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A fast spectral method (FSM) is developed to solve the Uehling-Uhlenbeck equation for 
quantum gas mixtures with generalized differential cross-sections. The computational cost 
of the proposed FSM is O (Mdv−1 Ndv +1 log N), where dv is the dimension of the problem, 
Mdv −1 is the number of discrete solid angles, and N is the number of frequency nodes in 
each direction. Spatially-homogeneous relaxation problems are used to demonstrate that 
the FSM conserves mass and momentum/energy to the machine and spectral accuracy, 
respectively. Based on the variational principle, transport coefficients such as the shear 
viscosity, thermal conductivity, and diffusion are calculated by the FSM, which agree well 
with the analytical solutions. Then, the FSM is applied to find the accurate transport 
coefficients through an iterative scheme for the linearized quantum Boltzmann equation. 
The shear viscosity and thermal conductivity of three-dimensional quantum Fermi and 
Bose gases interacting through hard-sphere potential are calculated. For Fermi gas, the 
relative difference between the accurate and variational transport coefficients increases 
with fugacity; for Bose gas, the relative difference in thermal conductivity has similar 
behavior as the gas moves from the classical to degenerate limits, but the relative 
difference in shear viscosity decreases when the fugacity increases. Finally, the viscosity 
and diffusion coefficients are calculated for a two-dimensional equal-mole mixture of Fermi 
gases. When the molecular masses of the two components are the same, our numerical 
results agree with the variational solutions. However, when the molecular mass ratio is 
not one, large discrepancies between the accurate and variational results are observed; our 
results are reliable because (i) the method does not rely on any assumption on the form of 
velocity distribution function and (ii) the ratio between shear viscosity and entropy density 
satisfies the minimum bound predicted by the string theory.

Crown Copyright © 2019 Published by Elsevier Inc. All rights reserved.

1. Introduction

The experimental manipulation of ultracold atomic gases has attracted extensive research interest to understand the 
dynamics of quantum systems [1]. Most researches focus on the condensed phases [2,3], since these quantum systems are 
ideal to study the crossover from a Bardeen-Cooper-Schrieffer superfluid to Bose-Einstein condensation, which is ubiquitous 
in high-temperature superconductivity, neutron stars, nuclear matter, and quark-gluon plasma. In experiments, however, 
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quantum gases are prepared from dilute classical gases at room temperature, where the thermal motion of gas molecules 
is described by the Boltzmann equation. As the temperature goes down, the thermal de Broglie wavelength could become 
comparable to the interatomic distance; in this case the quantum effects emerge, and the thermal motion of quantum gases 
can be described by the Uehling-Uhlenbeck equation [4], which is also known as the quantum Boltzmann equation (QBE). 
When the temperature decreases further, the condensation begins, and the condensed phase coexists with the normal phase. 
For example, for Bose gas, at the temperature below the onset of Bose-Einstein condensation, the QBE and Gross-Pitaevskii 
equation are used to describe the dynamics of Bose gas in the normal and condensed phases, respectively [5,6]; the exchange 
of gas molecules between the normal and condensed phases is also described by the Boltzmann-type collision operators.

Mathematically speaking, the QBE, which is defined in the six-dimensional phase space, is much more complicated than 
the mean-field Gross-Pitaevskii equation in the three-dimensional physical space. Although in the hydrodynamic regime (i.e. 
when the mean free path of gas molecules and the characteristic oscillation frequency are respectively much smaller than 
the characteristic flow length and the mean collision frequency of quantum gases) the Navier-Stokes equation can be derived 
from the QBE via the Chapman-Enskog expansion [7] to describe the gas dynamics, in quantum experiments, however, this 
situation is always violated. This is due to the fact that the gas is confined by external potentials, the gas density is very 
small in the vicinity of the trap so that the gas is highly rarefied. Therefore, to describe the dynamics of quantum gas in the 
normal phase accurately, an efficient and accurate method to solve the QBE is necessary. In the paper we focus only on the 
numerical method for QBE.

The direct simulation Monte Carlo method (DSMC) [5,6,8] has been proposed to solve the QBE. Since the collision 
frequency is enhanced (or reduced) for Bose (or Fermi) gas, and this enhancement (or reduction) relies on the velocity 
distribution function (VDF) after the binary collision, the DSMC method for QBE needs to use a very large number of 
simulated particles to sample VDF. This is in sharp contrast to the DSMC for classical gases where no such sampling is 
needed [9]. Moreover, for Fermi gas, due to Pauli’s exclusion principle, the collision frequency might become negative (un-
physical) if the VDF is not accurately sampled [10]. To reduce the number of simulated particles, Yano proposed to replace 
the post-collision VDF by the equilibrium VDF [11]. However, in this way, the DSMC solves the Uehling-Uhlenbeck model 
equation rather than the original QBE, which may introduce large errors when the system is far away from equilibrium 
as typically occurs in modern experiments of quantum gases [12–14]. For example, the shear viscosity obtained from the 
Uehling-Uhlenbeck model equation is even smaller than the one obtained from the variational solution that predicts the 
lower bounds of transport coefficients [11].

In recent years, the fast spectral method (FSM), which employs a Fourier-Galerkin discretization in the velocity space and 
handles binary collisions in the corresponding frequency space, has attracted much attention thanks to its spectral accuracy 
in solving the Boltzmann collision operator for classical gases [15,16]. Due to its deterministic nature, it has been success-
fully applied to accurately calculate the transport coefficients for gas interacting through the Lennard-Jones potentials [17], 
Couette/Poiseuille/thermal transpiration flows [18–20], linear oscillatory flows in the rectangular cavity [21,22], and the 
spectrum of Rayleigh-Brillouin scattering of the laser-gas interaction [23]. It has also been extended to solve the Boltzmann 
equation for classical gas mixtures [24,25], the Enskog equation for dense gases [26,27], and the QBE for single-species 
quantum gases [28,29].

In many recent experiments, quantum gas mixtures, which constitute either of different species or different quantum 
states of the same species, are used [30,31,12,32]. However, very few numerical methods are developed for quantum gas 
mixtures. In this paper we propose an efficient and accurate FSM to solve the QBE for quantum gas mixtures.

The rest of this paper is organized as follows. In Sec. 2, the QBE and the equilibrium properties of quantum systems 
are introduced. In Sec. 3, the FSM is proposed to solve the Boltzmann collision operator with general forms of differential 
cross-section. Spatially-homogeneous relaxation problems are investigated and factors affecting the accuracy of FSM are 
discussed in Sec. 4. In Sec. 5, the accuracy of FSM is further validated by comparing the transport coefficients obtained 
from the FSM with variational solutions. Accurate transport coefficients of Fermi gas mixtures are obtained by solving the 
linearized QBE from the Chapman-Enskog expansion, without using any assumption on the form of VDF. In Sec. 6, we 
conclude with a summary of the proposed numerical method, and outline future perspectives.

