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We apply wavelet-based numerical homogenization to the simulation of an optical
waveguide filter. We use the method to derive approximate one-dimensional models
and subgrid models of the filter. Numerical examples of the technique are presented,
and the computational gains are investigated, 2001 Academic Press
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1. INTRODUCTION

A general problem in the numerical simulation of differential equations is the existen
of scales much smaller than the computational domain. Often, small scales in the dif
ential operator or in the solution cannot be resolved by the grid directly because of
overwhelming computational cost this would incur. Discarding the small scales can, hc
ever, be tantamount to making large errors. Fine scales in the initial values may for exan
interact or resonate with fine scales in the material properties and produce coarse-
contributions to the solution, which would be lost.

A classical analytical way to approximate differential operators containing small sca
is homogenizatiofs]. Simplified homogenized operators can be derived for some class
of small scales and problems, such as linear elliptic equations with periodic or stocha
coefficients. For more complicated problems, however, there is generally no simple wa
express the homogenized operator, if it exists.

Recently, the homogenization problem has been approached from a numerical poir
view. In [3, 6, 9, 12, 15, 22, 23], it was shown how multiresolution analysis and wave
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FIG. 1. Specifications of the waveguide under study.

decompositions can be used to derive coarse-scale models to linear partial differential e
tions. These models can be computed efficiently, and they can be represented in a con
way by sparse matrices. Similar techniques for nonlinear ordinary differential equatic
have been investigated in [7]. For these methods, which we term numerical homogen
tion, no assumptions are needed about the structure of the coefficients. In analogy witt
analytic case we call the coarse-scale model the (numerically) homogenized operator.

To illustrate the usefulness of wavelet-based numerical homogenization, in this papel
study an optical filter containing a fine-scale structure. The filter is shown in Fig. 1. It
composed of a straight waveguide with small gratings engraved on one of its sides at reg
intervals. At one point the distance between two of the grating teeth is increased by 5(
This quarter-wave stegives a narrow-band filter effect and causes waves of one reson:
frequency to pass through, while reflecting adjacent frequencies. The ability to sepa
frequencies makes the filter a useful component in many communication applications.
instance, it allows an optical communication link to be partitioned into many channels wh
signals can be selectively transmitted and detected. Applications can be found in [17]
[16]. The parameters used in the design of the filter determine many of its relevant proper
and it is of interest to simulate the filter numerically to anticipate the influence of the
parameters. The waveguide will be modeled by the two-dimensional Helmholtz equatic

V - (c(X, ¥)?Vu) + «?u = 0, 1)

wherec(x, y) represents the material-dependent speed of propagation.

The most important feature of the waveguide filter is the interplay between a small-sc
periodic structure (the gratings) and a localized inhomogeneity (the quarter-wave step).
this case, analytical homogenization techniques do not apply.

We use wavelet-based numerical homogenization to derive two different simplified mc
els of the filter. First, we show how to compute a one-dimensional model of (1) throus
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homogenization only in one coordinate direction. The model is approximately frequen
independent, and we use it to compute the frequency response of the filter in an effic
manner. Compared to the one computed using the so-called effective index method [4,
this response is much more accurate.

Second, we demonstrate how numerical homogenization can be used to compute ap
imate subgrid models of the different parts of the waveguide. By subgrid model we mee
local discrete model of the effect of scales that the grid does not resolve. We use the suk
models to solve a large problem on a coarse mesh that does not resolve the grating
the first step an operator corresponding to a waveguide with a small number of grati
is homogenized, and the part representing a single grating is identified. The numeric
homogenized operator is then extended by replicating this part to obtain the correspon
operator for a waveguide with many gratings. This can be seen as a generalization of sol
the cell problem in analytical homogenization and using the computed effective mate
coefficient in the homogenized equation [5].

Finally, we want to emphasize that neither of the above two methods is in any w
constrained to the waveguide problem; they could be used also for other problems wi
the simplified models are physically feasible.

This paper is organized as follows. In Section 2, we begin by justifying the twi
dimensional mathematical model used for the optical filter. Next, in Section 3, we sh
how to approximate and solve those equations with a direct approach. We continue to
a brief introduction to numerical homogenization in Section 4 and finally, in Section 5, v
show results of the application of numerical homogenization to the waveguide proble
In particular, we use it to reduce and simplify the direct computational problem, first by
one-dimensional model and second through subgrid modeling as described above.

