
Journal of Computational Physics 323 (2016) 191–203
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Fast convolution with free-space Green’s functions

Felipe Vico a, Leslie Greengard b,c,∗, Miguel Ferrando a

a Instituto de Telecomunicaciones y Aplicaciones Multimedia (ITEAM), Universidad Politècnica de València, 46022 València, Spain
b Courant Institute, New York University, New York, NY, United States
c Simons Center for Data Analysis, Simons Foundation, New York, NY, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 May 2016
Accepted 21 July 2016
Available online 27 July 2016

Keywords:
Volume potential
Free space
Green’s function
FFT
Convolution

We introduce a fast algorithm for computing volume potentials – that is, the convolution 
of a translation invariant, free-space Green’s function with a compactly supported source 
distribution defined on a uniform grid. The algorithm relies on regularizing the Fourier 
transform of the Green’s function by cutting off the interaction in physical space beyond 
the domain of interest. This permits the straightforward application of trapezoidal 
quadrature and the standard FFT, with superalgebraic convergence for smooth data. 
Moreover, the method can be interpreted as employing a Nystrom discretization of the 
corresponding integral operator, with matrix entries which can be obtained explicitly and 
rapidly. This is of use in the design of preconditioners or fast direct solvers for a variety of 
volume integral equations. The method proposed permits the computation of any derivative 
of the potential, at the cost of an additional FFT.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in scientific computing require the solution of a constant coefficient elliptic partial differential equation 
subject to suitable boundary or radiation conditions. In many cases, the free-space Green’s function for the corresponding 
equation is known but involves nonlocal (long-range) interactions. A typical example is the Helmholtz equation in Rd

�φ + k2φ = f ,

where φ can be thought of as an acoustic potential and f a known distribution of acoustic sources, which we assume to 
be supported in the bounded domain D = [− 1

2 , 12 ]d . This can be done without loss of generality by rescaling the Helmholtz 
parameter k. The solution which satisfies the Sommerfeld radiation condition is well-known to be

φ(x) =
∫
D

gk(x − y) f (y)d y, (1)

where gk(r) = 1
4i H0(kr) for d = 2 and gk(r) = 1

4π
eikr

r for d = 3. Here, r = ‖r‖2 and H0 denotes the zeroth order Hankel 
function of the first kind.

Note that the interaction kernel is long-range, requiring fast algorithms to be practical, and singular at r = 0, requiring 
accurate quadrature techniques. In some applications, a third difficulty is that the source density f is highly inhomogeneous, 
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requiring adaptive discretization. In such settings, intrinsically adaptive, hierarchical methods are required [1–4]. When the 
density is smooth, however, and well-resolved by a uniform mesh, it is more convenient (and generally more efficient) to 
use Fourier methods. We restrict our attention to the latter case in the present paper.

There are two distinct ways in which Fourier methods can be applied to the computation of (1). The first is the direct 
discretization of the equation with a locally-corrected trapezoidal rule. In the two-dimensional setting, for example, one can 
discretize D with a uniform mesh of N2 points and use the approximation

φ(nh,mh) ≈
∑

n′,m′∈[− N
2 , N

2 ]
|n−n′|,|m−m′|>k

gk((n − n′)h, (m − m′)h) f (n′h,m′h)h2 +

∑
n′,m′∈[− N

2 , N
2 ]

|n−n′|,|m−m′|≤k

wn−n′,m−m′ f (n′h,m′h) ,

where h = 1
N . Several groups have shown that kth order accuracy can be achieved in this manner by a suitable choice of 

weights wi, j (see, for example, [5–10]). The net sum takes the form of a discrete (aperiodic) convolution and, hence, can be 
computed using the FFT with zero-padding in O (N2 log N) operations.

Alternatively, using the convolution theorem, one can write

φ(x) = F−1
(

F (s)

|s|2 − k2

)
=

(
1

2π

)d ∫
Rd

eis·x F (s)

|s|2 − k2
ds , (2)

where

F (s) = F ( f )(s) =
∫
D

e−is·x f (x)dx . (3)

F here denotes the Fourier transform. The fact that f (x) is smooth permits us to compute the Fourier integral in (3)
with “spectral” accuracy. It also ensures that the error in truncating the Fourier integral in the inverse transform (2) is 
rapidly decaying with |s|. The principal difficulty in employing Fourier methods is the singularity 1

|s|2−k2 in the integrand. 
In the case of the Poisson equation, this is simply 1

|s|2 .

