Journal of Computational Physi&§1,425-457 (1999)

®
Article ID jcph.1998.6166, available online at http://www.idealibrary.conlBE &l.

On Simulation of Turbulent Nonlinear
Free-Surface Flows

Ben R. Hodgesand Robert L. Street

Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California
E-mail: street@cive.stanford.edu

Received September 18, 1997; revised September 9, 1998

A method for numerical simulation of the unsteady, three-dimensional, viscous
Navier—Stokes equations for turbulent nonlinear free-surface flows is presented and
applied to simulations of a laminar standing wave and turbulent open-channel flow
with a finite-amplitude surface wave. The solution domain is discretized with a
boundary-orthogonal curvilinear grid that moves with the free surface, allowing
surface deformations to be smoothly resolved down to the numerical grid scale.
The nonlinear kinematic and dynamic boundary conditions for boundary-orthogonal
curvilinear coordinates are developed and discussed with a novel approach for ad-
vancing the free surface in curvilinear space. Dynamic large-eddy-simulation tech-
niques are used to model subgrid scale turbulence effects. The method is shown to
correctly produce the shape of a nonlinear free-surface wave and its decay due to
viscosity. Application to finite-amplitude waves moving over a turbulent channel
flow allows demonstration of the clear differences between a channel flow with and
without waves, particularly the instantaneous turbulence structure. An interesting
sidelight is the appearance of short-crested cross-channel surface waves caused by
natural resonance. (© 1999 Academic Press
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1. INTRODUCTION

Free-surface flows with associated surface wave phenomena are ubiquitous in both
neering and geophysical applications. Until the seminal marker-and-cell (MAC) hume
simulations of Harlow and Welch [1], the understanding of the kinematic and dyna
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effects of surface waves was limited to considerations of inviscid wave theory, viscc
wave theory for small amplitude waves, and parameterizations of field data and labora
experiments. In the past 30 years, numerical simulation methods (e.g., [2—4]) have prc
valuable for investigating wave behavior. It is only recently that numerical methods he
been applied to free surface flows with accurate resolution of viscous effects below sig
icant surface deformations (e.g., [5—7]); however, these methods have thus far only t
applied in the study of laminar vortex flows.

To date, the viscous free-surface numerical simulation methods presented in the litere
have been limited by one or more of the following simplifications: (1) two space dime
sions, (2) steady state, (3) small-amplitude waves, (4) laminar flow, (5) no boundary-la
resolution, (6) inability to handle steep waves, and (7) use of high-viscosity fluid (ratt
than water). In addition there exists a large body of literature that exploits the irrotational
proximation for surface waves and solves the inviscid equation set to determine free-sur
motion. The different methods and their limitations have been discussed in recent revi
of numerical methods for free-surface simulation [8, 9]. The methods used for turbul
free-surface simulation in the literature have been direct Navier—Stokes simulation (DI
[10-12], applied to small free-surface motions, and Reynolds-averaged Navier—Stokes
ulations (RANS), typically applied to steady flows (e.qg., [13]) and more recently to unstes
flows (e.g., [14]). There does not appear to be any published use of large-eddy-simula
(LES) methods applied to free-surface flows prior to the present work. While DNS me
ods area priori capable of resolving all the turbulent structure in a simulation, they hay
thus far been limited to simulation of small-amplitude surface deformations, generally w
linearized free-surface boundary conditions. Steady-state RANS computations have |
used extensively in the naval architecture community to model the waves developed by
hull forms. The capability of unsteady RANS methods to resolve turbulent eddies near
free surface has not yet been demonstrated.

The lack of a comprehensive method with the capability of simulating unsteady, visco
turbulent flows with finite-amplitude waves can be attributed to the problems noted
Sarpkaya [15], namely, that.the modeling of free-surface phenomena still poses difficul
ties, not only because of an insufficient understanding of the physics of the vorticity/fr
surface interaction, but also because of the necessity to devise and use mathematical fo
lations, numerical schemes, and physical-property experiments of far greater comple
than had hitherto been used...”

This provides the motivation for the present work: the development of a numerical mett
thatis: (1) not limited by the simplifications used in prior free-surface simulation methoc
(2) capable of simulating the physics of turbulent free-surface interactions, (3) straig
forward in its implementation (using the least-complicated second-order numerical al
rithms), and (4) formulated to handle steep or overturning waves. This last objective
the primary numerical challenge. This paper demonstrates the ability of the numer
method to simulate finite-amplitude surface waves in a formulation that is not limited
single-valued waves. The method can be extended to overturning waves with some cav
(1) fine grid resolution must be applied to resolve the overturn in the curling portion o
wave—this implies the need for adaptive grid refinement; (2) the kinematic free surfe
boundary condition does not apply once the wave surface becomes multiply connected
therefore, a new model is required for the physics of free-surface motion after the ci
touches the underlying free surface; (3) the present grid generation method must be r
ified to smoothly handle a multiply connected material surface. Each of these issues i



SIMULATION OF TURBULENT FREE-SURFACE FLOWS 427

area requiring significant further research, for which the present work is a necessary
step.

The numerical approach in this paper is a free-surface/moving-grid adaptation of
method developed by Zargt al. [16] for internal-flow simulations. This finite-volume
method employs second-order-accurate discretization in time and space of the prin
variables in curvilinear coordinates. Extensive simulation experience [17-21] has der
strated the efficiency and accuracy of the code for computation of four-dimensional turbt
flow problems at the scales simulated herein. The Navier—Stokes equations are solvi
a fractional-step method in conjunction with a multigrid solution of the pressure Pois:
equation. The free-surface algorithm developed in this paper has been designed to
within the framework of Zangt al’s method [16], but is general enough to be adapted
other methods. Our approach to simulating a viscous free-surface flow uses a boun
fitted grid that moves with each time step to conform to the free surface [5, 6, 22]. T
eliminates difficulties in treating the dynamic boundary condition at the free surface that
cur in fixed-grid methods (e.qg., [2, 23]). Computation of the free-surface motion is throl
an algorithm that decouples the grid generation and the flow solution, providing a flex
framework for modifying and adapting the method. Large-eddy-simulation techniques |
are used to model subgrid-scale turbulence effects that cannot be adequately resolv
the computational grid. The curvilinear, boundary-fitted grid is generated with the Pois
equation method using an adaptation of the 3DGRAPE/AL code [24].

The following sections of this paper present the mathematical formulation of a visc
incompressible free-surface flow, a description of the numerical algorithm, validation of
moving grid and free-surface algorithms, and demonstration of the numerical methoc
the simulation of turbulent open-channel flow with finite-amplitude free-surface waves

2. MATHEMATICAL FORMULATION

The flow of a fluid beneath a free surface is governed by the Navier—Stokes equa
subject to conservation of mass in the fluid volume along with kinematic and dynal
boundary conditions at the free surface. This equation setis considerably more comple
the equation set for an internal flow due to the nonlinear effects of the boundary condit
and the temporal deformation of the domain boundary. The hyperbolic kinematic bount
condition that governs the evolution of the free surface is nonlinear in the velocity :
spatial gradients of the surface. The dynamic boundary condition that enforces the
surface stress condition has a nonlinear effect from its linkage to the nonlinear momer
equations through the surface pressure.

