
Journal of Computational Physics 333 (2017) 49–77
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Predictive coarse-graining

Markus Schöberl a, Nicholas Zabaras b,c, Phaedon-Stelios Koutsourelakis a,∗
a Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
b Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching, Germany
c Department of Aerospace and Mechanical Engineering, University of Notre Dame, 365 Fitzpatrick Hall, Notre Dame, IN 46556, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 May 2016
Received in revised form 28 September 
2016
Accepted 14 October 2016
Available online 21 December 2016

Keywords:
Coarse-graining
Generative models
Bayesian
Uncertainty quantification
SPC/E water
Lattice systems

We propose a data-driven, coarse-graining formulation in the context of equilibrium 
statistical mechanics. In contrast to existing techniques which are based on a fine-to-
coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. 
This corresponds to a directed probabilistic model where the coarse variables play the 
role of latent generators of the fine scale (all-atom) data. From an information-theoretic 
perspective, the framework proposed provides an improvement upon the relative entropy 
method [1] and is capable of quantifying the uncertainty due to the information loss 
that unavoidably takes place during the coarse-graining process. Furthermore, it can be 
readily extended to a fully Bayesian model where various sources of uncertainties are 
reflected in the posterior of the model parameters. The latter can be used to produce 
not only point estimates of fine-scale reconstructions or macroscopic observables, but 
more importantly, predictive posterior distributions on these quantities. Predictive posterior 
distributions reflect the confidence of the model as a function of the amount of data 
and the level of coarse-graining. The issues of model complexity and model selection are 
seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse 
solutions, revealing the most prominent features in the coarse-grained model. A flexible 
and parallelizable Monte Carlo – Expectation–Maximization (MC-EM) scheme is proposed 
for carrying out inference and learning tasks. A comparative assessment of the proposed 
methodology is presented for a lattice spin system and the SPC/E water model.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Molecular dynamics simulations [2] are nowadays commonplace in physics, chemistry, and engineering and represent one 
of the most reliable tools in the analysis of complex processes and the design of new materials [3–5]. Direct simulations are 
hampered by the gigantic number of degrees of freedom, complex, potentially long-range and high-order interactions, and 
as a result, are limited to small spatio-temporal scales with current and foreseeable computational resources.

An approach towards making complex simulations practicable over extended time and space scales is coarse-graining 
(CG) [6]. Coarse-graining methods attempt to summarize the atomistic detail in much fewer degrees of freedom which in 
turn lead to shorter simulation times, with potentially larger time-steps and enable the analysis of systems that occupy 
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larger spatial domains. Furthermore, from a reductionist’s point of view, they can provide insight into the fundamental 
components or processes associated with the macroscopic behavior and properties of molecular ensembles.

A systematic strategy towards coarse-graining is offered in the context of free-energy computation methods [7,8]. Nev-
ertheless, their primary goal is to escape deep, free-energy wells and are generally limited to a relatively small number 
of CG variables. A mathematically rigorous approach to coarse-graining lattice systems and a rich set of multi-level, adap-
tive algorithms for equilibrium and nonequilibrium settings, has been developed in [9–14]. Inversion-based methods such 
as the Direct or Iterative Boltzmann Inversion [15,16] and Inverse Monte Carlo [17], represent a popular strategy where 
the parameters of the CG model are adjusted to reproduce macroscopic observables [18]. Molecular Renormalization Group 
CG [19] is founded upon the ideas first presented in [20] and is based on matching correlators, obtained from atomistic and 
coarse-grained simulations, for observables that explicitly enter the coarse-grained Hamiltonian. Data-driven, variational CG 
methods such as Multiscale CG [21,22], Relative Entropy [1], Ultra GG [23], offer a rigorous way of learning CG models 
by approximating the Potential of Mean Force (PMF) [24] with respect to the CG variables on the basis of appropriate 
functionals.

It is obvious that unless there are known redundancies in the all-atom or fine-grained (FG) description, any coarse-
graining scheme will result in information loss [25,26]. A manifestation of this can be seen if one attempts to reconstruct 
the microscopic, FG configurations from the CG states [27,28]. Discrepancies will appear not only because the CG statistics 
are not captured correctly, but because the CG variables do not encode all the details needed to reproduce the FG picture. 
Despite this, predictions generated by existing CG schemes are always in the form of point estimates that do not reflect 
any of the predictive uncertainty which the aforementioned information loss induces. It is also reasonable to expect that 
this information loss increases the larger the difference between the dimension of fine and coarse descriptions becomes. 
Nevertheless given two competing CG descriptions of the same dimension, it is unlikely that both will capture the FG pic-
ture equally well. The discovery of a good set of CG variables (analogous to finding good reaction coordinates or collective 
variables in free energy computations [29]) is, on one hand, a function of the macroscopic quantities of interest but more 
importantly of the complex structure of inter-dependencies in the FG model.

The starting point of all CG schemes is the prescription of the coarse variables through a many-to-one, fine-to-coarse map. 
Such maps are dictated by the analysis objectives but also by physical insight on which FG features might be important [30]. 
For example several atoms/molecules can be lumped into a single, effective, pseudo-molecule with coordinates defined by 
considering the center of mass. A central component of the present work is the implicit definition of the CG variables 
through a coarse-to-fine map. This is achieved by a probabilistic generative model that treats the CG degrees of freedom as 
latent variables and explicitly quantifies the uncertainty in the reconstruction of the FG states from the CG description. The 
model is complemented with a distribution for the CG variables. Both densities are parametrized and the optimal values 
are determined on the basis of an information-theoretic objective (e.g. minimizing a Kullback–Leibler divergence as in [1]) 
which is shown to be a special case of a more general, Bayesian framework. The latter offers a critical advantage over 
existing techniques as it enables the prediction of macroscopic observables not only in the form of point estimates, but by 
providing whole distributions. These reflect the uncertainty due the aforementioned information loss as well as the fact that 
finite amounts of training data were used.

The emphasis on this amplified predictive ability of the proposed framework is the reason behind the title chosen for 
the present paper predictive coarse-graining (PCG). The Bayesian framework advocated offers a superior setting for model 
selection. We make use of hierarchical prior models that promote the discovery of a sparse set of features in the afore-
mentioned model components. This enables the search to be carried out over a very large set of feature functions for the 
CG potential which naturally amplifies the expressivity of the model [30]. We note that a Bayesian framework towards 
uncertainty quantification for force field parameters in molecular dynamics was introduced in [31,32]. Other Bayesian for-
mulations of coarse-graining problems using macroscopic observables were presented in [33,34] where also the issues of 
model calibration and validation were discussed.

The structure of the rest of the paper is as follows. Section 2 presents the basic model components, compares them 
with other CG schemes (primarily the relative entropy method), provides details on the exponential family of distributions 
employed for which uniqueness of solution can be proven and discusses in detail algorithmic and computational aspects. 
Numerical evidence of the capabilities of the proposed framework is provided in Section 3 where coarse-graining efforts for 
an Ising lattice system as well as for the SPC/E water model are documented. In all numerical examples, we report results 
on the predictive uncertainty as a function of the level of coarse graining, and the amount of data available. Finally, Section 4, 
summarizes the main contributions and discusses natural extensions of the proposed framework.

2. Methodology

This section introduces the notational conventions adopted and presents the proposed modeling and computational 
frameworks. We frequently draw comparisons with the relative entropy method introduced in [1] and further expanded 
and studied in [35,36] in order to shed light on the aspects related to information loss and to emphasize the need for 
quantifying the resulting uncertainty in the predictions.
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2.1. Equilibrium statistical mechanics

We consider molecular ensembles in equilibrium described by an nf-dimensional vector denoted by x ∈ Mf ⊂ R
nf . This 

generally consists of the coordinates of the atoms which follow the Boltzmann–Gibbs density1:

pf(x|β) = exp {−βU f(x)}
Z f(β)

, (1)

where U f(x) is the all-atom (fine-grained) potential, β = 1
kb T where kb is the Boltzmann constant and T is the temperature, 

and Z f(β) is the normalization constant (partition function) given by:

Z f(β) =
∫
Mf

exp{−βU f(x)}dx. (2)

In the following, we assume that the temperature T (or equivalently β) is constant as it is commonly done in coarse-
graining literature, even though it is generally of interest to derive coarse-grained descriptions that are suitable for all (or 
at least a wide range) of temperatures [30]. In this setting and in order to simplify the notation, we drop the temperature 
dependence.

If a(x) : Mf → R denotes an observable (e.g. magnetization in Ising models), then the corresponding macroscopic prop-
erties can be computed as an expectation with respect to pf(x) as follows:

Epf(x)[a(x)] =
∫
Mf

a(x)pf(x)dx. (3)

Such expectations are (approximately) computed using long and cumbersome simulations as explained in the introduction 
e.g. by a long MCMC run [37]. Our goal is two-fold. Firstly, to construct a coarse-grained description of the system that 
would be easier and faster to simulate, and secondly to use this in order to predict expectations of any observable as 
in Eq. (3). A distinguishing aspect of the proposed PCG framework is that we also compute quantitative metrics of the 
predictive uncertainty in those estimates. At a third level, one would also want the coarse-grained description to provide 
a decomposition of the original, all-atom ensemble into physically interpretable terms and interactions. We defer such a 
discussion on how the proposed model can achieve this goal for the conclusions.