It is possible to design high order rules for the inverse Fourier transform. In the case of the Poisson equation in three 
dimensions, for example, switching to spherical coordinates cancels the singularity entirely. Combining this with the nonuni-
form FFT yields more or less optimal schemes in terms of CPU time (see [11] and the references therein). This approach 
becomes technically more complicated for the Helmholtz equation, where the singularity lives on the sphere |s| = k.

It turns out that there is a simple method that works for all long-range Green’s functions, independent of dimension, 
requires only the trapezoidal rule, achieves spectral accuracy, and is accelerated by the standard FFT. Moreover, the matrix 
entries corresponding to this high order method are easily computed – a useful feature for either preconditioning strategies 
or direct solvers when using volume integral methods to solve variable coefficient partial differential equations.

Let us suppose, for the sake of simplicity, that we seek the restriction of the solution φ(x) to the unit box D ⊂ Rd . Then, 
the maximum distance between any source and target point in D is 

√
d. We define

gL
k (r) =

⎧⎪⎪⎨⎪⎪⎩
1

4i
H0(kr) rect

( r

2L

)
if d = 2

1

4π

eikr

r
rect

( r

2L

)
if d = 3

(4)

with rect(x) defined to be the characteristic function for the unit interval:

rect(x) =
{

1 for |x| < 1/2
0 for |x| > 1/2.

If we set L >
√

d in d dimensions, then the solution (1) is clearly indistinguishable from

φ(x) =
∫
D

gL
k (x − y) f (y)d y. (5)

Since gL
k is compactly supported, the Paley–Wiener theorem implies that its Fourier transform G L

k is entire (and C∞). 
Moreover, as we shall see below, it is straightforward to compute. In the case of the Laplace operator in three dimensions, 
for example, G L = 2(

sin(Ls/2)
)2. Thus, the Poisson equation in three dimensions has the solution
0 s
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φ(x) = 2

(2π)3

∫
R3

eis·x
(

sin(L|s|/2)

|s|
)2

F (s)ds . (6)

Discretization by the trapezoidal rule on the domain [− N
2 , N

2 ]d permits rapid evaluation using nothing more than the FFT. 
The achieved accuracy is controlled by the rate of decay of F (s), with spectral accuracy achieved for sufficiently smooth 
f (x) [12].

Remark 1. The approach described here is both elementary and quite general, but seems to have been overlooked in the 
numerical analysis literature. An exception is the paper [13] by Vainikko, who used volume Helmholtz potentials for the 
iterative solution of the Lippmann–Schwinger equation.

2. Computing the Fourier transform of truncated translation-invariant kernels

Suppose now that f (x) is a radially symmetric function: f (x) = f (r), where r = |x|. Then its Fourier transform F (s) is 
also radially symmetric. For d = 3, it is easy to verify that

F (s) = 4π

∞∫
0

sin(sr)

sr
f (r) r2 dr (7)

where s = |s|. For d = 2,

F (s) = 2π

∞∫
0

J0(sr) f (r) r dr. (8)

For the Laplace equation in three dimensions, with Green’s function

gL
0(x) = 1

4π |x| rect
( |x|

2L

)
, (9)

we have

G L
0(s) := F

(
gL

0(x)
)
(s) = 4π

L∫
0

sin(sr)

sr

1

4πr
r2 dr = 2

( sin(Ls/2)

s

)2
, (10)

an analytic function expressible as a power series in s2.
In R2, where the Green’s function for the Laplace equation is

g0(x) = −1

2π
log |x|, (11)

we obtain the Fourier transform:

G L
0(s) := 2π

+∞∫
0

J0(sr)gL
0(r)rdr = 1 − J0(Ls)

s2
− L log(L) J1(Ls)

s
. (12)

We set L = 1.8 >
√

3 in three dimensions and L = 1.5 >
√

2 in two dimensions. Note that, in the inverse Fourier transform 
(6), the frequency content of the integrand in the variable of integration s is determined by the maximum magnitude of x, 
the magnitude of L and F (s) itself. It is straightforward to check that the integrand is sufficiently sampled with a mesh that 
is four times finer than in the original box: a factor of two from the fact that we are carrying out an aperiodic convolution 
so that the frequency content of eis·x F (s) is twice greater and a factor of two from the oscillatory behavior of the Fourier 
transform of the truncated kernel. Thus, if the unit box is discretized using N points in each dimension, we now require 
a grid of size 4N in each dimension. We will see in section 4 that, after a precomputation step, this can be reduced to a 
factor of 2N .