2. The quantum Boltzmann equation of gas mixtures

Consider a system of quantum gas mixtures in the normal phase, so that it can be described semi-classically by the 
one-particle VDF f ı (t, x, v), where ı denotes the ı-th component, t is the time, x is the spatial coordinate, and v is the 
molecular velocity. Since the VDF is defined in the way that (mı /2π h̄)dv f ı (t, x, v)dxdv is the molecular number of ı-th 
component at time t in the phase-space dxdp/(2π h̄)dv = (mı/2π h̄)dv dxdv, macroscopic quantities such as the number 
density n, bulk velocity V, shear stress Pij , and heat flux Q of each component can be calculated as the moments of the 
corresponding VDF:

nı (x, t) =
(

mı

2π h̄

)dv ∫
f ıdv, Vı (x, t) =

(
mı

2π h̄

)dv 1

nı

∫
v f ıdv,

P ı
i j(x, t) =

(
mı

)dv

mı

∫
vr,i vr, j f ıdv, Qı (x, t) =

(
mı

)dv mı ∫
vr |vr |2 f ıdv, (1)
2π h̄ 2π h̄ 2
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where mı is the mass of the ı-th component, h̄ is the reduced Planck’s constant, dv = 2 or 3 is the dimension of the 
problem, vr = v − V is the peculiar velocity, and indexes i and j are Cartesian components of the spatial variable x. Note 
that p = mıv is the momentum of gas molecules; we use the velocity v instead of the momentum p because it will be 
easier to develop the FSM that is compatible to our previous works [18,19,24,17,25,20].

2.1. The quantum Boltzmann equation

The QBE is derived from a heuristic argument of the classical Boltzmann equation [4], where the streaming part remains 
unchanged when compared to that of the classical gas, while the collision operator is modified by quantum laws. For 
fermions, the collision probability is reduced if the final state that the collision leads to has already been occupied, due to 
Pauli’s exclusion principle. For bosons, on the contrary, the collision probability is enhanced. The QBE takes the form of [4]

∂ f ı

∂t
+ v · ∂ f ı

∂x
− 1

mı

∂U ı

∂x
· ∂ f ı

∂v
=

∑
j

Qıj ( f ı , f j ), (2)

where U ı (x, t) are the effective potentials acting on the molecules of ı-th component, Qıı ( f ı , f ı ) is the self-collision oper-
ator of the ı-th component, and Qıj ( f ı , f j ) with ı �= j is the cross-collision operator between the molecules of ı-th and 
j -th components. All the collision operators are local in time and space. For simplicity, t and x are omitted in writing the 
collision operators in the following general form:

Qıj ( f ı , f j ) =
(

mj

2π h̄

)dv ∫
Rdv

∫
Sdv −1

|u|dσ ıj

d�

{
f j (′vıj∗ ) f ı (′vıj )[1 + θ0 f j (v∗)][1 + θ0 f ı (v)]

− f j (v∗) f ı (v)[1 + θ0 f j (′vıj∗ )][1 + θ0 f ı (′vıj )]
}

d�dv∗,

(3)

where v and v∗ are the pre-collision velocities of molecules of sorts ı and j , respectively, while ′vıj , ′vıj∗ are the corre-
sponding post-collision velocities. Conservation of momentum and energy yield the following relations

′vıj = v + mj

mı + mj
(|u|� − u), ′vıj∗ = v∗ − mı

mı + mj
(|u|� − u), (4)

where u = v − v∗ is the relative pre-collision velocity, � is the unit vector in the sphere (or a circle when dv = 2) Sdv −1

having the same direction as the relative post-collision velocity, and θ is the deflection angle between the two relative ve-
locities, i.e. cos θ = � ·u/|u|, 0 ≤ θ ≤ π . The differential cross-section is given by dσ ıj /d�, which is a function of the relative 
pre-collision velocity and deflection angle. Finally, the Boltzmann equation for molecules obeying the classical statistics is 
recovered when θ0 = 0, while θ0 = 1 and θ0 = −1 should be chosen for molecules obeying the quantum Bose-Einstein and 
Fermi-Dirac statistics, respectively.

In the following numerical simulations by FSM, it is convenient to separate the quantum collision operator (3) into the 
following quadratic and cubic collision operators [28,29]:

Qıj ( f ı , f j ) = Qıj
c + θ0(Qıj

1 +Qıj

2 −Qıj

3 −Qıj

4 ), (5)

where the classical quadratic collision operator is

Qıj
c ( f ı , f j ) =

(
mj

2π h̄

)dv ∫
Rdv

∫
Sdv −1

|u|dσ ıj

d�
[ f j (′vıj∗ ) f ı (′vıj ) − f j (v∗) f ı (v)]d�dv∗, (6)

and the cubic collision operators are

Qıj
1 =

(
mj

2π h̄

)dv ∫
Rdv

∫
Sdv −1

|u|dσ ıj

d�
f j (′vıj∗ ) f ı (′vıj ) f j (v∗)d�dv∗,

Qıj

2 =
(

mj

2π h̄

)dv ∫
Rdv

∫
Sdv −1

|u|dσ ıj

d�
f j (′vıj∗ ) f ı (′vıj ) f ı (v)d�dv∗,

Qıj

3 =
(

mj

2π h̄

)dv ∫
Rdv

∫
Sdv −1

|u|dσ ıj

d�
f j (′vıj∗ ) f j (v∗) f ı (v)d�dv∗,

Qıj

4 =
(

mj

2π h̄

)dv ∫
Rdv

∫
Sdv −1

|u|dσ ıj

d�
f ı (′vıj ) f j (v∗) f ı (v)d�dv∗. (7)
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2.2. Equilibrium properties

Introducing the entropy density function s = − 
∑

ı

(
mı

2π h̄

)dv ∫ [ f ı ln f ı − θ0(1 + θ0 f ı ) ln(1 + θ0 f ı )]dv to Eq. (2), one can 
obtain the equilibrium VDF

f ı
eq(t,x,v) =

{
1

Z ı
exp

[
mı (v − V)2

2kB T

]
− θ0

}−1

, (8)

where Z ı (x, t) is the local fugacity satisfying

Z ı (x, t) = exp

[
μı(x, t) − U ı (x, t)

kB T

]
, (9)

with μı and kB being the chemical potential and Boltzmann constant, respectively.
When the quantum system is in equilibrium, we have

nı =
(

mıkB T

2π h̄2

)dv/2

Gdv/2(Z ı ), P ı
i j = nıkB T

Gdv/2+1(Z ı )

Gdv/2(Z ı )
δi j, (10)

where δi j is the Kronecker’s delta function, and Gn(Z) = 1
	(n)

∫ ∞
0

yn−1

Z−1e y−θ0
dy is the Bose-Einstein (θ0 = 1) or Fermi-Dirac 

(θ0 = −1) function, with 	(n) being the Gamma function.
It should be noted that, when the fugacity Z → 0, Gn(Z) → Z , the quantum gas is in the near classical limit, where the 

equilibrium VDF is very close to the Maxwellian equilibrium VDF for classical gases. Moreover, we have f ı ∼ f ı
eq 	 1, so the 

behavior of the quantum gas is similar to the classical one as the quantum correction term θ0 f ı is negligible.

2.3. Linearized collision operators

In some cases it is useful to calculate the linearized quantum collision operator, for example, to calculate the transport 
coefficients such as the shear viscosity and thermal conductivity. When the system slightly deviates from the equilibrium 
state (8), the one-particle VDF can be expressed as

f ı (t,x,v) = f ı
eq(x,v) + hı (t,x,v), (11)

where hı is the disturbance satisfying |hı / f ı
eq| 	 1.

