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Simulation of a Waveguide Filter Using
Wavelet-Based Numerical Homogenization

Per-Olof Persson∗,1 and Olof Runborg†,2
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We apply wavelet-based numerical homogenization to the simulation of an optical
waveguide filter. We use the method to derive approximate one-dimensional models
and subgrid models of the filter. Numerical examples of the technique are presented,
and the computational gains are investigated.c© 2001 Academic Press

Key Words:wavelets; numerical homogenization; waveguide; filter; subgrid model;
multiresolution analysis; Helmholtz equation.

1. INTRODUCTION

A general problem in the numerical simulation of differential equations is the existence
of scales much smaller than the computational domain. Often, small scales in the differ-
ential operator or in the solution cannot be resolved by the grid directly because of the
overwhelming computational cost this would incur. Discarding the small scales can, how-
ever, be tantamount to making large errors. Fine scales in the initial values may for example
interact or resonate with fine scales in the material properties and produce coarse-scale
contributions to the solution, which would be lost.

A classical analytical way to approximate differential operators containing small scales
is homogenization[5]. Simplified homogenized operators can be derived for some classes
of small scales and problems, such as linear elliptic equations with periodic or stochastic
coefficients. For more complicated problems, however, there is generally no simple way to
express the homogenized operator, if it exists.

Recently, the homogenization problem has been approached from a numerical point of
view. In [3, 6, 9, 12, 15, 22, 23], it was shown how multiresolution analysis and wavelet
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FIG. 1. Specifications of the waveguide under study.

decompositions can be used to derive coarse-scale models to linear partial differential equa-
tions. These models can be computed efficiently, and they can be represented in a compact
way by sparse matrices. Similar techniques for nonlinear ordinary differential equations
have been investigated in [7]. For these methods, which we term numerical homogeniza-
tion, no assumptions are needed about the structure of the coefficients. In analogy with the
analytic case we call the coarse-scale model the (numerically) homogenized operator.

To illustrate the usefulness of wavelet-based numerical homogenization, in this paper we
study an optical filter containing a fine-scale structure. The filter is shown in Fig. 1. It is
composed of a straight waveguide with small gratings engraved on one of its sides at regular
intervals. At one point the distance between two of the grating teeth is increased by 50%.
This quarter-wave stepgives a narrow-band filter effect and causes waves of one resonant
frequency to pass through, while reflecting adjacent frequencies. The ability to separate
frequencies makes the filter a useful component in many communication applications. For
instance, it allows an optical communication link to be partitioned into many channels where
signals can be selectively transmitted and detected. Applications can be found in [17] and
[16]. The parameters used in the design of the filter determine many of its relevant properties,
and it is of interest to simulate the filter numerically to anticipate the influence of these
parameters. The waveguide will be modeled by the two-dimensional Helmholtz equation,

∇ · (c(x, y)2∇u)+ ω2u = 0, (1)

wherec(x, y) represents the material-dependent speed of propagation.
The most important feature of the waveguide filter is the interplay between a small-scale

periodic structure (the gratings) and a localized inhomogeneity (the quarter-wave step). For
this case, analytical homogenization techniques do not apply.

We use wavelet-based numerical homogenization to derive two different simplified mod-
els of the filter. First, we show how to compute a one-dimensional model of (1) through
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homogenization only in one coordinate direction. The model is approximately frequency-
independent, and we use it to compute the frequency response of the filter in an efficient
manner. Compared to the one computed using the so-called effective index method [4, 20],
this response is much more accurate.

Second, we demonstrate how numerical homogenization can be used to compute approx-
imate subgrid models of the different parts of the waveguide. By subgrid model we mean a
local discrete model of the effect of scales that the grid does not resolve. We use the subgrid
models to solve a large problem on a coarse mesh that does not resolve the gratings. In
the first step an operator corresponding to a waveguide with a small number of gratings
is homogenized, and the part representing a single grating is identified. The numerically
homogenized operator is then extended by replicating this part to obtain the corresponding
operator for a waveguide with many gratings. This can be seen as a generalization of solving
the cell problem in analytical homogenization and using the computed effective material
coefficient in the homogenized equation [5].

Finally, we want to emphasize that neither of the above two methods is in any way
constrained to the waveguide problem; they could be used also for other problems where
the simplified models are physically feasible.

This paper is organized as follows. In Section 2, we begin by justifying the two-
dimensional mathematical model used for the optical filter. Next, in Section 3, we show
how to approximate and solve those equations with a direct approach. We continue to give
a brief introduction to numerical homogenization in Section 4 and finally, in Section 5, we
show results of the application of numerical homogenization to the waveguide problem.
In particular, we use it to reduce and simplify the direct computational problem, first by a
one-dimensional model and second through subgrid modeling as described above.