3. Truncated kernels of mathematical physics

We now apply the technique described above to a collection of Green’s functions that arise in mathematical physics. The 
resulting kernels in Fourier space are always C∞ , as noted above, by the Paley–Wiener theorem [14]. The method is easily 
extended to the calculation of any derivative using spectral differentiation.
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Table 1
Spectral representations of Green’s functions in 3D.

Diff. operator Green’s function Truncated spectral representation

� g0(r) = 1

4πr
G L

0(s) = 2

(
sin(Ls/2)

s

)2

� + k2 gk(r) = eikr

4πr
G L

k (s) =
−1 + eiLk(cos(Ls) − i

k

s
sin(Ls))

(k − s)(k + s)

�2 gb(r) = r

8π
G L(s) = (2 − L2s2) cos(Ls) + 2Ls sin(Ls) − 2

2s4

�(� + k2) g0k(r) = eikr

4πr
− 1

4πr
G L

0k(s) = G L
k (s) − G L

0(s)

(� + h · ∇) gh(x) = ei|h||x|

4π |x| eih·x G L
h(s) = G L

|h|(|s − h|)

Table 2
Spectral representations of Green’s functions in 2D.

Diff. operator Green’s function Truncated spectral representation

� g0(r) = −1

2π
log(r) G L

0(s) = 1 − J0(Ls)

s2
− L log(L) J1(Ls)

s

� + k2 gk(r) = i

4
H(1)

0 (kr)
G L

k (s) =
1 + iπ

2
Ls J1(Ls)H(1)

0 (Lk)

s2 − k2

−
iπ

2
Lk J0(Ls)H(1)

1 (Lk)

s2 − k2

�2 gb(r) = − r2

8π

(
log(r) − 1

) G L(s) = J0(Ls) − 1

s4
− L3(log(L) − 1) J1(Ls)

4s

+ (L log L) J1(Ls)

s3
− L2(2 log L − 1) J0(Ls)

4s2

�(� + k2) g0k(r) = gk(r) + g0(r) G L
0k(s) = G L

k (s) − G L
0(s)

(� + h · ∇) gh(r) = i

4
H(1)

0 (|h||x|)eih·x G L
h(s) = G L

|h|(|s − h|)

Fig. 1. (l) Spectrum of the free-space Laplace kernel and the truncated Laplace kernel. (r) Spectrum of the free-space Helmholtz kernel for k = 4 and the 
truncated kernel with L = 1.8. Note that the truncated kernels are smooth but have introduced a slight oscillation.

Tables 1 and 2 summarize the results for various PDEs in three and two dimensions, respectively. We omit the derivations 
which are straightforward.

For illustration, we plot the spectral representations of the free-space and truncated Laplace and Helmholtz Green’s 
functions in Fig. 1.
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Fig. 2. Comparing the naive trapezoidal rule on the original Green’s function and the high order mollified Green’s function along the line y = z = 0.

4. An explicit construction of the discretized volume integral operators

The method described above requires a grid of dimension (4N)d points in order to compute an accurate volume integral 
without aliasing error. We show now that, after a precomputation step, only an FFT of dimension (2N)d is required. To 
see this, let us consider the three dimensional setting, with the data in the unit box denoted by ρi jk = ρ(ih, jh, kh) where 
h = 1/N and i, j, k ∈ {−N/2 + 1, .., N/2}. The solution must then take the form of a discrete convolution operator:

φi′ j′k′ =
∑
i, j,k

T (i′ − i, j′ − j,k′ − k)ρi jk . (13)

Thus, all entries of T can be determined by simply applying the operator to the special right-hand side ρi jk = δi0δ j0δk0. 
Subsequent applications of T to a vector can then be carried out using standard aperiodic convolution, which only requires 
zero-padding by a factor of 2.

Remark 2. A side effect of this precomputation is that we have generated a discrete matrix corresponding to a high order 
accurate Nyström discretization of the original volume integral operator. This is useful when implementing linear algebraic 
tools such as hierarchical direct solvers, incomplete LU preconditioners, etc.