2.1. Navier-Stokes Equations

The spatially filtered, constant-density, incompressible Navier—Stokes equation
Cartesian (physical) space can be presented in a non-dimensional conservation-law fc
terms of the Cartesian velocities as

Ui AA;j —

— + — = B;j 1

P + a%; i 1)
o0

==, @)



428 HODGES AND STREET

where the overbar represents a LES filter [25]. The non-dimensional momentum flux :
source terms are

— ou;
Aj = UjU + p8ij —Re™ — + g ©)
8Xj
17
= 4
=k (4)

All terms in Egs. (1) through (4) are non-dimensionalized with a velocity s¢éleand a
length scaléL). The Reynolds number is defined using the kinematic viscosjtyuch that
Re=UL/v. The non-dimensional modified pressym is defined from the dimensional
total pressuréP), density(p), and gravitational acceleratiqg) as

=—+ . (5)

The source termdW/dx; represents a body force (e.g., the driving pressure gradient
an open-channel flow). The term) in the momentum flux is introduced to represent the
additional subgrid-scale terms that arise due to the filtering of the nonlinear advection ter

Tij Ui Uj —lILTJ (6)
The subgrid-scale stress term contains both the interaction of subgrid scales with thems:
and the interaction of the subgrid scales with the resolved scales. The turbulent flow si
lations in this paper use the two-parameter dynamic model [18, 26], which was develo
from the dynamic-mixed model [25]. The subgrid-scale stress is modeled by

- —1 a— (m)
dnj 0 <Re—18“‘> _ 9Rer' ou; L Lj @

3Xj - _87)(]' T a 8Xj 9X%; ' BXI' ’
This modelintroduces three termsto the filtered Navier—Stokes equations: the eddy visce
Reynolds number Re the scale-similarity coefficier@t; , and the modified Leonard tensor
Li(jm). The eddy viscosity Reynolds number and scale-similarity coefficient are dynamice
modeled, while the modified Leonard tensor is directly computed from the resolved fl
field.

Itis convenient to split the subgrid-scale stress so that part is contained in the momen
flux and part is held in the source term. This requires that the momentum equations
rewritten as

o dFj

5t Tk = S, ®)
where
Fij = Uj0i + p&j — (Re™* + Rey?) 32 ©)
ov  oRertan; AL

10
0% 0Xj 09X (10)
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2.1.1. Curvilinear transformation of Navier—Stokes equatior®olution of numerical
problems in complicated domains using boundary-fitted curvilinear coordinates is 1
a standard technique requiring little introduction. Boundary-fitted curvilinear coordin
transformations for moving grids are derived using the chain rule for partial differen
equations, resulting in [27]

3 3
=gl (11)
dXj PR

I 3

— = — xS —, 12
at  ar 7 gga (12)

wheret % with g =1, 2, 3 are the computational space coordinad¢si is a time derivative
taken at a fixed point in physical spadgpt is a time derivative taken at a fixed point in
computational space; repeated subscript/superscript combinations imply summation
the surface metric tensor and grid velocity are defined as

_ &1

S = o (13)
_ 90X
= (14)

Note that the former is only a correct tensor representation whisra Cartesian coordinate
system so that; = x/.

To simulate a flow with a free surface in boundary-fitted curvilinear coordinates, Eqgs. (
and (12) are used to transform the physical space Navier—Stokes equations into con
tional space. Completing the transformation requires the metric identity [27]

—l —
354 () = (15)
along with the conservation of space [28]
_ 0 _1q.
( 1)—@( tsixj) =o. (16)

Application of Egs. (11) through (16) to Egs. (2) and (8) through (10) provides the
steady, incompressible, constant-density, filtered, non-dimensional Navier—Stokes ¢
tions in time-dependent boundary-fitted curvilinear coordinates as

- N
a—T(J 1ui)+8—§q(\] FN =S 17)
az—q(a-lu_% =0, (18)

where the curvilinear momentum tensBf and the curvilinear source vectsr are

= (U%— X9 + §'p— (Re* + Rer) G gé (19)
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All physical space variables are non-dimensional, and curvilinear-space variables are
fined as

. . X
inverse Jacobian J~! = de EIS (21)
contravariant velocity ~ U% = S'0; (22)
contravariant grid velocity X% = §/; (23)
contravariant volume metrics G99 = stj (24)

. . 0&d
contravariant surface metrics §' = v (25)
i

2.2. Kinematic Boundary Condition

2.2.1. Cartesian space.The kinematic boundary condition is the Lagrangian statemer
of a material surface which requires that a particle on the surface must remain on the sur
If F =0is afunction that describes the location of the surface, then the kinematic condit
requires that

F
aa—t+u~VF=O. (26)

It is possible to use directly the Lagrangian conditi@ /Dt =0 or Dx; /Dt =u;) by
moving unconstrained marker particles at the free surface; however, this method is unst
for long simulations where an explicit advance is used to integrate the free-surface posi
[29]. While the instability of the Lagrangian condition can be resolved by filtering [3]
the present authors deemed it more valuable to develop an Eulerian free-surface bour
condition that is not limited to single-valued waves. If the kinematic boundary conditio
grid generation, and Navier—Stokes equations are solved as an implicit, fully coupled
of equations, such instability should not occur with the Lagrangian boundary conditic
Fully coupled methods have been used for laminar simulation in two space dimensions
however, the complexities of the coupled approach seem to preclude its use with three s
dimensions.

A physical-space Eulerian form of the kinematic boundary condition can be obtair
through a Taylor-series expansion of the Lagrangian condition [30], resulting in

—_ =U3—U1—X —Up—, (27)

whereH is the height (in thes direction) of the free surface measured from some baseline
physical space. The advantage of this approach is that it can be numerically decoupled
the Navier—Stokes solution and grid generation without long-term instabilities arising in t
simulation [29]. Unfortunately, this boundary condition is enforced on surface particles tl
are restricted to vertical motion in physical space and is therefore unsuited for overturr
waves. Our objective is the development of a simulation method that is suitable for wa
that are steep or overturning, so the physical-space Eulerian form of the kinematic boun:
condition is not useful in the present context.



SIMULATION OF TURBULENT FREE-SURFACE FLOWS 431

2.2.2. Curvilinear-space kinematic boundary conditio@urvilinear coordinate trans-
formations, Eqgs. (11) and (12), can be applied to the physical-space Eulerian kiner
boundary condition, Eq. (27), for use in numerical simulations with boundary-fitted cur
linear coordinates [22]. This approach retains the underlying vertical motion restrictior
surface particles, making the method unsuitable for waves which do not remain sin
valued. In some RANS simulations, a hybrid Cartesian/curvilinear approach has beel
plied [13, 14]. This approach uses curvilinear velocities for surface-tangential terms, w
the Cartesian velocity is used for the curvilinear coordinates that varies across the sur

oH L0H  L0H

W =Uus 9E1 852. (28)

Application is restricted to single-valued waves and is only a consistent boundary cond
when the curvilinear coordinate that varies across the free surface is aligned with the ve
Cartesian axis. There remains a question as to the ability of the method to handle
waves wherels is not a reasonable approximation of the surface-normal velocity. A mc
general approach was used by Hino [31]; it does not have a single-valuedness restri
in physical space, but requires deriving the Eulerian kinematic boundary condition dire
in curvilinear coordinates. However, it was applied in a fixed curvilinear system rat
than in a moving-grid system and appears to have been abandoned in the author’s
work. The derivation of a fully curvilinear kinematic boundary condition is an extensi
of the derivation for the physical-space kinematic boundary condition. A brief derivatiot
presented here because it does not appear elsewhere in the literature.

To obtain directly a curvilinear Eulerian kinematic boundary condition, consifired
curvilinear spaceé?, £2, £%) such that the free surface is single-valuedsi For the
purposes of derivation with a fixed grid, the boundary-fitted restriction (used in numer
discretization, Section 3.1) is superfluous. Definas a scalar function for the free surface
such that

F(&, ) =& —HES E51) =0, (29)

where¢ is a vector representing the curvilinear coordinates of a surface position &t tirnr
and’H is the height of the free surface measured figte= 0 along a line of constarit!
and£2 in fixed curvilinear space. After some small time, the free surface has moved,
while the curvilinear coordinate system remains fixed. We requireAhadd small, so the
free surface remains single-valuedtih A Taylor-series expansion gives

F(& + UAL t+ At) = F(&, 1) + (% +U- VF) At + O(At)?, (30)

whereU is the contravariant velocity vector of a point on the surface. It follows that

aF
— 4+U-VF=0. (31)
at

Substitution of Eq. (29) into Eq. (31) provides the curvilinear kinematic boundary condit

in fixedcurvilinear coordinates as

IH _U3_U1%_U2ﬁ

E 0E1 T 92 (32)
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This allows computation of the evolution of the free surface with reference to any fix
curvilinear system in which the free surface is single-valued in one coordinate. As long
the kinematic free-surface condition is valid (i.e., singularities may not exist), a series
appropriate curvilinear systems can be defined which will be suitable for the evolution
an overturning wave.