2. MATHEMATICAL MODEL

The Maxwell equations govern the behavior of electromagnetic waves. In our model
will assume that the waves propagate in a medium that is linear, isotropic, nonmagne
and nonconducting. The Maxwell equations for the electric fiele (Ex, Ey, E;) and the
magnetic fieloH = (Hy, Hy, H,) then take the form

oH J0E
u— +VxE=0, e——-VxH=0,
ot ot (2)

V.(€E)=0, V.(uH)=0,

where u and e represent the medium’s permeability and permittivity, respectively. W
will only consider waves that are time-harmonic with fixed frequangcyhich amounts to
changing; — iwin(2). Taking the time derivative of the firsttwo equations reduces them:
1 2 1 2
Vx|—-VXxE|—-€ewE=0, Vx|-VxH|]—uowH=0. 3)
" €
Since the material is nonmagnetjc,is constant. We now also assume thas constant

in the z direction, so that the fields are independentzphenced, = 0. This gives us
two-dimensional Helmholtz equations for the componéitandH,,

1
V2E2+€(X, Y)szEz=0, V. <7VHZ) +w2Hz=07 (4)
€(X, y)u
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whereV here and henceforth represents the two-dimensional nabla operatorEz@m
H, we can obtain all the remaining components by using (2):

. 0E . oH
Ia),uHX:—Z, lweEy = — Z,
ay ay (5)
. E, . oH;
Ia),tu:—a—X, lweEy = %

We will compute a so-called transverse magnetic (TM) mode solution wkgeee 0. We
then only need to findH,, which we will denote by in the remainder of the paper. Lef
be the speed of light in vaccuum. After introducing the relative speed ofdight,/ /€,
we finally have the equation far, namely,

V - (c(X, Y)°VU) + w’u = 0, (6)

where for convenience we rescabed> x/cy andy — y/cCo. In our case(x, y) is discon-
tinuous (see below) and (6) must be interpreted in the distributional sense. We hence
a weak solution of (6) in the Sobolev spaldé.. Away from discontinuities irc, a weak
solution is in fact smooth, satisfying (6) also in the strong sense. Moreover, SUEOSE

is discontinuous across a curve in thegplane with normaii and that is a weak solution of
(6). Then it follows thati satisfies the classical interface conditions for Maxwell’s equation
in lossless media: continuity ofandc?i - Vu across the curve.

In Fig. 1 we specify the variables that define the dimensions of the waveguide. We v
usually fix the lengthw = 1 and usea, d, A, §, andt as design parameters. Related to
these isS, which will denote the number of gratings. Further parameterggaadn,, the
indices of refraction outside and inside the waveguide, respectively. The index of refract
is defined ag)(x, y) = 1/c(x, y) and will hence be piecewise constant. Throughout thi
paper we assume that the material of the waveguide is GaAs,witl8.3, and that it is
surrounded by vacuum (= 1.0).

3. NUMERICAL APPROXIMATION

3.1. Discretization of the Helmholtz Equation

We start by truncating the physical domain to the rectanglev]Ox [—b, b], where
b > d/2is an additional parameter (see Fig. 1). Next, we introduce a unifornpxgig,)
of (N + 2) x (M + 2) points,

X = (K—1/2h, y,=—b+ (€ —1/2h, h=w/N, ©)

fork=0,...,N+21and¢=0,..., M+ 1. Since we have square cells, the parameter
will satisfy the relationshipyM = 2N b. We will only useb andd values such tha# is
an integer ang, = d/2 for somet.

Moreover, we define grid functions correspondingi(®, y) andc(x, y). They are given
as

Uk ~ UXk, Ye), k=0,...,N+1, ¢=0,....,M+1 (8)
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Letting x™ (x™) denote the limiting values from above (below), we get

Cki1/2¢ = €% +h/2,y}), k=0,...,N, £=0,...,M+1, ©)
Ceet12 =C% .Y, +h/2), k=0,...,N+1, £=0,..., M,
wherey; =y, for positivey, andy; =y, for negativey,.
Next, we introduce the difference operators
A% Uge = Ugy1e — Uke,  AX Uk = Uge — Uk-_1.¢,
(10)

AU = U o1 — Uke, AV Uke = Uke — U g1

With the above notation we can write down the second-order scheme that we will be us

1 1
ﬁAiCE—l/Z.KAiukf + EAYFCE,Z—UZAXUK[ + a)Zng =0 (11)
fork=1,...,Nand¢=1,..., M. Hence, we use a discretization that corresponds t

the same divergence form as the continuous problem (6). This ensures that the nur
cal solution satisfies the same interface conditions as the weak solution of (6)cvigien
discontinuous.

3.2. Boundary Conditions

To complete the continuous and the discrete problems, (6) and (11), extra conditions r
be given at the boundary of the domain {@ x [—b, b]. At y = +b we use a Neumann
boundary conditiomy = 0, discretized with the second-order approximation

1 1
HAiuk,ozo, HA}Luk,Mzo, k=1,...,N. (12)

This is motivated by the fact that the solution should be almost constant zero far away ft
the waveguide. Since we are looking for a wave solution propagating aloryy dxes,
we need absorbing boundary conditionsxat 0 andx = w. To derive these boundary
conditions we assume that there is a functioand ag € R such that

ux ~ 0,y) = f (Y 4+ un(y)e™?, ux~w,y) =const f(y)e™, (13)
whereui, (y) is the amplitude of the injected plane wave. By differentiating (13), we get
Ux(0,y) —ipu(0,y) = —2iBuin(y), Ux(w,y) +ipu(w,y)=0. (14)

