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Highlights

• A generative model for the automated discovery of CG dynamics.
• The target density is augmented by virtual observables which reflect physical constraints.
• The incorporation of physical constraints leads to a reduction of the training data.
• A probabilistic formulation that is capable of quantifying predictive uncertainty.
• Full reconstruction of futures of the entire FG state vector as well as any FG observable.
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Abstract

Data-based discovery of effective, coarse-grained (CG) models of high-dimensional
dynamical systems presents a unique challenge in computational physics and
particularly in the context of multiscale problems. The present paper of-
fers a data-based, probabilistic perspective that enables the quantification
of predictive uncertainties. One of the outstanding problems has been the
introduction of physical constraints in the probabilistic machine learning ob-
jectives. The primary utility of such constraints stems from the undisputed
physical laws such as conservation of mass, energy etc. that they repre-
sent. Furthermore and apart from leading to physically realistic predictions,
they can significantly reduce the requisite amount of training data which for
high-dimensional, multiscale systems are expensive to obtain (Small Data
regime). We formulate the coarse-graining process by employing a proba-
bilistic state-space model and account for the aforementioned equality con-
straints as virtual observables in the associated densities. We demonstrate
how deep neural nets in combination with probabilistic inference tools can be
employed to identify the coarse-grained variables and their evolution model
without ever needing to define a fine-to-coarse (restriction) projection and
without needing time-derivatives of state variables.

We advocate a sparse Bayesian learning perspective which avoids over-
fitting and reveals the most salient features in the CG evolution law. The
formulation adopted enables the quantification of a crucial, and often ne-
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glected, component in the CG process, i.e. the predictive uncertainty due to
information loss. Furthermore, it is capable of reconstructing the evolution
of the full, fine-scale system and therefore the observables of interest need
not be selected a priori. We demonstrate the efficacy of the proposed frame-
work by applying it to systems of interacting particles and a series of images
of a nonlinear pendulum. In both cases we identify the underlying coarse
dynamics and can generate extrapolative predictions including the forming
and propagation of a shock for the particle systems and a stable trajectory
in the phase space for the pendulum.

Keywords: Bayesian machine learning, virtual observables, multiscale
modeling, reduced order modeling, coarse graining

1. Introduction

High-dimensional, nonlinear dynamical systems are ubiquitous in applied2

physics and engineering. The computational resources needed for their so-
lution can grow exponentially with the dimension of the state-space as well4

as with the smallest time-scale that needs to be resolved and which deter-
mines the discretization time-step. Hence the ability to construct reduced,6

coarse-grained descriptions and models that are nevertheless predictive of
various observables and at time-scales much larger than the inherent ones, is8

an important task (Givon et al., 2004).
One strategy for learning such coarse-grained (CG) models is based on10

data generated by simulations of the fine-grained (FG) system. This can
yield an automated solution especially in cases where domain knowledge is12

limited or absent. The derivation of CG models from data is also partic-
ularly relevant in domains where FG models are not available, such as in14

social sciences or biophysics, but data abound (Bialek, 2012; Alber et al.,
2019). Data-based methodologies have also been fueled by recent advances16

in statistical- (Ghahramani, 2015) or machine-learning (LeCun et al., 2015)
which, in large part, have been enabled by large datasets (and the compu-18

tational means to leverage them). We note nevertheless that coarse-graining
tasks based on FG simulation data exhibit some fundamental differences20

(Koutsourelakis et al., 2016). Firstly, the acquisition of FG simulation data
is by definition expensive and the reduction of the required FG simulations is22

one of the objectives of CG model development. Secondly, in physical appli-
cations, significant information about the underlying physical/mathematical24
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structure of the problem, and of the CG model in particular, is available. This
information might come in the form of constraints that reflect e.g undisputed26

physical principles such as conservation laws (e.g. mass, momentum, energy).
Injecting this prior information into the CG models in combination with FG28

data in an automated fashion represents a significant challenge (Marcus and
Davis, 2019), especially in the context of probabilistic models (Stinis et al.,30

2019). Such a capability would be instrumental not only in reducing the
required amount of FG data, but more importantly, in enabling predictions32

under extrapolative settings as those arising e.g. when the initial conditions
of the FG system are different from the ones in the training data.34