The quantum Boltzmann collision operator (3) can be linearized into the following form:

Lıj (hı ,hj ) =
∑
j

[
(Lıj

c+ − μ
ıj
c hı ) + θ0(Lıj

1 +Lıj

2 −Lıj

3 −Lıj

4 )
]
, (12)

where Lıj
c+ and μıj

c are respectively the gain part and the equilibrium collision frequency in the classical linearized Boltz-
mann equation that are defined as [19,17,25]

Lıj
c+ =

(
mj

2π h̄

)dv ∫∫
|u|dσ ıj

d�
[ f j

eq(
′vıj∗ )hı (′vıj ) + hj (′vıj∗ ) f ı

eq(
′vıj ) − hj (v∗) f ı

eq(v)]d�dv∗,

μ
ıj
c =

(
mj

2π h̄

)dv ∫∫
|u|dσ ıj

d�
f j
eq(v∗)d�dv∗, (13)

while the linearized cubic collision operator Lıj
1 is obtained by replacing the two VDFs in Qıj

1 in Eq. (7) with h and feq and 
only keeping the linear term of h, in the following manner:

Lıj
1 =

(
mj

2π h̄

)dv ∫
Rdv

∫
Sdv −1

|u|dσ ıj

d�

[
hj (′vıj∗ ) f ı

eq(
′vıj ) f j

eq(v∗) + f j
eq(

′vıj∗ )hı (′vıj ) f j
eq(v∗)

+ f j
eq(

′vıj∗ ) f ı
eq(

′vıj )hj (v∗)
]

d�dv∗, (14)

the rest cubic collision operators Lıj

2 , Lıj

3 , and Lıj

4 can be obtained in the same way.
It is obvious that these linearized collision operators can be solved in the same way as that for the full collision operators.
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3. Fast spectral method for the quantum Boltzmann collision operator

The approximation of the self-collision quadratic operator (6) (i.e. Qıj
c with ı = j ) by the FSM has been extensively 

studied [15,16,18,19], even for generalized forms of the differential cross-section corresponding to general intermolecular 
potentials such as the Lennard-Jones potential [17,33,20]. The approximation of the cubic collision operators (7) with ı = j

by the FSM has been proposed in Ref. [28,29], while the approximation for the cross-collision operator for classical gas 
mixtures (i.e. Qıj

c with ı �= j and mı �= mj ) by the FSM has been recently developed by the author [24,25,20]. In this 
section, on the basis of all these numerical methods, we will develop a FSM for the quantum Boltzmann collision operators 
with general forms of the differential cross-section, for quantum gas mixtures with different molecular masses. Specifically, 
we will solve the cubic cross-collision operators (7) between the molecules of ı-th and j -th components only.

3.1. Carleman-like representation of the collision operator

As usual, we rewrite the collision operators in Eq. (7) using the Carleman-like representation. With the following basic 
identity 2dv −1|u|2−dv

∫
Rdv δ(y · u + |y|2) f (y)dy = |u|dv−2

∫
Sdv −1 f

( |u|�−u
2

)
d�, where δ is the Dirac delta function, the cubic 

collision operator Qıj
1 becomes:

Qıj
1 =

∫
Rdv

∫
Rdv

Bıj (|y|, |z|)δ(y · z) f j (v + z + bıj y) f ı (v + aıj y) f j (v + y + z)dydz, (15)

with

aıj = 2mj

mı + mj
, bıj = mj − mı

mı + mj
. (16)

Note that in the derivation of Eq. (15) we have used the transformations y = (|u|� − u)/2 and z = v∗ − v − y = −u − y. 
Therefore, u = −y − z and the deflection angle θ satisfies cos θ = � · u/|u| = −(y − z) · (y + z)/|y + z|2. Additionally, the 
delta function δ(y · z) poses the condition that the vector z should be perpendicular to the vector y, thus we have cos θ =
(|z|2 − |y|2)/(|y|2 + |z|2) and θ = 2arctan (|y|/|z|). Since the differential cross-section dσ ıj /d� is a function of the relative 
pre-collision velocity |u| and the deflection angle θ , Bıj can be expressed as a function of |y| and |z| only:

Bıj =
(

mj

2π h̄

)dv

2dv−1|u|3−dv
dσ ıj

d�
≡ Bıj (|y|, |z|). (17)

In numerical calculations, suppose the distribution functions are supported by a sphere when dv = 3 (or a disk when 
dv = 2) of radius S , the relative velocity satisfies |u| = |y + z| ≤ 2S , which leads to |y|, |z| ≤ R = √

2S . Therefore, the infinite 
integration region with respect to y and z is reduced to BR , i.e. a sphere (or a disk) of radius R centered at the origin. 
Consequently, the collision operator in Eq. (15) is truncated into the following form:

Qıj
1 =

∫
BR

∫
BR

Bıj (|y|, |z|)δ(y · z) f j (v + z + bıj y) f ı (v + aıj y) f j (v + y + z)dydz. (18)

Similarly, the other cubic collision operators in Eq. (7) are transformed and truncated as

Qıj

2 =
∫
BR

∫
BR

Bıj (|y|, |z|)δ(y · z) f j (v + z + bıj y) f ı (v + aıj y) f ı (v)dydz,

Qıj

3 =
∫
BR

∫
BR

Bıj (|y|, |z|)δ(y · z) f j (v + z + bıj y) f j (v + y + z) f ı (v)dydz,

Qıj

4 =
∫
BR

∫
BR

Bıj (|y|, |z|)δ(y · z) f ı (v + aıj y) f j (v + y + z) f ı (v)dydz. (19)

3.2. Fast spectral method for truncated collision operators

In FSM, VDFs are periodized on the velocity domain DL = [−L, L)dv , where the velocity bound L is chosen to be L =
(3 + √

2)S/2 to avoid the aliasing error caused by the periodization of VDFs and collision operators [34]. In the Fourier 
spectral method, VDFs are approximated by the truncated Fourier series,

f ı (v) =
∑

j

f̂ ı (ξj)exp(iξj · v), f̂ ı (ξj) = 1

(2L)3

∫
f ı (v)exp(−iξj · v)dv, (20)
DL
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where i is the imaginary unit, and the frequency components are denoted by

ξ = (ξ1, ξ2, · · · , ξdv ) = ( j1, j2, · · · , jdv )
π

L
= j

π

L
, (21)

with jk ∈ [−Nk/2, −Nk/2 + 1, · · · , Nk/2 − 1] and Nk being the number of frequency components in the k-th frequency 
direction.

Expanding the truncated collision operators in Eqs. (18) and (19) in the truncated Fourier series, we find that the j-th 
modes Q̂ıj

1 (ξj), Q̂ıj

2 (ξj), Q̂ıj

3 (ξj), and Q̂ıj

4 (ξj) are related to the Fourier coefficients f̂ ı and f̂ j as

Q̂ıj
1 (ξj) =

∑
l+m+n=j

l,m,n

f̂ ı
l f̂ j

m f̂ j
n β(aξl + bξm + ξn, ξm + ξn),

Q̂ıj

2 (ξj) =
∑

l+m+n=j
l,m,n

f̂ ı
l f̂ j

m f̂ ı
nβ(aξl + bξm, ξm),

Q̂ıj

3 (ξj) =
∑

l+m+n=j
l,m,n

f̂ ı
l f̂ j

m f̂ ı
nβ(ξm + aξn, ξm),

Q̂ıj

4 (ξj) =
∑

l+m+n=j
l,m,n

f̂ ı
l f̂ j

m f̂ j
n β(ξm + bξn, ξm + ξn), (22)

where the kernel mode β(l, m) is

β(ξl, ξm) =
∫
BR

∫
BR

Bıj (|x|, |y|)δ(y · z)exp(iξl · y + iξm · z)dydz. (23)

Note that the direct calculation of each term in Eq. (22) is time-consuming, at the order of N3dv . Our goal in the 
following subsection is to separate ξl and ξm in the kernel mode β(ξl, ξm) so that Eq. (22) can be calculated effectively by 
the FFT-based convolution, with a much lower computational cost.