2. MATHEMATICAL MODEL

The Maxwell equations govern the behavior of electromagnetic waves. In our model we
will assume that the waves propagate in a medium that is linear, isotropic, nonmagnetic,
and nonconducting. The Maxwell equations for the electric fieldE = (Ex, Ey, Ez) and the
magnetic fieldH = (Hx, Hy, Hz) then take the form

µ
∂H

∂t
+∇ × E = 0, ε

∂E

∂t
−∇ × H = 0,

∇ · (εE) = 0, ∇ · (µH) = 0,
(2)

whereµ and ε represent the medium’s permeability and permittivity, respectively. We
will only consider waves that are time-harmonic with fixed frequencyω, which amounts to
changing∂t 7→ iω in (2). Taking the time derivative of the first two equations reduces them to

∇ ×
(

1

µ
∇ × E

)
− εω2E = 0, ∇ ×

(
1

ε
∇ × H

)
− µω2H = 0. (3)

Since the material is nonmagnetic,µ is constant. We now also assume thatε is constant
in the z direction, so that the fields are independent ofz; hence∂z = 0. This gives us
two-dimensional Helmholtz equations for the componentsEz andHz,

∇2Ez+ ε(x, y)µω2Ez = 0, ∇ ·
(

1

ε(x, y)µ
∇Hz

)
+ ω2Hz = 0, (4)
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where∇ here and henceforth represents the two-dimensional nabla operator. FromEz and
Hz we can obtain all the remaining components by using (2):

iωµHx = ∂Ez

∂y
, iωεEx = −∂Hz

∂y
,

iωµHy = −∂Ez

∂x
, iωεEy = ∂Hz

∂x

(5)

We will compute a so-called transverse magnetic (TM) mode solution whereEz ≡ 0. We
then only need to findHz, which we will denote byu in the remainder of the paper. Letc0

be the speed of light in vaccuum. After introducing the relative speed of lightc = c0/
√
εµ,

we finally have the equation foru, namely,

∇ · (c(x, y)2∇u)+ ω2u = 0, (6)

where for convenience we rescaledx 7→ x/c0 andy 7→ y/c0. In our casec(x, y) is discon-
tinuous (see below) and (6) must be interpreted in the distributional sense. We hence seek
a weak solution of (6) in the Sobolev spaceH1

loc. Away from discontinuities inc, a weak
solution is in fact smooth, satisfying (6) also in the strong sense. Moreover, supposec(x, y)
is discontinuous across a curve in thexyplane with normal̂n and thatu is a weak solution of
(6). Then it follows thatu satisfies the classical interface conditions for Maxwell’s equations
in lossless media: continuity ofu andc2n̂ · ∇u across the curve.

In Fig. 1 we specify the variables that define the dimensions of the waveguide. We will
usually fix the lengthw = 1 and usea, d,3, δ, andτ as design parameters. Related to
these isS, which will denote the number of gratings. Further parameters areη0 andη1, the
indices of refraction outside and inside the waveguide, respectively. The index of refraction
is defined asη(x, y) = 1/c(x, y) and will hence be piecewise constant. Throughout this
paper we assume that the material of the waveguide is GaAs, withη = 3.3, and that it is
surrounded by vacuum (η = 1.0).

3. NUMERICAL APPROXIMATION

3.1. Discretization of the Helmholtz Equation

We start by truncating the physical domain to the rectangle [0, w] × [−b, b], where
b > d/2 is an additional parameter (see Fig. 1). Next, we introduce a uniform grid(xk, y`)
of (N + 2)× (M + 2) points,

xk = (k− 1/2)h, y` = −b+ (`− 1/2)h, h = w/N, (7)

for k = 0, . . . , N + 1 and` = 0, . . . ,M + 1. Since we have square cells, the parameters
will satisfy the relationshipwM = 2Nb. We will only useb andd values such thatM is
an integer andy` = d/2 for somè .

Moreover, we define grid functions corresponding tou(x, y) andc(x, y). They are given
as

uk` ≈ u(xk, y`), k = 0, . . . , N + 1, ` = 0, . . . ,M + 1. (8)
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Letting x+ (x−) denote the limiting values from above (below), we get

ck+1/2,` = c(x−k + h/2, y∗` ), k = 0, . . . , N, ` = 0, . . . ,M + 1,

ck,`+1/2 = c(x−k , y∗` + h/2), k = 0, . . . , N + 1, ` = 0, . . . ,M,
(9)

wherey∗` = y+` for positivey` andy∗` = y−` for negativey`.
Next, we introduce the difference operators

1x
+uk` = uk+1,` − uk`, 1x

−uk` = uk` − uk−1,`,

1
y
+uk` = uk,`+1− uk`, 1

y
−uk` = uk` − uk,`−1.

(10)

With the above notation we can write down the second-order scheme that we will be using,

1

h2
1x
+c2

k−1/2,`1
x
−uk` + 1

h2
1

y
+c2

k,`−1/21
y
−uk` + ω2uk` = 0 (11)

for k = 1, . . . , N and` = 1, . . . ,M . Hence, we use a discretization that corresponds to
the same divergence form as the continuous problem (6). This ensures that the numeri-
cal solution satisfies the same interface conditions as the weak solution of (6) whenc is
discontinuous.

3.2. Boundary Conditions

To complete the continuous and the discrete problems, (6) and (11), extra conditions must
be given at the boundary of the domain [0, w] × [−b, b]. At y = ±b we use a Neumann
boundary conditionuy = 0, discretized with the second-order approximation

1

h
1

y
+uk,0 = 0,

1

h
1

y
+uk,M = 0, k = 1, . . . , N. (12)

This is motivated by the fact that the solution should be almost constant zero far away from
the waveguide. Since we are looking for a wave solution propagating along thex axis,
we need absorbing boundary conditions atx = 0 andx = w. To derive these boundary
conditions we assume that there is a functionf and aβ ∈ R such that

u(x ≈ 0, y) = f (y)eiβx + uin(y)e
−iβx, u(x ≈ w, y) = const· f (y)e−iβx, (13)

whereuin(y) is the amplitude of the injected plane wave. By differentiating (13), we get

ux(0, y)− iβu(0, y) = −2iβuin(y), ux(w, y)+ iβu(w, y) = 0. (14)