To reduce problems with numerical dispersion and the resulting phase errors, we will chc
the discretizations of (14) such that they are exact under the assumption (13). Hence
want to findg, uin, anda;, j = 1, 2, 3 such that the grid functions corresponding to (13
satisfy (11) and the boundary conditions

1 1
HA+Uo,e + ailp = aUin(Ye), HA+UN,£ +agun, =0, (15)

fore=1,..., M.
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We begin by finding an expression f8r Close tox = 0 andx = w the coefficient is
independent ok and we let

Ce =cC(y)), Ce12=c(y; +h/2), LeZ, (16)

whereyj; is defined as after Eq. (9) afg} is extended to an infinite grid in the obvious way.
For (13) to satisfy (11) the grid functiofy ~ f (y,) should satisfy the discrete eigenvalue
problem

1 2 w? 2 >, 4 ., ph
%A_FCK_l/ZA_ f[ + C—g fg = )\‘ f[, )L == ﬁ S|n2 I Z (S] Z (17)
The eigenmodes are
{ COSy Ve lyel <d/2,
fg = d
1)
cos > e lYel > d/2, (18)
22 = szl/ = n2w? 4sinhza
771¢0 ) = Now" + h? P
with «, y given by the transcendental equations
2 2 4 V
(n? — nd)w? =3 Sinf ~— + smh2 (19)
d h
eh—1= % (sm(yh) tan(y ) — 2sirf y). (20)
ng 2 2

Since we are only interested in the behavior of the lowest propagating mode, we chc
the B that is related, via the formula in (17), to the largest real eigenvalu® similar
derivation shows that we should usg(y,) = const- f, as the injected wave at = 0,
again picking thef, that corresponds to the lowest mode.

It remains to findg;, j = 1, 2, 3 such that the boundary conditions in (15) are satisfiec
By using the simple relation €% = (¢#" — 1)&# we immediately get

1-ei sy g 1-eh

a; = ho D = 3 = h

(21)

4. NUMERICAL HOMOGENIZATION

In this section we will describe the following general approach to homogenization. Giv
an equation

Lu=f, (22)

wherelL is a linear operatorf a right-hand side, and a solution that contains fine scales,
find the homogenizedperatorL and right-hand sidé such thatL Pu= f, whereP is
a projection operator onto a subspace in which the fine scales in the original solution
not exist. In our setting (22) will be the finite-dimensional approximation of the Helmhol
equation, described in Section 3, whiewill be a projection onto a coarse-scale wavelet
space. We will also show how the resultihgcan be approximated by a sparse matrix.
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Let H be a Hilbert space anly ¢ H a closed subspace, which for our purposes repre
sents the coarse scales of a function space. We dend®etbg projection inH onto Hg
and letQ = | — P, wherel is the identity operator itH. We also introduce the unitary
operator/y on H defined by

u
W :H > Hyx Hg, Wu:(g). (23)
u

For any bounded linear operator: H — H, we can make the decomposition

L(u) _ (QL(Qu+Pv)\ _ /A B\/u
W (v) B (PL(QU+ Pv)> h (C D)(v)' @9
Thus, applying/V to (22) from the left gives
. _ A B\/Qu\ /Qf
WLW Wu_Wf:><C D><Pu>—<Pf>, (25)

and, assuming thaA is an invertible operator, we deduce through block Gaussian elinr
nation that

LPu=f, L=D-CA'B, f=Pf-CAQf. (26)

The homogenized operator is thus the Schur complement with respect to the decompos
(24).

We will follow [3, 12] and use orthogonal wavelet spaces for the coarse-scale subsp
Ho, as was originally suggested in [6]. If nothing else is stated we have used the Haar b:
For an introduction to wavelets and multiresolution analysis, we refer to [11M[and
W; refer to scaling and wavelet spaces of coarseness Jef@ some one-dimensional
wavelet system. Suppose thatf in (22) belong toVj 1. By definitionVj 1 = V; & W;,
and the coarse scaleof f comprises their projections ontg. We thus letH = V;;; and
Ho = V; and call the related homogenized operafq)r If we want to discard more fine
scales we can usdy = Vj11-n With n > 1 and obtain th& levels homogenized operator
E,—+1_n. These operators can in fact be obtained through a recursive algorithrrfyu'ﬁh
being the homogenized version B}‘, etc.

In two dimensions we use a standard tensor product extension of the one-dimensi
wavelet system, such thét = Vj,; ® Vj;1 andHo = Vj1-n, ® Vj11-n,. The valuesiy
andny are the number of levels we homogenize inttendy directions, respectively. This
determines how many fine scales to discard. Note that the number of fine scales to dis
does not have to be the same in both coordinate directions.