3.2.1. Approximation of the kernel mode
Introducing y = ρe and z = ρ ′e′ , where e and e′ are vectors in the unit sphere when dv = 3 and unit circle when dv = 2. 

The kernel mode (23) is expressed in the spherical (dv = 3) or polar (dv = 2) coordinates as

∫∫
δ(e · e′)

R∫
0

R∫
0

(ρρ ′)dv−2 Bıj (ρ,ρ ′)exp(iρξl · e)exp(iρ ′ξm · e′)dρ ′dρde′de

=
M2∑
r=1

∫∫
δ(e · e′)

R∫
0

ωr(ρrρ
′)dv−2 Bıj (ρr,ρ

′)exp(iρrξl · e)exp(iρ ′ξm · e′)dρ ′de′de

=
M2∑
r=1

∫∫
δ(e · e′)exp(iρrξl · e)φ(ρ ′

r, ξm · e′)de′de, (24)

where the integral with respect to ρ has been approximated by the Gauss-Legendre quadrature, with ρr and ωr (r =
1, 2, · · · , M2) being respectively the abscissas and weights of the Gauss-Legendre quadrature in the region of 0 ≤ ρ ≤ R , and 
the term

φ(ρ ′
r, ξm · e′) =

R∫
0

ωr(ρrρ
′)dv−2 Bıj (ρr,ρ

′) cos(ρ ′ξm · e′)dρ ′, (25)

can be calculated accurately by some high order numerical quadrature.
It should be highlighted that the maximum value of ρrξl · e in Eq. (24) is Nπ R/2L. Therefore, the function exp(iρrξl · e)

oscillates N times at the most. Consequently, M2 should be roughly of the order of N to make the integral with respect 
to ρ in Eq. (24) by the Gauss-Legendre quadrature accurate. In practical calculation, however, since the spectra of the VDF 
and the kernel model at high frequency components are very small, M2 can be several times smaller than N to have better 
numerical efficiency; this point will be demonstrated in the numerical simulation in Sec. 4. Also, note that in the evaluation 
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of the integral with respect to ρ ′ , the imaginary part is omitted due to the symmetry condition, that is, Bıj , which is related 
to the differential cross-section, remains unchanged when e′ is replaced by −e′ , see Eq (17).

After some algebraic manipulation (see descriptions from Eq. (34) to Eq. (38) in Ref. [18] when dv = 3, and Eqs. (15) and 
(16) in Ref. [26] when dv = 2), we have

• when dv = 3, the integral with respect to the unit vector e in a sphere is approximated by the trapezoidal rule, i.e. 
eθp ,ϕq = (sin θp cosϕq, sin θp sinϕq, cos θp) with θp = pπ/M and ϕq = qπ/M , where p, q = 1, 2, · · · , M), and the kernel 
mode (24) can be approximated by:

β(l,m) 
 2π2

M2

M2,M−1,M∑
r,p,q=1

cos(ρrξl · eθp ,ϕq )ψ3

(
ρr,

√
|ξm|2 − (ξl · eθp ,ϕq )

2

)
sin θp, (26)

where ψ3(ρr, s) = 2π
∫ R

0 ωrρrρ
′Bıj (ρr, ρ ′) J0(ρ

′s)dρ ′ , with J0 being the zeroth-order Bessel function of first kind;
• when dv = 2, the integral with respect to the unit vector e in a circle is approximated by the trapezoidal rule, i.e. 

eθp = (cos θp, sin θp) with θp = pπ/M , where p = 1, 2, · · · , M), and the kernel mode (24) is approximated by

β(l,m) 
 π

M

M2,M∑
r,p=1

cos(ρrξl · eθp )ψ2(ρr, ξm · eθp+ π
2
), (27)

where ψ2(ρr, s) = 4 
∫ R

0 ωr Bıj (ρr, ρ ′) cos(ρ ′ξm · e′)dρ ′ .

From Eqs. (26) and (27), we see that ξl and ξm are separated into two different functions, which enables fast computation 
of the quantum collision operator via the FFT-based convolution. The major algorithm is described below.

3.3. Detailed numerical implementation

We take the 2D case as an example to demonstrate how the FSM is implemented. First the cosine function in Eq. (27) is 
expressed in terms of the exponential function:

cos(ρrξl · eθp ) = exp(iρrξl · eθp ) + exp(−iρrξl · eθp )

2
, (28)

and for simplicity only the term related to exp(iρrξl ·eθp ) is considered in this subsection, as the term related to exp(−iρrξl ·
eθp ) can be handled similarly.

The spectrum of the cubic collision operators Q1 can be expressed as

Q̂ıj
1 (ξj) 
 π

M

M2,M∑
r,p=1

∑
l

exp(iaρrξl · eθp ) f̂ ı
l

×
∑

m+n=j−l
m,n

exp(ibρrξm · eθp ) f̂ j
m × exp(iρrξn · eθp ) f̂ j

n ψ2(ρr, ξm+n · eθp+ π
2
)︸ ︷︷ ︸

Crp
2 (m+n)

, (29)

where the underlined term is a convolution that can be computed via FFT with a cost of O (N2 log N), and the result of which 
multiplied by ψ2(ρr, ξm+n · eθp+ π

2
) forms Crp

2 (m + n). The terms Crp
2 (m + n) and exp(iaρrξl · eθp ) f̂ ı

l form the convolution 
again, which can be calculated by FFT again with a cost of O (N2 log N). Since this convolution has to be repeated MM2
times, the total computational cost will be O (MN3 log N), as M2 should be at the order of N , see the paragraph after 
Eq. (25).

When Crp
2 in Eq. (29) is obtained, the spectrum of the cubic collision operator Q 4 can be expressed as:

Q̂ıj

4 (ξj) 
 π

M

∑
l

f̂ ı
l ×

M2,M∑
r,p=1

Crp
2 (j − l), (30)

which can be calculated by FFT with the cost O (N2 log N).
To calculate Q̂ıj

2 , we first introduce

Crp
(l + m) = exp(iaρrξl · eθp ) f̂ ı × exp(ibρrξm · eθp )ψ2(ρr, ξm · eθ + π ) f̂ j

m, (31)
1 l p 2
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which is a convolution between the function exp(iaρrξl · eθp ) f̂ ı
l and exp(ibρrξm · eθp )ψ2(ρr, ξm · eθp+ π

2
) f̂ j

m . Then, the spec-

trum of the cubic collision operator Qıj

2 can be expressed as

Q̂ıj

2 (ξj) 
 π

M

∑
n

f̂ ı
n ×

M2,M∑
r,p=1

Crp
1 (j − n), (32)

which can be solved by the FFT-based convolution; the total computational cost should be O (MM2 N2 log N), since Crp
1 needs 

to be evaluated MM2 times, which is at the order of MN3 log N .
The spectrum of the cubic collision operator Q 3, as given in Eq. (22), can be expressed as:

Q̂ıj

3 (ξj) 
 π

M

∑
l

f̂ ı
l

M2,M∑
r,p=1

∑
m+n=j−l

m,n

exp(iaρrξn · eθp ) f̂ ı
n × exp(iρrξm · eθp ) f̂ j

mψ2(ρr, ξm · eθp+ π
2
), (33)

where the computational cost will be O (MN3 log N), like Q̂ıj
1 .