To reduce problems with numerical dispersion and the resulting phase errors, we will choose
the discretizations of (14) such that they are exact under the assumption (13). Hence, we
want to findβ, uin, andaj , j = 1, 2, 3 such that the grid functions corresponding to (13)
satisfy (11) and the boundary conditions

1

h
1+u0,` + a1u0,` = a2uin(y`),

1

h
1+uN,` + a3uN,` = 0, (15)

for ` = 1, . . . ,M .
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We begin by finding an expression forβ. Close tox = 0 andx = w the coefficientc is
independent ofx and we let

c` = c(y∗` ), c`+1/2 = c(y∗` + h/2), ` ∈ Z, (16)

wherey∗` is defined as after Eq. (9) and{y`} is extended to an infinite grid in the obvious way.
For (13) to satisfy (11) the grid functionf` ≈ f (y`) should satisfy the discrete eigenvalue
problem

1

c2
`h

2
1+c2

`−1/21− f` + ω
2

c2
`

f` = λ2 f`, λ2 = 4

h2
sin2 βh

2
, ` ∈ Z. (17)

The eigenmodes are

f` =


cosγ y` |y`| ≤ d/2,

cos
γd

2
e−α(|y`|−d/2) |y`| > d/2,

(18)

λ2 = η2
1ω

2− 4

h2
sin2 γh

2
= η2

0ω
2+ 4

h2
sinh2 αh

2
,

with α, γ given by the transcendental equations

(
η2

1 − η2
0

)
ω2 = 4

h2

(
sin2 γh

2
+ sinh2 αh

2

)
, (19)

eαh − 1 = η2
0

η2
1

(
sin(γh) tan

(
γd

2

)
− 2 sin2 γh

2

)
. (20)

Since we are only interested in the behavior of the lowest propagating mode, we choose
the β that is related, via the formula in (17), to the largest real eigenvalueλ. A similar
derivation shows that we should useuin(y`) = const· f` as the injected wave atx = 0,
again picking thef` that corresponds to the lowest mode.

It remains to findaj , j = 1, 2, 3 such that the boundary conditions in (15) are satisfied.
By using the simple relation1+eiβxk = (eiβh − 1)eiβxk we immediately get

a1 = 1− eiβh

h
, a2 = −2i

sin(βh)

h
ei βh

2 , a3 = 1− e−iβh

h
. (21)

4. NUMERICAL HOMOGENIZATION

In this section we will describe the following general approach to homogenization. Given
an equation

Lu = f, (22)

whereL is a linear operator,f a right-hand side, andu a solution that contains fine scales,
find thehomogenizedoperatorL̄ and right-hand sidēf such thatL̄ Pu= f̄ , whereP is
a projection operator onto a subspace in which the fine scales in the original solution do
not exist. In our setting (22) will be the finite-dimensional approximation of the Helmholtz
equation, described in Section 3, whileP will be a projection onto a coarse-scale wavelet
space. We will also show how the resultinḡL can be approximated by a sparse matrix.
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Let H be a Hilbert space andH0 ⊂ H a closed subspace, which for our purposes repre-
sents the coarse scales of a function space. We denote byP the projection inH onto H0

and letQ = I − P, whereI is the identity operator inH . We also introduce the unitary
operatorW on H defined by

W : H 7→ H0× H⊥0 , Wu =
(

Qu

Pu

)
. (23)

For any bounded linear operatorL : H 7→ H , we can make the decomposition

WLW∗
(

u

v

)
=
(

QL(Qu+ Pv)

PL(Qu+ Pv)

)
≡
(

A B
C D

)(
u
v

)
. (24)

Thus, applyingW to (22) from the left gives

WLW∗Wu =W f ⇒
(

A B
C D

)(
Qu

Pu

)
=
(

Q f

P f

)
, (25)

and, assuming thatA is an invertible operator, we deduce through block Gaussian elimi-
nation that

L̄ Pu= f̄ , L̄ = D − C A−1B, f̄ = P f − C A−1Q f. (26)

The homogenized operator is thus the Schur complement with respect to the decomposition
(24).

We will follow [3, 12] and use orthogonal wavelet spaces for the coarse-scale subspace
H0, as was originally suggested in [6]. If nothing else is stated we have used the Haar basis.
For an introduction to wavelets and multiresolution analysis, we refer to [11]. LetVj and
Wj refer to scaling and wavelet spaces of coarseness levelj for some one-dimensional
wavelet system. Suppose thatu, f in (22) belong toVj+1. By definitionVj+1 = Vj ⊕Wj ,
and the coarse scale ofu, f comprises their projections ontoVj . We thus letH = Vj+1 and
H0 = Vj and call the related homogenized operatorL̄ j . If we want to discard more fine
scales we can useH0 = Vj+1−n with n ≥ 1 and obtain then levels homogenized operator
L̄ j+1−n. These operators can in fact be obtained through a recursive algorithm, withL̄ j−1

being the homogenized version ofL̄ j , etc.
In two dimensions we use a standard tensor product extension of the one-dimensional

wavelet system, such thatH = Vj+1⊗ Vj+1 andH0 = Vj+1−nx ⊗ Vj+1−ny . The valuesnx

andny are the number of levels we homogenize in thex andy directions, respectively. This
determines how many fine scales to discard. Note that the number of fine scales to discard
does not have to be the same in both coordinate directions.