Since we will only work with finite-dimensional problems in this paper we will hencefortl
discuss the operators in terms of their matrix representations with respect to the wa\
bases. In one dimension the block structure (24) of the linear operator translates to the ¢
block matrix decomposition. In two dimensions we compuieby taking the Kronecker
tensor product with itself of the matrix representation of one-dimensighalWe must
thereafter apply a suitable permutation to get the matrix block structure of (24).

It should be noted that in general the malﬁ;(will not be sparse even If ;. is. For the
numerical homogenization to be efficient we must be able to approxiﬁ]aléth a sparse
matrix. Theoretical and numerical evidence that this can indeed be done has been give
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earlier work [8, 9, 12], where it was also shown that for many practical cases the matrix
and the resultingfjf will be strongly diagonal dominant for' < j. In the present paper
we will use a rather simple strategy. In one dimension we approxilﬁptmy setting all
components outside a prescribed bandwiddgual to zero. Let us define

¢ M Mij, if2li —jl<v—-1, o7

runaM, v {0, otherwise @7
This procedure was introduced in [8] and used in [3, 12]. We will use it in this paper
control the structure df ; and we refer to it aguncation A theoretical motivation for this
form of approximation is given in [12].

In two dimensions truncation to simple banded form is in general inadequate, since
exact operator will typically be block banded. Ldtbe the Kronecker tensor product of an
N x N matrix with another matrix. Then we defildock banded truncatioas

{Mi,-, if2li —j —rN|<v—1—2r],
trune(M, v)ij = . [2r|+1<v. (28)
o, otherwise
The motivation behind this is the fact thatlif= Ly ® Ly thenL = Ly ® Ly, as shown in
[21]. The block banded truncation mimics this, sincélif= M, ® M, then trung(M) =
trunaM,) ® trunadMy) + M, where the number of nonzero elementghihis very small.

Computing the homogenized operator with a direct method would be expensive.
capitalizing on the nearly sparse structure of the matrices involved, it was however shc
in [9] that, for one-dimensional problems, the cost can be redua@dith operations foN
unknowns and fixed accuracy. This method uses a multiresolution-based LU decomposi
procedure described in [10]. Moreover, the same homogenized operator will typically
reused multiple times, forinstance with different right-hand sides, or in different places oft
geometry as a subgrid model. This aspect will be exemplified below in Sections 5.3 and

Remark. Inthe introduction we touched upon analytical homogenization and we wou
like to compare that with the numerical homogenization procedure described above.
analytical homogenization problem can be formulated as follows. Consider a family of d
ferential operator§L .} and aright-hand sidé. Find the homogenized operaﬁsuch that

Leue=f, limu. =0, Lu=f. (29)
€—

For certain operators the convergence above and existence of the homogenized ope
can be proved, for instance in the followimgdimensional linear elliptic case [5]. Let
T : RY — RY*Y be one-periodic in all coordinate directions, bounded, and uniformly po:
itive definite. If

L, = —V-T(?)V, (30)

it can be shown that the homogenized operator is given by

C—_v.Tv. f:/ T(y) - T(y) dy(y) dy, (31)

ld

wherely denotes the unit cube R anddy is the Jacobian of : R® — RY given as the
solution to the so-called cell problem,

V-T(y)dx(y) =V -T(y), (32)
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with periodic boundary conditions for. Note thafT is a constant matrix. A direct practical
application of this can be found in [13].

The structures ofthe analyticEIin (31) and the numericzﬂj in (26) are similar. Both are
written as the average of the original operator minus a correction term, which is compute
much the same way for both operators. For the analytical case, a local elliptic cell probl
is solved to gefl dy, while in the numerical case, a smaller positive definite madijx
is inverted to obtair ;1 Q); Aj‘l B;. The average over all terms is obtained by integratiot
in the analytical case, and by applyify in the numerical case. In this sense, computing
the numerically homogenized operator is analogous to solving the cell problem in class
homogenization. The relationship can be made more precise in one dimension, where i
been shown that in the limlt; approaches ; see [15, 23].

5. RESULTS

5.1. Simulation

The left part of Fig. 2 shows examples of solutions in the case of total reflection and tc
transmission of the injected wave. The specification of the test problem is

w =1, a=1/4, S=32 d=17/1024 b= 4/128
A =32/1024 ©=4/1024 §=4/1024 M =64, N = 1024

(33)

FIG. 2. Plots of solutions to test problem (33). Left figures shawor frequencies in the stopband (top left)
and at resonance (bottom left). Right figure shows the frequency respinge) for the same test problem (i)
and for problems with perturbea(ii) and b (iii).
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and we used (11) and (21) as the numerical approximation. The two cases were comp
with w/2m = 44.5 (reflection) andv /27 = 45.155 (transmission).

