solitary waves 
of the maximum height c are symmetric, and have a unique crest, which in particular imply that a 
peaked solitary wave with decay only has one peak. For symmetry of solitary waves with height 
smaller than the wave speed c, our proof follows the idea in [7] for the Whitham equation, where 
the key observation is that the nonlocal operator L behaves as an elliptic operator and there exists 
a touching lemma on half-plane. This touching lemma plays the role as the maximum principle 
for elliptic equations. It is worth to mention that the way to remove the monotonicity assumption 
on solitary waves in [7] when using the method of moving planes is inspired by the work of Chen, 
Li and Ou [8] for symmetry of solutions to a class of integral equations induced by fractional 
Laplacian, although the idea of using Kelvin type transform in the latter fails to work in [7] due 
to inhomogeneity of the kernel function for the steady Whitham equation.

For solitary waves of the maximum height (see [18]), i.e., supx∈R φ(x) = c, the argument 
in [7] unfortunately fails to confirm the symmetry. It seems that there exists no argument for 
confirming the symmetry of a solitary wave with wave speed equal to its height up to now for the 
Degasperis-Procesi equation,4 so we put forward an argument here for waves of the maximum 
height and expect it to be effective also for symmetry issues of highest waves of other equations, 
like the Whitham equation in [7]. We first introduce the notion of supersolution and subsolution 
of the steady DP equation. A solution φ to the steady Degasperis-Procesi equation (1.7) is called 
a supersolution if

φ

3
(2c − φ) ≥ K ∗ φ2

and a subsolution if the inequality above is replaced by ≤. With the supersolution and subso-
lution, we can prove the following touching lemma, which can be intuitively explained as: if a 
supersolution stays above a subsolution on a half plane (λ, ∞) for some λ ∈ R, then the super-
solution never touches the subsolution at any finite point unless they are equal on the whole half 
plane (λ, ∞).

Lemma 3.1 (Touching lemma on a half plane). Let φ1 and φ2 be a supersolution and a subsolu-
tion of the steady Degasperis-Procesi equation (1.7) on a subset [λ, ∞) ⊂ R, respectively, such 
that φ1 ≥ φ2 on [λ, ∞) and (φ2

1 − φ2
2)(x) = −(φ2

1 − φ2
2)(2λ − x). Then either

4 Note that the peaked or cusped waves defined and found in [22] are only locally symmetric near a peaked or cusped 
point.
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• φ1 = φ2 in [λ, ∞), or
• φ1 > φ2 with φ1 + φ2 < 2c in (λ, ∞).

Proof. In view of its symmetry and monotonicity, K acts as a positive convolution operator on 
functions which are odd with respect to λ and do not change sign on the half line [λ, ∞). In fact, 
let f ≥ 0 on [λ, ∞), and f (x) = −f (2λ − x). Then

K ∗ f (x) =
∞∫

λ

K(y)f (x − y)dy +
λ∫

−∞
K(x − y)f (y)dy

=
∞∫

λ

K(x − y)f (y)dy +
∞∫

λ

K(x + y − 2λ)f (2λ − y)dy

=
∞∫

λ

(K(x − y) − K(x + y − 2λ))f (y)dy,

where the last equality holds due to f being odd with respect to λ. For x, y > λ, we have

(x + y − 2λ) − |x − y| = 2 min{x − λ,y − λ} > 0. (3.1)

Therefore, in view of K being an even function and monotonically decreasing on (0, ∞), we 
have

K(x − y) − K(x + y − 2λ) > 0 (3.2)

so that

K ∗ f (x) ≥ 0 for all x ≥ λ.