It is worth plotting the resulting entries of T and comparing them to a naive trapezoidal approximation (which blows up 
when i = i′ , j = j′ and k = k′). As can be seen in Fig. 2, our high order rule takes the form of a mollified Green’s function – 
with no significant oscillations in sign or other difficulties that plague many high order quadrature generation techniques.

5. Numerical results

In this section, we illustrate the performance of the method described above. Our first examples simply involve con-
volution of the free-space Green’s function with a Gaussian source, since the exact solution is available analytically. We 
also solve a variable dielectric Poisson–Boltzmann equation and a Lippmann–Schwinger type integral equation for variable 
medium scattering problems.

5.1. Convolution with a Gaussian source

Suppose now that, in three dimensions, the source distribution is given by a simple Gaussian:

ρ(r) := 1

σ 3(2π)3/2
e
− r2

2σ2 . (14)

Then, the solution to the Poisson equation is given by

[g0 ∗ ρ](x) = 1

4πr
erf

( r√
2σ

)
. (15)

For the Helmholtz equation, the solution is a little more complicated but also straightforward to compute:

[gk ∗ ρ](x) = 1
e− σ2k2

2

[
Real

(
e−ikr erf

(
2σ 2ik − 2r√

2

))
− i sin(kr)

]
. (16)
4πr 2 2σ
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Fig. 3. Convergence of the truncated Green’s function Fourier method in solving the Poisson, Helmholtz and biharmonic equations in two and three dimen-
sions for a single Gaussian source with σ = 0.05 (see Eqs. (15)–(17), (19)–(21)). The Helmholtz parameter was set to k = 2.

For the biharmonic equation, we have

[gb ∗ ρ](x) = 1

8π

[
σ

√
2

π
+ erf

( r

σ
√

2

)(σ 2

r
+ r

)]
. (17)

Similarly, in two dimensions, with

ρ(r) := 1

2πσ 2
e
− r2

2σ2 , (18)

we have the following solution for the Poisson equation:

[g0 ∗ ρ](x) = −1

4π

[
Ei

( r2

2σ 2

)
+ log(r2)

]
. (19)

For the Helmholtz equation, we have

[gk ∗ ρ](x) = H0(kr)

4σ 2

r∫
0

J0(ky) e
− y2

2σ2 ydy + J0(kr)

4σ 2

+∞∫
r

H0(kr) e
− y2

2σ2 ydy (20)

and for the biharmonic equation, we have

[gb ∗ ρ](x) = − σ 2

8π

[(
r2

2σ 2
+ 1

)
Ẽi

(
r2

2σ 2

)
− e

− r2

2σ2

]
+ c2r2 + c1 r, (21)

where

Ẽi(x) :=Ei(x) + log(x) + γ

c1 := σ 2

8π

(
γ + log

( 1

2σ 2

))
c2 := 1

8π

(γ

2
+ 1

2
log

( 1

2σ 2

) + 1
)

.

(22)

In Fig. 3, we plot the error in each of these solutions when computed using the truncated Green’s function Fourier 
method. Spectral accuracy is evident in each case.

5.2. Non-oscillatory elliptic equations with variable coefficients

A variety of problems in computational physics require the solution of the divergence-form elliptic partial differential 
equation

∇ · ε(x)∇φ − λ2φ = ρ(x) (23)
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Fig. 4. A protein molecule and the associated smooth dielectric function.

where ε is a known, smooth perturbation of a background constant ε + 0, and where both ρ(x) and ε − ε0 have compact 
support.

In molecular electrostatics, this equation is referred to as the linearized Poisson–Boltzmann equation. While most models 
make use of a sharp dielectric interface (so that ε is piecewise constant), there is also interest in using approximations of 
the dielectric that vary smoothly [15,16]. Following these references, a formula for ε is determined by first assuming we are 
given a macromolecule with M atoms, with a density

αi(x) = exp[−r2
i /(μ2 R2

i )]
centered on the ith atom, where ri denotes the distance of x from the atomic center, Ri is the van der Waals radius of the 
atom and μ is a user-specified variance. From this, a function

q(x) = 1 −
∏

i

[1 − αi(x)]

is constructed and, finally,

ε(x) = q(x) εin + (1 − q(x) εout .

In our example, we let M = 1235 with, Ri = 0.022 and μ2 = 2. Fig. 4 shows the molecule represented as a union of spheres 
and the associated dielectric function ε(x) in darker gray.