In the right part of Fig. 2 thérequency responsaf the same filter (33) is shown. This
function measures how much power is transmitted through the filter at each frequency.
a fixed frequency the response is defined and computed as

S utw, yiPdy 3 lunel® lun I3
L2 luin(y)12 dy Zyzlluin(yz)lz Uil

Hpow = (34)

where u;, in the last term refers to the grid functimﬁ] ~ Uin(Ye). Here we have also
introduced the discrete,-norm of a grid functionu,. In one and two dimensions we define

it as
lullzn = [h) w2 (1D), (35)
lullzn =h /> juj2 (2D). (36)
ihj

The right figure also shows the stability of the response under perturbation of the f
variablesa andb. The case (i) is the original test problem (33). In (ii) we modiféetb
a=1/8 (andN = 768 w = 3/4). In (iii) we changed to b = 24/1024 (andM = 48).

As can be seen, these perturbations do not significantly alter the response.

5.2. Homogenized Solutions

The discretizations in Section 3 will lead to a linear system of equatiams; f, where
f is a vector determined by the boundary conditions. We apply the technique describe
Section 4 to this system and study the result after two levels of homogenization in e:
coordinate direction.

We will consider the test problem defined by the constants

w=1  a=3/16, S=10 d=9/32, b=1/8,

37)

In Fig. 3 the solution of this problem at frequeney2r = 11 is shown, together with the
solution of the homogenized problem. Homogenization was done two levels in bath th
andy directions. Note that the homogenized operator was not approximated, and so
homogenized solution is just the projection of the full solution onto the coarse subspe
The effect of approximating the operator using the truncation is shown in Fig. 4. We
both crude truncation according to (27) and block banded truncation according to (28)
the figure we plot the error between the solution obtained using an operator truncated
varying number of diagnoals and the solution obtained using the fullhomogenized opere
(To be better able to compare the results we show the number of diagonals, not (2&)
and (28).) We give relativk error and relative error iklo, for both truncation strategies,
concluding that the the block truncation method is better, as expected. We also show
strongly diagonal dominant structure of the homogenized operator in Fig. 5.
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FIG. 3. Solution of test problem (37). Full solution (left) and solution after two levels of homogenization i
bothx andy directions (right).

Next, we show how to recover the frequency response of the filter (34) from a homo
nized solution. LeP; be the projection onto the wavelet spage In the case ofi, andny
levels of homogenization in theandy directions, we define the homogenized frequenc)
response by simply entering the coarse patt ahdui, (34),

2
ey _ I(Pi+1n, ® Pian,)u) N,.Hz,ﬁ’ (38)

" P2, Ui o5

Tx.Ny

where N = 2-N and h = 2"h. In generalHpow” clearly does not agree withipow.
However, in our problem there is a rather simple approximate relationship between the t
which we derive here. Close 10= w, the solution should be approximately a right-going

——  Standard| } 10° ——  Standard| ]
- Block Block

0 50 100 150 200 250 o 50 100 150 200 250
diagonals diagonals

FIG.4. Relative error of homogenized solution as a function of numbers of diagonals kept, for the two differe
truncation strategies. Figures show relativeerror (left) and relativeH,,,, error (right).
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FIG. 5. Structure of the homogenized operator. Absolute values of elements shown.

wave f (y)e~'#*, with g given in Section 3.2. Furthermore,
[ (Yol ~ +/HpowlUin(Yo)|, V¢, (39)
since the shape of the outgoing wave should be the same as the injected wave. This giv

(Piz1-n &) ® (Pisan, ) ¢ |25

|_Tnx,ny ~ >
[[Py+a-n, Uil

pow™ "~

. Pii1n f||-
— |(Pj+1—nxe_lﬂx),ﬂ2 || i+1-ny ||2,h ~ an, Hpow‘ (40)

P2y Ui

Hence,H,ow is scaled by the frequency-dependent parameter

2

otn, (@) = | (Pj41-ne %) 5|, (41)

which is equal to one whem, = 0. This shows thaHyow = Hpsw’ When we homogenize
only in they direction. In the Haar basis the expressiondgrbecomes

-1
1

- Ze—iﬁkhz_ 1

- 22n, —~ - 22ny

2

12
. (42)

e—iﬂ(w—(k—l)h)
D
2 k=1

which s less than or equal to one. T < 1 the coefficient,, ~ 1 — (2™ — 1)82h?/12.
The frequency responst,,, of the full problem (37) is plotted in Fig. 6. This figure also

shows the relative error betweétyoy and Hpsw’ /an, (@) when homogenizing two levels

in thex direction, in they direction, and in both. The error is a few percent, increasing witl

frequency.

sin(2™ Bh)
sin(Bh/2)

On, =

X
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FIG. 6. Frequency response of test problem (37) (top). Relative error of the frequency response comp
from the homogenized solution of the same test problem (bottom). Results shown for homogenization two le
in thex direction, in they direction, and in both.