We denote by X the coarse-grained variables and assume that they take values in Mc ⊂ R
nc . It is obviously desirable 

that nc � nf . Let also Uc(X) denote the potential associated with X and pc(X) the corresponding density:

pc(X) = exp {−βUc(X)}
Zc

, (4)

with the normalization constant,

Zc =
∫

Mc

exp{−βUc(X)}dX . (5)

In existing coarse-graining formulations, the coarse variables X are defined using a restriction, fine-to-coarse map 
R :Mf →Mc i.e. X = R(x). As this is generally a many-to-one map, it is not invertible [36]. If the observables of in-
terest actually depend on X i.e. if a(x) = A(R(x)) = A(X), then one can readily show that it suffices that pc(X) is equal to 
the marginal of X with respect to pf(x), or equivalently that Uc(X) = U opt

c (X) where:

U opt
c (X) = −β−1 log

∫
δ(X −R(x)) pf(x)dx. (6)

That is the coarse-scale potential Uc(x) coincides with the potential of mean-force of X . This is a consequence of the 
following equalities:

Epf [a] =
∫
Mf

a(x) pf(x) dx

=
∫
Mf

A(R(x)) pf(x) dx

1 In the following, we assume all probability measures are absolutely continuous with the Lebesgue measure and therefore work exclusively with the 
corresponding probability density functions.
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=
∫
Mf

⎛
⎜⎝∫
Mc

A(X)δ(X −R(x)) dX

⎞
⎟⎠ pf(x) dx

=
∫

Mc

A(X)

⎛
⎜⎝∫
Mf

δ(X −R(x)) pf(x) dx

⎞
⎟⎠dX

=
∫

Mc

A(X) pc(X) dX .

Nevertheless, even if one is able to compute or approximate sufficiently well U opt
c (X), there is no guarantee that expecta-

tions of other observables that do not solely depend on X can be accurately computed. Consistent reconstructions of the 
all-atom configurations x, given X samples from pc(X), can be obtained from the conditional:

pR(x|X) = δ(X −R(x))

ZR(X)
, (7)

i.e. the uniform density on the manifold in Mf implied by the map R,2 where:

ZR(X) =
∫

δ(X −R(x)) dx. (8)

Given a coarse-grained potential Uc (not necessarily the optimal as in Eq. (6)) and the density pc(X) in Eq. (4), the corre-
sponding reconstruction density of the all-atom description consistent with the map pR(x|X) (Eq. (7)) is given by:

pR(x) =
∫

pR(x|X) pc(X) dX

=
∫

δ(X −R(x))

ZR(X)
pc(X) dX

= pc(R(x))

ZR(R(x))
. (9)

We note that in the context of the relative entropy method [1], which like ours, is data-driven and has an information-
theoretic underpinning, the goal is to identify the Uc (within a certain class) that brings pR(x) (Eq. (9)) as close as possible 
to the reference, FG density pf(x) (Eq. (1)). For that purpose the Kullback–Leibler (KL) divergence [39] KL(pf(x)||pR(x)) is 
employed as the objective which, based on Eq. (9), is given by:

0 ≤ KL(pf(x)||pR(x)) = −
∫

pf(x) log
pR(x)

pf(x)
dx

= −Epf(x)[log pc(R(x)] +Epf(x)[log ZR(R(x))] − H(pf), (10)

where H(pf) is the entropy of pf(x), which is independent of Uc and can be ignored in the minimization. As it has been 
identified in several investigations [35,36,38], while the first term can be reduced by adjusting Uc (it can be shown that 
the minimum is attained when Uc(X) = U opt

c (X)), the second term is fixed once the restriction map R that defines the 
coarse-grained variables has been selected. It represents a constant penalty reflecting the information loss that takes place 
due to the coarse-grained (and generally lower-dimensional) description adopted. Our goal is to reduce this component of 
information loss.

2.2. Probabilistic generative model

We propose a probabilistic, generative model [40] in which the coarse description is treated as a latent (hidden) state. In 
particular, we define a joint density p̄(X, x) for X and x as follows:

p̄(X, x) = pcf(x|X) pc(X). (11)

This consists of two components i.e.:

(i) a density pc(X) describing the statistics of the coarse-grained description X ,
(ii) a probabilistic, coarse-to-fine mapping implied by the conditional density pcf(x|X).

2 In [38] this is further generalized by introducing an additional, weighting density.
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We discuss the form and parametrization of the aforementioned densities in the sequel. We emphasize at this stage the 
different definition of the coarse-grained variables as latent generators that give rise to the observables through the prob-
abilistic lifting operator implied by pcf [9], in contrast to the restriction operators employed in other schemes explained 
previously. Such mappings can take various forms (e.g. local or global, linear or nonlinear) and can be extended to many 
hierarchical levels, as it will be shown. Understanding the meaning of the latent variables can only be done through the 
prism of this generative mapping. According to this, each FG configuration x(i) is generated as follows:

• Draw a CG configuration X (i) from pc(X).
• Draw x(i) from pcf(x|X (i)).

As we will show, an advantage of the proposed framework is that it readily provides a (predictive) probability density 
for the observables of interest. The marginal density of the FG description x is given from Eq. (11) by integrating out X :

p̄f(x) =
∫

Mc

pcf(x|X) pc(X)dX . (12)

Suppose the aforementioned component densities are parametrized by θ = (θ c, θ cf) i.e. pc(X |θ c) and pcf(x|X, θ cf), and 
we attempt to minimize the KL-divergence between the reference density pf(x) and the marginal p̄f(x|θ) implied by the 
generative model proposed :

KL(pf(x)||p̄f(x|θ)) = −
∫
Mf

pf(x) log
p̄f(x|θ)

pf(x)
dx

= −
∫

pf(x) log p̄f(x|θ) dx +
∫

pf(x) log pf(x)dx. (13)

This is equivalent to maximizing
∫

pf(x) log p̄f(x|θ) dx which, given samples {x(i)}N
i=1 from pf(x), is approximated by the 

log-likelihood of p̄f(x|θ)3:

L(θ) =
N∑

i=1

log p̄f(x(i)|θ)

=
N∑

i=1

log

⎛
⎝∫

pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)dX (i)

⎞
⎠ . (14)

We note in the expression above that we associate a latent, coarse configuration X (i) to each sample x(i) which is effectively 
its pre-image. More importantly, the objective in the aforementioned expression accounts for both the density of the coarse-
grained description as well as the reconstruction (lifting) of the all-atom configuration from the (latent) coarse-grained one. 
Maximizing L(θ) naturally leads to the Maximum Likelihood estimate θMLE.

Furthermore the interpretation of the objective as the log-likelihood makes the progression into Bayesian formulations 
much more straightforward. If for example we define a prior density p(θ) then maximizing:

arg max
θ

{L(θ) + log p(θ)} , (15)

is equivalent to obtaining a Maximum a Posteriori (MAP) estimate θMAP [41]. The next step from point estimates for the 
model parameters is of course obtaining the full posterior p(θ |x(1:N)) using Bayes formula as:

p(θ |x(1:N)) ∝ p(x(1:N)|θ) p(θ)

∝ eL(θ) p(θ)

∝
N∏

i=1

⎛
⎝∫

pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)dX (i)

⎞
⎠ p(θ). (16)

The aforementioned relationship can be concretely represented in the form of a directed graphical model as depicted in 
Fig. 1.

We discuss a strategy for approximating this posterior in the next subsections. It is more important to emphasize at this 
stage that given this posterior, we can produce not just point estimates of the expectation of any observable a(x), but also 

3 This result can be obtained (up to 1/N) by substituting pf(x) in Eq. (13) by the empirical measure 1
N

∑N
i=1 δ(x − x(i)). The likelihood of N samples 

drawn from pf(x) is trivially ∏N
i=1 p̄f(x(i)|θ).
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Fig. 1. Probabilistic graphical model representation.

compute its predictive posterior. For that purpose we make use of the predictive posterior p(x|x(1:N)) of our model which 
is determined by marginalizing the latent variables X and the model parameters θ :

p(x|x(1:N)) =
∫

p(x, X, θ |x(1:N)) dXdθ

=
∫

p(x, X |θ, x(1:N)) p(θ |x(1:N)) dXdθ . (17)

By replacing the joint density with the proposed generative model in Eq. (11), the predictive posterior p(x|x(1:N)) becomes:

p(x|x(1:N)) =
∫

pcf(x|X, θ cf) pc(X |θ c) p(θ |x(1:N)) dXdθ . (18)

The latter can be used in place of the FG distribution pf(x) in Eq. (3), to obtain approximations to the expectation of any 
observable a(x) as follows:

Epf(x)[a(x)] ≈ Ep(x|x(1:N))[a(x)]
=

∫
a(x) p(x|x(1:N)) dx

=
∫

a(x)

(∫
pcf(x|X, θ cf) pc(X |θ c) p(θ |x(1:N)) dX dθ

)
dx

=
∫ (∫

a(x) pcf(x|X, θ cf) pc(X |θ c) dX dx

)
︸ ︷︷ ︸

â(θ)

p(θ |x(1:N)) dθ

=
∫

â(θ) p(θ |x(1:N)) dθ . (19)

The approximation in the first line reflects the quality of the model as well as the uncertainty arising from the finite data 
x(1:N) that were used to calibrate it. This derivation suggests that â(θ) represents the predictive estimate of the expectation 
of a(x) for a given value θ of the model’s parameters. Averaging over the posterior of the latter provides the expected 
(a posteriori) value of this quantity. More importantly though by propagating the (posterior) uncertainty of θ through â(θ), 
one can readily obtain the predictive distribution of the observable. In the numerical examples we frequently plot such 
posterior statistics, usually in the form of credible intervals (see also A.1). Point estimates can be easily recovered if the 
analyst wishes to do so by employing for example the MAP (or MLE) estimate θMAP in the aforementioned equation i.e. if 
p(θ |x(1:N)) ≡ δ(θ − θMAP).