2.2.3. Filtered curvilinear kinematic boundary conditiorBecause the kinematic bound-
ary condition is inherently a nonlinear condition, the spatial filtering of the equation resu
in subgrid-scale terms. The filtered kinematic boundary condition can be presented as

3oy o =12 33
. age T Xa a=12, (33)

where the subgrid-scale terrg) are defined as

LI G 0K

xe=U (34)

e dee”

The presence of nonlinear terms in the kinematic boundary condition provides the subg
scale term under either spatial or temporalfiltering. The requirement for consistent avera
of the boundary conditions has been neglected in RANS simulations of free-surface fl
in the literature and provides an additional challenge for turbulence closure schemes.

For LES closure, the velocity and surface height in the kinematic boundary condition
decomposed into resolved and unresolved parts so that

U® =U*+u° (35)

where the overbars indicate resolved terms, and the lowercase letters represent subgrid
terms (and should not be confused with Cartesian variables in this instance). It follows

o e o (OH BhY\  ——— (3K oh
x& =W *’“)<agx+zma> “"*“)(agx+zga>' (37)

Borrowing the modeling nomenclature for subgrid-scale velocities, we define the modif
“Leonard,” “cross,” and “Reynolds” terms of the filtered kinematic boundary condition a

T " T R

L = @ Je (38)
dEe - oEe
— ah oH (= 8h IH
co=ge 2 L (Gud | 39
R PR T ( age 3€“> (39)
oh  _, oh
i @ o 0h 40
R = — 0o (40)

wherex =1, 2 and repeated subscript/superscript combinations imply summation.

For the kinematic boundary condition, the modified Leonard téffris made up of
resolved quantities and can be computed explicitly using a method developed for subg
scale density effects in LES of stratified flows [25]. For the cross term and the Reyno



SIMULATION OF TURBULENT FREE-SURFACE FLOWS 433

term, new models are required. In the development of the dynamic mixed model for det
variations, the subgrid-scale density terms were assumed to respond to the strain
in a fashion similar to the subgrid-scale velocity terms. This allowed the developmen
a dynamic model where the subgrid-scale density variations are modeled with an ¢
diffusivity term (similar to an eddy viscosity term) and a scale-similarity term. Both effec
are assumed to be proportional to the magnitude of the resolved strain rate and are corr
dynamically on the basis of a test-filter scheme and least-squares fit [25]. However, the
surface will not support a shear stress, and the basis of a kinematic boundary conc
model solely on the irrotational strain rates may be questionable (especially in the r
surface region, where viscosity may be important). One can certainly make a scale-simil
argument that the cross terms should be proportional to the Leonard term, but there
open question as to the appropriate constant of proportionality. Certainly when dealing
the small-scale kinematics of the free surface it would be wise to consider the dynal
of the flow and the dynamic boundary condition. For the small scales of motion near
surface, the effects of pressure, viscosity, and capillarity in the dynamic boundary cond
may all be of similar orders of magnitude and are more likely to drive the kinematics of
subgrid-scale flow than is the resolved velocity field.

A simple approach suitable for initial investigations into LES modeling of the kinema
boundary condition is to compute directly the modified Leonard term using a test-fi
scheme [25]. If the cross terms and Reynolds terms are neglected the kinematic boul
condition can be written as
— 0o g2 e (G + 2202 ), (41)

oM aH
at dEL 9E2

where/ is defined as a Leonard stress operator

Lo, ) = =Tt g7t (42)
& &
which can be computed from grid-scale-resolved quantities.

The development, implementation, and testing of subgrid-scale models (such as
proposed above) is not the focus of this paper and remains an area of ongoing resea
we non-dimensionalize the kinematic boundary condition by the same length and velc
scales used in the Navier—Stokes equations, and neglect the subgrid-scale terms, the fi
non-dimensional kinematic boundary is

gl

I _ gs_ 12 _ 520K

t 9El ag2’

(43)

[o5)

The development and testing of subgrid-scale models requires well-resolved DNS e
iments of nonlinear free-surface flows to provide a sound basis for examining the phy
near the surface. Such DNS simulations do not yet exist. Laboratory experiments ¢
provide a basis for some testing of LES models at the free surface, but have two n
drawbacks: (1) the laboratory data collection techniques need to be extended to thre
mensions to obtain sufficient data to validate the three-dimensional terms in the LES mo
and (2) the laboratory experiments necessarily have surface-tension effects which co
cate model development and validation [32]. For simplicity, it is preferable to first deve
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a model without surface-tension effects that is directly comparable to a DNS simulat
that neglects surface tension.

2.3. Dynamic Boundary Condition

The dynamic boundary condition is generally obtained by assuming that (1) a free surf
will only support the normal stress of a constant surface tension and (2) tangential stre
must disappear. The result is the dynamic boundary condition for an incompressible f
in its classic form,

Py — P = —2ueinin +y (R + RyY) (44)

whereP is the total pressure, the subscriptis ands— indicate the pressure on the upper
and lower sides of the free surfacg,andt; are the unit normal and tangent vectorss
the surface tension coefficiel®; andR; are the principal radii of curvature of the surface,
w is the dynamic viscosity, arg; is the rate-of-strain tensor defined as

1/ 0u; BU]'
R R R 46
i 2(8x,~+axi> (46)

For most purposes, this form of the dynamic boundary condition is adequate and is o
approximated as simpll? = 0. Equations (44) and (45) do not provide for straightforwarc
implementation in a boundary-fitted curvilinear coordinate humerical method; therefo
our approach will begin with the tensor form of the dynamic boundary condition in gene
curvilinear coordinates [33]. By applying the assumptions used to get Eqgs. (44) and (
along with the requirement that the curvilinear coordinate system be boundary orthogo
the dimensionallynamic boundary condition can be presented as

(Psy — Ps) = —2uU3% + 2My (47)
U} = —Gaa{GMU3 + G123} (48)
U3 = —Gas{G*U3 + G*2U3}, (49)

whereGass is the covariant metric

_ Xj 0Xj

= 963 983 (50)

33

andM is the mean curvature, defined fog &isurface in a boundary-orthogonal coordinate

system as
1 G 02X
=_——(sS$— ), 51
2633( 1 9ge pEp ®1)

with @ and 8 summed over (1, 2) anfl summed over (1, 2, 3). The curvilinear set of
equations is considerably simplified through the assumption of boundary orthogonality
this assumption is not applied, terms w@i® andG22 metric coefficients will occur in the
dynamic boundary condition.
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If we let the (dimensional) outside pressuf® () equal zero and apply Eq. (5) for the
non-dimensional reduced pressure and non-dimensionalize all other terms by the le
scaleL and the velocity scale, the normal component of the dynamic boundary conditic
can be written as

Zs_ 2 2

+—U - —M, (52)

Ps— = (Fn2 3 We

wherezs_ is the (non-dimensional) value of the vertical Cartesian coordioapeat the
surface and definitions for the Froude and Weber numbers are

Fr= Z;J{E (53)
2

we= UL (54)
y

Note that the differentiation in Eqgs. (47) through (52) is covariant tensor differentiat
and requires the application of Christoffel symbols for deriving a discrete implementat
Applying some algebra and tensor manipulation, we reduce the dynamic boundary conc
of Egs. (48), (49), and (52) to a form that can be more readily implemented in a numel
method. For the present second-order method, metrics can be assumed to pass throt
filter operation [34] so the full dynamic boundary condition can be written as

D Zs- 2M ou® 33(,71
= — = {2— +GB|U G U2— (G 55

Ps— FnZ ~ We + Re{ YE + 8$1( 33) + 852( 33) (55)
aul au3 au3 3G 3G
—— _ =_G Gll Glz U Gll 13 Glg 23 56
03 33{ o1 0€2 83 T e (56)
Uz 228U 12au 220G23 | ~1,0G13
oE3 — . 7
0&3 G33{G 9g2 +G 351 } {G 353 +G 93 } (57)

If our grid is sufficiently fine and the surface is sufficiently smooth, then the tangential :
normal derivatives of the metrics can be neglected in the above equation set. Howev
the free surface has steep surface oscillations on the order of the grid scale or slightly I
then the metric gradient terms cannot be negleatpdori.