5.3. One-Dimensional Models through Homogenization

To reduce the complexity of solving the full Helmholtz equation (6), and to gain bett
understanding of the physical processes, one often wants to derive lower-dimensional r
els that capture the significant features of the full model. We could for instance try to fi
a model of the form

Ox (Ce(X, w)zaxue) + (Uzue =0, (43)

whereug is related tau, the solution to (6), in a simple way. One approach to this problen
usually called theffective index methdd, 20], is to linkce(X, w) to the local width of the
waveguide, denoted(x). For fixedx andw the coefficiente(X, ) is given as the speed
of the lowest propagating mode in an infinite straight waveguide of (constant) digjh

at frequencyw. This is a good approximation as long dsaries slowly relative to the
wavelength and the height itselflyw| « 1 and|dy/d| « 1. There are more sophisticated
versions of this method, where the effective index is averaged with a weight functi
corresponding to the predicted energy of the solutionytbigthted index methdd], and
where a part of the solution is computed via Fourier transformspreetral index method
[19]. Another way to simplify (1) is to approximate it by the one-way wave equatior
such that all energy is assumed to propagate in one direction. This is usedhiaaime
propagation methofiL4], where the solution is computed by “time stepping” the equatio
in the x direction. It gives accurate results when the variations(iq y) are small. The
main difference between these methods and the one we propose is that no specific phy
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considerations are required with our method. It can however, as we will see, provide phys
interpretations of the simplified models.

We will here show how the homogenization technique described in Section 4 can
used to derive a family of one-dimensional models with different properties. The full tw
dimensional operator is first homogenized multiple levels, but only iryttieection. It is
subsequently truncated and identified with a discretization of a one-dimensional differen
operator. The resulting operator and right-hand side will approximate a system of o
dimensional partial differential equations with a size equaling the number of grid points |
in the y direction. The order of the differential operator corresponds to the bandwidth
the truncated operator. In conclusion, we have three different parameters that we can \

1. the sizen of the system of equations,
2. the order of the differential operator, and
3. the subspackly used in the homogenization.

In general there is a trade-off betwerandr, such that a smallerrequires a larger. The
reason is that, to maintain good accuracy, the bandwidth after truncation usually neec
increase with the number of levels that an operator is homogenized.

These one-dimensional models yield an approximation of the solution projected ol
space spanned by only afew grid points inyttirection. In view of the results in Section 5.2
this would still give a quantitative picture of the full solution. In particular, by using (40) i
would be possible to compute a good approximation of the frequency respggse

To exemplify the process described above, we will derive a one-dimensional model
the test problem given by

w=1 a=3/16 S=10, d=5/16 b=1/8,
A=1/8 t=1/64 §=1/64 M=16, N =64

(44)

For this problem it is difficult to find a subspace where a scalar mgde! 1) is accurate
without using high values af. We will use a medium size model, with=4, r = 2.
Numerical experiments with different wavelet systems suggest that in general the hig
the order of the wavelets, the better the result. We show results Whéngiven by the
Daubechies wavelet system with four vanishing moments.

In Fig. 7 the frequency response for this problem is compared with the one given
the effective index method, described above. Sithoe has discontinuities the result is
not good. In particular the resonance peak is at the wrong frequency. We shall see tha
model fairs better. The new model is an approximation of the full problem after two leve
of homogenization in thg direction. The frequency response given by this homogenize
problem and (40) is also plotted in Fig. 7. It agrees well with the full response, as expect

Let usintroduce the continuousd4 system model with the unknowns= (uy, u,, us,
us) € C*

A (B(X)dxu) + C(X)U+ w’u =0, B(x), C(x) € R¥4, (45)

This ansatz differs from (43) in that it also has a variable coefficient in the lower order ter
However, none of the coefficients are assumed to be frequency dependent. This is prefe
here, since it will reduce the cost of computing the frequency response of the filter.

We now proceed as follows. The discrete two-dimensional problem is homogenized t
levels in they direction and afterwards the unknowns in the equatian= f are reordered
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FIG. 7. Frequency response of test problem in (44) computed with the full two-dimensional model (so
line), computed after homogenization two levels in ytatirection of the full model (crosses), and computed with
the effective index method (circles).

to the blocked form

Lix L1 Ij13 L1a Uy fqi
|:21 |:22 |:23 |:24 lzz _ f_z . (46)
Lay L3 Laz Lag Uz f3
Ij41 I:12 Ij43 I:44 Us fa

Each of the suboperatot_sj is truncated to tridiagonal form, which essentially correspond
to truncating the full operatdf to 15-diagonal form (before reordering). We identify the
unknownsu; and f_J with one-dimensional grid_functionﬂ_,‘j ~ U;(x;) and f_'] ~ (%)

for somef;. Furthermore, the truncated operatbrs are identified with the discretization

1 1 _ 1
ﬁl-ij = ﬁAer” (Xk—1/2) A + Cij (X) + Vi X)(E +EY + 0, (47)

where¢ is the displacement operator_define(ﬂﬂ = U1, They;; terms are needed since
Lij is in general not symmetric. Eath; can be seen as a discretization of a second-ordt
differential operator acting on the grid functian. Assembling the suboperators by setting

B = {by;}, C = {€;j}, andI’ = {y;;} we get

1 ~ 1
pA+Es(xk_1/2)A_Uk + (UK + SHNCAIE k=1 UMy £ 02Uk = X, (48)
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FIG. 8. Frequency dependency of coefficients. Relatiyedifference between coefficients computedvat
and atw/27 = 10.3 (top). Relativel, difference between imaginary and real part of coefficients (bottom).

where we also assembled the grid functiths- {u;} andF = {f_j LIf Cx) = E(xio) +
I'(xx) and B(xx) were real and independent af and if F = 0 this equation could be
identified with a second-order discretization of (45). Thus, the matif@$ and C(x)
represent the effective material of the waveguide, similar tedbe ») that was computed
with the effective index method.