Restricting our attention to the case λ = 0 for the sake of simplicity, we may represent the solution in the form

φ(x) =
∫
R3

1

4π |x − y|σ(y)dV y . (24)

This leads directly to the following second kind Fredholm equation for the unknown density σ(x):

−ε(x)σ + ∇ε(x) · ∇
∫
R3

1

|x − y|σ(y)dV y = ρ(x) . (25)

We discretize σ on a uniform mesh with N3 points and use the truncated Green’s function Fourier method described 
above to convert (25) into a dense system of equations which we solve iteratively using GMRES. Each matrix vector product 
requires O (N3 log N) operations using the FFT.

Our results are summarized in Table 3. Ntot = N3 denotes the total number of unknowns, Niter denotes the total number 
of GMRES iterations, E2 denotes the relative error with respect to the reference solution in L2 for N = 250, Einf denotes the 
relative error in L∞, and Tsolve denotes the solution time in seconds required on a workstation with two Intel Xeon E5-2450 
processors with 8 cores per processor and 64 GB of memory. Tprecomp denotes the time required for precomputation, as 
discussed in section 4, which requires a single FFT of dimension (4N)3.
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Table 3
Fast, iterative solution of the linearized Poisson–Boltzmann equation using the truncated Green’s function Fourier method.

Ntot N E2 Einf Niter Tsolve (s) Tprecomp (s)

1000000 100 2.08 × 10−8 2.54 × 10−6 12 14.3 4.4
3375000 150 2.74 × 10−10 3.97 × 10−8 16 76.9 13
8000000 200 7.92 × 10−12 1.06 × 10−9 16 205 28.9

15625000 250 – – 16 421 75.8

Fig. 5. Contrast function q(x) for the smoothly filtered disk plotted as colored contours (left), as a surface (center), and as a function of radius (right). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.3. Lippmann–Schwinger equation for wave scattering

In our last set of examples, we study the performance of the Lippmann–Schwinger integral equation for solving variable 
coefficient scattering problems in R2 and R3. The governing equation is a Helmholtz equation of the form

�φscat + k2(1 + q(x))φscat = −k2q(x)φinc (26)

where φscat is assumed to satisfy the usual Sommerfeld radiation condition. We assume q(x) has compact support. Using 
a volume integral representation for the solution in R2:

φscat(x) =
∫
D

H0(k|x − y|)σ (y)dV y , (27)

we obtain the second kind integral equation

−σ + k2q(x)

∫
D

H0(k|x − y|)σ (y)dV y = −k2q(x)φinc . (28)

Similarly, in R3 we get:

−σ + k2q(x)

∫
D

eik|x−y|

4π |x − y| σ(y)dV y = −k2q(x)φinc . (29)

(This is the dual of the usual Lippmann–Schwinger equation.)
We consider four cases: a smoothly filtered flat dielectric disk in 2D, the 2D “Luneburg” lens, the 2D “Eaton” lens and a 

smoothed dielectric cube in 3D. The smoothly filtered disk (Fig. 5) has a contrast function given by

q(x) = e− 1
2

( |x|
0.25

)8

. (30)

The Luneburg lens (Fig. 6) is designed to focus an incoming wave to a single point [17], with q given by

q(x) = 1 −
( |x|

0.45

)2
. (31)

The Eaton lens (Fig. 7) is designed to bend light through an angle [18], with q(x) = n2(x) − 1, where the refractive index n
is given by the implicit equation

n2(x) = 0.45

n(x)|x| +
√( 0.45

n(x)|x|
)2 − 1 (32)
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Fig. 6. Contrast function q(x) for the Luneburg lens plotted as colored contours (left), as a surface (center), and as a function of radius (right). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Contrast function q(x) for the Eaton lens plotted as colored contours (left), as a surface (center), and as a function of radius (right). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

In order to avoid the blowup in n at the origin, the refractive index is truncated at a maximum value of nmax = √
3, 

corresponding to qmax = 2. Finally, the smoothed cube has a contrast function given by:

q(x) = e
− 1

2

(( x
0.25

)8+( y
0.25

)8+( z
0.25

)8
)
. (33)

We solve each Lippmann–Schwinger equation iteratively, using Bi-CGStab with a tolerance of 10−12 for the iteration, 
since it has minimal storage requirements. This requires two matrix–vector products per iteration, each involving two ap-
plications of the FFT using the truncated Green’s function Fourier method.