3. NUMERICAL METHOD

The numerical simulation method is a time integration of Eqs. (17) through (20) sub
to the free-surface boundary conditions, Eqs. (43), (55), (56), (57), and the subgrid-s
closure model, Eq. (7). The approach uses a finite-volume, fractional-step, pressure-Pc
integration of the unsteady Navier—Stokes equations with curvilinear grid generation u
a Poisson equation method.

3.1. Free-Surface Advance

The first step of the numerical method is to advance the free-surface position from
(n) to time (n+ 1). The method used is an uncoupled-grid approach where the kinem
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boundary condition is integrated forward in time without implicit reference to the tim
(n+1) velocities. This requires that at tim@) there is a fixed curvilinear grid that is
boundary-fitted in thé&® coordinate. All three components of the contravariant velocit
must be known at each grid point on the free surface. To find the changetihdberdinates

of the free surface at some small time later with reference to the same fixed curvilinear
(see Eq. (58) ff.), a Runge—Kutta fourth-order (RK4) method is applied with a fifth-ord
upwind discretization for spatial derivatives [12]. After computing the free-surface advar
in curvilinear space, the new curvilinear coordinates are converted back to physical sy
coordinates for use in calculating the new computational mesh fofnthel) time step.
With this approach, the coordinates have a tendency to drift in the streamwise direci
unless restrained or redistributed. Rather than an artificial restraint being used, the
points are allowed to move in accordance with the kinematic boundary condition, tt
redistributed on the free surface using a two-dimensional cubic spline. This maintair
smooth and even distribution of points on the surface in physical space.

The advantage of our free-surface method is that the kinematic boundary conditiol
enforced upon points which move along lines of constarnd&? curvilinear coordinates
rather than lines of constartandy physical coordinates. Thus, the free surface motion i
computed along lines that are locally orthogonal to the tirged rather than at an angle that
depends upon the steepness of the wave. As a result, the Eulerian formulation require
of a single-valued grid in physical space is replaced by a single-valuedness requireme
curvilinear space. Thisis a less restrictive condition for a boundary-fitted coordinate syst
requiring only that the slope of the free surface be continuous. A discontinuous surface s
implies wave breaking and a violation of the material condition of the free surface, soiit c
be said that the curvilinear form is generally valid and can be implemented numerically
long as the kinematic boundary condition itself is valid. The movement of the points alo
surface normal lines provides a simpler implementation than the curvilinear transformati
of the physical space kinematic boundary condition used in the literature [22, 35].

The ability of present method to simulate near-breaking and overturning waves is prirr
ily amatter of the availability of computational power. The number of grid points required f
accurate simulation of a wave shape increases as a wave steepens and overturns. Incr
the number of grid points along the surface affects the time step required to avoid numel
instabilities at the surface. The study of near-breaking phenomena and demonstration c
numerical method for this type of problem remain subjects for future research.

To advance the free surface from tin® to time (n+ 1), we consider the timeén)
curvilinear grid to bdixedwith respect to time and require that it be boundary-fitted to th
time (n) free surface. Thus, at the surface,

A = 3" = constant (58)

surface

The gradients of the timen) free-surface height relative to thig and £2 curvilinear
coordinates will disappeatr, since

SHIM  sg3lnl

569 3 g=12 (59)

The resulting RK4 discrete system for the kinematic boundary condition is

k= AtU? (60)
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E:At{US—U;;;l—U;g;} (61)
R:At{U3—U21;§E—U22;€E} (62)
R:zn{u3—u1%§—¢ﬁgg} (63)
H = H" 4 %(k+ 2k + 2k + k), (64)

where a spatial derivative at locatidms discretized as

Sk U;
(U E)I = G_é){kiJrS — 9ki+2 + 45(|(i+1 — ki—l) + 9ki72 _ ki73}

U.
+ %{kws — 6k o+ 15K, 1 — 20kj + 15kj_; — 6ki_» + ki _3}. (65)

To obtain the time(n+ 1) physical space position of a particle on the surface aft
numerical solution of Egs. (60) through (64), we note that

Ax = A3 =13, (66)

which can be discretized as

XI’H—l _ Xn 4 Hn+1 _ Hn 8Xi " (67)
io=X +( ) 5?3 :
This system provides a method for explicitly updating the physical-space free-surface
sition from time(n) to (n + 1).

3.2. Grid Generation

The numerical method requires the computation of a new curvilinear grid at each t
step. To accurately resolve the near-surface boundary layer under steep or overturning\
requires a grid-generation method that (1) generates boundary-orthogonal grids, (2) |
mizes grid skewness, (3) allows control of grid stretching. (4) is computationally efficit
in vector or parallel implementation, (5) uses a modest amount of computer memory
does not require disk access during computation, and (7) does not require user input d
the grid solution process. Grid generation is a sophisticated discipline with a variet
available solution techniques that satisfy the above criteria to some extent [36]. For
purposes, the most suitable technique is the Poisson grid generation method [27] |
the 3DGRAPE/AL code [24]. This uses standard techniques of iterative control funci
adjustment to obtain a boundary-orthogonal grid and user-specified grid distributions.

3.3. Navier—Stokes Solution

Our numerical approach to solving the Navier—Stokes equations follows the methoc
veloped by Zanget al. [16] that descends from the methods of Kim and Moin [37] an
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Harlow and Welch [1]. To discretize the momentum equation we apply the explicit secol
order Adams—Bashforth (AB2) algorithm to the convective terms and the off-diagor
viscous terms, with the implicit Crank—Nicolson second-order (CN2) scheme for the |
agonal viscous terms. The use of a moving grid requires a convective grid-flux term
account for the convective motion of the grid. This term is discretized with a second-or
approximation using the volume flux of the grid between the timeand(n + 1) physical
space positions for each cell face and the timevelocity. The pressure is removed from
the momentum equation in the predictor stage of the fractional-step method and a nui
ical pressure variablép) is defined and computed in the solution of a Poisson equatio
Second-order-accurate approximate factorization is used on the left-hand side of the
cretized momentum equation for increased computational efficiency. For clarity, we d
the overbar notation for filtered variables in discrete equations and imstead ofd to
indicate discrete derivatives; the resulting system can be presented as

1. predictor step:
(1 =DI*)(1 = D3™)(1 = DF*)(uf —uf) = S; (68)

2. pressure-Poisson equation:

n+1
i(J—leqrai) = L0 gy, (69)
s SE" At 5§

3. corrector steps:
(a) for the Cartesian velocity (on cell centers):

At n+1
Mttt = ur 4 [ﬁ Bi (qb)] ; (70)
(b) for the normal component of contravariant velocity (on cell faces):

(J7uHMt = 37y — At <Jle‘“§§) . (71)

The pressure variabl@) is related to the reduced pressym by

: — —l__ Bl((b)
(P = |9 - 5 on| 2 72)
and the source term of the predictor (Eq. [68]) is
At 3 n n n 1 n— n— n—
S = | 3(C7+ DRI - 3G+ DR [ )
1 J—ln
+ (07 [uf] + D7 [u ])+Q.} {(f]_l)zﬂ—l}ui”. 73)