When Q̂ ıj is obtained, the collision operator Q ıj can be obtained through the following FFT, with a cost O (N2 log N):

Q ıj (v) =
∑

j

Q̂ ıj (ξj)exp(iξj · v). (34)

Therefore, if the FFT-based convolution is applied, for the case of dv = 2, the overall computational cost is O (MN3 log N), 
while for dv = 3, the computational cost is O (M2 N4 log N). Note that the procedure in deriving the FSM for QBE is essen-
tially the same as that for the classical Boltzmann equation, therefore, it can be proved that the present FSM conserves the 
mass and satisfies the H-theorem, while errors on the approximations of momentum and energy are spectrally small [15,16].

4. The spatially-homogeneous relaxation of quantum gases

In this section, we assess the performance of FSM in the study of spatially-homogeneous relaxation of binary gas mix-
tures of components A and B . Since the property of self-collision operators has been well investigated [18,16,29], we focus 
on the cross-collision collision operators only. This situation actually occurs in Fermi gases where interactions between 
fermions with the same spin (i.e. described by the self-collision operator) are much smaller than those between opposite 
spins (i.e. described by the cross-collision operator) [12,35,36]. For simplicity, we consider the case of dv = 2, with the 
following differential cross-section [35]:

dσ ıj

d�
= 2π h̄

mr |u|
1

log2(a2
s m2

r |u|2/h̄2) + π2
, (35)

where as is the s-wave scattering length that can be controlled experimentally via Feshbach resonance, and mr =
mAmB/(mA + mB) is the reduced mass.

The evolution of VDFs for components A and B in the spatially-homogeneous relaxation is governed by the following 
equations

∂ f A

∂t′ = Q AB
(

f A, f B
)

,
∂ f B

∂t′ = Q B A
(

f B , f A
)

, (36)

with the following cross-collision operator

Qıj ( f ı , f j ) =
(

mj

mA

)2 ∫∫
d�dv∗

log2(a|u|2) + π2

{
f j (′vıj∗ ) f ı (′vıj )[1 + θ0 f j (v∗)][1 + θ0 f ı (v)]

− f j (v∗) f ı (v)[1 + θ0 f j (′vıj∗ )][1 + θ0 f ı (′vıj )]
}
, (37)

where t′ = tmAkB Tr/π h̄mr , a = 2kB Tra2
s m2

r /mA , and the velocity have been normalized by 
√

2kB Tr/mA , with Tr being the 
reference temperature. We will study how the initial non-equilibrium VDFs

f A(t = 0,v) = f B(t = 0,v) = 8

π
|v|2 exp(−|v|2), (38)

relax to the final equilibrium states.
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Fig. 1. (top row) The spatially-homogeneous relaxation of VDFs for (a) Fermi, (b) classical, and (c) Bose gases, where the differential cross-section is given 
by Eq. (35) with the normalized parameter a = 1 in Eq. (37). Due to symmetry, only the region v1 > 0 is shown. In each subfigure, from bottom to top 
(near v1 = 0), the time t′ for each line is 0, 0.25, 0.50, 0.75, 1, 1.25, and 10, respectively. The symbol ‘cross’ shows the equilibrium VDF (39). (bottom) The 
time evolution of the fourth- and sixth-order moments of the VDF: M4(t) = ∫∫

f (v, t)|v|4dv and M6(t) = ∫∫
f (v, t)|v|6dv. Solid, dashed, and dash-dotted 

lines are the results for Fermi, classical, and Bose gases.

4.1. The equal-mass mixture

Since the mass and energy are conserved during the collision, for the equal-mass case (i.e. mA = mB ), the final equilib-
rium state corresponding to the initial condition (38) is

f A(t = ∞,v) = f B(t = ∞,v) =
{

1

Z
exp

( |v|2
T

)
− θ0

}−1

, (39)

where the equilibrium fugacity and temperature (Z , T ) are (7.0363, 1.2219), (1.2732, 2.0000), and (0.6291, 2.5671) for the 
Fermi, classical, and Bose gases, respectively.

Fig. 1 depicts the relaxation-to-equilibrium process of VDFs, as well as the time evolution of the fourth- and sixth-order 
moments, when Eq. (36) is solved by the Euler method with a time-step of 0.0025, and the collision operator (37) is ap-
proximated by the FSM with the following parameters: the number of solid angle is discretized uniformly with M = 10, the 
velocity domain [−L, L)2 with L = 6 is discretized by N = 64 uniform grid points in each direction, and M2 = 64 is chosen 
in the Gauss-Legendre approximation used in Eq. (24). It can be seen from Fig. 1(a,b,c) that the final equilibrium states agree 
well with the analytical solutions (39). Mathematically, it has been proven that the FSM preserves the mass accurately for 
the classical Boltzmann equation, while the energy is conserved with spectral accuracy [15]; from the numerical simulation 
with the above detailed parameters, these conclusions hold also for the QBE. For example, for Fermi gas the maximum 
relative variations in mass and energy during the whole relaxation process are 2.7 × 10−15 and 4.4 × 10−7, respectively. 
Thus, the VDF, as well as its fourth- and sixth-order moments, are chosen as reference solutions to investigate factors that 
affect the accuracy of FSM, such as the number of discrete velocities N , discrete solid angles M , and the value of M2 in the 
Gauss-Legendre quadrature.

Fig. 2 shows the absolute error in the VDF when the velocity grids are kept at 64 × 64, while values of M and M2
are reduced. When the value of M2 is fixed, it is seen that decreasing the number of discrete solid angle M from 10 to 
5 affects only slightly the accuracy. Therefore, M = 5 can be considered accurate, as it has been chosen in our previous 
numerical simulations of the classical Boltzmann equation [18,19]. The value of M2, however, strongly affects the accuracy. 
Theoretically, M2 should be at the order of N to make the approximation in Eq. (24) sufficiently accurate for each frequency 
component, see the paragraph after Eq. (25). However, at large frequency components the kernel mode β(l,m) in Eq. (27)
and the spectrum of the VDF are sufficiently small, therefore, M2 can be smaller than N: in Fig. 2 it is seen that even 
M2 = 10 has good accuracy.

Fig. 3 shows the relative errors of the zeroth-, second-, fourth-, and sixth-order moments of the VDF as functions of the 
time. Odd-order moments are not included because they are zero due to the symmetry in VDF. From this figure we can see 
that the accuracy deteriorates when the number of velocity points and frequency components N2 decreases. When N = 64, 
from Fig. 3(a) we find that the mass is conserved to the machine accuracy. However, as N decreases, the mass is not strictly 
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Fig. 2. The relative error in the mesoscopic VDF of Fermi gas evaluated at v2 = 0, when the velocity space [−6, 6]2 is discretized by 64 × 64 uniform points. 
Note that the reference solution fr is obtained by the FSM with the same parameters as used in Fig. 1.

Fig. 3. The relative errors of the zeroth-, second-, fourth- and sixth-order moments of the VDF of Fermi gas as compared to the reference solutions with 
N = M2 = 64. M = 5 and M2 = 10 are chosen, while other parameters are the same as in Fig. 1. Note that M0,r and M2,r are calculated based on the initial 
VDF, since theoretically the mass and energy is conserved during the homogeneous relaxation.

conserved, e.g. when N = 24. This is because the discretized frequency components do not cover the whole spectrum of 
VDF, such that some information is lost, and consequently the mass is not conserved; if higher accuracy is required when 
N = 24, the velocity domain should be reduced by decreasing the value of L such that the discretized frequency components 
will cover the whole spectrum of VDF, as from Eq. (21) we find that the range of the frequency is inversely proportional to 
L. From Fig. 3(b) we see that the energy (temperature) is not conserved, but the maximum relative deviation from the initial 
value is about 10−5 when N = 24 and 10−6 when N = 32. Although the relative error generally increases with the order of 
moment, deviations of the sixth-order moment from reference solutions are still very small for the parameters considered.