In particular, the strict positivity of K implies that either K ∗ f > 0 or f ≡ 0 on (λ, ∞). As a 
consequence, for the supersolution φ1 and subsolution and φ2 in this lemma, we have

(2c − (φ1 + φ2))(φ1 − φ2) ≥ 3K ∗ (φ2
1 − φ2

2) > 0

for all x > λ unless φ1 = φ2 on [λ, ∞). The lemma then follows directly. �
We now use the method of moving planes to prove the symmetry and one-crest structure of 

the wave profile. The first step is to prove that solitary waves φ(x) satisfy the following strict 
overlay property in Lemma 3.2 below, which means that there exists λ ∈R so that for each x > λ

the reflection of φ(x) with respect to λ stays strictly above the part of φ at the reflection point 
2λ − x, i.e., φ(x) > φ(2λ − x). For convenience, we define the open sets

�λ := {x ∈ R | x > λ} and �−
λ := {x ∈ �λ | φ(x) < φλ(x)},

where φλ(·) := φ(2λ − ·) is the reflection of φ about the axis x = λ.
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Lemma 3.2 (Strict overlay property). There exists N > 0 sufficiently large such that

φ(x) > φλ(x), x > λ, (3.3)

for any λ ≤ −N . In other words, �−
λ = ∅ for any λ ≤ −N .

Proof. Note that φλ(x) is also a solution to the steady Degasperis-Procesi equation in nonlocal 
formulation (1.7) if φ(x) does. Therefore, we deduce from (1.7) that

2c(φλ(x) − φ(x))

= 3

⎛
⎜⎜⎝

∫

�λ\�−
λ

+
∫

�−
λ

⎞
⎟⎟⎠(

K(x − y) − K(2λ − x − y)
)
(φ2

λ(y) − φ2(y))dy

+ φ2
λ(x) − φ2(x).

(3.4)

For x ∈ �−
λ , we use (3.1) and find that the integral over �λ\�−

λ on the right side of (3.4) is 
negative so that

2c(φλ(x) − φ(x))

≤ 3
∫

�−
λ

(
K(x − y) − K(2λ − x − y)

)
(φ2

λ(y) − φ2(y))dy + φ2
λ(x) − φ2(x). (3.5)

Moreover, Theorem 2.7 implies that for any small ε > 0, we can choose sufficiently large N such 
that

φ(x) < φλ(x) < ε, x ∈ �−
λ (3.6)

for any λ < −N . Then by taking the L∞-norm on both sides of (3.4) over �−
λ and using 

Lemma 3.1, we have

‖φλ − φ‖L∞(�−
λ ) ≤ 3

2c
‖φ + φλ‖L∞(

�−
λ

) (‖K‖L1(R) + 1
)‖φλ − φ‖L∞(�−

λ )

≤ 3ε

c

(‖K‖L1(R) + 1
)‖φλ − φ‖L∞(�−

λ ) ,

(3.7)

where 
(
�−

λ

)∗
is the reflection of �−

λ about the plane x = λ. By choosing ε < c
6(‖K‖L1(R)+1)

, we 

get a contradiction in (3.7) unless ‖φ −φλ‖L∞(�−
λ ) = 0 for λ ≤ −N . As a consequence, �−

λ must 

be of measure zero. Since �− is open, we deduce that �− is empty for λ ≤ −N . �
λ λ
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3.1. Solitary waves with height strictly smaller than wave speed c

We are now ready to prove that solitary waves are symmetric and have exactly one crest at 
the symmetric axis. The method is similar as that for the Whitham equation in [7] but we give 
full details for the proof here and write it in a way to better indicate the obstacle for the case of 
highest solitary waves.

Theorem 3.3. Let φ be a solitary solution to the steady Degasperis-Procesi equation (1.7) with 
φ(x) < c. Then, there exists a unique λ0 ∈ R such that φ is symmetric about x = λ0 and φ is 
strictly monotonic on each side of the symmetric axis x = λ0.

Proof. According to Lemma 3.2, there exists N > 0 such that �−
λ is empty for all λ < −N . We 

now move the axis x = λ from λ = −N to the right and it is clear that �−
λ remains empty unless 

x = λ reaches a local maximum of φ, or there exists x0 > λ such that the reflection image of 
φ on the left side of x = λ touches the wave profile on the right side of x = λ at x0, namely 
φ(2λ − x0) = φ(x0). However, Lemma 3.1 will exclude the latter case. In fact, suppose that the 
latter case happens and the procedure stops at x = λ0 so that φ(x) ≥ φλ0(x) with the equality 
holding for the first time at x = x0 > λ0, and that φ(x) do not match φλ0(x) exactly for x > λ0. 
By taking φ and φλ as the supersolution and subsolution, respectively, and using Lemma 3.1, we 
find that φ(x) > φλ0(x) for all x > λ0 so that a contradiction appears. So, the above process only 
stops at x = λ0, where φ reaches its local maximum for the first time.