The use of timgn + 1) metric terms in the source of the predictor, Eq. (73), is allowabl
as our numerical method integrates the kinematic boundary condition for thértimg)
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free-surface position and computes the curvilinear grid prior to the solution of the predi

step. The last term in Eq. (73) is applied so that the velagltgn the left-hand side of the

predictor, Eg. (68), is multiplied by the tinga + 1) inverse Jacobian during the derivation of

the discrete equations. This prevents the appearance of th@tidecobian in the corrector

step and the pressure-Poisson equation, and provides for a simpler implementation.
Discrete operators from Eq. (68) through (73) are defined as

At 6
Da<>=2J_18§a{le G* S5 ()} (74)

wherea =1, 2, 3 with no summation:

_ 8 ipar S
D=() = {27 w()}q#, 7o)
D)= {lee‘”i()} (76)
S&d [

C = qu{J—lu‘Ju.} (77)
B.()——Sg—q IS0} (78)

. 1yq n+1/2 n

Q= qu{u X120, (79)

In the operatoKQ;, we computg J~1X9)"*1/2 as the volume swept out by tlaeside of a
cell as the grid moves from the time)(to the time ( + 1) positions.
The conservation of space, Eg. (16) can be written in a discrete form as

3 .
1\n+1 _ Lyn+1 —1yqyn+1/2
Q7O = Q7O 4 L QTR (80)
The conservation of space must be used to compute the new inverse Jacobian at eac
step [28]. To prevent numerical inconsistency, the térrhX% must be numerically identical

in both the implementation of the conservation of space, Eq. (80), and in the discrete
motion termQ;, in Eq. (79).

3.4. Dynamic Boundary Conditions at the Free Surface

3.4.1. Tangential componentsThe tangential components of the dynamic bounda
condition are used to obtain the tangential velocities on (1) the free surface (for us
integrating the kinematic boundary condition), and (2) the numerical ghost points out:
the free surface (for use in the boundary conditions on the predictor step of the solt
method). We experimented with linear, quadratic, and cubic implementations of the bot
ary conditions and found the simple linear approach worked best when the boundary |
was well resolved. The linear approach can be presented as

15U
Usurf = Usurf—1/2 +5 2 55: : a=12 (81)

surf
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where the subscript notation (surf) indicates the value at the free surface and the note
(surf— 1/2) indicates the value at the center of a cell face for the first cell inside the surfa
The gradient olU“ across the boundary is found from a discrete implementation (usir
central differences) of the tangential dynamic boundary condition, Egs. (56) and (57). "
U3 component at the center of the cell face on the free surface is computed directly
the corrector step, Eq. (71), from the computed pressure field atdthealue at the sur-
face.

Computation of contravariant velocities on the faces and centers of the ghost cells out
the free surface is accomplished in a similar fashion. Once the contravariant velocities
computed, the three components of the Cartesian velocity must be calculated at the cent
the ghost cells outside the free surface. These values provide part of the boundary cond
for the u* estimated velocity computation [37]. The Cartesian velocities for each ghc
point are obtained by inverting ax33 matrix, Eq. (22), which relates the curvilinear and
Cartesian velocities.

3.4.2. Normal component.The normal component of the dynamic boundary condition
Eqg. (55), is discretized using central difference operators. This provides a Dirichlet c
dition on the modified physical pressung)( A subtle point that is overlooked in some of
the literature is that the numerical pressure varialplei§ an approximation of the phys-
ical pressure that may not be of the same order of accuracy as the solution method.
relationship between the numerical and physical pressure variables is a function of the
cretization method, and is given by Eq. (72) for the present approach. In general, it is
mathematically rigorous to simply substitutefor p in the dynamic boundary condition
(or any other pressure computation). However, our experience has been that it is in k
ing with the order of accuracy of the simulation method for the flows investigated. In te
simulations we computed the difference between the right-hand and left-hand sides of
p/¢ relation, Eq. (72), with the result that the difference was always of the axtfeor
smaller. This conclusion was also reached by R. Calhoun (Personal communication, 1€
who conducted a more detailed analysis by numerically integrating therelation in a
simulation of flow over a wavy boundary with turbulent separation.

The normal component of the dynamic boundary condition is used as a Dirichlet bound
condition on the pressure in the solution of the Poisson pressure equation. To be nur
cally consistent in the discretization, all the terms in the normal component of the dyna
boundary condition, Eq. (55), should be tinie+ 1) values. However, unlike a no-slip
boundary, the velocity on the free surface at titnet- 1) is not knowna priori. A pre-
cise discretization would involve substituting the contravariant corrector step, Eq. (7
into the dynamic boundary condition to change th&* values intoU * values plusp"**
gradients. This boundary condition includes bg¢thnd second derivatives ¢f changing
the form of the boundary condition and making implementation significantly more comp
cated (especially for use with a multigrid solver).

Two approaches can be used to obtain second-order accurate discretizations of th
namic boundary condition, Eq. (55), in terms of tiim variables while retaining a simple
Dirichlet pressure boundary form. The contravariant corrector step, Eq. (71), and a Ta:
series expansion for the pressure can be used to write

G 5¢
J-1ger

(UL — g _ At( ) + O(AD)2. (82)
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Substituting Eq. (82) into a discretization of Eq. (55) provides a Dirichlet boundary condit
on the pressure in terms of the velocities and second derivatives of the titng pressure
variable. This has the disadvantage of feeding numerical errors in the(tim@essure
computation back into the computation of the tiimet 1) pressure boundary condition.
Such feedback can induce undesirable numerical oscillations in the pressure field.
The approach used in the present work does not have feeeback of th@Ytipressures
into the boundary condition. This requires a Taylor-series expansion for each velocity 1
on the right-hand side of Eq. (55), so that the resulting dynamic boundary condition is

Zs_

¢girl — (F—r)2 4 ZM[I'H-l]y
1 susl GBS 5 I
—{2— —(ut—(J'G u’2— (J7'c
+ Re{ 553 + J—l |: 8%-1( 33) + 8%'2( 33)
At 8 G323 b
2] % (3l _ysh-1 =yt _yth-my_ 2 (5-1g [n]
+ Re{ 8%-3( )+ J_l( )3&-1( 33)
G* 2[n] 2[n-1] 8 -1g [n] o 2 83
+Fﬂu -u 590 33) ¢+ O(AD% (83)

In our simulations, IRe< O(At); so without loss of accuracy, we can neglect terms ¢
order(At/Re) in our second-order method. Thisis animprovement ovelPthed boundary
condition (used in many free-surface simulations) that generally(i5/Re) or O(At)
accurate. Using our approach, the discrete, surface-normal, dynamic boundary conc
becomes

Zs_
¢g—i—l _ = + 2M[n+1]y

3[n] 33 [n]

+i{£i-+E—P%%@4%Q+W£ﬂr%@]}.@®

Implementation of the Dirichlet pressure boundary condition in the multigrid solver is
complished using a linear approach that is consistent with the linear prolongation/restric
operators of the multigrid method [17]. The velocities on boundaries other than the free
face are knowia priori so pressure boundary conditions are only required when a grid is|
boundary-orthogonal. To implement the pressure boundary condition on the free sur
we first obtain the estimated contravariant velocity normal to the free sufttce using
linear interpolation from interior and ghost poinjt velocities and the computed boundary
metrics. This provides thg* on the boundary needed for the pressure-Poisson equat
source term (see Eq. [69]). The primary difficulty in implementing the pressure bounc
condition is that the boundary condition is defined on the edges of computational cells w
the pressures in the interior are defined at the centers of computational cells. Our imple
tation computes the ghost point pressure using linear extrapolation from the center ¢
first cell inside the boundary and the boundary pressure. The ghost point pressure ar
in the discrete stencil for the left-hand-side of the pressure-Poisson equation (69) and
provides for efficient implementation in the multigrid solver.
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3.5. Summary of the Numerical Method

1. Use RK4 and fifth-order upwind discretization of the kinematic boundary conditio
Egs. (60) through (67), to advance the free surface from ¢méo time (n + 1).