In fact, the computed coefficients satisfy these requirements to a fairly good level
approximation, which is illustrated in Fig. 8. The coefficients are computed for a ran
of w, and the relative., difference, compared to the coefficients computed at resonanc
w/2r = 10.3, is plotted in the top picture. TH(x) coefficients vary on the order of only
1% inthe interval. In the bottom picture the-norm of the imaginary part of the coefficients
relative to the real part is plotted, showing that this is at worst a little more than 1%. Tl
indicates that the assumption (45) is justified.

In Fig. 9 we show the frequency response computed in two different ways and comp
them with the response for the two-dimensional model. The first way is to recompute the
efficients for each new frequency. This gives a very good agreement with the response o
full model. The second way is to compute all coefficients, once and for all, at the resona
frequencyw/27r = 10.3. Even now the model captures the true response fairly well. W
could hence calculate all parameters of the model for one single frequency and the m
will remain approximately valid for the whole frequency band of interest.

The first and last rows of eactT]j correspond to boundary conditions. Therefore we hav
simply left the first and last two rows of each (truncatEq)intact in the methods above.

We also computed the frequency response after having set the right-hand side to .
and discarded the imaginary part of all coefficients (except the elements correspondin
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FIG. 9. Frequency response of test problem (44) computed using the one-dimensional model given in
text. Results shown when response was computed with the full two-dimensional model (solid line), with the ¢
dimensional model and coefficients recomputed for each new frequency (crosses), and with the one-dimen:
model and coefficients computed only once,dg2r = 10.3 (circles).

boundary conditions). This gave a slightly better response, but overall it did not alter
result in any significant way.

The computational gains can be large for the method described above. Since the bandy
of the one-dimensional model is, the cost of computing the solution ferfrequencies
is Ckrer2N flops plus thek-independent cost of constructing the homogenized operatc
At least for largek, the work of computing the solutions dominates. Comparing this with
direct method, which requiré8k N M® flops, we get a cost ratio of

an 2

e “9

which is often small. For the test problem (44) it equalé4

5.4. The Homogenized Operator as a Subgrid Model

One way to deal with the problem of small scales in a differential operator is to deri
subgrid models that capture the effect of subgrid-scale phenomena on a coarse grid. T
are many traditional ways to find such models in linear as well as nonlinear conte:
A number of methods are based on physical considerations for a specific application,
instance nonlinear turbulence models in computational fluid dynamics [25] and analytic:
derived local subcell models in computational electromagnetics [24]. Another example
the immersed interface method [18] used on Cartesian grids. In this method the sub
variations of the shape of a material interface is taken into consideration by changing
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updating stencils near the interfaces. Shock tracking or shock fitting can also be see
subgrid models [2].

In this section we will use numerical homogenization to obtain linear subgrid mode
of the details of the waveguide and use them to solve a large problem on a coarse gric
outlined in [3]. Our target problem is the same as in (37), only that we extend the wavegu
by increasing the lengthy and the number of gratingS. We use the same frequency as
beforew/2n = 11. To solve this problem on a coarse grid, we would need the homogeniz
operator and right-hand side. The key observation here is that a good approximation of tf
can be obtainedirectly from a much smaller problerthe analogue of the cell problem in
classical homogenization.

In the waveguide example we identify four distinct parts of the problem: the initial pal
a grating tooth, the quarter-wave step in the middle, and the end pad,Let, andu®
denote the solution at grid points in the initial segment, middle segment, and end segn
of the waveguide. Moreover, lef, be the solution at tootk. Then we can decompose
Lu=F as

i F
a F
L_’t5/2 FtS/Z
L+sL)y| ™ | =] FE™ |, (50)
G[S/2+1 Ft3/2+1
Us Fs
e Fe

whereF follows the same partitioning asand

(

=
Il

(51)

/

with elements being zero outside the delineated areas. The Biatisxhe residual between
L andL, with all elements zero within the delineated areas.
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With this notation we now observe that sinces diagonal dominangL will be small.
Moreover,

L~ LY, FL~F. vk ¢ (52)

We will interpretL', Lt, L™ andL®together withF', Ft, F™, andF® as the subgrid models
for the corresponding parts of the geometry. (Sibfend F_}< are approximately the same
for all k we will henceforth drop the subindices.)