2.3. Inference and learning (point estimates)

This section is concerned with the computational aspects of training the proposed model. We pay particular attention 
to distributions in the exponential family for which the concavity of the maximum-likelihood problem can be analytically 
shown. Furthermore, we discuss strategies for parallelizing these tasks and improving the computational efficiency. We 
finally discuss particular prior specifications that are suitable for sparse feature recovery and model selection.

We begin our discussion with a strategy for obtaining point estimates for the model parameters θ by maximizing the 
log-likelihood (or the log-posterior) as given in Eq. (14) (or Eq. (15)). The difficulty in the optimization problem stems 
from the intractability of the log-likelihood due to the integration with respect to the latent variables X (i) (except for 
trivial cases for pc, pcf). To address this we employ an Expectation–Maximization (EM) scheme [42,43] where MCMC is used 
to approximate the E-step (MCEM) [44] and stochastic approximations to handle the Monte Carlo noise in the gradient 
estimates of the M-Step [45,46]. The EM algorithm allows the maximization of the log-likelihood by circumventing the need 
for repeated evaluations of the aforementioned intractable integrals and normalization constants. To motivate the derivation, 
we note that for an arbitrary set of densities qi(X (i)) we can construct lower bounds, denoted by F (i)(qi(X (i)), θ), for each 
term in the sum that makes up the log-likelihood as follows:
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L(θ) =
N∑

i=1

log

⎛
⎝∫

pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)dX (i)

⎞
⎠

=
N∑

i=1

log

⎛
⎝∫

pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)

qi(X (i))
qi(X (i)) dX (i)

⎞
⎠

≥
N∑

i=1

⎛
⎝∫

qi(X (i)) log
pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)

qi(X (i))
dX (i)

⎞
⎠

︸ ︷︷ ︸
:=F (i)(qi(X (i)), θ)

=
N∑

i=1

F (i)(qi(X (i)), θ)

= F(q(X), θ), (20)

where q(X) = ∏N
i=1 qi(X (i)), and the result in the third step is a consequence of Jensen’s inequality. We note that the 

optimal qopt
i (X (i)) for each of the aforementioned terms is:

qopt
i (X (i)) = qi(X (i)|x(i), θ) ∝ pcf(x(i)|X (i), θ cf) pc(X (i)|θ c), (21)

i.e. the conditional posterior of the latent variables X (i) given x(i) and θ . This is optimal in the sense that the inequality 
becomes an equality [41] i.e.:

F (i)(qopt
i (X (i)), θ) = log

(∫
pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)dX (i)

)
. (22)

All other qi ’s lead to suboptimal schemes that fall under the category of Variational Bayesian Expectation–Maximization 
(VB-EM, [47]). More importantly, the aforementioned derivation suggests an iterative algorithm where one alternates (until 
convergence) between the following two steps, i.e. at each iteration t:

E-step: Given the current estimate of θ ≡ θ (t) , evaluate:

F(qopt, t(X), θ (t)) =
N∑

i=1

F (i)(qopt, t
i (X (i)), θ (t)), (23)

where qopt, t
i is given in Eq. (21) for θ ≡ θ (t) .

M-step: Given the current qopt, t
i (X (i)), find:

θ (t+1) = arg max
θ

N∑
i=1

F (i)(qopt, t
i (X (i)), θ (t))

= arg max
θ

N∑
i=1

(∫
qopt, t

i (X (i)) log
(

pcf(x(i)|X (i), θ
(t)
cf ) pc(X (i)|θ (t)

c )
)

dX (i)
)

. (24)

We discuss in detail each of the two steps.

• The E-step of the algorithm requires computing expectations with respect to the intractable distributions in Eq. (21). As 
it can be seen in Eq. (24) only the terms in F (i) that depends on θ needs to be computed which we approximate by a 
Monte Carlo estimator:∫

qopt, t
i (X (i)) log

(
pcf(x(i)|X (i), θ

(t)
cf ) pc(X (i)|θ (t)

c )
)

dX (i) ≈

≈ 1

mt

mt∑
j=1

(
log pcf(x(i)|X (i)

j , θ
(t)
cf ) pc(X (i)

j |θ (t)
c )

)
. (25)

The mt samples used at each iteration t are drawn using MCMC from qopt, t
i (X (i)). Compared to i.i.d. Monte Carlo 

samples, the use of MCMC introduces theoretical complications with regards to the stability and the error in the approx-
imation [48,49]. A recent treatment of the convergence conditions for such schemes is contained in [50]. The obvious 
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error source arises from the bias in the MCMC samples which are approximately distributed according to the target 
density. In addition the samples generated are correlated. Such errors can be subdued by increasing the sample size mt . 
Heuristically speaking, at the first few iterations t , even a crude estimate of the objective generally suffices to drive the 
parameter θ -updates toward the region of interest. As the EM iterations proceed, the number of samples should increase 
in order to zoom-in at the optimum and minimize the oscillatory behavior due to the noise in the estimates. Several 
strategies have been proposed to optimize mt or even devise an automatic schedule by making use of error estimates 
[51–54]. In this work, we used a constant sample size i.e. mt = m, ∀t that we report in the numerical examples. We 
found through several cross-validation runs that this had no noticeable effect to the optima identified. We note finally 
that other Monte Carlo schemes can be utilized. One would expect that Importance Sampling [55], where previously 
generated samples are re-weighted and re-used, could be quite effective particularly when θ (t) do not change much 
and the corresponding qopt, t

i are quite similar. A more potent alternative is offered by Sequential Monte Carlo schemes 
(SMC) [8,56] which combine the benefits of MCMC and Importance Sampling.

• The maximization of the lower bound with respect to θ is not analytically tractable even when a Monte Carlo approx-
imation of the objective, as discussed previously, is used. For that purpose, we make use of a gradient ascent scheme 
that employs the partial derivatives of F :

G(θ) = ∇θ F =
N∑

i=1

∇θF (i) (=
N∑

i=1

G(i)(θ))

=
N∑

i=1

∇θ

(∫
qopt, t

i (X (i)) log
(

pcf(x(i)|X (i), θ
(t)
cf ) pc(X (i)|θ (t)

c )
)

dX (i)
)

, (26)

where at each iteration t , each term G(i)(θ) is approximated by a Monte Carlo estimate (see discussion before) as:

G(i)(θ) = ∇θ

∫
qopt, t

i (X (i)) log
(

pcf(x(i)|X (i), θ
(t)
cf ) pc(X (i)|θ (t)

c )
)

dX (i)

≈ 1

mt

mt∑
j=1

∇θ log
(

pcf(x(i)|X (i)
j , θ

(t)
cf ) pc(X (i)

j |θ (t)
c )

)

= Ĝ(i)
t . (27)

The latter are used to update θ as follows4:

θ t+1 = θ t + ηt

N∑
i=1

Ĝ(i)
t . (28)

The step sizes ηt are defined in the context of the Robbins–Monro scheme [45] which is designed to handle the 
unavoidable Monte Carlo noise in the gradient estimates. They should satisfy the following conditions [57]:

∞∑
t=1

ηt = +∞, and
∞∑

t=1

η2
t < ∞. (29)

In this work, we employ [36]:

ηt = α

(A + t)ρ
, (30)

with ρ ∈ (0.5, 1]. The choice for the values α, ρ , and A is problem dependent and is explicitly given in Sections 3.1
and 3.2 for the Ising and water problems, respectively.

• We note finally that the gradient needed for the θ -updates, involves the sum of N independent terms, one for each 
datum (i.e. FG configuration) available. Apart from the obvious opportunity for parallelization that this offers, it also 
suggests that fine-scale data can be successively added. Hence the optimization can be initiated with a small number of 
data points N and the changes in the optimal θ identified can be monitored as more fine-scale data are generated/added 
to ensure that convergence is achieved with the smallest such effort. Another strategy for reducing the computational 
effort is to perform the E-step i.e. sample from qopt, t

i only for a subset of the data i = 1, . . . , N at a time. While this has 
the potential of reducing the overall number of MCMC steps needed, convergence is still guaranteed [43].