2. Compute a boundary-orthogonal grid and metrics for timé 1) grid using the
Poisson equation method.

3. Use conservation of space to compute new Jacobians of grid cells.

4. Solve foru® at center of cells using AB2 with quadratic upwind interpolation
[38] discretization for convective terms, CN2 for diagonal viscous terms, and appro
mate factorization for the implicit solution. This applies a vectorized tridiagonal solver
Eq. (68).

5. Use linear interpolation to obtain the normal componed ©bn each cell face.

6. Solvethe Poisson pressure equation for the pressure vagiasieg a 3D vectorized
multigrid solver [16]. The normal component of the dynamic boundary condition is used
provide a Dirichlet pressure boundary condition on the free surface. A pressure bounc
on the bottom (Dirichlet boundary) is not required since the grid is boundary orthogor
As demonstrated by Zareg al.[16], under this condition only a zero contravariant velocity
normal to the boundary is required to make the Poisson equation for the pressure
posed.

7. Using the Cartesian corrector step, Eqg. (70), compute the(timel) Cartesian
velocity (u;) at cell centers.

8. Using the contravariant corrector step, Eq. (71), compute the (irael) con-
travariant velocity components normal to cell surfa¢és,

9. Using the tangential components of the dynamic boundary condition, Eqgs. (56) :
(57) along with Eq. (81), compute the tangential components of contravariant veldtity
on free surface and ghost points. This provides the velocities needed to advance the
surface in the next time step. Transform the contravariant velocities into Cartesian veloci
for use in theu* boundary condition in the next time step.

4. NUMERICAL EXPERIMENTS FOR CODE VALIDATION

4.1. Decaying Vortex with a Moving Grid

The use of second-order-accurate discretizations does not guarantee second-ord
curacy in a numerical simulation. This is especially true with boundary-fitted curviline
coordinates and moving grids. Because of the complexity of computational code requ
for a curvilinear, moving-grid simulation of the Navier—Stokes equations, there is alway
chance of error either in derivation of the transformation or in implementation of the d
cretized forms. The fractional-step method used in this work was demonstrated to pro
second-order spatial accuracy for Cartesian grids in the work of Kim and Moin [37] throu
grid-refinement tests of a decaying vortex. The decaying vortex is an analytical solutior
the two-dimensional Navier—Stokes equations over the domdahof;, x, < ) that can
be written as

U; = —CogX;) Sin(xp) €2 (85)
Up = sin(x;) cogxp) €2 (86)

p = —0.25{cog2X;) 4+ cog2x,)} e~ . (87)
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FIG. 1. Decaying vortex accuracy: (e=—) fixed grid; ( - x - -) translating grid; (« -) stretching grid.

In Zanget al.[16] the curvilinear coordinate adaptation of Kim and Moin’s fractional-ste
method was shown to provide second-order spatial accuracy using the same set of tes
provide continuity with the previous works, we have conducted similar tests to demonsi
that the moving-grid algorithm and its implementation in the code result in second-ot
spatial accuracy for both fixed and moving grids.

Figure 1 provides simulation results showing the reduction of the RMS velocity er
caused by increasing the number of grid points. The time step is reduced as the g
refined to maintain a constant maximum CFL condition. Three different error lines
shown. The first error line represents the results for a fixed grid, the second is for a
that is fixed in shape but translates through the decaying vortex domain, and the third |
a grid that has boundaries which remain fixed but whose interior grid lines are stretc
with each time step. It can be seen that accuracy is approximately second-order in all 1
cases.

4.2. Monochromatic Standing Waves

Unfortunately, there does not appear to be a simple analytical solution of the Nav
Stokes equations with a free surface that could be used to compute the accuracy ¢
implementation of the full free-surface algorithm. However, there exist approximate s
tions for laminar, monochromatic standing waves in an irrotational flow field that can
used to validate the kinematics of the free surface. The rotational effects due to the
surface motion are small and confined to a thin free-surface boundary layer; thus, we st
be able obtain a viscous solution of the Navier—Stokes equations that results in the
form attributable to the irrotational flow field. As a check on the dynamics of the free-surf
solution, the viscous damping of the wave caused by the free-surface boundary laye
be approximated (to the first order) from energy arguments [39].

We performed simulations of standing waves in a two-dimensional rectangular b:
with free-ship boundary conditions on the sides and bottom of:a 32 cell domain. The
domain length and still-water depth were one-half the wavelength of the primary stant
wave. The initial wave slopé&) in the simulation is defined from the wave amplitude
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and the wave numbgk) as
e = ak (88)

Simulations were conducted for small-amplitude waves with0.03 and finite-amplitude
waves withe =0.3. A standing wave begins to break [40]et 0.32, so the latter test
is a severe test of the ability of the free-surface algorithm to correctly maintain proy
kinematics. Simulations were conducted with wave Reynolds numbers ranging from 5
5000. The wave Reynolds number is defined as

Rew = O’/Ukz, (89)
whereo is the radian frequency. The wave Froude number

Fr, = o/+/gk = tanhkD, (90)

whereD is the depth, was fixed at unity (i.e., deep-water waves). Uniform grid distributio
were used in the horizontal and vertical directions to allow the largest possible time step.
the finite-amplitude wave, simulations up to Re 500 were conducted with the uniform
grid. This was the largest Reynolds number possible while maintaining five uniforr
distributed grid cells in the free-surface boundary layer. Simulations were successf
conducted at higher Reynolds numbers using grid stretching to obtain resolution of
boundary layer. However, the stretched grid tests are not necessarily good indicator
the system performance since the fine grid resolution requires a small time step, allov
accurate results to be obtained without adequately testing the robustness of the methc

According to linear theory for small amplitude waves, the wave shape should be a si
soid, where the surface height) above the still-water level is

n(x, t) = asin(kx) sin(ot). (91)

Nonlinear, second-order theory for finite-amplitude standing waves predicts a wave sh
given by [40]

n(X,t) = asin(kx) sin(ot) — %ae coth(kD) coq2k x)

(92)

N {Sinz(at) _ 3cog20t) +taan(kD)}

4 sinif (kD)

A comparison of the free-surface wave shape against linear and nonlinear theory f
finite-amplitude standing wave with anof 0.3 at a Reynolds number of 500 is shown in
Fig. 2. It can be seen that the agreement of the surface shape with nonlinear theory is
good. This correspondence was achieved regardless of whether the initial wave shaj
the simulation was based on linear or nonlinear theory.

The damping of a free wave due to viscosity as a function of time can be approxima
from [39]

a(t) = a(0) e 2¥1, (93)

This is based upon an energy dissipation argument for linear waves in deep water, s
can only expect this to provide a rough guide to damping since the simulation waves
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FIG.2. Free-surface wave shapgs surface displacementjs wavelengthx is domain length¢o) simulation;
(—) nonlinear theory; (- - -) linear theory.

nonlinear and at intermediate depth. For a wae0.3 at a Reynolds number of 50, Fig. 3
shows the evolution of the wave wall height over time. The wave damping is in reason:
agreement with the theory. A comprehensive review of the results of monochromatic v
simulations are found in Hodges al. [41] and Hodges [42]. Validation of the numerical
method for 3D standing waves can also be found in Hodges and Street [43].

5. SIMULATION OF FINITE-AMPLITUDE WAVES ON 3D TURBULENT
CHANNEL FLOW—AN APPLICATION OF THE METHOD

As an application, we chose to examine the interaction of nonlinear surface waves
a turbulent current. The simplest means of generating and maintaining a turbulent cu
in a numerical simulation is to drive the flow with a mean pressure gradient and app
Dirichlet bottom boundary condition. The flow domain for these simulations is a rectang
three-dimensional channel with a wavy free surface on the upper boundary. The turbi
open-channel flowis driven by a constant body force over the length of the domain, comp
from the relation

dw u?
= D (94)

t/T

FIG. 3. Free surface wall height is surface displacement, is wavelengtht is simulation time,T is
theoretical wave periodp) simulation; (—) nonlinear theory; (- --) linear theory.
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whereu, is the shear velocity (or friction velocity) at the bottom bound&rys the depth

of the domain, andl¥/dx, is the body force from Eq. (4). The boundary conditions or
the flow are (1) periodic in the streamwise and spanwise directions, (2) Dirichlet on 1
bottom boundary, and (3) the nonlinear kinematic and dynamic boundary conditions on
free surface. The dimensions of the domain are2r x 1 when non-dimensionalized by
the channel depth. Initial conditions for the simulations were developed from DNS d.
of an open-channel flow with a rigid free-slip lid [44] and the velocity field for a Stoke
second-order progressive wave.