Since we will only work with finite-dimensional problems in this paper we will henceforth
discuss the operators in terms of their matrix representations with respect to the wavelet
bases. In one dimension the block structure (24) of the linear operator translates to the same
block matrix decomposition. In two dimensions we computeW by taking the Kronecker
tensor product with itself of the matrix representation of one-dimensionalW. We must
thereafter apply a suitable permutation to get the matrix block structure of (24).

It should be noted that in general the matrixL̄ j will not be sparse even ifL j+1 is. For the
numerical homogenization to be efficient we must be able to approximateL̄ j with a sparse
matrix. Theoretical and numerical evidence that this can indeed be done has been given in
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earlier work [8, 9, 12], where it was also shown that for many practical cases the matrixAj ′

and the resultinḡL j ′ will be strongly diagonal dominant forj ′ ≤ j . In the present paper
we will use a rather simple strategy. In one dimension we approximateL̄ j by setting all
components outside a prescribed bandwidthν equal to zero. Let us define

trunc(M, ν)i j =
{

Mi j , if 2|i − j | ≤ ν − 1,

0, otherwise.
(27)

This procedure was introduced in [8] and used in [3, 12]. We will use it in this paper to
control the structure of̄L j and we refer to it astruncation. A theoretical motivation for this
form of approximation is given in [12].

In two dimensions truncation to simple banded form is in general inadequate, since the
exact operator will typically be block banded. LetM be the Kronecker tensor product of an
N × N matrix with another matrix. Then we defineblock banded truncationas

trunc2(M, ν)i j =
{

Mi j , if 2|i − j − r N | ≤ ν − 1− |2r |,
0, otherwise,

|2r | + 1≤ ν. (28)

The motivation behind this is the fact that ifL = Lx ⊗ L y thenL̄ = L̄ x ⊗ L̄ y, as shown in
[21]. The block banded truncation mimics this, since ifM = Mv ⊗ Mu then trunc2(M) =
trunc(Mv)⊗ trunc(Mu)+ δM , where the number of nonzero elements inδM is very small.

Computing the homogenized operator with a direct method would be expensive. By
capitalizing on the nearly sparse structure of the matrices involved, it was however shown
in [9] that, for one-dimensional problems, the cost can be reduced toO(N) operations forN
unknowns and fixed accuracy. This method uses a multiresolution-based LU decomposition
procedure described in [10]. Moreover, the same homogenized operator will typically be
reused multiple times, for instance with different right-hand sides, or in different places of the
geometry as a subgrid model. This aspect will be exemplified below in Sections 5.3 and 5.4.

Remark. In the introduction we touched upon analytical homogenization and we would
like to compare that with the numerical homogenization procedure described above. The
analytical homogenization problem can be formulated as follows. Consider a family of dif-
ferential operators{Lε} and a right-hand sidef . Find the homogenized operatorL̄ such that

Lεuε = f, lim
ε→0

uε = ū, L̄ū = f. (29)

For certain operators the convergence above and existence of the homogenized operator
can be proved, for instance in the followingd-dimensional linear elliptic case [5]. Let
T : Rd 7→ Rd×d be one-periodic in all coordinate directions, bounded, and uniformly pos-
itive definite. If

Lε = −∇ · T
(x

ε

)
∇, (30)

it can be shown that the homogenized operator is given by

L̄ = −∇ · T̄∇, T̄ =
∫

Id

T(y)− T(y) dχ(y) dy, (31)

whereId denotes the unit cube inRd anddχ is the Jacobian ofχ : Rd 7→ Rd given as the
solution to the so-called cell problem,

∇ · T(y) dχ(y) = ∇ · T(y), (32)
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with periodic boundary conditions forχ . Note thatT̄ is a constant matrix. A direct practical
application of this can be found in [13].

The structures of the analyticalL̄ in (31) and the numerical̄L j in (26) are similar. Both are
written as the average of the original operator minus a correction term, which is computed in
much the same way for both operators. For the analytical case, a local elliptic cell problem
is solved to getT dχ , while in the numerical case, a smaller positive definite matrixAj

is inverted to obtainL j+1Qj A−1
j Bj . The average over all terms is obtained by integration

in the analytical case, and by applyingPj in the numerical case. In this sense, computing
the numerically homogenized operator is analogous to solving the cell problem in classical
homogenization. The relationship can be made more precise in one dimension, where it has
been shown that in the limit̄L j approaches̄L; see [15, 23].

5. RESULTS

5.1. Simulation

The left part of Fig. 2 shows examples of solutions in the case of total reflection and total
transmission of the injected wave. The specification of the test problem is

w = 1, a = 1/4, S= 32, d = 17/1024, b = 4/128,
3 = 32/1024, τ = 4/1024, δ = 4/1024, M = 64, N = 1024,

(33)

FIG. 2. Plots of solutions to test problem (33). Left figures show|u| for frequencies in the stopband (top left)
and at resonance (bottom left). Right figure shows the frequency responseHpow(ω) for the same test problem (i)
and for problems with perturbeda (ii) andb (iii).
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and we used (11) and (21) as the numerical approximation. The two cases were computed
with ω/2π = 44.5 (reflection) andω/2π = 45.155 (transmission).