4 As discussed in the seminal work of Neal and Hinton [43], more than one updates of θ per EM iteration can be performed.
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2.4. Exponential family densities – uniqueness of solution

In order to provide some insight to the log-likelihood maximization, we consider the case of model densities belong 
to the exponential family [41,58]. As it will be shown in the numerical illustrations, this represents a very large set of 
flexible densities where by appropriate selection of the feature functions φ and ψ in the equations below one can capture 
interactions of various order (e.g. 2nd, 3rd) [36,38]. Such densities have the form:

pc(X |θ c) = exp{θT
cφ(X) − A(θ c)}, (31)

and:

pcf(x|X, θ cf) = exp{θT
cfψ(x, X) − B(X, θ cf)}, (32)

where A(θc) and B(X, θ cf) are the log-partition functions given by:

A(θ c) = log
∫

eθT
cφ(X)dX,

B(X, θ cf) = log
∫

eθT
cfψ(x,X)dx. (33)

One can readily show that:

∂ A(θ c)

∂θc,k
=< φk(X) >pc(X |θc),

∂2 A(θ c)

∂θc,k∂θc,l
= Covpc(X |θc)[φk(X),φl(X)], (34)

and:

∂ B(X, θ cf)

∂θcf,k
=< ψk(x, X) >pcf(x|X,θcf),

∂2 B(X, θ cf)

∂θcf,k∂θcf,l
= Covpcf(x|X,θcf)[ψk(x, X),ψl(x, X)], (35)

where < · >p denotes the expectation with respect to the density p and Covp[·, ·] the covariance of the arguments with 
respect to p. Hence, for pc and pcf as above, the gradient of the objective F in Eq. (24) is given by5:

∂F
∂θc,k

=
N∑

i=1

(
< φk(X (i)) >qi(X (i)) − < φk(X) >pc(X |θc)

)
,

and

∂F
∂θcf,k

=
N∑

i=1

(
< ψk(x(i), X (i)) >qi(X (i)) − < ψk(x, X (i)) >pcf(x|X (i),θcf)qi(X (i))

)
. (36)

Furthermore, the Hessian is:

∂2F
∂θc,kθc,l

= −N Covpc(X |θc)[φk(X),φl(X)],
∂2F

∂θc,kθcf,l
= 0,

∂2F
∂θcf,kθcf,l

= −
N∑

i=1

Covpcf(x|X (i),θcf)qi(X (i))[ψk(x, X),ψl(x, X)]. (37)

The block-diagonal Hessian is negative definite (at least when linearly independent feature functions are employed) 
which ensures that the objective is concave and has a unique maximum (whether arbitrary qi are employed or qopt

i as 
in Eq. (21)). We note also that Monte Carlo estimates of the Hessian can also be obtained and used in the θ -updates. These 
however tend to be more noisy than the gradients and special treatment is needed unless one is willing to generate large 
numbers of MCMC samples [36]. Finally, there is a wealth of stochastic approximation schemes that have been proposed 
and exhibit accelerated convergence [59–62].

5 We compare gradients of PCG with the relative entropy method in A.2.



58 M. Schöberl et al. / Journal of Computational Physics 333 (2017) 49–77
2.5. Prior specification

The incorporation of priors for θ does not pose any computational difficulties as their contribution is additive 
(see Eq. (15)) to the log-likelihood and its partial derivatives. While priors for θ cf, i.e. the parameters in the coarse-to-fine 
map, are unavoidably problem-dependent due to their special physical meaning, a more general strategy can be adopted for 
the θ c, i.e. the parameters associated with the density of the coarse-grained variables X . For exponential family distributions 
as in Eq. (31), each θc,k is associated with a feature function φk(X). As it will become apparent in the numerical examples, 
each of these feature functions encapsulates low- or high-order dependencies (or components thereof) between X . It is 
obviously impossible to know a priori which of the φ(X) are relevant for a particular problem and how these depend on 
the dimension of X or the coarse-to-fine probabilistic map pcf. This underpins an important model selection issue that has 
been of concern in several coarse-graining studies [30,33,34,38]. One strategy to address this is to initiate the search with a 
small number of features φ(X) and progressively add more. These can be selected from a pool of candidates by employing 
appropriate criteria. In [8,63] for example, the feature function that causes the largest (expected) decrease (or increase) in 
the KL-divergence (or the log-likelihood) that we seek to minimize (or maximize), is added at each step. In this work, we 
adopt a different approach whereby all available φ(X) contained in the vocabulary of feature functions, are simultaneously 
considered. Consequently this leads to a vector of unknowns θ c of very large dimension which not only impedes compu-
tations but can potentially lead to multiple local maxima, if the Hessian in Eq. (37) becomes semi-negative definite i.e. if 
linear dependencies between the selected φ(X) are present. More importantly though (at least when the number of data 
points N is small), it can obstruct the identification of the most salient features of the coarse-grained model which provide 
valuable physical insight [30].

To address this, we propose the use of sparsity-enforcing priors that are capable of identifying solutions in which only 
a (small) subset of θ c are non-zero and therefore only the corresponding φ(X) are active [64,65]. A lot of the prior models 
that have been proposed along these lines can be readily cast in the context of hierarchical Bayesian models where hyper-
parameters are introduced in the prior. In this work, we adopt the Automatic Relevance Determination (ARD, [66]) model 
which consists of the following:

p(θ c|τ ) ≡
∏

k

N (θc,k|0, τ−1
k ), τk ∼ Gamma(τk|a0,b0). (38)

This implies that each θc,k is modeled (a priori) with an independent, zero-mean, Gaussian, with a precision hyper-parameter 
τk which is in turn modeled (independently) with a (conjugate) Gamma density. We note that when τk → ∞, then θc,k → 0. 
The resulting prior for θc,k arising by marginalizing the hyper-parameter is a heavy-tailed, Student’s t-distribution. For the 
purposes of learning of θ c and in order to compute derivatives of the log-prior, we retain the τk ’s and treat them as latent 
variables in an inner-loop EM scheme [67] (see derivation in A.3) which consists of:

• E-step: evaluate:

〈τk〉p(τk|θc,k)
= a0 + 1

2

b0 + θ2
c,k
2

. (39)

• M-step: evaluate:

∂ log p(θ c)

∂θc,k
= −〈τk〉p(τk|θc,k)

θc,k. (40)

We note also that the second derivative of the log-prior with respect to θ c can be similarly obtained as:

∂2 log p(θ c)

∂θc,k∂θc,l
=

{ −〈τk〉p(τk|θc,k)
, if k = l

0, otherwise.
(41)

2.6. Approximate Bayesian inference – Laplace’s approximation

The discussion thus far has been limited to point estimates for θ . A fully Bayesian treatment would pose significant 
computational challenges. These stem from the intractability of the log-partition function A(θ c) of pc in the exponential 
family of models (see Eq. (31)). Sampling or approximating the full posterior of θ c would require repeated evaluations 
of this and potentially its derivatives, a difficulty which is only amplified when dim(θ c) � 1. For that reason, we adopt 
an approximation based on the Laplace’s method [68]. According to this, the target posterior p(θ |x(1:N)) is modeled with 
a Gaussian (Fig. 2) with mean equal to the MAP estimate θMAP and a covariance S equal to the inverse of the negative 
Hessian of the log-posterior at θMAP (see Eqs. (37) and (41)). These two quantities are readily obtained at the last iteration 
(upon convergence) of the MC-EM scheme described previously. Hence:
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Fig. 2. Schematic illustration of the Laplace’s approximation.

S−1 =
[

Scc 0
0 S f f

]
, (42)

where the block-matrices above are given by:

Scc = N Covpc(X |θc)[φ(X),φl(X)] + diag(〈τk〉p(τk|θc,k)
)

S f f =
N∑

i=1

Covpcf(x|X (i),θcf)qi(X (i))[ψ(x, X)]. (43)

Laplace’s approximation can also be interpreted as a second-order Taylor series expansion of the log-posterior at θMAP. Some 
remarks:

• For θc,k that are effectively turned off when using the ARD prior (i.e. θc,k,MAP = 0), 〈τk〉p(τk |θc,k)
→ ∞ and thus dominate 

the corresponding terms in S−1. As a result, the (approximate) posterior covariance of these θc,k approaches 0.
• We note that when the number of data points N → ∞, the corresponding terms in S−1 increase and as a result the 

(approximate) posterior covariance goes to 0, as one would expect.

Algorithm 1 summarizes the basic steps of the scheme advocated.

Algorithm 1 Proposed MC-EM scheme.

1: Initialize θ0 = {θ c
0, θ cf

0}.
2: Select parameters {a, ρ, A} for the Robbins–Monro optimization algorithm (Eq. (30)).
3: Step t = 0
4: while (not converged) do
5: MC-E-step:
6: for all i = 1, . . . , N do
7: Generate MCMC samples from the (conditional) posterior distribution qi(X (i)) in Eq. (21)
8: end for
9: M-step:

10: Construct Monte Carlo gradient estimators Ĝ(i) (Eq. (27)) augmented by the prior gradient (Eq. (40)).
11: Update the parameters θ based on Eq. (28))
12: t ← t + 1
13: end while
14: Compute Hessian of the log-posterior Eq. (15) at θMAP (Eqs. (37), (41)) to construct Laplace’s approximation of the posterior p(θ |x(1:N))

(Eq. (42)).

3. Numerical illustrations

We illustrate the proposed PCG framework in two examples. We particularize the definition of coarse-grained variables X
which unavoidably differs from problem to problem. We emphasize through several illustrations the ability of the proposed 
method to produce predictive estimates of various macroscopic observables as well as quantify the predictive uncertainty 
as a function of the amount of training data N used and the level of coarse-graining i.e. the ratio of the amount of fine to 
coarse variables. We also provide comparisons with the results obtained by employing the relative entropy method. Finally, 
we demonstrate how the ARD prior advocated can lead to the discovery of sparse solutions revealing the most prominent 
feature functions in the coarse potential and possibly the most significant types of interactions that this should contain. 
Whenever such a hierarchical prior (ARD) is employed (Eq. (38)) for the parameters θ c in the coarse potential, the following 
values were used for the hyperparameters: a0 = b0 = 10−5.
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3.1. Ising model

The Ising model serves as abstraction of various physical problems, e.g. for modeling electromagnetism or lattice gas 
systems [69,70]. It has been the subject of detailed studies and several strategies for coarse-graining in equilibrium [9,
11–13,35,36] and nonequilibrium [9] settings.