4.2. The unequal-mass mixture

We now consider the case of unequal-mass mixture, where the molecular mass of the A-component mA is 4 times of 
that of the B-component mB . Due to the conservation of mass of each component and the total energy of the mixture, the 
initial condition (38) leads to the following equilibrium states:
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Fig. 4. The relaxation of VDFs in the binary mixture with mA/mB = 4. (top row) The spatially-homogeneous relaxation of VDFs f A for (a) Fermi, (b) classical, 
and (c) Bose gases, where the differential cross-section is given by Eq. (35) with the normalized parameter a = 1 in Eq. (37). In each subfigure, from bottom 
to top (near v1 = 0), the time t′ for each line is 0, 2, 4, 6, 1, 8, 10, 12, and 80, respectively. (bottom row) The spatially-homogeneous relaxation of VDFs f B

for (d) Fermi, (e) classical, and (f) Bose gases. Note that in all the figures, the symbol ‘cross’ shows the equilibrium VDF given by Eq. (40). Due to symmetry 
only the region v1 > 0 is shown.

f ı (t = ∞,v) =
{

1

Z ı
exp

( |v|2
T

)
− θ0

}−1

, (40)

where the fugacities Z A and Z B of each component and the temperature T of the mixture are (Z A, Z B , T ) =
(7.9246, 0.7284, 1.1634), (1.3320, 0.3330, 1.9118), and (0.6461, 0.2287, 2.4516) for Fermi, classical, and Bose gases, respec-
tively. Note that for Bose gas, there is a computational challenge, as under the fugacity limit Z → 1, the viscosity decreases 
to zero and the equation becomes stiff so that the time step will be very small in explicit method; some implicit numerical 
methods may be used [37]. However, in this case Z = 0.2287 is much smaller than 1, so the simple explicit numerical 
method is used.

In the numerical simulation, the velocity space [−L, L)2 with L = 12 is discretized by 64 × 64 uniformly-distributed grid 
points: we choose L = 12 because the component B has a smaller molecular mass, so it requires larger velocity domain. 
For the component B, however, N = 64 and L = 12 is roughly equivalent to N = 32 and L = 6 in the equal-mass mixture in 
Sec. 4.1. We also choose M = 5 and M2 = 10, as the accuracy is only improved slightly when the two values are doubled. 
These parameters should predict solutions with the same order of error as the case of N = 32 in the equal-mass case 
considered in Sec. 4.1, where the conservation of mass and total energy is preserved with the relative error less than 10−8

and 10−6, respectively.
The relaxation of the two initial VDFs (38) is depicted in Fig. 4, while the time evolution of the second-, fourth-, and 

sixth-order moments are shown in Fig. 5. It is seen that near the region v1 = 0, the VDF of component A increases mono-
tonically with time, while that of the component B first increases rapidly, and then decreases as time t′ goes by. This is 
due to the energy exchange between the two components: from the first row in Fig. 5 we see that the component B re-
ceives energy from the component A, so the width of VDF of component B has to increase while the value of VDF near 
v1 = 0 has to decrease. When t′ is large enough, the final equilibrium states have been achieved for both components, and 
the simulated VDFs agree well with the analytical solutions (40). Finally, when compared to the equal-mass mixture case 
without energy transfer between the two components, it is seen in Fig. 5 that the fourth- and sixth-order moments of the 
component A first decrease slightly, due to the energy output to the component B, and then increase with time, while those 
of the component B always increase until reach the corresponding equilibrium values.

It should be emphasized that the two numerical examples presented in this section only show the correctness of relax-
ation to final equilibrium states. However, whether the relaxation process (i.e. the speed of relaxation) is accurately captured 
by the FSM or not is not clear, since we have no analytical solutions to compare with for quantum gases, although for the 
classical Boltzmann equation of Maxwell molecules (i.e. the intermolecular force is proportional to r−5, where r is the in-
termolecular distance), the relaxation process has been verified by analytical BKW solutions [18,24]. In the next section, we 
will assess the accuracy of FSM by comparing the numerical results of transport coefficients to analytical and numerical 
solutions presented in literature [38,35,36].
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Fig. 5. The relaxation of the second-, fourth-, and sixth-order moments of VDFs in the binary mixture with mA/mB = 4. Here the moments are defined as 
Mı

l (t) = (mı /mA)3
∫∫

f ı (v, t)|v|ldv, where l = 2, 4, and 6. Other parameters are the same as used in Fig. 4.

5. Transport coefficients

Compared to classical gases, transport coefficients of quantum gases are hard to measure experimentally. Therefore, 
an accurate and efficient method is urgently needed to solve the QBE. The transport coefficients such as shear viscosity, 
thermal conductivity, and diffusion can be calculated by means of the Chapman-Enskog expansion [7]. The basic idea of 
this expansion is to expand the VDF around the local equilibrium (8) in terms of a small parameter related to the Knudsen 
number, which gives the Euler equations at the zeroth-order approximation. For the first-order approximation, i.e. a solution 
of Eq. (2) in the form of Eq. (11) is sought, the Navier-Stokes equations can be derived, where the small perturbation satisfies 
(in what follows we focus on two-component mixtures; detailed calculation can be found, e.g. in Ref. [38]):

Lıj (hı ,hj ) =
{

mı

kB T

∑
i j

Dı
i j

[
vr,i vr,i − δi j

dv
|vr |2

]
+ vr · dı

+ vr · ∇xT

T

[
mı |vr |2
2kB T

− dv + 2

2

G(dv+2)/2(Z ı )

Gdv/2(Z ı )

]}
f ı
eq(1 + θ0 f ı

eq), (41)

where Dij = (∂V j/∂xi +∂V i/∂x j)/2 is the rate-of-strain tensor. Note that the first, second, and third terms on the right-hand 
size of Eq. (41) are related to the shear viscosity, diffusion, and thermal conductivity, respectively. Since the definition of the 
coefficient of mass diffusion refers to a state of gas in which no external forces act on the molecules, and the gas pressure 
and temperature are uniform [7], the complicated expression for dı is simplified to dı = ∇x Z ı

Z ı = ∇xμ
ı

kB T [38].
The constitutive relations at the first-order Chapman-Enskog expansion are given by

P =
∑

ı

δi j P ı
ıj − 2η

[
Dij − Tr(Dij)

dv
δi j

]
, Q = −κ∇T , JM = −D∇M, (42)

where P is the total pressure of the mixture, and JM is the mass current induced by the population difference M = nı − nj .
The shear viscosity η, thermal conductivity κ , and mass diffusion coefficient D can be found in the following three steps. 

First, we obtain the perturbation functions h by solving the following equations (the detailed methods will be presented in 
following subsections):

Lıj (hı ,hj ) = f ı
eq(1 + θ0 f ı

eq)
mı

Dı
i j

[
vr,i vr,i − δi j |vr |2

]
, (43)
kB T dv
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Lıj (hı ,hj ) = f ı
eq(1 + θ0 f ı

eq)
vr · ∇T

T

[
mı |vr |2
2kB T

− dv + 2

2

G(dv+2)/2(Z ı )

Gdv/2(Z ı )

]
, (44)

Lıj (hı ,hj ) = f ı
eq(1 + θ0 f ı

eq)
vr · ∇xμ

ı

kB T
. (45)

For simplicity, in the following calculations, we define terms on the right-hand sides of Eqs. (43)-(45) as the source S ı . 
Second, with h, we can calculate the total pressure P , heat flux Q, and mass current JM according to Eqs. (11) and Eq. (1). 
Finally, from Eq. (42) we can obtain the transport coefficients.