In the right part of Fig. 2 thefrequency responseof the same filter (33) is shown. This
function measures how much power is transmitted through the filter at each frequency. For
a fixed frequency the response is defined and computed as

Hpow ≡
∫∞
−∞|u(w, y)|2 dy∫∞
−∞ |uin(y)|2 dy

≈
∑M

`=1|uN,`|2∑M
`=1|uin(y`)|2

= ‖uN,.‖22,h
‖uin‖22,h

, (34)

whereuin in the last term refers to the grid functionu`in ≈ uin(y`). Here we have also
introduced the discreteL2-norm of a grid functionu`. In one and two dimensions we define
it as

‖u‖2,h =
√

h
∑

i

|ui |2 (1D), (35)

‖u‖2,h = h
√∑

i, j

|ui j |2 (2D). (36)

The right figure also shows the stability of the response under perturbation of the free
variablesa andb. The case (i) is the original test problem (33). In (ii) we modifieda to
a = 1/8 (andN = 768, w = 3/4). In (iii) we changedb to b = 24/1024 (andM = 48).
As can be seen, these perturbations do not significantly alter the response.

5.2. Homogenized Solutions

The discretizations in Section 3 will lead to a linear system of equations,Lu = f , where
f is a vector determined by the boundary conditions. We apply the technique described in
Section 4 to this system and study the result after two levels of homogenization in each
coordinate direction.

We will consider the test problem defined by the constants

w = 1, a = 3/16, S= 10, d = 9/32, b = 1/8,

3 = 1/8, τ = 3/128, δ = 3/128, M = 32, N = 128.
(37)

In Fig. 3 the solution of this problem at frequencyω/2π = 11 is shown, together with the
solution of the homogenized problem. Homogenization was done two levels in both thex
and y directions. Note that the homogenized operator was not approximated, and so the
homogenized solution is just the projection of the full solution onto the coarse subspace.
The effect of approximating the operator using the truncation is shown in Fig. 4. We do
both crude truncation according to (27) and block banded truncation according to (28). In
the figure we plot the error between the solution obtained using an operator truncated to a
varying number of diagnoals and the solution obtained using the full homogenized operator.
(To be better able to compare the results we show the number of diagonals, not theν in (27)
and (28).) We give relativeL2 error and relative error inHpow for both truncation strategies,
concluding that the the block truncation method is better, as expected. We also show the
strongly diagonal dominant structure of the homogenized operator in Fig. 5.
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FIG. 3. Solution of test problem (37). Full solution (left) and solution after two levels of homogenization in
bothx andy directions (right).

Next, we show how to recover the frequency response of the filter (34) from a homoge-
nized solution. LetPj be the projection onto the wavelet spaceVj . In the case ofnx andny

levels of homogenization in thex andy directions, we define the homogenized frequency
response by simply entering the coarse part ofu anduin (34),

H̄nx,ny
pow =

∥∥((Pj+1−nx ⊗ Pj+1−ny

)
u
)

N̄,.

∥∥2
2,h̄∥∥Pj+1−nyuin

∥∥2
2,h̄

, (38)

where N̄ = 2−nx N and h̄ = 2nyh. In generalH̄
nx,ny
pow clearly does not agree withHpow.

However, in our problem there is a rather simple approximate relationship between the two,
which we derive here. Close tox = w, the solution should be approximately a right-going

FIG. 4. Relative error of homogenized solution as a function of numbers of diagonals kept, for the two different
truncation strategies. Figures show relativeL2 error (left) and relativeHpow error (right).
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FIG. 5. Structure of the homogenized operator. Absolute values of elements shown.

wave f (y)e−iβx, with β given in Section 3.2. Furthermore,

| f (y`)| ≈
√

Hpow|uin(y`)|, ∀`, (39)

since the shape of the outgoing wave should be the same as the injected wave. This gives us

H̄nx,ny
pow ≈

∥∥((Pj+1−nx e
−iβx

)⊗ (Pj+1−ny f
))

N̄,.

∥∥2
2,h̄∥∥Pj+1−nyuin

∥∥2
2,h̄

= ∣∣(Pj+1−nx e
−iβx

)
N̄

∣∣2 ∥∥Pj+1−ny f
∥∥2

2,h̄∥∥Pj+1−nyuin

∥∥2
2,h̄

≈ αnx Hpow. (40)

Hence,Hpow is scaled by the frequency-dependent parameter

αnx (ω) =
∣∣(Pj+1−nx e

−iβ(ω)x
)

N̄

∣∣2, (41)

which is equal to one whennx = 0. This shows thatHpow ≈ H̄
nx,ny
pow when we homogenize

only in they direction. In the Haar basis the expression forαnx becomes

αnx =
∣∣∣∣∣ 1

2nx

2nx∑
k=1

e−iβ(w−(k−1)h)

∣∣∣∣∣
2

= 1

22nx

∣∣∣∣∣
2n−1∑
k=0

e−iβkh

∣∣∣∣∣
2

= 1

22nx

∣∣∣∣sin(2nxβh)

sin(βh/2)

∣∣∣∣2, (42)

which is less than or equal to one. Forβh¿ 1 the coefficientαnx ≈ 1− (22nx − 1)β2h2/12.
The frequency responseHpow of the full problem (37) is plotted in Fig. 6. This figure also

shows the relative error betweenHpow and H̄
nx,ny
pow /αnx (ω) when homogenizing two levels

in thex direction, in they direction, and in both. The error is a few percent, increasing with
frequency.
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FIG. 6. Frequency response of test problem (37) (top). Relative error of the frequency response computed
from the homogenized solution of the same test problem (bottom). Results shown for homogenization two levels
in thex direction, in they direction, and in both.