We consider a periodic, one-dimensional lattice consisting of nf = 64 sites. Each site i is associated with a binary vari-
able xi, i = 1, . . . , nf which takes values ±1. The nf-dimensional vector x = {xi}nf

i=1 follows pf(x) ∝ exp{−βU f(x)} with the 
fine-scale potential given by:

U f(x) = −1

2

Lf∑
k=1

Jk

⎛
⎝ ∑

|i− j|=k

xix j

⎞
⎠ − μ

nf∑
i=1

xi . (44)

The expression |i − j| = k implies a summation over all lattice sites i, j that are k-sites apart (periodic boundary conditions 
are assumed). The parameter Lf expresses the maximal interaction length. Following [9,28,71], we use a decaying interaction 
strength Jk with,

Jk = K

ka
, (45)

and the normalization,

K = J0

La−1
f

∑Lf
k=1 k−a

. (46)

Finally, the parameter μ denotes the external field.
The values A = 25, α = 0.15, and ρ = 0.75 were used for the Robbins–Monro updates (Eq. (28)) based on suggestions 

given in [36]. We used m = 170 samples for the MCMC estimates of the gradients in Eqs. (25) and (27).

3.1.1. Observables
As pointed out previously, the framework proposed readily allows for reconstructions of the whole fine-scale description 

and therefore probabilistic predictions can be computed for any observable. For comparative purposes, we focus on two such 
quantities. The first one is the magnetization m(μ) and its dependence on the external field parameter μ. This is associated 
with the following observable:

a(m)(x) = 1

nf

∑
i

xi, (47)

i.e. m(μ) = Epf(x)[a(m)(x)]. The second quantity is the correlation R(k) at various separation distances k which captures 
second-order statistical information of the fine-scale configurations. The corresponding observable is:

a(R)(x;k) = 1

nf

∑
|i− j|=k

xix j, (48)

i.e. R(k) = Epf(x)[aR(x; k)].
3.1.2. Coarse-variables X and coarse-to-fine map

While the framework proposed offers great flexibility in the definition of the coarse variables X , in this work we make 
perhaps the most intuitive choice by assuming that X are (also) binary and have a local dependence on x. This offers a 
direct appraisal on the level of coarse-graining as well as a natural, visual interpretation of the coarse variables and their 
role.

In particular, we assume that each coarse variable XI , I = 1, . . . , nc is associated with a one-dimensional lattice that 
is a coarser version of the fine-scale one, i.e. with nc < nf sites (Fig. 3). We can construct such descriptions by regularly 
coarsening by a factor of 2 such that nc = nf/2d , with d = 1, . . . , D . We assume that each XI (parent) is associated with 
S = nf

nc
fine-scale variables (children) denoted by x(I−1)S+s = xs,I (where s = 1, . . . , S , Fig. 3). We define a coarse-to-fine 

map of the form:

pcf(x|X, θ cf) =
nc∏

I=1

S∏
s=1

p(xs,I |XI , θ cf)

=
nc∏

I=1

S∏
s=1

p
1+xs,I XI

2
0 (1 − p0)

1−xs,I XI
2

= p
∑nc

I=1

∑S
s=1

1+xs,I XI
2

0 (1 − p0)
∑nc

I=1

∑S
s=1

1−xs,I XI
2 . (49)
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Fig. 3. Probabilistic coarse-to-fine map pcf(x|X, θ cf). The coarse-variable X1 is e.g. associated with x1...4,1 fine-scale variables through the probabilistic 
coarse-to-fine map pcf (Eq. (49)). Each xs,1 is conditionally independent from the other.

The expression above implies that each xs,I is conditionally independent and follows a Bernoulli distribution with probability 
p0 of being of the same value as its parent XI , and probability (1 − p0) of having the opposite spin. We emphasize that 
this does not imply that xs,I are also independent. In fact they will be correlated as a result of the dependencies between 
the coarse variables X induced by the coarse model pc which is discussed in the next subsection. The density pcf above 
belongs to the exponential family (Section 2.4) and is controlled by a single parameter, p0 ∈ [0, 1]. Given the symmetry of 
the model, we restrict p0 ∈ [0.5, 1]. To ensure that it stays within this interval during the MC-EM updates (Algorithm 1), we 
operate instead on θcf ∈R defined as follows:

p0 = 1

2
(1 + 1

1 + e−θcf
). (50)

The derivatives needed for the updates of the EM-scheme in Eq. (27) and Eq. (37) are:

∂ log pcf

∂θcf
= ∂ log pcf

∂ p0

∂ p0

∂θcf
,

∂2 log pcf

∂θ2
cf

= ∂2 log pcf

∂ p2
0

(
∂ p0

∂θcf

)2

+ ∂ log pcf

∂ p0

∂2 p0

∂θ2
cf

, (51)

where:
∂ log pcf

∂ p0
= ψ(x, X)

p0
− 1 − ψ(x, X)

1 − p0
,

∂2 log pcf

∂ p2
0

= −ψ(x, X)

p2
0

− 1 − ψ(x, X)

(1 − p0)2
, (52)

and ψ(x, X) = ∑nc
I=1

∑S
s=1

1+xs,I X I
2 .

3.1.3. Coarse model
The coarse potential Uc(X; θ c) employed includes first-, second- and third-order interactions with various interaction 

lengths. In particular, we prescribe:

Uc(X; θ c) = − 1

2

{
θ

(1)
c

∑
i

Xi +
∑

i

Xi

L(2)
c∑
k

θ
(2)

c,k Xi±k +
∑

i

Xi

L(3)
c∑

k=1
l=1

θ
(3)

c,kl Xi±k Xi±k±l

}
− μ

∑
i

Xi . (53)

The parameters L(2)
c and L(3)

c denote the maximal second- and third- order interactions, respectively. With superscripts 
(1), (2), (3) we distinguish between the coarse potential parameters θ c that are associated with the first, two-body and 
third-body interactions, respectively. These parameters determine also the number of θ c which is equal to 1 + L(2)

c + (L(3)
c )2.

In order to compare the proposed method with the relative entropy method, as briefly summarized in Section 2.1, 
a deterministic fine-to-coarse mapping R(x) is needed. We note that in [35,36] such efforts have been made by “coarse-
graining” the interactions rather than the degrees of freedom i.e. x ≡ X . In order to truly assess the performance in cases 
where the coarse variables are of lower dimension and of the same type as in this study (i.e. binary), we prescribe the 
following map:

XI =
{

+1, 1
S

∑S
s xs,I ≥ 0

−1, 1
S

∑S
s xs,I < 0.

(54)

This implies a “majority rule” where the label of the parent XI is determined by the majority of the children. The same 
model as in Eq. (53) was used for the coarse potential. In order to reconstruct the fine configurations x and estimate the 
observables of interest from the coarse description X , a consistent sampling was performed from the conditional in Eq. (7)
for the R above.
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Fig. 4. For the FG datum x(i) (right), the image on the left shows a sample from the posterior of the CG X(i) (upon convergence of the Algorithm 1) i.e. one 
of the possible pre-images of x(i) . The three images in the center illustrate the predictions/reconstructions of the fine-scale: the top and bottom are samples 
drawn from the pcf and the center is the expected FG configuration according to pcf.

Fig. 5. Comparison of the reference magnetization (computed with the FG configuration) with posterior mean of predictive CG and relative entropy CG. 
N = 20, nf

nc
= 2, L(2)

c = 15, L(3)
c = 3.

3.1.4. Results
The ensuing results are based on the following values for the fine-scale potential: J0 = 1.5, a = 0.8, Lf = 8, β = 0.3, 

nf = 64. We generated data from the fine scale model for each of 41 values of the external field μ, equidistantly dis-
tributed within [−4, 4]. A different CG model is trained for every μ value considered. One could also envision introducing 
a dependence of the CG model’s components on μ which would allow a single model to be inferred and to be used for 
making predictions even for values of μ not contained in the data. Fig. 4 provides some insight on the role of the CG 
variables, their posterior and their ability to represent/reconstruct the FG configuration. Fig. 5 compares point-estimates 
of the predicted magnetization as obtained with the proposed method (red) and the relative entropy method (for fine-to-
coarse mapping as given in Eq. (54)). While one can claim that better results can be obtained with a different set of CG 
variables (Eq. (54)), the point in this comparison is to demonstrate the information loss that takes place which can lead 
to poor predictions when not quantified. Given the same amount of training data N , the information loss in the relative 
entropy method is driven by the not adjusted map in the consistent density of the fine-scale variables pR(x) denoted 
in Eq. (9) compared to PCG. While in PCG the probabilistic map pcf(x|X, θ cf) (Eq. (49)) is parametrized and optimized 
within the parametric family of pcf. We note further that the relative entropy method can lead to good approximations 
of the Potential of Mean Force, and as a result, accurate estimates (as shown earlier) of expectations of observables that 
depend solely on X . We could therefore select X in such a way that the magnetization is only a function of X in which 
case the result of the relative entropy method would probably be good. If however another expectation was sought (that 
does not depend on the current X ) a new set of X would need to be defined and a new CG model would need to be 
retrained.

When nf
nc

= 2, L(2)
c = 15, L(3)

c = 3, the total number of unknowns parameters θ c in the potential Uc is 1 + L(2)
c +

(L(3)
c )2 = 25. This is not a particularly large number, but we demonstrate nevertheless the effect of the sparsity enforc-

ing prior in Fig. 6 when N = 20 data points are used. In the absence of the ARD prior (Eq. (38)), all θ c are non-zero and 
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Fig. 6. Parametrization of two- and three-body interactions at μ = 0.0, obtained with and without ARD prior. A sparse solution is obtained with active ARD 
prior at the same predictive accuracy (see Fig. 7). N = 20, nf

nc
= 2, L(2)

c = 15, L(3)
c = 3.