5.1. Variational principles

The complicated mathematical structure of the linearized Boltzmann collision operator Lıj makes the exact solution for 
the perturbation h in Eqs. (43)-(45) extremely difficult to find. Therefore, variational principles are used to find the upper 
and lower bounds of transport coefficients [39]. A simple way is to use the following ansatz:

hı = C ıS ı , ı = A, B, (46)

where C ı are constants, whose values can be obtained by solving the following two linear equations of C A and C B :∫
Lıj (C ıS ı , C jSj )

S ı

f ı
eq(1 + θ0 f ı

eq)
dv =

∫
(S ı )2

f ı
eq(1 + θ0 f ı

eq)
dv, ı = A, B. (47)

Expressions for the two constants C A and C B can be simplified analytically, and then solved by numerical quadrature (for 
the classical Boltzmann equation with some special forms of differential cross-section, analytical solution may be derived), 
see Eq. (49) below. Also, C A and C B can be computed by the FSM developed in this paper.

The variational principle (46) predicts the lower bound of transport coefficients. For the classical Boltzmann equation, 
this variational principle gives accurate transport coefficients for Maxwell molecules, while for hard-sphere molecules it 
underpredicts the transport coefficients by only about 2% [7]. Whether this conclusion holds for quantum gases or not is 
not clear; this will be assessed in the following numerical examples.

5.2. Direct numerical simulation

A direct numerical solution of the linear equations in Eqs. (43)-(45) is necessary to find accurate transport coefficients. 
To this end, we first define the following two constants as the maximum values of the equilibrium collision frequencies 
in Eq. (13), for classical gases: μı = ∑

j μ
ıj
c (v = 0) with ı = A, B . Then, the linear perturbation can be solved through the 

following iterative scheme [17]:

hı,ι+1 = −S ı +Lıj (hı,ι,hj,ι) + μıhı

μı
, ı = A, B, (48)

where the superscripts ι and ι + 1 are the iteration steps.
The reason to use μı in the denominator of Eq. (48) instead of the equilibrium collision frequency μıj

c , as normally 
used in the iterative scheme [17], is that the collision frequency approximated by the FSM approaches zero at large relative 
collision velocity u for the special differential cross-section (35). Therefore, the iteration will diverge when μıj

c is used in 
the denominator. Numerical simulations below have proven that the iterative scheme (48) is unconditionally stable, while 
using μıj

c in the denominator results in non-converged solution when the quantum gas is highly degenerated, that is, when 
the fugacity Z approaches infinity and one for Fermi and Bose gases, respectively.

In the following numerical simulations, the iteration is terminated until the relative error in the transport coefficient 
between two consecutive steps is less than 10−5. Starting from the zero perturbation hı,ι=0 = 0, only several dozen iterations 
are needed to reach this convergence criterion.

5.3. Results: three-dimensional case

We consider the two-component population balanced Fermi gases, with mA = mB = m. In most experiments, the two 
components move together and only one VDF is enough to describe the system state. Due to Pauli’s exclusion principle, the 
s-wave scattering happens between molecules with different spins. As a consequence, only the cross-collision operators are 
considered. For simplicity, the hard-sphere molecular model is used, where the differential cross-section is dσ ıj /d� = a2

s .
Applying the Chapman-Enskog expansion to the QBE, one obtains the shear viscosity and thermal conductivity as [38]

η = 5m

32a2 I B

√
kB T

m
G2

5/2(Z), κ = 75kB

256a2 I A

√
kB T

m

[
7

2
G7/2(Z) − 5

2

G2
5/2(Z)

G3/2(Z)

]2

, (49)

s s
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Fig. 6. The shear viscosity η and thermal conductivity κ of Fermi (top row) and Bose (bottom row) gases, as functions of the fugacity Z , where η0 and 
κ0 are respectively the shear viscosity and thermal conductivity at the classical limit Z = 0, which are obtained from the analytical solution (49) that is 
derived from the variational principle [40,38]. Solid lines: analytical solutions (49). Circles: numerical solutions using the variational principle, i.e. by solving 
Eq. (47) numerically via the FSM. Triangles: numerical results obtained by solving Eq. (48) via the FSM.

where

I A =
∞∫

0

dξ0ξ
4
0

∞∫
0

dξ ′ξ ′ 7

1∫
0

dy′
1∫

0

dy′′ F · (y′ 2 + y′′ 2 − 2y′ 2 y′′ 2),

I B =
∞∫

0

dξ0ξ
2
0

∞∫
0

dξ ′ξ ′ 7

1∫
0

dy′
1∫

0

dy′′ F · (1 + y′ 2 + y′′ 2 − 3y′ 2 y′′ 2),

F = Z 2 exp(−ξ2
0 − ξ ′ 2)

[1 − θ0 Z exp(−ξ2
1 )][1 − θ0 Z exp(−ξ2

2 )][1 − θ0 Z exp(−ξ2
3 )][1 − θ0 Z exp(−ξ2

4 )] ,

ξ2
1 = (ξ2

0 + 2ξ0ξ
′ y′ + ξ ′ 2)/2, ξ2

2 = (ξ2
0 − 2ξ0ξ

′ y′ + ξ ′ 2)/2, ξ2
3 = (ξ2

0 + 2ξ0ξ
′ y′′ + ξ ′ 2)/2, and ξ2

4 = (ξ2
0 − 2ξ0ξ

′ y′′ + ξ ′ 2)/2.
For the one-component Bose gas, the differential cross-section is dσ ıj /d� = 2a2

s [40], so the shear viscosity and ther-
mal conductivity will be four times smaller than that of the population balanced Fermi gas, because both the self- and 
cross-collision operators have to be considered.

Fig. 6 shows the shear viscosity and thermal conductivity of quantum Fermi and Bose gases as functions of the fugacity. 
It is seen that the shear viscosity and thermal conductivity of the Fermi (Bose) gas increase (decrease) with the fugacity Z . 
The FSM solutions of variational equation (47) agree well with the analytical solutions (49) obtained by the same variational 
principle, which proves that our FSM has high accuracy.

With the accuracy of the FSM verified by analytical solutions, we assess the accuracy of the variational principle that 
only gives the lower bounds of transport coefficients, by solving the linearized equation using the iterative method (48). 
Results are shown in Fig. 6 as triangles. For Fermi gas, at Z increases from 0 to 100, the relative error between the accurate 
shear viscosity (thermal conductivity) and those from the variational principle increases from 1.6% (2.8%) to 5.2% (6%). For 
Bose gas, this relative error in thermal conductivity increases from about 2.8% when Z = 0 to 5.2% when Z = 0.9, while that 
in shear viscosity decreases from 1.6% when Z = 0 to 0.2% when Z = 0.9.