5.3. One-Dimensional Models through Homogenization

To reduce the complexity of solving the full Helmholtz equation (6), and to gain better
understanding of the physical processes, one often wants to derive lower-dimensional mod-
els that capture the significant features of the full model. We could for instance try to find
a model of the form

∂x(ce(x, ω)
2∂xue)+ ω2ue = 0, (43)

whereue is related tou, the solution to (6), in a simple way. One approach to this problem,
usually called theeffective index method[4, 20], is to linkce(x, ω) to the local width of the
waveguide, denotedd(x). For fixedx andω the coefficientce(x, ω) is given as the speed
of the lowest propagating mode in an infinite straight waveguide of (constant) widthd(x)
at frequencyω. This is a good approximation as long asd varies slowly relative to the
wavelength and the height itself,|dxω| ¿ 1 and|dx/d| ¿ 1. There are more sophisticated
versions of this method, where the effective index is averaged with a weight function
corresponding to the predicted energy of the solution, theweighted index method[1], and
where a part of the solution is computed via Fourier transform, thespectral index method
[19]. Another way to simplify (1) is to approximate it by the one-way wave equation,
such that all energy is assumed to propagate in one direction. This is used in thebeam
propagation method[14], where the solution is computed by “time stepping” the equation
in the x direction. It gives accurate results when the variations inc(x, y) are small. The
main difference between these methods and the one we propose is that no specific physical
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considerations are required with our method. It can however, as we will see, provide physical
interpretations of the simplified models.

We will here show how the homogenization technique described in Section 4 can be
used to derive a family of one-dimensional models with different properties. The full two-
dimensional operator is first homogenized multiple levels, but only in they direction. It is
subsequently truncated and identified with a discretization of a one-dimensional differential
operator. The resulting operator and right-hand side will approximate a system of one-
dimensional partial differential equations with a size equaling the number of grid points left
in the y direction. The order of the differential operator corresponds to the bandwidth of
the truncated operator. In conclusion, we have three different parameters that we can vary:

1. the sizen of the system of equations,
2. the orderr of the differential operator, and
3. the subspaceH0 used in the homogenization.

In general there is a trade-off betweenn andr , such that a smallern requires a largerr . The
reason is that, to maintain good accuracy, the bandwidth after truncation usually needs to
increase with the number of levels that an operator is homogenized.

These one-dimensional models yield an approximation of the solution projected on a
space spanned by only a few grid points in they direction. In view of the results in Section 5.2
this would still give a quantitative picture of the full solution. In particular, by using (40) it
would be possible to compute a good approximation of the frequency responseHpow.

To exemplify the process described above, we will derive a one-dimensional model for
the test problem given by

w = 1, a = 3/16, S= 10, d = 5/16, b = 1/8,

3 = 1/8, τ = 1/64, δ = 1/64, M = 16, N = 64.
(44)

For this problem it is difficult to find a subspace where a scalar model(n = 1) is accurate
without using high values ofr . We will use a medium size model, withn = 4, r = 2.
Numerical experiments with different wavelet systems suggest that in general the higher
the order of the wavelets, the better the result. We show results whenH0 is given by the
Daubechies wavelet system with four vanishing moments.

In Fig. 7 the frequency response for this problem is compared with the one given by
the effective index method, described above. Sinced(x) has discontinuities the result is
not good. In particular the resonance peak is at the wrong frequency. We shall see that our
model fairs better. The new model is an approximation of the full problem after two levels
of homogenization in they direction. The frequency response given by this homogenized
problem and (40) is also plotted in Fig. 7. It agrees well with the full response, as expected.

Let us introduce the continuous 4× 4 system model with the unknownsu = (u1, u2, u3,

u4) ∈ C4:

∂x(B(x)∂xu)+ C(x)u+ ω2u = 0, B(x), C(x) ∈ R4×4. (45)

This ansatz differs from (43) in that it also has a variable coefficient in the lower order term.
However, none of the coefficients are assumed to be frequency dependent. This is preferable
here, since it will reduce the cost of computing the frequency response of the filter.

We now proceed as follows. The discrete two-dimensional problem is homogenized two
levels in they direction and afterwards the unknowns in the equationL̄ū = f̄ are reordered
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FIG. 7. Frequency response of test problem in (44) computed with the full two-dimensional model (solid
line), computed after homogenization two levels in they direction of the full model (crosses), and computed with
the effective index method (circles).

to the blocked form 
L̄11 L̄12 L̄13 L̄14

L̄21 L̄22 L̄23 L̄24

L̄31 L̄32 L̄33 L̄34

L̄41 L̄42 L̄43 L̄44




ū1

ū2

ū3

ū4

 =


f̄ 1

f̄ 2

f̄ 3

f̄ 4

. (46)

Each of the suboperators̄Li j is truncated to tridiagonal form, which essentially corresponds
to truncating the full operator̄L to 15-diagonal form (before reordering). We identify the
unknownsū j and f̄ j with one-dimensional grid functions,̄ui

j ≈ u j (xi ) and f̄ i
j ≈ f j (xi )

for some f j . Furthermore, the truncated operatorsL̄ i j are identified with the discretization

1

h2
L̄ i j = 1

h2
1+bi j

(
xk−1/2

)
1− + c̄i j (xk)+ 1

2
γi j (xk)(E + E−1)+ ω2, (47)

whereE is the displacement operator defined byE ūk = ūk+1. Theγi j terms are needed since
L̄ i j is in general not symmetric. Each̄Li j can be seen as a discretization of a second-order
differential operator acting on the grid function̄u j . Assembling the suboperators by setting
B = {bi j }, C̃ = {c̃i j }, and0 = {γi j } we get

1

h2
1+B

(
xk−1/2

)
1−Uk + C̃(xk)U

k + 1

2
0(xk)(U

k−1+Uk+1)+ ω2Uk = Fk, (48)
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FIG. 8. Frequency dependency of coefficients. RelativeL2 difference between coefficients computed atω

and atω/2π = 10.3 (top). RelativeL2 difference between imaginary and real part of coefficients (bottom).

where we also assembled the grid functionsU = {ū j } andF = { f̄ j }. If C(xk) = C̃(xk)+
0(xk) and B(xk) were real and independent ofω and if F = 0 this equation could be
identified with a second-order discretization of (45). Thus, the matricesB(x) andC(x)
represent the effective material of the waveguide, similar to thece(x, ω) that was computed
with the effective index method.