Fig. 7. Comparison of predicted magnetization with and without ARD prior. N = 20, nf
nc

= 2, L(2)
c = 15, L(3)

c = 3.

the corresponding feature functions are all active (Eq. (53)). On the contrary, when the ARD prior is employed, the learn-
ing scheme identifies only 3 non-zero θ c. Interestingly these are associated with two-body interactions up to separation 3 
whereas all other terms corresponding to two- and three-body interactions are found to be unnecessary, despite having 
equal predictive accuracy as shown in Fig. 7 where point estimates of the magnetization are plotted (with and without the 
ARD prior).

Fig. 8 depicts the effect of adding more training data N in the predictive posterior estimates for the magnetization at 
various μ values. One observes that as N increases, not only the posterior mean estimates approach the reference solution, 
but more importantly, the posterior credible intervals shrink around it reflecting the fact that the model becomes more 
confident. Credible intervals are obtained by sampling the (approximate) posterior distribution p(θ |x(1:N)) (Eq. (16)) and de-
termining the observable for each sample θ (i) with the predictive estimator â(θ (i)) (Eq. (19)). We use the predictive samples 
â(θ (i)) to determine desired quantiles (see A.1 for more details). The same observations can be made when attempting to 
predict second-order statistics of the fine-scale i.e. the correlation at various separations k (Fig. 9).

The decreasing variance for increasing N can also be observed in the model parameters e.g. the coarse-to-fine mapping 
parameter p0 (Eq. (49)), the (approximate) posterior of which is shown in Fig. 10.

Finally in Figs. 11 and 12, the predictive ability of the model is compared for different levels of coarse-graining. In the 
formulation adopted, this is quantified by the ratio between the dimension of fine x and coarse X descriptions i.e. nf

nc
. We 

consider two cases i.e. nf
nc

= 2, 8. As one would expect, the posterior mean estimates are superior when nf
nc

= 2 but also the 
predictive posterior uncertainty increases as the coarse-graining becomes more pronounced. This is easily understood by 
the fact that the fewer CG variables used, the higher the information loss becomes. It is important to note though that even 
when nf = 8, the predictive posterior’s credible intervals always include the reference solution.
nc
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Fig. 8. Comparison of the reference magnetization (computed with the FG configuration) with posterior mean and credible intervals corresponding to 1%
and 99% posterior quantiles. N = 20, nf

nc
= 2, L(2)

c = 15, L(3)
c = 3.

3.2. Coarse-graining SPC/E water

The second example addresses the coarse-graining of a water model which is described at the atomistic scale by oxygen 
and hydrogen atoms. Water has been the focus of several studies in coarse-graining as it plays the role of the solvent in 
various biological and chemical systems and as a result it can take up to 80% of the total simulation time [30]. Furthermore 
there exist several well-documented properties which can serve as a measure of comparison. In this study, we employ the 
Simple Point Charge/Extended (SPC/E) water model introduced in [72,73] for the FG (all-atom) description. In the context 
of the relative entropy method, coarse-graining of the SPC/E water is addressed in [36,74–76]. In particular, we consider 
a system of M = 100 water molecules at a temperature of T = 300 K, and a pressure of p = 1.0 bar. The equilibrium box 
length is lbox = 14.56 Å and a time step of �t = 2.0 fs is used. Periodic boundary conditions are applied in every dimension 
while ensuring the NVT ensemble by the Nosé–Hoover thermostat [77,78]. The x vector contains the coordinates of the 
100 oxygen and 200 hydrogen atoms i.e. dim(x) = 900. The fine-scale potential U f(x) under the SPC/E model consists of a 
Lennard–Jones (LJ) potential for non-bonded interactions and a Coulomb potential for long-range interactions. Parameters 
for the LJ potential,

U LJ
f (x) = 1

2

∑
j �=k

4ε

((
σ

Rij(x)

)12

−
(

σ

Rij(x)

)6
)

, (55)

are σ = 3.166 Å and ε = 0.650 kJ
mol , with the distance between particle i and j denoted as Rij .

The electric load of Hydrogen (H) and Oxygen (O) atoms are given by qO = −0.8476 e, qH = +0.4238 e where e repre-
sents the elementary charge. The SPC/E model assumes the bonded interaction to be rigid with a bonding angle defined 
between the two H-atoms and the central O-atom as ωHOH = 109.47◦ . The bond-length used in this study is lOH = 1.0 Å. The 
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Fig. 9. Comparison of the reference correlation (computed with the FG configuration) with posterior mean and credible intervals corresponding to 1% and 
99% posterior quantiles. N = 20, nf

nc
= 2, L(2)

c = 15, L(3)
c = 3.

Fig. 10. Posterior p(p0|x(1:N)) at μ = 0.0 for N = 10,20,50. nf
nc

= 2, L(2)
c = 15, L(3)

c = 3.

equilibration for the NVT ensemble was performed as in [36,75]. For both fine- and coarse-scale simulations the molecular 
dynamics software package LAMMPS [79] was used. Further details are contained in B.1.

The values A = 9, α = 0.05, and ρ = 0.60 were used for the Robbins–Monro updates (Eq. (28)) based on suggestions 
given in [36]. We used m = 160 samples for the MCMC estimates of the gradients in Eqs. (25) and (27).

3.2.1. Observables
The first macroscopic observable of interest is the Radial Distribution Function (RDF) g(r) which represents a charac-

teristic and well-studied property in water models. Several computational and experimental results related to the RDF are 
described in [80]. As a pair correlation function, g(r) depends on the statistics of the distances r jk between each pair of 
molecules j, k. To compute these distances, we employ the coordinates of the center of mass of each water molecule x̂ j :
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Fig. 11. Magnetization for different level of coarse graining, i.e. ratio of the amount fine/coarse variables nf
nc

= 2 (L(2)
c = 15, L(3)

c = 3) and nf
nc

= 8 (L(2)
c = 3, 

L(3)
c = 1). Both models were trained with the same data N = 20.

Fig. 12. Correlation for different level of coarse graining, i.e. ratio of the amount fine/coarse variables nf
nc

= 2 (L(2)
c = 15, L(3)

c = 3) and nf
nc

= 8 (L(2)
c = 3, 

L(3)
c = 1). Both models were trained with the same data N = 20.

x̂ j = xO, jmO + xH, j1mH + xH, j2mH

mO + 2mH
, (56)

where xO, j are the coordinates of the oxygen atom of molecule j, xH, j1 , xH, j2 are the coordinates of the two hydrogen atoms 
of the same molecule, and mO, mH are the masses of oxygen and hydrogen atoms, respectively (see B.1). If r jk = |x̂ j − x̂k|, 
then the corresponding observable of interest is [81]:

aRDF(x) = V

M2

M∑
j

M∑
j �=k

δ(r − r jk), (57)

where V denotes the volume of the simulation box (14.563 Å
3

) and M = 100 the number of molecules in the system. 
Additional details can be found in B.2.

The second property of interest involves the tetrahedral structure of water. Neighboring water molecules temporarily 
build such tetrahedral clusters due to the hydrogen bonds. Several measures of tetrahedrality have been proposed which 
relate to the deviation from the perfect tetrahedral structure ω0 = 109.471◦ [74,82]. In this work, we employ the angular 
distribution function which considers the eight closest neighbors nc = 8 for a given molecule j. It is defined as follows:

atetra(x;ω) = 1

Mnω

M∑ nc∑nc−1∑
δ(ω − ω jkl), (58)
j=1 k=1 l �= j
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Fig. 13. Probabilistic mapping pcf(x̂ j |X j , θ cf), with mean X j and predicted fine-scale variable x̂i . The contours depict the isotropic Gaussian distribution of 
Eq. (59) with mean X j and variance σ 2.

with ω jkl the angle between molecules j, k, l, with the central molecule j (as computed using the centers of mass x̂ in 

Eq. (56)) and nω =
(

nc

3

)
= 56. The product (Mnω) normalizes atetra with respect to the considered angular triplets.

We note that since the observables of interest depend only on the centers of mass x̂ = x̂(x), it suffices to use a coarse-
to-fine map that relates the coarse variables X directly with x̂ (Eq. (19)).

3.2.2. Coarse-variables X and coarse-to-fine map
Since the observables of interest depend on the centers of mass x̂ (Eq. (56)), the coarse-to-fine probabilistic map assumes 

the form pcf(x̂|X). As frequently done in CG studies of water, each molecule j is represented by a CG variable X j ∈ R
3. We 

then prescribe a pcf of the following form:

pcf(x̂|X, θ cf) =
M∏

j=1

N (x̂ j|X j, σ 2 I), (59)

where I is the 3 × 3 identity matrix. This suggests that each X j, j = 1, . . . , M determines the center of mass x̂ j up to an 
isotropic Gaussian with mean X j and variance σ 2 (see Fig. 13). The latter quantifies the uncertainty in the prediction of 
the fine-scale (up to centers of mass) from the CG description. Large values of σ 2 imply that X provides an imprecise 
reconstruction of x̂ and vice versa. Hence there is only one parameter in the coarse-to-fine map i.e. σ 2 ≥ 0. In order to 
ensure non-negativity during updates we operate instead on θ cf = − logσ 2 which leads to the following derivatives needed 
in Eqs. (27) and (37):

∂ log pcf

∂θcf
= 3M

2
− 1

2σ 2

M∑
j=1

|x̂ j − X j|2,

∂2 log pcf

∂θ2
cf

= − 1

2σ 2

M∑
j=1

|x̂ j − X j|2. (60)

Naturally, more complex descriptions involving an anisotropic covariance or a mixture of Gaussians could be used.