We now show that φ is symmetric with respect to x = λ0 so that this local maximum of φ at 
λ0 is just the unique crest. We now assume φ to be asymmetric with respect to x = λ0, and seek 
a contradiction. First of all, the touching Lemma 3.1 excludes the possibility for φ(x) ≡ φ(λ0)

to hold on [λ0, λ0 + δ] for any small δ > 0. Also, the above process indicates that φ is strictly 
increasing on (−∞, λ0). Then, for any ε > 0, we can choose δ > 0 sufficiently small such that 
�−

λ is simply connected and its size |�−
λ | < ε for λ ∈ (λ0, λ0 + δ). For a fixed λ ∈ (λ0, λ0 + δ), 

it is clear that 2λ − λ0 ∈ �−
λ . Since φ has height strictly smaller than c, we have

φ(x) ≤ ‖φ‖L∞(R) < c (3.8)

for x ∈ �−
λ and

cλ := sup
x∈�−

λ

[φ(x) + φλ(x)] < 2‖φ‖L∞(R) < 2c. (3.9)

Then, by simple connectedness of �−
λ , we restrict (3.4) on �−

λ and get

(2c − cλ)(φλ − φ)(x) ≤ 3
∫

�−
λ

[K(x − y) − K(2λ − x − y)] (φ2
λ(y) − φ2(y))dy. (3.10)

In view of (3.9), we take L∞-norm over �− on both sides of (3.10), and get
λ
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‖φλ − φ‖L∞(�−
λ ) <

3|�−
λ |

2c − cλ

‖K‖L∞(�−
λ )‖φλ + φ‖L∞(�−

λ )‖φλ − φ‖L∞(�−
λ )

<
3ε‖φ‖L∞(R)

c − ‖φ‖L∞(R)

‖φλ − φ‖L∞(�−
λ ),

(3.11)

which leads to a contradiction if we choose ε <
c−‖φ‖L∞(R)

6‖φ‖L∞(R)
. Therefore φ(x) matches φλ0(x)

for all x ∈ �λ0 , i.e., φ is symmetric with respect to x = λ0. In addition, the above process of 
moving x = λ from far left to x = λ0 guarantees that φ has a unique crest located at x = λ0 and 
is monotone on each side of this symmetry axis. �
3.2. The solitary wave of maximum height

For a solitary wave whose crest reaches the maximum height c, the term cλ can be very close 
to 2c so that 2c − cλ may be comparable with (or much smaller than) ε and makes (3.11) fail 
to lead to a contradiction. In order to get around this difficulty, we have to study the delicate 
structure of (3.10). We now explain the idea to get around this difficulty. Suppose that we push 
x = λ from far left to the right on the real line and the set �−

λ remains empty until x = λ meets a 
crest of the wave profile at λ0. For λ to be slightly larger than λ0, the factor 2c− cλ could be very 
small but |�−

λ | is also small. Then for x, y ∈ �−
λ , a new and key observation is that the difference 

|2λ − x − y| − |x − y| satisfies

∣∣|2λ − x − y| − |x − y|∣∣ = 2 min{x − λ,y − λ} ≤ 2|�−
λ |, (3.12)

and is also small. Therefore, the term K(x − y) − K(2λ − x − y) contributes extra smallness 
which may be used to control the smallness from 2c − cλ.