5.3.1. Shear viscosity of the mass-balanced mixture
We first consider the equal-mass mixture, i.e. mA = mB = m. Numerical results for the shear viscosity and spin diffusion 

coefficients are shown in Fig. 7, for a wide range of temperature and s-wave scattering length. It is clear that the variational 
solutions solved by the FSM agree well with the numerical solutions of Brunn [35] for both classical and Fermi gases, 
while the accurate shear viscosity and mass diffusion coefficient obtained from the iterative scheme (48) have very limited 
difference to the variational solutions (i.e. less than 1%) when T /T F < 1. However, at very small values of T /T F , accurate 
transport coefficients are larger than the variational ones by about 5% for Fermi gas. This observation is consistent with the 
3D Fermi gas case investigated in Sec. 5.3.
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Fig. 7. The normalized shear viscosity (a, c) and mass diffusion coefficient (b, d) of 2D Fermi gas as functions of the (a, b) normalized temperature T /T F at 
(kF as)

2 = 2 exp(−1) and (c, d) s-wave scattering length as at T /T F = 1. Dashed lines represent results from the variation principle adopted from Ref. [35]. 
Solid circles: FSM solutions of the variational principle (47). Open circles: the FSM solutions obtained by the iterative scheme (48). Nearly-straight lines 
in (a) and (b) are the corresponding results for classical gases. Note that T F = (h̄kF )2/2mkB is the Fermi temperature, and kF = √

2πn is the Fermi wave 
vector, with n being the total number density of both spin components.

We continue to compare our FSM solutions to the numerical solutions provided by Schäfer [36] in Fig. 8. The agreement 
is acceptable in general, especially for the case of classical gases. For Fermi gases, the shear viscosity obtained from the 
FSM agrees well with the variational solutions [36] in the low and high temperature limits. However, in the intermediate 
regime (near T /T F = 0.5) where the shear viscosity is minimum, both of our FSM solutions, obtained from the variational 
principle (47) and the iterative scheme (48), are higher than the variational results of Schäfer [36] by about 15%.

5.3.2. Shear viscosity of mass-imbalanced mixtures
We further calculate the shear viscosity of the equal-mole mixture of 2D Fermi gas, where the A-component has a 

larger molecular mass than the B-component. In Fig. 9 the shear viscosity when mA/mB = 1, 2, 4, and 40/6 is plotted. It 
is observed in Fig. 9(a) that, when the s-wave scattering length is fixed, that is, when the ratio of the two-body binding 
energy Eb = 1/2mra2

s to the Fermi energy of A-component is equal to exp(1), the shear viscosity first decreases when the 
temperature increases, and then increases with the temperature, for all the molecular mass ratios considered. However, 
the reduced temperature T /T F at which the minimum shear viscosity is reached increases with the mass ratio. The same 
trend applies also to the viscosity-entropy density ratio in Fig. 9(b). Interestingly, in Fig. 9(a) we see that the minimum 
shear viscosity almost remains unchanged when the molecular mass ratio varies; this is in sharp contrast to the variational 
results [35], which states that the shear viscosity is proportional to the reduced mass, i.e. decreases when the mass ratio 
increases. This discrepancy may be caused by the fact that the variational ansatz used in Eq. (4) of Ref. [35] is different to 
ours in Eq. (46) when the molecular mass ratio is not one.

Fig. 9(c) shows the variation of the shear viscosity against the interaction strength, when the temperature of the mixture 
is equal to the Fermi temperature of A-component. When the molecular mass ratio is fixed, there is a minimum value of 
shear viscosity; and it seems that this minimum viscosity decreases when the mass ratio increases, but quickly saturated 
at mA/mB = 40/6. In addition, at small enough interaction strength, i.e. in the right part of Fig. 9(c), the shear viscosity 
decreases when the molecular mass ratio increases, while at large interaction strength, there is no monotonous relation 
between the shear viscosity and mass ratio.
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Fig. 8. The normalized shear viscosity of 2D Fermi gas as a function of the temperature, where the interaction strength between fermions with equal mass 
but opposite spins is (kF as)

2 = 2. Dashed lines represent results from the variation principle adopted from Ref. [36]. Solid circles: the FSM solutions of the 
variational principle (47). Open circles: the FSM solutions of the iterative scheme (48).

Fig. 9. The shear viscosity of equal-mole mixture of 2D quantum Fermi gas, where the molecular mass of each component is different. The shear viscosity 
(a) and viscosity-entropy ratio (b) of 2D Fermi gas as a function of the normalized temperature T /T F at (kF asmr/mA)2 = exp(−1). The shear viscosity 
(c) and viscosity-entropy density ratio (d) of 2D Fermi gas as functions of the s-wave scattering length (kF asmr/mA)2 when T /T F = 1. Symbols: the FSM 
solutions of the iterative scheme (48). Note that T F = (h̄kF )2/2mAkB is the Fermi temperature of A-component, and kF = √

2πn is the Fermi wave vector, 
with n being the total number density of both spin components.

Fig. 9(b) and (d) depict the ratio between the shear viscosity and entropy density. It is clear that the minimum viscosity-
entropy ratio does not change much when the molecular mass ratio varies. Although Brunn [35] claimed that the universal 
bound of the viscosity-entropy density ratio obtained from string theory methods [41]

kBη
>

1
(50)
sh̄ 4π
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may be violated at large molecular mass ratios, our numerical calculations suggested this is not the case, at least for the 
QBE with the differential cross-section (35).

6. Conclusions

We have developed a FSM to solve the quantum Boltzmann equation for gas mixtures with a computational cost of 
O (Mdv −1M2Ndv log N), which is the same as that for the classical Boltzmann equation when the general form of inter-
molecular potential is considered [17]. The spatially-homogeneous relaxation problem has been used to determine factors 
that affect the accuracy of FSM. It has been shown that, the solid angle (or polar angle in the two-dimensional problem) can 
be discretized uniformly by M2 = 5 × 5 (or M = 5) points, while the number of abscissas in the Gauss-Legendre quadrature 
used in Eq. (24) can be as small as M2 = 10, when N = 32 velocity points are used to discretize the velocity distribution 
function in each direction. The FSM handles the collision in the frequency space, and conserves the mass exactly, while the 
momentum and energy are conserved with spectral accuracy.

Based on the variational principle that predicts the lower bounds of transport coefficients, the shear viscosity and ther-
mal conductivity have been calculated by the FSM for both Fermi and Bose gases. Comparisons with the analytical solutions 
demonstrated the accuracy of the proposed FSM. Accurate transport coefficients are also obtained by solving the linearized 
Boltzmann collision operator via the iterative scheme (48). As expected, these transport coefficients are larger than those 
from the variational principle. Generally speaking, the relative error between the accurate and variational transport coef-
ficients increases with the fugacity. The shear viscosity of a two-dimensional equal-mole mixture of Fermi gases has also 
been investigated for components with different molecular masses. Our numerical solutions suggested that the universal 
bound of the viscosity-entropy density ratio (50) predicted by the string theory is satisfied.

Finally, we pointed that the established accurate FSM to solving the quantum Boltzmann collision operator is ready to 
be used to calculate the transport coefficients of noble gases based on ab initio potentials [42,43]. Also, the FSM can be used 
to assess the accuracy of quantum kinetic models [44–46]. Furthermore, the FSM can be incorporated into other multi-scale 
methods [47,48,37] that solve the Boltzmann equation accurately and efficiently from the hydrodynamic to free-molecular 
flow regimes, which is encountered in experiments where the quantum gas is trapped so that its density is maximum at the 
trap center (i.e. hydrodynamic regime) and vanishes near the trap edge (i.e. free molecular flow regime). In the future we 
will investigate the interesting spatially-inhomogeneous oscillations [12–14] and spin diffusion [30–32] in quantum gases.
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