3.2.3. Coarse model
The coarse potential Uc(X; θ c) employed consists of two- and three-body interactions. It assumes the form:

Uc(X; θ c) = U SW(X)︸ ︷︷ ︸
fixed

+Ũ (X; θ c), (61)

where U SW(X) is a fixed term described below and Ũ (X; θ c) represents the “correction” that is learned from the data 
using the framework advocated. In particular, the fixed term U SW(X) is given by (a variation of) the Stillinger–Weber (SW) 
potential proposed in [83] and discussed in B.3. The remaining part Ũ (X; θ c) consists only of two-body interaction terms 
i.e.

Ũ (X; θ c) = 1

2

∑
j �=k

u(2)(R jk; θ c), (62)

where R jk = |X j − Xk| and the pairwise potential u(2)(R; θ c) is parametrized as follows:

u(2)(R; θ c) = uLJ(R; θLJ
c ) +

K∑
θ cor

c,k φk(R), R > 0. (63)

k=1
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Fig. 14. Coarse-graining SPC/E water using N = 20 training data. Computed two-body, coarse-scale potential u(2)(R; θ c) and comparisons.

In the equation above, uLJ(R; θ LJ
c ) is a Lennard–Jones potential and the feature functions φ = {φk(R)}K

k=1 are a combination 
of sines and cosines truncated in the interval Ic = [Rmin = 2.0 Å, Rmax = 6.0 Å]. The bounds Rmin, Rmax define an effective 
window where the LJ potential is corrected to capture the associated CG interactions. In particular:

φk(R) =
{

1Ic (R) sin 2πνk R, k = odd,

1Ic (R) cos 2πνk R, k = even,
(64)

where 1Ic (R) is the indicator function of the interval Ic. The wave-numbers νk offer a Fourier-like decomposition of the 
second-order potential and were defined as follows:

ν2k′ = ν2k′+1 = 1 + 19

K/2
k′, k′ = 0,2, . . . , K/2 − 1, (65)

i.e. at a uniform grid in [1, 20]. By increasing the total number K of these terms, one can potentially learn finer fluctuations 
of this potential. Naturally one would want to use as many feature functions as possible in order to ensure greater flexibility 
of the model, which gives rise to the need for sparsity-enforcing priors for θ cor

c,k as discussed previously. In this study, 
K = 100 was used.

The superimposed LJ potential ensures that limR→0 u(2)(R; θ c) = ∞ and is of the form:

uLJ(R; θLJ
c ) = 4ε

((σLJ

R

)12 −
(σLJ

R

)6
)

, (66)

where θLJ
c = (σLJ, ε). The total number of parameters associated with the two-body term was K + 2 = 102 and consists of 

θ c = (θ
LJ
c , θ cor

c ). The ARD prior is employed only for θ cor
c and an (improper) uniform prior is employed for the rest θ LJ

c . We 
note that due to the LJ part, the corresponding distribution pc is not in the exponential family anymore (Section 2.4) and 
the possibility of multiple local maxima cannot be excluded.

3.2.4. Results
We first run the proposed algorithm for N = 20 fine-scale (all-atom) realizations. Fig. 14a depicts the evolution of the 

inferred coarse-scale potential u(2)(R; θ c) (Eq. (63)) at various iterations of the EM-scheme. We initialize with θ cor
c = 0 and 

θ
LJ
c = (ε = 0.15 kcal

mol , σLJ = 3.5 Å). After 194 iterations, the converged result u(2)(R; θ c,MAP) is depicted with a solid black line. 
In Fig. 14b, we compare this converged result (red) with the two-body potential computed in [81] (dashed blue) using the 
relative entropy method and the LJ part (black) of the fine-scale SPC/E model. The former two exhibit similarities but also 
differences which stem from the different structure of these two models. These differences persist even if more training 
data N are used.

Fig. 15 depicts the effect of the ARD prior on θ cor
c . One observes in Fig. 15a that if no such prior is used (instead a 

uniform was employed) almost all θ cor
c are non-zero and as a result almost all the corresponding feature functions φk(R)

in Eq. (63) are active and the model is unable to distinguish their relative importance (unless N becomes very large). In 
contrast, the inclusion of the ARD prior in Fig. 15b leads to a sparse solution in which most φk(R) are deactivated (roughly 
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Fig. 15. θcor
c,MAP without and with the ARD prior with respect to the wavenumber νk (Eq. (64)). Superscripts sin (red) and cos (blue) indicate whether the 

corresponding θcor
c,k (Eq. (63)) is associated with a sine or cosine feature function respectively.

Fig. 16. Posterior of θ
LJ
c = (σLJ, ε) in Eq. (66) and σ 2 in Eq. (59) for N = 20.

80 out of 100 in this case). It can be clearly seen as well that feature functions (sines/cosines) with high wave-numbers 
(small wave-lengths) are largely unnecessary for the description of the coarse potential. Although not demonstrated in this 
run, we envision that this modeling feature will eventually allow us to identify not only the most important terms in each 
potential term but also the most suitable order of interactions in the coarse potential. Fig. 16 depicts the (approximate) 
posterior obtained for θLJ

c = (σLJ, ε) (Eq. (66)) and σ 2 (Eq. (59)) for N = 20.
Fig. 17 provides information with regards to the (approximate) posterior of θ c, computed using the Laplace’s ap-

proximation proposed, as reflected in the u(2)(R; θ c). In particular in Fig. 17a, we plot sample realizations of u(2)(R; θ c)

corresponding to different samples of θ c from the (approximate) Gaussian posterior (Section 2.6). We note that all realiza-
tions suggest the same location for the minimum of the potential. Variability is observed in the depth of this well as well 
as in its shape to the right of the minimum. Fig. 17b depicts the posterior mean of u(2)(R; θ c) as well as credible intervals 
at 10% and 90% posterior quantiles which reflect the inferential uncertainties discussed.

We finally report results illustrating the predictive capability of the model in terms of the macroscopic observables of 
interest i.e. the RDF and the angular distribution function discussed previously. To that end, we consider three data settings 
with N = 10, 20 and 100 fine-scale (all-atom) training data. While the MAP estimates do not exhibit prominent differences, 
the advantage of the method proposed is the predictive posterior that is furnished (Eq. (19)) and quantifies the uncertainty 
in the predictions that the coarse-grained model produces. Figs. 18 and 19 depict the posterior means and credible intervals 
corresponding to 10% and 90% posterior quantiles for the RDF g(r) (i.e. the expected value of the observable in Eq. (57)) and 
the angular distribution function p(ω) (i.e. the expected value of the observable in Eq. (58)). In all cases, the posterior means 
are very close to the reference values obtained by simulating the all-atom SPC/E model. It is interesting to point out that 
when only N = 10 data were used, the posterior mean overestimates the first peak in the RDF (Fig. 18a). Nevertheless the 
true solution is contained within the credible intervals computed. As one would expect, the breath of the credible intervals 
decreases as more training data N is introduced, reflecting the reduction in the predictive uncertainty of the model. Details 
for the computation of these credible intervals can be found in A.1.
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Fig. 17. Posterior of u(2)(R; θ c) for N = 20.

Fig. 18. Comparison of the reference RDF g(r) (computed with all-atom simulations using the SPC/E model) with posterior mean and credible intervals 
corresponding to 10% and 90% posterior quantiles.

4. Conclusions

We presented a novel, data-driven coarse-graining scheme of atomistic ensembles in equilibrium. In contrast to existing 
techniques which are based on a restriction, fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic 
coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent 
generators of the fine scale (all-atom) data. Such a model can readily quantify the uncertainty due to the information loss 
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Fig. 19. Comparison of the reference ADF p(ω) (computed with all-atom simulations using the SPC/E model) with posterior mean and credible intervals 
corresponding to 10% and 90% posterior quantiles.

that unavoidably occurs during the CG process. We showed that from an information-theoretic perspective, the framework 
proposed broadens the relative entropy method. Furthermore, it can be readily extended to a fully Bayesian model where 
various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce 
not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior 
distributions on these quantities. We show how these can quantify the confidence of the model as a function of the amount 
of data and the level of coarse-graining, i.e. the contrast in the dimension between fine and coarse descriptions.

A critical issue in all CG methods pertains to the form of the coarse model or coarse potential. On one hand, it is 
desirable to introduce not only as many feature functions as possible but also to capture interactions of the highest-order 
possible. On the other hand, such an intricate representation leads to a large number of unknown parameters, augmented 
computational cost and an increased possibility of overfitting. Such challenges can be readily addressed within the Bayesian 
framework adopted by the incorporation of appropriate prior models that promote the discovery of sparse solutions and 
are capable of revealing the most dominant features in the coarse potential. We demonstrated how such a hierarchical prior 
model, namely the ARD, is capable of distinguishing the most prominent feature functions.

The computational engine of the proposed framework is based on an MC-EM scheme that alternates between expec-
tations with respect to the posterior of the latent variables and maximization with respect to the model parameters. This 
leads to MAP estimates of the model parameters which serve as the basis for the Laplace’s model that approximates their 
posterior. We note that this represents a very basic approximation that we intend to extend by exploiting advanced MCMC 
schemes [84] and/or variational inference schemes [85]. From a practical point of view, we note that the algorithm proposed 
is embarrassingly parallelizable with regards to the expectation step (which is also the most expensive) and incremental 
variants can be readily adopted leading to improvements in computational efficiency.