In the idea above, the size of 2c − cλ relies on the structure of the wave profile φ near the 
crest at λ0. It is indicated by [22] and [4] that the wave profile φ will become non-smooth and a 
peak or cusp may form at the crest when wave height reach the wave speed c. So, it is reasonable 
to assume that a highest solitary wave φ is non-smooth at the crest, but we will give a method 
which work for different non-smooth structures (peak or cusp) near the crest. Without loss of 
generality, we assume that the crest for the highest solitary wave is located at x = λ0 and its local 
structure is characterized by

c − φ(x) ∈ [C1|x − λ0|α,C2|x − λ0|α] (3.13)

for α ∈ (0, 1] and some constants C1, C2 > 0 when x is very close to λ0. In this way, the argument 
below can be adapted to treat the symmetry issues of steady solutions with other Hölder regularity 
at the crest.5

Theorem 3.4. There exists a finite λ0 ∈ R such that the highest solitary solution φ to the steady 
Degasperis-Procesi equation is symmetric about x = λ0 where the crest is located. Moreover, φ
is strictly monotone on each side of the symmetric axis.

5 It is expected that the type of non-smoothness at the crest of the solitary wave will be the same as that for the 
convolutional kernel K(·), see the peaked solitary wave for DP in [22] and cusped periodic waves for the Whitham in 
[18].
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λ

φ

λ0 λ12λ−λ0

x

2λ−x

φ(2λ−x) φλ(x)

φλ

Fig. 1. Assume that the procedure of pushing x = λ from left to right stops for the first time at a local maximum of φ at 
x = λ0. Then, the reflection axis x = λ is pushed slightly to the right side of x = λ0, which generates a non-empty set 
�−

λ denoted by the interval (λ, λ1). φλ as the reflection of φ is partially depicted by dashed lines. For a point x ∈ �−
λ , 

its reflection 2λ − x is also depicted.

Proof. First of all, we can prove similarly as in Theorem 3.3 that we are able to push x = λ

from far left to right until it stops at x = λ0 where a crest of φ is located. If φ(λ0) < c, then the 
proof reduces to the case for waves with height strictly smaller than c, as in Theorem 3.3. So, 
we can assume that φ(λ0) = c. As before, the touching Lemma 3.1 excludes the possibility for 
φ(x) ≡ φ(λ0) to hold on [λ0, λ0 + δ] for any small δ > 0. Also, for any ε > 0, we can choose 
δ > 0 sufficiently small such that �−

λ will be simply connected and its size satisfies |�−
λ | < ε for 

λ ∈ (λ0, λ0 + δ). As in Fig. 1, for a fixed λ ∈ (λ0, λ0 + δ), we denote �−
λ by (λ, λ1) and define

δ1 := λ − λ0, δ2 := λ1 − λ. (3.14)

Note that δ2 can be very small if δ1 is chosen small enough, and in particular, δ2 approaches 0 as 
δ1 does. Then, from (3.12) and the property of kernel K , we have

0 < K(x − y) − K(2λ − x − y) ≤ 2(x − λ), x, y ∈ �−
λ . (3.15)

The key observation is for estimate of the term 2c − φ(x) − φλ(x), x ∈ �−
λ as follows: For 

sufficiently small δ1 and any x ∈ �−
λ , we use (3.13) and get

2c − (φ(x) + φλ(x)) = φ(λ0) − φ(x) + φ(λ0) − φ(2λ − x)

≥ C1
[
(x − λ0)

α + [(2λ − λ0) − x]α]
≥ C1|x − λ|α,

(3.16)

where the first inequality can be well-illustrated by

c − φλ(x) = φ(λ0) − φ(2λ − x) = φλ(2λ − λ0) − φλ(x)

and the fact where the distance between x and 2λ −λ0 is the same as the distance between 2λ −x

and λ0 (as illustrated in Fig. 1). Therefore, for any x ∈ �−, we use (3.15) and (3.16) to get
λ
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φλ(x) − φ(x)

= 3

2c − (φ + φλ)

∫

�−
λ

(
K(x − y) − K(2λ − x − y)

)
(φ2

λ(y) − φ2(y))dy

≤ 3

C1|x − λ|α
[

2(x − λ)|�−
λ |‖φ + φλ‖L∞

�
−
λ

‖φλ − φ‖L∞
�

−
λ

]

≤ 12cC−1
1 δ2|x − λ|1−α‖φλ − φ‖L∞

�
−
λ

.