The strategy for constructing an approximation of the homogenized operator of -
full problem is then clear. First, we compute an approximatiorLfL!, L™, and L®
by homogenizing a much smaller problem. At the same time we also obtain approxir
tions of F', F!, F™ and Fe. Second, we assemble the subgrid models according to tl
block structures of (50) and (51) to obtain an approximatiorLcdnd F. Finally, we
neglectsL.

In our example we use (37) witlh = 1 andS = 10 as our small problem. This is a
well-resolved problem with eight gridpoints between the gratings and approximately
gridpoints per effective wavelength in thedirection /2 ~ 8.75, with 8 defined in
Section 3.2). We homogenize the operator three levels ig thesction and one level in the
x direction, corresponding to a grid size f = 4 andN = 64. This gives a very coarse
resolution in they direction, in particular no resolution of the gratings, and a reasonab
resolution in thex direction. This grid size should be enough to represent the solution ir
quantitatively correct way.

For the large problems we denote the corresponding parameters with a prime sign.
will havew’ > 1 andS > 10andwe set” = LI, L™ = L™, L¢ = L¢ and

L. 1=k=2
LS, 3<k<S/2-2,
L=< Lisssy2 S/2—1<k=<S/2+2 (53)
LS/ora, S/2+3<k=<S -2
Lits s S-1<k<S.

So far we have deliberately been vague about the exact size of the areas in (51) and f
the size of the subgrid models. We now introduce a parametbee bandwidth ot., with
which we can define all sizes at the same time. The valwewdfi determine the accuracy
of the solution. The results of this computation are shown in Fig. 10, where the rdlative
error between the solution computed using the subgrid technique and the exact solu
projected onto the coarse subspace, is plotted as a functigrfaffive different problem
sizes. Our small problerfw = 1, S= 10) is also included, for comparison, in which case
v just indicates the bandwidth of the truncated operator. Even for a problem 16 times
large as the small problem, the relative error can be reduced to 10%, by choosinigig
enough. Note that even when the relativeerror is rather large, a good quantitative picture
of the solution is obtained in the interior of the waveguide. This is exemplified for the cz
of w = 16 andv = 22 in Fig. 11, where the part of the solution with the largest errors |
plotted. The relative., error in this case is of the order of 50%.

There are two different error sources for this technique.Lgt, be the approximation
of L’ obtained by using the subgrid models without any truncation. Then the differen
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FIG. 10. Result of the subgrid technique. Relative error of solution as a function of the bandwidth.
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FIG. 11. Result of the largev = 16 problem approximated with = 22. Plot of exact solution (solid) and
approximate solution (dashed) as a functioxdér four y values corresponding to the four grid points in the
direction of the coarse mesh. Real partucfhown in thex interval [0, 2], the region with the largest errors.
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between the exact homogenized operatoand the approximatiori,’, is
U — 0 = [ = Dyt Ly L' = 8L + 5. (54)

The error attributed téL’ will follow the same pattern as in Section 5.2 for truncatec
operators, while the error ascribedstio’ is independent of. In Fig. 10 we see that all error
curves, except the one for the small problem whidreis zero, level out after a certain
value. This pointp*, is where the effect ofL’ starts to dominate. From an accuracy point
of view it is therefore meaningless to use- v*. In this case* ~ 45 independently of the
problem size.

To estimate the gain in using the subgrid techniquayleandN’ denote the grid size of
the large problem. The exact operator has a bandwidilY oT he cost to solve this problem
is thereforeC N’M" flops with a direct solver. Suppose our coarse grid is of theldiza"™
andM’/2™, corresponding to homogenizatiop times in thex direction andhy times in
they direction. The direct solution using the subgrid model then cB$tsM’v2 /27ty
giving a ratio between the costs of

—ng—n v ?
2 (M> (55)

In our largest casap = 16, withv = v* = 45, we get an approximate ratio of&8 We
must also compute the subgrid model, although this only needs to be done once for all
computations above, and for the grid size of the small problem. This cost is dominatec
the other factors.

6. CONCLUSION

We have showed how wavelet-based homogenization can be used to derive coarse-
approximate models for an optical waveguide filter with gratings. The models accurat
describe the original problem, because the method takes into account the effect of the
scale details. This has been demonstrated by a number of numerical tests. The me
generalizes to other physical systems described by partial differential equations, wher
approximate models are physically feasible.

The technique is promising for reducing the complexity of the problems, especially wt
several similar problems are to be solved. We have shown two examples of this: when
frequency response is computed and when several waveguides with different numbel
gratings are simulated.

The derived models can also provide additional insight into the physics of the proble
We have shown that the two-dimensional waveguide with gratings can be approxime
by a one-dimensional 4 4 system of Helmholtz-type equations, with coefficients tha
vary spatially, but are independent of the frequency in a neighborhood of resonance.
coefficients in the derived operators can be interpreted as the effective material prope
for the waveguide, and they can be studied to better understand the filter effect and
physical influence of the gratings. Similar studies can be made with the subgrid mod
where simplified models can be suggested by the coefficients in the homogenized oper
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