5.1. Simulation Setup

These simulations use a wave-following reference frame so that grid motion is limitec
perturbation of the wave shape rather than advective motion of the wave. This allows a la
time step than a fixed frame of reference without violating the CFL condition on explic
motion of the free surface [42]. In a wave-following frame, the wave celerity is not know
a priori, so the wave celerity is computed from the wave crest motion during enforcem
of the kinematic boundary condition. The wave celerity is applied as a Dirichlet veloci
boundary condition on the bottom boundary, in a direction opposite to wave propagati
There is an adjustment period at the start of the simulation during which the computed w
celerity oscillates. Under these conditions the reference frame is not inertial, so result
this period cannot be considered valid. However, within three to five wave periods,
computed celerity is constant and the reference frame is inertial.

The use of periodic boundary conditions in the streamwise directions simplifies t
computations by eliminating requirements for inflow/outflow boundary conditions, whic
would otherwise require multiple wavelengths of the surface wave to obtain a reason:
simulation. To ensure the suitability of periodic boundary conditions for the turbulent flo
the dimensions of the simulation domain and friction velocity Reynolds numbe) (Re
were identical to those previously used in DNS simulations of a turbulent channel flow w
periodic streamwise boundary conditions [44] and LES of turbulent decay in a channel [
The present code is based on the LES code used in Sat&iti18], which quite accurately
reproduced the DNS results to which it was compared. The results of these previous w
show that the temporal evolution of the turbulent flow field in this domain can be adequat
captured with periodic boundary conditions. Our objective was to examine the interacti
between the velocity field generated by surface wave and turbulence for the case wher
wavelength is longer than the turbulent length scale. Wave—wave interactions over lor
length scales than the wavelength are removed from consideration by limiting the domai
a single wavelength of a Stokes wave. Streamwise periodic boundary conditions in a wi
following reference frame correspond to following the temporal evolution of one wave frc
an infinite train of periodically identical surface waves. Since the boundary conditions
exactly periodic, the surface wave does not have the spatial decay seen in mechani
generated waves in a laboratory flume, but can be considered a model of regular su
swell at a long distance from the region of generation.

Three types of open-channel simulations have been conducted: (1) a flow that be
with a flat free surface and a turbulent current (the “current-only” simulation), (2) a lamin
progressive wave without an imposed streamwise current (the “wave-only” simulatio
and (3) a flow that begins with a finite-amplitude progressive wave superposed over a
bulent current (the “wave/current” simulation). The current-only simulation was run until
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L=2x

FIG. 4. Initial computational domain for turbulent channel flow.

statistically steady state was reached to obtain a baseline turbulent velocity field. This
used as part of the initial conditions in simulations with a turbulent current. The wave-c
initial conditions are the two-dimensional irrotational velocity field of a Stokes wave pi
jected across the three-dimensional domain. The wave/current initial conditions supetr
the irrotational velocity field and surface deformation of a Stokes wave onto the turbu
velocity field and surface deformation of the current-only open-channel simulation. -
system is then allowed to evolve in accordance with the solution of the Navier—Stc
equations and the boundary conditions.

The simulation domain was discretized with:832 x 64 grid cells, as shown in Fig. 4.
The simulations were conducted at,Rel171, which Pan and Banerjee [44] demonstrate
could be resolved to DNS accuracy with®6grid cells using a pseudo-spectral methoc
Salvettiet al. [18] further demonstrated that the fundamental characteristics of decay
turbulence in the DNS simulation of Pan and Banerjee could be captured with the pre
numerical method and LES model with a®3§vid. With a different second-order finite-
difference method, Komoet al. [12] demonstrated good results in a DNS simulation
Re, =160 using 60x 60 x 40 grid cells. Given the experience in the literature, the prese
work provides reasonable resolution for LES of turbulence in the open-channel flow.
primary effect of coarser-than-DNS resolution for the present simulations appears to k
increase in the spanwise spacing of slow speed streaks in the lower boundary layer. The
speed streaks have been observed to be spaced at approximateiuii& in laboratory
experiments and well-resolved DNS simulations [45], while the present simulations ob
streak spacing of 123 units (similar to previous simulation results at coarser resolutic
[45]).

This setup allows analysis of the wave—turbulence interaction that has heretofore not
presented in the literature. Figure 5 shows spanwise/vertical planes of instantaneou:
from current-only and wave—current simulations. The vectorsxangelocity and thexs
velocity fluctuation, while the color scale represents the streamwigelocity fluctuation.
The black areas represent fluid that is slow relative to a spanwise average, and the
areas represent flow that is fast relative to a spanwise average. In these figures the ¢
“mushroom cap” shape of the hairpin vortices is readily apparent. Of particular interes
Fig. 5 is the difference in the velocity vectors near the surface. In the current-only flow
the vortex core approaches the free surface, the fluid is accelerated through the effe
“nozzle” created between the vortex core and the free surface. In contrast, for the w.
current flow, the vortex core appears to be interacting with the surface in the formatio
three-dimensional short-crested waves (Section 5.2).

The primary difficulty of conducting turbulent free-surface numerical simulations
obtaining sufficient grid resolution in the free-surface boundary layer. The length st
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(a) wave/current simulation

(b) current-only simulation

FIG.5. Instantaneous velocity fluctuations (normalizedibyon spanwise, vertical plane beneath wave crest
(color scale shows streamwise component; arrows are vertical and spanwise components).

(B71) of this layer can be approximated as [39]

Bt=+/2v/o. (95)

For gravity waves on water, this value is usually(0.1) mm. For accurate numerical sim-
ulation of near-surface viscous effects there should be on the order of five grid cells wit
the boundary layer. Note that if this minimum resolution is not attained, then the fre
surface dynamic boundary condition should be modeled rather than enforced. The pre
simulations have at least 10 grid cells within the free-surface boundary layer to ensure
near-surface physics are correctly represented.

Another test of the performance of the simulation in the near-surface region is its ability
produce the correct vorticity generation in the free-surface boundary layer. Longuet-Higc
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FIG. 6. Contours of near-surface spanwise vorticity in wave/current flow normalized Ay. Vertical axis
is distance below free surface normalized by free surface viscous length scale.

[46] demonstrated that the spanwise vorticity generated near the crest must necessal
negative (in arx — z system), while the spanwise vorticity near the trough must be pc
itive. Figure 6 shows the mean spanwise vorticity generated near the free surface v
the vertical scale is normalized by the viscous length séaleand is measured down from
the free surface. The wave crest ixak = 0 with the trough ak/x = 0.5. In this figure we

can clearly see the wave-induced negative vorticity generated at the crest and the po
vorticity generated in the trough. We can also see that the vorticity generated at the
surface is confined to two or three times the viscous free-surface boundary layer thick
(8~ defined in Eq. [95]). This is in agreement with the arguments of Longuet-Higgins [4

5.2. Phase-Averaged Spatial Structure

As a precursor to examination of the turbulence beneath the waves, it is useful to cornr
the instantaneous surface deformations in the wave-only, current-only, and wave/cu
flows shown in Fig. 7. In the wave-only case, the flow beneath the wave is laminar, witt
significant perturbations of the waveform. In the current-only case, small dimples on
surface develop as the surface response to the turbulence below. Tsai [11] showed s
results in a DNS of free surface flow with a sheared current using linearized free-sur
boundary conditions for small-amplitude surface motions. In the present wave/current
illustrated in Fig. 7c, the wave and current are interacting to produce a surface si
ture that is significantly different than either the wave-only or the current-only case. To |
vide further analysis, an instantaneous phase-averaged monochromatic wave can be ¢
asthe average surface deformation in the spanwise direction. When the phase-average
is subtracted from the surface of the wave/current case, the remaining surface defornr
(An) appears as shown in Fig. 8a.