In fact, the computed coefficients satisfy these requirements to a fairly good level of
approximation, which is illustrated in Fig. 8. The coefficients are computed for a range
of ω, and the relativeL2 difference, compared to the coefficients computed at resonance,
ω/2π = 10.3, is plotted in the top picture. TheB(x) coefficients vary on the order of only
1% in the interval. In the bottom picture theL2-norm of the imaginary part of the coefficients
relative to the real part is plotted, showing that this is at worst a little more than 1%. This
indicates that the assumption (45) is justified.

In Fig. 9 we show the frequency response computed in two different ways and compare
them with the response for the two-dimensional model. The first way is to recompute the co-
efficients for each new frequency. This gives a very good agreement with the response of the
full model. The second way is to compute all coefficients, once and for all, at the resonance
frequency,ω/2π = 10.3. Even now the model captures the true response fairly well. We
could hence calculate all parameters of the model for one single frequency and the model
will remain approximately valid for the whole frequency band of interest.

The first and last rows of each̄Li j correspond to boundary conditions. Therefore we have
simply left the first and last two rows of each (truncated)L̄ i j intact in the methods above.

We also computed the frequency response after having set the right-hand side to zero
and discarded the imaginary part of all coefficients (except the elements corresponding to
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FIG. 9. Frequency response of test problem (44) computed using the one-dimensional model given in the
text. Results shown when response was computed with the full two-dimensional model (solid line), with the one-
dimensional model and coefficients recomputed for each new frequency (crosses), and with the one-dimensional
model and coefficients computed only once, forω/2π = 10.3 (circles).

boundary conditions). This gave a slightly better response, but overall it did not alter the
result in any significant way.

The computational gains can be large for the method described above. Since the bandwidth
of the one-dimensional model isnr , the cost of computing the solution fork frequencies
is Ckn2r 2N flops plus thek-independent cost of constructing the homogenized operator.
At least for largek, the work of computing the solutions dominates. Comparing this with a
direct method, which requiresCkN M3 flops, we get a cost ratio of

n2r 2

M3
, (49)

which is often small. For the test problem (44) it equals 1/64.

5.4. The Homogenized Operator as a Subgrid Model

One way to deal with the problem of small scales in a differential operator is to derive
subgrid models that capture the effect of subgrid-scale phenomena on a coarse grid. There
are many traditional ways to find such models in linear as well as nonlinear contexts.
A number of methods are based on physical considerations for a specific application, for
instance nonlinear turbulence models in computational fluid dynamics [25] and analytically
derived local subcell models in computational electromagnetics [24]. Another example is
the immersed interface method [18] used on Cartesian grids. In this method the subgrid
variations of the shape of a material interface is taken into consideration by changing the
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updating stencils near the interfaces. Shock tracking or shock fitting can also be seen as
subgrid models [2].

In this section we will use numerical homogenization to obtain linear subgrid models
of the details of the waveguide and use them to solve a large problem on a coarse grid, as
outlined in [3]. Our target problem is the same as in (37), only that we extend the waveguide
by increasing the lengthw and the number of gratingsS. We use the same frequency as
before,ω/2π = 11. To solve this problem on a coarse grid, we would need the homogenized
operator and right-hand side. The key observation here is that a good approximation of these
can be obtaineddirectly from a much smaller problem, the analogue of the cell problem in
classical homogenization.

In the waveguide example we identify four distinct parts of the problem: the initial part,
a grating tooth, the quarter-wave step in the middle, and the end part. Letūi, ūm, andūe

denote the solution at grid points in the initial segment, middle segment, and end segment
of the waveguide. Moreover, let̄ut

k be the solution at toothk. Then we can decompose
L̄ū = F̄ as

(L̄ + δL)



ūi

ūt
1
...

ūt
S/2

ūm

ūt
S/2+1
...

ūt
S

ūe



=



F̄ i

F̄ t
1
...

F̄ t
S/2

F̄m

F̄ t
S/2+1
...

F̄ t
S

F̄e



, (50)

whereF̄ follows the same partitioning as̄u and

(51)

with elements being zero outside the delineated areas. The matrixδL is the residual between
L̄ andL̄, with all elements zero within the delineated areas.
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With this notation we now observe that sinceL̄ is diagonal dominant,δL will be small.
Moreover,

L t
k ≈ L t

`, F̄ t
k ≈ F̄ t

`, ∀k, `. (52)

We will interpretL i , L t, Lm, andLe together withF̄ i , F̄ t, F̄m, andF̄e as the subgrid models
for the corresponding parts of the geometry. (SinceL t

k andF̄ t
k are approximately the same

for all k we will henceforth drop the subindices.)
The strategy for constructing an approximation of the homogenized operator of the

full problem is then clear. First, we compute an approximation ofL i , L t, Lm, and Le

by homogenizing a much smaller problem. At the same time we also obtain approxima-
tions of F̄ i , F̄ t, F̄m, and F̄e. Second, we assemble the subgrid models according to the
block structures of (50) and (51) to obtain an approximation ofL̄ and F̄ . Finally, we
neglectδL.