Except for the Eaton lens, the incoming wave is chosen to be a plane wave propagating to the right. The incoming wave 
for the Eaton lens is given by a Gaussian beam of the form

φinc = H0(kR)e−0.5k

where

Table 4
Data for the smoothly filtered disk in two dimensions (see text for discussion). Timings are in seconds.

Size (λ0) Ntot N E2 Einf Nmatvec Tsolve Tprecomp

1 400 20 1.4 × 10−4 2.1 × 10−4 17 0.382 0.222
1 2500 50 3.2 × 10−8 3.2 × 10−8 15 0.388 0.225
1 10000 100 8.7 × 10−13 1.1 × 10−12 15 0.632 0.5
1 40960000 6400 − − 15 149 152

20 6400 80 4.2 × 10−5 6.7 × 10−5 332 1.38 0.26
20 10000 100 4.5 × 10−8 8.8 × 10−8 333 1.83 0.40
20 19600 140 4.1 × 10−11 6.3 × 10−11 335 2.39 0.303
20 40960000 6400 − − 335 3170 143

80 62500 250 6.7 × 10−5 1.0 × 10−4 2938 58.5 0.503
80 72900 270 1.2 × 10−7 2.2 × 10−7 2990 67.1 0.518
80 102400 320 1.6 × 10−10 2.8 × 10−10 2906 83.1 0.61
80 40960000 6400 – – 2948 29283 150
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Table 5
Data for the two-dimensional Luneburg lens, where λ0 denotes the free-space wavelength. A reference solution is computed using a 6400 × 6400 grid 
(except for λ0 = 60), where a 3200 × 3200 grid is used. Timings are in seconds.

Size (λ0) Ntot N E2 Einf Nmatvec Tsolve Tprecomp

1 640000 800 1.26 × 10−7 2.89 × 10−7 17 2.41 2.09
1 2560000 1600 2.09 × 10−8 5.09 × 10−8 17 6.86 8.83
1 10240000 3200 2.93 × 10−9 7.50 × 10−9 17 40.3 34.9

20 640000 800 3.18 × 10−5 4.01 × 10−5 582 67.3 2.33
20 2560000 1600 5.84 × 10−6 8.42 × 10−6 581 243 9.02
20 10240000 3200 8.45 × 10−7 1.39 × 10−6 590 1190 34.3

40 640000 800 7.53 × 10−5 8.59 × 10−5 1415 163 2.37
40 2560000 1600 1.6 × 10−5 1.88 × 10−5 1393 740 9.24
40 10240000 3200 3.21 × 10−6 3.89 × 10−6 1321 2969 34.5

60 640000 800 1.26 × 10−4 1.40 × 10−4 3844 449 2.45
60 2250000 1500 3.13 × 10−5 3.54 × 10−5 3482 1611 8.27
60 10240000 3200 – – 5220 12322 34.5

Table 6
Data for the two-dimensional Eaton lens, where λ0 denotes the free-space wavelength. A reference solution is computed using a 6400 × 6400 grid and 
timings are in seconds.

Size (λ0) Ntot N E2 Einf Nmatvec Tsolve Tprecomp

1 640000 800 1.01 × 10−7 1.62 × 10−7 15 1.82 1.85
1 2560000 1600 9.36 × 10−8 1.75 × 10−7 15 6.63 8.74
1 10240000 3200 3.53 × 10−9 6.86 × 10−9 15 35.5 34.4

20 640000 800 4.96 × 10−6 1.54 × 10−5 388 51.1 2.49
20 2560000 1600 8.50 × 10−7 2.96 × 10−6 390 203 9.10
20 10240000 3200 1.25 × 10−7 4.77 × 10−7 386 850 34.8

40 640000 800 1.4 × 10−5 3.67 × 10−5 958 105 2.26
40 2560000 1600 2.34 × 10−6 8.77 × 10−6 956 419 10.4
40 10240000 3200 3.98 × 10−7 1.55 × 10−6 968 2163 40

60 640000 800 2.81 × 10−5 6.90 × 10−5 2064 276 2.68
60 2560000 1600 4.61 × 10−6 1.45 × 10−5 2038 1065 9.06
60 10240000 3200 7.46 × 10−7 2.87 × 10−6 2024 4550 33

Table 7
Data for the smoothed cube in three dimensions with timings in seconds.