The waveform of the deformation shown in Fig. 8a is similar to linear theory for shc
crested waves [48] which has a surface deformatigg) 6f

Nsc = 8scSIN(MX) cogny), (96)

whereag. is the amplitude of the short-crested wavas the wave number in the streamwise
direction, andn is the wave number in the spanwise direction. A plot of this wavefor
is shown in Fig. 8b fom=x, n=x, andas,.=0.2a. It can be seen that the agreemen
between the two waveforms is quite good. This waveform does not appear in the wave-
or current-only simulations, which indicates that the appearance of this wave is due tc
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FIG. 7. Free surface shap¢/ T = 10): coordinate non-dimensionalized by wave amplitude; ordinate non
dimensionalized by wave numbler

interactions of the monochromatic wave and the current rather than to instability of :
monochromatic wave or numerical method. The apparent lack of higher order mode
Fig. 8a should not be taken as a failure of the numerical method to resolve such mo
The appropriate amplitude of the higher order modes is shown in Fig. 7b and is an orde
magnitude smaller than the short-crested wave mode.

The dominant scale of the short-crested wave mode is a natural resonance phenomen:
short-crested waves produced in the present simulation move at almost the same wave
as the long-crested waves despite their shorter wavelength. This result is a serendip
confluence of the chosen geometry and wave characteristics. For other bounded dom
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wave propagation

0
Ak /2

i

(a) wave-current surface deformation with mean wave removed

wave propagation

(b) theory for short-crested surface waves

FIG. 8. Comparison of parasitic gravity waves in wave—current simulation to theory for short-crested wa
coordinate non-dimensionalized by wave amplitude from wave—current case; ordinate non-dimensionaliz
wave numbek.

the resonant short-crested waves may not be supported modes. However, from theory
one can demonstrate the existence of short-crested waves which move at speeds ids
to those of longer monochromatic waves for general unbounded domains. Thus, the pr
results with short-crested waves provide a more correct picture of the interactions bet\
aturbulent current and long-crested waves than would be obtained in a simulation wher
resonant short-crested modes were not supported by the domain dimensions. Since the
crested waves did not occur in the wave-only simulation or the current-only simulation,
short-crested wave field may require the existence of turbulent structures and a preex
monochromatic wave to initiate and maintain the short-crested wave motion. A compar
of the instantaneous cross sections in the current-only and wave/current flows, Fig. 5, s
that the approach of a vortex core near to the free surface may provide an initial imp
for the short-crested waves. Since the current-only flow cannot maintain the short-cre
wave, it can be argued that energy transfer from the long-crested wave and/or the turbu
is necessary to maintain the short-crested wave motion.

The results of the numerical simulation can be used to examine the effects of w:
turbulence interaction. The flow is homogeneous in the spanwise direction (except for s
crested waves, as discussed below), so we can compute phase-averaged turbulence qu
as fluctuations from the spanwise mean to obtain two-dimensional instantaneous pic
of the turbulence. This collapses the four-dimensional data set into a three-dimens
data set that can be used to examine the evolution of the instantaneous turbulence
To fully examine the processes, comparison of the evolution of turbulence quantities
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wave/current simulations and the current-only simulations is presently being undertaker
provide a more compact (but perhaps less accurate) analysis, we can further reduce the
set by computing time-averaged mean velocity fields using detrending techniques [49].
clear that the presence of short-crested waves must be taken into account when interpr
the near-surface structure of the wave/current flows. Unlike long-crested (monochrome
waves, the short-crested waves are inherently three-dimensional, with velocity fluctuati
in the spanwise direction as well as the direction of wave propagation. Wave modes
are not monochromatic provide velocity fluctuations that appear as “turbulence” wt
using spanwise averaging to compute turbulence quantities. In Fig. 9 the spatial struc

25

1.5

.. 5 -10 -5 0 5 10 15
x/a

(c) vertical velocity fluctuations

FIG. 9. Mean phase-averaged velocity fluctuations normalized,fpr wave/current simulation.
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x/D

(b) current-only

FIG. 10. Instantaneous phase-averaged streamwise velocity fluctuations normalized by

of the time-averaged mean of the streamwise, spanwise, and vertical velocity fluctua
is shown in the near-surface region for a wave/current simulation (case W3 in [42]).
periodicity of the structure in the region less than the wave amplitude from the surfac
readily apparent and appears to be primarily a function of the short-crested waves
wave motion rather than turbulent motion). The intensification of the spanwise velo
fluctuations on the trailing edge of the wave appears to be caused by the interactic
bursting coherent vortices with the short-crested wave velocity field.

As an example of the instantaneous turbulence structure, Figs. 10 through 12 sho
instantaneous velocity fluctuation fields for a wave/current simulation (case W3 in [£
and the current-only simulation. These flows were started with the same initial conditi
and run for the same period of time. In the wave/current flow, a bursting event in
streamwise velocity fluctuation is intensified beneath the crest of the wave. Examine
of the evolution of the turbulence fields shows that the bursting phenomenon tenc
resonate with the passage of the wave. In the spanwise velocity fluctuation, Fig. 11
most noticeable difference is in the free-surface region, where an intense region of spar
fluctuation is seen along the trailing edge of the wave. This appears to be an intera
between the bursting structure and short-crested parasitic waves that occur on the surf
the simulation. In the vertical velocity fluctuations, the instantaneous near-surface stru
is similar to the time-averaged mean shown in Fig. 9c. In the flow core, the wave
two effects: intensification of the vertical fluctuations and vertical oscillation of the flc
structure as the wave passes over.
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FIG. 11. Instantaneous phase-averaged spanwise velocity fluctuations normaliged by
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FIG. 12. Instantaneous phase-averaged vertical velocity fluctuations normaliaed by
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6. SUMMARY

This paper presented a simulation method for free-surface flows using a bounc
orthogonal, moving-grid, curvilinear coordinate system to solve the time-dependent,
cous, incompressible Navier—Stokes equations. The method is shown to be effecti
simulating decaying vortices, laminar standing waves, and turbulent flow in an open cl
nel with a finite-amplitude surface wave.

The numerical method has been developed for large-eddy-simulation techniques
dynamic subgrid-scale modeling. For thefirsttime in the literature, the subgrid-scale filte
and modeling of nonlinear terms in the kinematic boundary condition are derived .
discussed. A novel numerical approach for integrating the kinematic boundary conditic
curvilinear space is developed. This new approach allows the kinematic boundary conc
to be integrated numerically for a free surface that may be multiple-valued in phys
space. Numerical discretization of the dynamic boundary condition to serve as a boun
condition on the pressure-Poisson equation in a free-surface flow is presented and disc
in detail.

The capabilities of the method are demonstrated in the simulation of a turbulent o
channel flow with a nonlinear, nonbreaking, progressive, surface wave. The methc
designed for overturning waves, although further work on the physics and modelin
wave breaking is necessary to demonstrate this capability. The use of this metho
small-amplitude waves is not recommended since the boundary-orthogonal nature ¢
curvilinear grid is a significant complication that is unnecessary where waves are not si
Furthermore, the use of vertical grid lines (rather than the boundary-orthogonal method
herein) can speed up the convergence of the pressure-Poisson equation if the hydre
pressure is computed as a separate source term in the predictor step of the Navier—
solution [50]. This approach does not appear to be practical for boundary-orthogonal ¢
due to the introduction of curvilinear interpolation errors into the computation of hydrost:
pressure gradients. For these reasons, the use of the boundary-orthogonal approach o
in this paper should be limited to simulations of steep waves where the errors assoc
with vertical grid lines would distort the dynamics of the free-surface boundary layer.
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