(3.17)

From (3.17), we see clearly that |x − λ|1−α is a small quantity with non-negative power 1 − α, 
which shows that the smallness of K(x − y) −K(2λ − x − y) balances the singularity caused by 
the term 2c − (φ + φλ) on �−

λ . Then, by choosing δ1 sufficiently small, we can make δ2 < ε <

(C1
24 )

1
2−α so that

12cC−1
1 δ2|x − λ|1−α ≤ 12cC−1

1 δ2−α
2 <

1

2
.

Therefore, we get a contradiction by taking the L∞
�−

λ

norm on the left side of (3.17), and the 

lemma is proved. �
Remark 3.5. In the proof for Theorem 3.4, we used the boundedness of the kernel function. For 
unbounded kernel which may appear in other equations like the Whitham equation, it is expected 
that proper Lp-norms instead of L∞-norm should be used for (3.17).

4. A new method for symmetric solutions to be traveling waves

It has been confirmed in [17] that classical symmetric solutions to the Degasperis-Procesi 
equation must be traveling waves. The idea for the proof in [17] is to construct a traveling wave 
solution ū(t, x) which shares the same initial data with a symmetric solution u(t, x), then the 
uniques of solutions implies that ū(t, x) coincide with u(t, x) so that symmetric solutions are 
traveling waves. However, we hope to understand how the symmetric structure of waves can 
be connected with the fixed shape and constant propagation speed, which can not be clearly 
seen from the constructive proof in [17]. With this goal, we check carefully the two constraint 
conditions (see (4.6)-(4.5) below) and find that they actually contain information for the shape 
of wave profile and the wave propagation speed, respectively. This new finding also leads to a 
new, more straightforward proof for symmetric solutions to be traveling waves as follows. For 
convenience, we work on the Degasperis-Procesi equation in nonlocal formulation (1.2).

Theorem 4.1. Solutions to the Degasperis-Procesi equation with a priori spatial symmetry are 
steady solutions.

Proof. Assume that u(t, x) is a solution to the Degasperis-Procesi equation with symmetric axis 
x = λ(t) for some function λ(·) ∈ C1(R), i.e.,

u(t, x) = u(t,2λ(t) − x). (4.1)

Then, the spatial and time derivatives of u(t, x) satisfy
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ut |(t,x) = (ut + 2λ̇ux)|(t,2λ−x), ux |(t,x) = −ux |(t,2λ−x). (4.2)

In addition, we have

1

2
∂xL(u2)

∣∣
(t,x)

= −
∫
R

K(y)[uux ](t,2λ − x − y)dy = −L(uux)
∣∣
(t,2λ−x)

, (4.3)

where in the second equality we used the evenness of the kernel k(·). Inserting (4.1)-(4.3) into 
(1.2) and in view of the arbitrariness6 of t and x, we find that u satisfies the following equation

ut + 2λ̇ux − uux − 3L(uux) = 0, (4.4)

where λ̇ := λ̇(t) denotes the derivative of λ(t) with respect to t . The comparison between (4.4)
and (1.2) then leads to the following constraint conditions

ut + λ̇ux = 0, (4.5)

−λ̇ux + uux + 3L(uux) = 0. (4.6)

A key observation is that (4.5) is a linear PDE of first order with coefficients relying only on the 
time variable so that u(t, x) must take the form

u(t, x) = g(x − λ(t)) (4.7)

for some function g, which implies that the shape of the solution will not change in later evolution 
and the solution propagates with speed λ̇(t). Inserting (4.7) into (4.6), we get the following 
differential equation

[−λ̇(t)g′ + gg′ + 3L(gg′)
] ∣∣∣

x−λ(t)
= 0. (4.8)

Choose arbitrarily two pairs (t1, x1), (t2, x2) ∈ R+ ×R (for which the solution exists and makes 
sense) such that

x1 − λ(t1) = x2 − λ(t2) =: X. (4.9)

Evaluating (4.8) at these two pairs gives

(λ̇(t1) − λ̇(t2))g
′(X) = 0.

Due to the arbitrariness of X, λ̇(t) has to be a constant so that the wave profile has a constant 
propagation speed. Therefore u(t, x), with fixed shape and constant propagation speed, is a trav-
eling wave solution. �

6 The variable t should of course be chosen from an interval where solutions stay in the same function space as the 
initial datum does.
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