The generative definition of the CG variables through a probabilistic coarse-to-fine map allows for great flexibility in the 
type and number of CG variables used. For example in [23], the FG configuration space is partitioned and within each of 
these subdomains a different set of CG variables and CG models is learned. This is a reasonable strategy not only because a 
globally-good set of CG variables is difficult to find, but also because the local CG variables can be lower-dimensional as they 
need only to work on a limited subdomain. In the context of the directed, probabilistic model advocated, the same effect 
can be readily achieved by using a mixture model [86]. Consider for example augmenting the set of (latent) CG variables 
with a discrete-valued variable, S which can take values between 1 and L (which is the number of partitions). The (latent) 
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variable S characterizes a finite number of discrete states of the system. Depending on the value S takes, the number and 
type of CG variables X can change by affecting the two distributions making up the mode, i.e:

pc(X, S = s|θ c) = pc(X |θ s
c)pc(S = s), (67)

where each pc(X |θ s
c) can be of the same or different form (e.g. exponential family) but with different parametrizations 

θ s
c, s = 1, . . . L. Similarly for the coarse-to-fine map, we can define:

pcf(x|X, S = s, θ cf) = pcf(x|X, θ s
cf), (68)

where again the parametrization can depend or not on S , θ s
cf, s = 1, . . . L. Infinite mixture models [87–89] based on Dirichlet 

process priors could provide a rigorous strategy on determining the number L of such hidden states needed to describe the 
atomistic ensemble. We note finally that, in nonequilibrium settings, by appropriate modeling of the time dependence of S
one would recover Hidden Markov Models (HMM, [46]) which have been employed in coarse-graining frameworks [90,91].

Another potentially powerful extension, involves the use of deep, hierarchical models. Deep learning tools have rev-
olutionized various machine learning tasks [92] by stacking multiple layers of simple representations. In the context of 
coarse-graining, such a scheme could be materialized by augmenting the set of CG variables as X 1, X2, . . . X L and the CG 
model as:

pc(X1, X2, . . . X L) = pc,1(X1|X2, θ
1
c ) . . . pc,L−1(X L−1|X L, θ

L−1
c )pc,L(X L |θ L

c ). (69)

If dim(X1) > dim(X2) > . . . > dim(X L), then such a structure could provide a hierarchical decomposition of the CG picture, 
starting from a highly coarse description and gradually reaching the more detailed abstraction X 1. The coarse-to-fine map 
could be controlled by X1 as pcf(x|X1, θ c).
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Appendix A. Methodology

A.1. Estimating credible intervals

This note summarizes necessary steps for estimating credible intervals. The Bayesian inference algorithms described in 
Sections 2.3 and 2.6, lead to (Gaussian) approximations of the posterior p(θ |x(1:N)) (Eq. (16)). The credible intervals shown in 
Figs. 11, 12, 18, and 19 are constructed from Monte Carlo samples â(θ (i)) of the observables of interest. These are generated 
on the basis of Eq. (19) as follows:

Algorithm 2 Estimating credible intervals.
1: for all i = 1, . . . , I do
2: Obtain a posterior sample: θ (i) ∼ p(θ |x(1:N)) (Eq. (16)).
3: Calculate the predictive estimate â(θ (i)) shown in Eq. (19):

â(θ (i)) =
∫

a(x) pcf(x|X, θ
(i)
cf ) pc(X |θ (i)

c ) dX dx. (A.1)

The integrations involved are performed with Monte Carlo sampling. We note that this requires simulating only the CG model as 
the mapping implied by pcf is straightforward.

4: end for
5: Compute desired quantiles with the given samples â(θ (1...I)).

We note that the estimated quantiles of the corresponding predictive posterior are not necessarily symmetric around its 
MAP estimate â(θMAP), even in the case of a symmetric posterior of the model’s parameters p(θ |x(1:N)) (Eq. (16)).

A.2. Comparison of gradients between relative entropy method and PCG

This section compares the gradients with respect to the parameters of the coarse potential θ c, between the proposed 
scheme and the relative entropy method. These are used for fitting the model parameters θ c. In our case, the gradient is 
given by:
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∂F
∂θc,k

=
N∑

i=1

(
< φk(X (i)) >qi(X (i)) − < φk(X) >pc(X |θc)

)
, (A.2)

whereas for the relative entropy method (when the objective FKL is given as in Eq. (10)):

∂FKL

∂θc,k
= (

< φk(R(x)) >pf(x) − < φk(X) >pc(X |θc)

)

≈ 1

N

N∑
i=1

(
φk(R(x(i)))− < φk(X) >pc(X |θc)

)
. (A.3)

In the latter case, the expectations with respect to pf(x) are estimated using the fine-scale data x(i) whereas in the former 
these involve averaging over the posterior of the CG variables X . This emphasizes the role of the CG variables play in our 
model as latent (hidden) generators of the fine-scale.

A.3. ARD prior

We adopt the Automatic Relevance Determination (ARD, [66]) which is formulated in the context of hierarchical Bayesian 
models. The prior on the parameters θ c is modeled as independent Gaussian for each θc,k with zero mean and precision 
hyper-parameter τk:

p(θ c|τ ) ≡
∏

k

N (θc,k|0, τ−1
k )︸ ︷︷ ︸

p(θc,k|τk)

. (A.4)

The precision (hyper-)parameters τk follow a Gamma distribution,

τk ∼ Gamma(τk|a0,b0). (A.5)

Anytime derivatives of the log-prior are needed, an inner-loop Expectation–Maximization scheme can be employed which 
is based on the same ideas presented previously. In particular, for any set of densities qk(τk) we can obtain a lower bound 
on the log-prior as follows:

log p(θ c) = log

(∏
k

∫
p(θc,k|τk) p(τk|a0,b0) dτk

)

=
∑

k

log
∫

qk(τk)
p(θc,k|τk) p(τk|a0,b0)

q(τk)
dτk

≥
∑

k

∫
qk(τk) log

p(θc,k|τk) p(τk|a0,b0)

qk(τk)
dτk (Jensen’s inequality) (A.6)

The optimal qk i.e. the posteriors p(τk|θc,k) (for which the lower bound becomes tight) can be analytically computed and 

are Gamma densities with parameters ak = a0 + 1
2 , bk = b0 + θ2

c,k
2 [67], where the current values of θc,k ’s are used. This leads 

to the extremely simple iterations of the following form [67]:

• E-step: evaluate:

〈τk〉p(τk|θc,k)
= ak

bk
= a0 + 1

2

b0 + θ2
c,k
2

. (A.7)

• M-step: evaluate:

∂ log p(θ c)

∂θc,k
= ∂

∂θc,k

∫
qk(τk) log p(θc,k|τk) dτk

= −
∫

qk(τk)τk dτk θc,k

= −〈τk〉p(τk|θc,k)
θc,k. (A.8)
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Appendix B. Numerical examples

B.1. SPC/E model, parameters and simulation details

The following SPC/E parameters as given in [36,75] are used for producing the fine-scale data.

• LJ-potential: σ = 3.166 Å, ε = 0.650 kJ
mol .

• Electrostatic load: qH = +0.4238 e, qO = −0.8476 e.
• Structural properties of rigid water model: bond-length lOH = 1.0 Å and bond-angle θHOH = 109.47◦ .
• Masses: mO = 15.994 g

mol and mH = 1.00794 g
mol .

B.1.1. Simulation steps
In this work, we consider a system of Nw = 100 water molecules at a temperature T = 300 K. The following steps for 

obtaining training data are performed:

1. NPT simulation with p = 1 bar and a timestep of �t = 2.0 fs. Simulate the system for t = 100 ns.
2. Use the last t = 80 ns for calculating the equilibrium box size. We found lbox = 14.5459665 Å.
3. Fix the box length to the one obtained from the previous step. Simulate the system in NVT ensemble for t = 45 ns with 

a timestep of �t = 2.0 fs. Use the last t = 40 ns and write the trajectory every 200 steps.

B.2. Radial distribution function

The radial distribution function g(r) is defined by,

g(r) =
〈

V

N2
aRDF(r)

〉
.

The discrete version follows with the number of bins nbin and a bin size �r:

g(r1) = 1

Nnbin

〈
aRDF(r1)

〉
ρideal

,

with,

ρideal = N/V ,

aRDF(r1) = n(r1)

�V
=

∑
i j

∫ r1+�r
r1

δ(ri j − r)dr
4
3π((r1 + �r)3 − r3

1)
.

B.3. Stillinger–Weber (SW) potential

The Stillinger–Weber (SW) potential originally proposed in [83] and extended in [81], contains both two- and three-body 
interactions. In this work, we make use only of the latter three-body contribution:

U SW(X) =
∑

j

∑
k �= j

∑
l>k

φSW
3 (r jk, R jl,ω jkl), (B.1)

where the three-body term φSW
3 (r jk, r jl, ω jkl) is given by:

φSW
3 (r jk, r jl,ω jkl) = λε

[
cosω jkl − cosω0

]2 exp

(
γ σ

r jk − a3σSW

)
exp

(
γ σ

r jl − a3σSW

)
, (B.2)

with r jk being the pairwise distances between molecules j and k and ω jkl is the angle between molecules j, k, l. The 
following values for the parameters were used [81]: λ = 0.762, ε = 83.5737, cosω0 = −0.487217, γ = 0.291321, a3 =
0.586097, σSW = 6.4144.
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