In our example we use (37) withw = 1 andS= 10 as our small problem. This is a
well-resolved problem with eight gridpoints between the gratings and approximately 15
gridpoints per effective wavelength in thex direction (β/2π ≈ 8.75, with β defined in
Section 3.2). We homogenize the operator three levels in they direction and one level in the
x direction, corresponding to a grid size ofM = 4 andN = 64. This gives a very coarse
resolution in they direction, in particular no resolution of the gratings, and a reasonable
resolution in thex direction. This grid size should be enough to represent the solution in a
quantitatively correct way.

For the large problems we denote the corresponding parameters with a prime sign. We
will havew′ > 1 andS′ > 10 and we setL i′ = L i, Lm′ = Lm, Le′ = Le, and

L t′
k =



L t
k, 1≤ k ≤ 2,

L t
3, 3≤ k ≤ S′/2− 2,

L t
k+(S−S′)/2, S′/2− 1≤ k ≤ S′/2+ 2,

L t
S/2+3, S′/2+ 3≤ k ≤ S′ − 2,

L t
k+S−S′ , S′ − 1≤ k ≤ S′.

(53)

So far we have deliberately been vague about the exact size of the areas in (51) and hence
the size of the subgrid models. We now introduce a parameterν, the bandwidth of̄L, with
which we can define all sizes at the same time. The value ofν will determine the accuracy
of the solution. The results of this computation are shown in Fig. 10, where the relativeL2

error between the solution computed using the subgrid technique and the exact solution,
projected onto the coarse subspace, is plotted as a function ofν, for five different problem
sizes. Our small problem(w = 1, S= 10) is also included, for comparison, in which case
ν just indicates the bandwidth of the truncated operator. Even for a problem 16 times as
large as the small problem, the relativeL2 error can be reduced to 10%, by choosingν big
enough. Note that even when the relativeL2 error is rather large, a good quantitative picture
of the solution is obtained in the interior of the waveguide. This is exemplified for the case
of w = 16 andν = 22 in Fig. 11, where the part of the solution with the largest errors is
plotted. The relativeL2 error in this case is of the order of 50%.

There are two different error sources for this technique. LetL̄ ′best be the approximation
of L̄ ′ obtained by using the subgrid models without any truncation. Then the difference
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FIG. 10. Result of the subgrid technique. RelativeL2 error of solution as a function of the bandwidth.

FIG. 11. Result of the largew = 16 problem approximated withν = 22. Plot of exact solution (solid) and
approximate solution (dashed) as a function ofx for four y values corresponding to the four grid points in they
direction of the coarse mesh. Real part ofu shown in thex interval [0, 2], the region with the largest errors.
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between the exact homogenized operatorL̄ ′ and the approximation,̃L ′, is

L̄ ′ − L̃ ′ = L̄ ′ − L̄ ′best+ L̄ ′best− L̃ ′ ≡ δL ′ + δ L̃ ′. (54)

The error attributed toδ L̃ ′ will follow the same pattern as in Section 5.2 for truncated
operators, while the error ascribed toδL ′ is independent ofν. In Fig. 10 we see that all error
curves, except the one for the small problem whereδL ′ is zero, level out after a certainν
value. This point,ν∗, is where the effect ofδL ′ starts to dominate. From an accuracy point
of view it is therefore meaningless to useν > ν∗. In this caseν∗ ≈ 45 independently of the
problem size.

To estimate the gain in using the subgrid technique, letM ′ andN ′ denote the grid size of
the large problem. The exact operator has a bandwidth ofM ′. The cost to solve this problem
is thereforeC N′M ′3 flops with a direct solver. Suppose our coarse grid is of the sizeN ′/2nx

andM ′/2ny , corresponding to homogenizationnx times in thex direction andny times in
the y direction. The direct solution using the subgrid model then costsC N′M ′ν2/2nx+ny ,
giving a ratio between the costs of

2−nx−ny

(
ν

M ′

)2

. (55)

In our largest case,w = 16, with ν = ν∗ = 45, we get an approximate ratio of 1/8. We
must also compute the subgrid model, although this only needs to be done once for all five
computations above, and for the grid size of the small problem. This cost is dominated by
the other factors.

6. CONCLUSION

We have showed how wavelet-based homogenization can be used to derive coarse-scale
approximate models for an optical waveguide filter with gratings. The models accurately
describe the original problem, because the method takes into account the effect of the fine-
scale details. This has been demonstrated by a number of numerical tests. The method
generalizes to other physical systems described by partial differential equations, when the
approximate models are physically feasible.

The technique is promising for reducing the complexity of the problems, especially when
several similar problems are to be solved. We have shown two examples of this: when the
frequency response is computed and when several waveguides with different numbers of
gratings are simulated.

The derived models can also provide additional insight into the physics of the problem.
We have shown that the two-dimensional waveguide with gratings can be approximated
by a one-dimensional 4× 4 system of Helmholtz-type equations, with coefficients that
vary spatially, but are independent of the frequency in a neighborhood of resonance. The
coefficients in the derived operators can be interpreted as the effective material properties
for the waveguide, and they can be studied to better understand the filter effect and the
physical influence of the gratings. Similar studies can be made with the subgrid models,
where simplified models can be suggested by the coefficients in the homogenized operator.
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