Size (λ0) Ntot N E2 Einf Nmatvec Tsolve Tprecomp

1 125000 50 4.08 × 10−8 6.09 × 10−8 15 1.17 1.07
1 343000 70 1.01 × 10−10 1.25 × 10−10 15 2.05 2.23
1 1000000 100 6.4 × 10−14 7.91 × 10−14 15 5.04 6.44

20 343000 70 7.23 × 10−4 9.23 × 10−4 449 44.2 2.11
20 1000000 100 3.84 × 10−8 5.22 × 10−8 441 124 6.15
20 3375000 150 8.57 × 10−13 1.64 × 10−13 434 411 20.1

40 3375000 150 4.6 × 10−7 4.34 × 10−7 895 891 19.3
40 8000000 200 6.76 × 10−12 1.15 × 10−11 907 1957 43.9
40 15625000 250 3.38 × 10−12 5.76 × 10−12 905 3428 99.1

60 3375000 150 4.76 × 10−1 4.78 × 10−1 8548 8534 19.8
60 8000000 200 5.67 × 10−6 4.99 × 10−6 1471 3538 48.5
60 15625000 250 3.38 × 10−9 5.86 × 10−9 1505 5688 97.8

80 15625000 250 4.86 × 10−5 4.74 × 10−5 2988 11332 97.5

R =
√

(x − xc
0)

2 + (y − yc
0)

2, xc
0 = −0.01 − 0.5i, yc

0 = 0.77 .

Tables 4–7 show timings and errors for various frequencies and discretizations, while Figs. 8–10 show the computed so-
lution. In these tables, size denotes the dimensions of the unit box in wavelengths, Ntot denotes the total number of points 
in the discretization, N denotes the number of points in a linear dimension, E2 denotes the relative error with respect to 
the reference solution in L2, Einf denotes the relative error in L∞ , and Nmatvec denotes the total number of matrix–vector 
products needed in the Bi-CGStab iteration. As above, Tsolve denotes the solution time in seconds on a workstation with 
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Fig. 8. Scattering from a smoothly filtered disk with radius R = 40λ0 in a unit square of size 80λ0 × 80λ0. We compute a reference solution with Ntot =
40960000 = 64002 points. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 9. (Left) Scattering by the two-dimensional Luneburg lens, (right) Bending of an incoming beam by the two-dimensional Eaton lens. In both cases, the 
lens radius is R = 27λ0 in a unit square of size 60λ0 ×60λ0. The reference solution was computed with Ntot = 40960000 = 64002 points. (For interpretation 
of the colors in this figure, the reader is referred to the web version of this article.)

two Intel Xeon E5-2450 processors with 8 cores per processor and 64 GB of memory, and Tprecomp denotes the time re-
quired for precomputation, as discussed in section 4. A reference solution is computed using 6400 × 6400 points in the 
two-dimensional examples and using 300 × 300 × 300 points in the three-dimensional example.

Note that spectral convergence rates are evident for smooth dielectric contrast functions. For the non-smooth Eaton and 
Luneburg lenses, the numerical convergence rate is closer to second order accuracy but with a small constant, so that high 
precision is achieved with a modest number of points per wavelength.

6. Conclusions

We have presented a simple fast algorithm for computing volume potentials based on translation-invariant free-space 
Green’s functions with compactly supported, smooth source distributions. By truncating the range of interaction in physical 
space, the Fourier transform of the kernel becomes an entire function, so that the trapezoidal rule yields superalgebraic con-
vergence. Moreover, the transforms of the truncated kernels can be computed analytically. The principal advantages of our 
approach are that the standard FFT can be used for acceleration and that matrix entries for a high-order accurate Nyström 
discretization are available “on the fly”. The latter is important in constructing hierarchical direct solvers or incomplete LU 
preconditioners.
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Fig. 10. Three-dimensional scattering by a smoothed cube. We discretize a unit cell of dimension 80λ0 × 80λ0 × 80λ0 and compute a reference solution 
with Ntot = 3003 points. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

We have illustrated the performance of the scheme on a variety of problems in two and three dimensions. For non-
oscillatory problems, iterative methods are quite effective at solving variable coefficient partial differential equations when 
recast as volume integral equations. For scattering problems, it is well-known that the condition number grows with the size 
of the domain (measured in wavelengths). For problems up to approximately one hundred wavelengths in size, however, 
iterative schemes appear to be viable without preconditioning.

We will explore the use of these methods for full electromagnetic scattering problems in three dimensions in future 
work.
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