In this paper, we propose a generative, probabilistic (Bayesian) machine
learning framework (Koutsourelakis and Bilionis, 2011) which employs FG36

simulation data augmented by virtual observables to account for constraints.
The latter concept which we elucidate in the sequel, enables the incorpo-38

ration of domain knowledge in probabilistic models and represents, in our
opinion the most novel contribution of this paper. Furthermore and within40

the Bayesian framework advocated, it allows us to introduce appropriate pri-
ors that promote the discovery of slow-varying CG state-variables which is a42

highly-desirable feature for multiscale systems (Kevrekidis et al., 2003). In
contrast to most existing techniques which consider the problems of CG state44

variable discovery and CG model construction in two or more steps (Schmid,
2010; Williams et al., 2015; Wu and Noé, 2017; Froyland et al., 2014), we46

address both simultaneously (Felsberger and Koutsourelakis, 2019). The
framework proposed consists of two building blocks: a probabilistic coarse-48

to-fine map (Schöberl et al., 2017) and an evolution law for the CG dynamics.
The former can be endowed with great flexibility in discovering appropriate50

CG variables when combined with deep neural nets (Raissi et al., 2017, 2019;
Yang and Perdikaris, 2019), which is especially challenging if the number of52

training data is small1. We demonstrate nevertheless the efficacy of such an
approach when physical information is incorporated a-priori into the model.54

The CG variables identified are not restricted to indicator functions of sub-
domains of the state-space as in other generative models (Mardt et al., 2018;56

Wu and Noé, 2017; Wu et al., 2018) and which are difficult to learn when the
simulation data is limited and has not sufficiently populated all important58

1In the dynamical systems investigated the size of the dataset depends on the length
of the FG time-sequences as well as the number of such sequences employed for training.
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regions of the state-space.
The second component of the proposed framework pertains to the discov-60

ery of the CG evolution law which is learned by employing a large vocabulary
of feature functions and sparsity-inducing priors. This leads to interpretable62

solutions (Duncker et al., 2019), even in the Small Data regime that avoid
overfitting and reveal salient characteristics of the CG system (Grigo and64

Koutsourelakis, 2019). The premise of sparsity (Pantazis and Tsamardinos,
2019) has been employed in the past for the discovery of the CG dynamics as66

e.g. in the SINDy method (Brunton et al., 2016; Kaiser et al., 2018; Cham-
pion et al., 2019). This however requires the availability of time-derivatives68

of the CG variables and does not directly lead to a posterior on the model
parameters that can reflect inferential uncertainties. Nonparametric models70

for the CG dynamics have also been proposed (Ohkubo, 2011) but have been
restricted to low dimensions. The learned CG dynamics are in general non-72

linear in contrast to efforts based on transfer operators (Klus et al., 2018) and
particularly the Koopman operator (Koopman, 1931; Mezić, 2005; Brunton74

et al., 2016). While the associated theory guarantees the existence of a linear
operator, this is possible in the infinite dimensional space of observables, it76

does not specify how many should be used to obtain a good approximation,
and more importantly, how one can predict future FG states given predic-78

tions on the evolution of those observables i.e. the reconstruction step.
80

The latter constitutes the main difference of the proposed model with non-
generative ones based e.g. on information-theoretic concepts (Katsoulakis82

and Plecháč, 2013; Harmandaris et al., 2016; Katsoulakis and Vilanova, 2019)
or on the Mori-Zwanzig (MZ) formalism (Mori, 1965; Zwanzig, 1973; Chorin84

and Stinis, 2007). Apart from the difficulties in approximating the right-
hand-side of the MZ-prescribed CG dynamics, and particularly the memory86

term (Lei et al., 2016; Zhu et al., 2018), this can only guarantee correct
predictions of the CG variables’ evolution. If observables not depending on88

CG variables are of interest, then a reconstruction operator would need to
be added. In contrast, in the proposed model this reconstruction operator is90

represented by the probabilistic coarse-to-fine map which is simultaneously
learned from the data and can quantify predictive uncertainties associated92

with the information loss that unavoidably takes place in any CG process as
well as due to the fact that finite (and preferably, small) data has been used94

for training.
The enabling computational technology for training the proposed model96
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is based on probabilistic inference. In order to resolve the intractable pos-
terior on latent variables and model parameters in our Bayesian framework,98

we make use of Stochastic Variational Inference (Hoffman et al., 2013) as
MCMC is cumbersome in high dimensions. We operate on the discretized100

time domain (Archambeau and Opper, 2011) and demonstrate how amortized
(Krishnan et al., 2017; Fortuin et al., 2019) and non-amortized approxima-102

tions can be employed.
The remainder of the paper is structured as follows: In Section 2 we104

present the general methodological framework with special attention on the
two building blocks of the state-space model proposed i.e. the transition law106

for the CG dynamics and the incorporation of virtual observables (section
2.2), as well as the the emission law which provides the link between CG108

and FG description through a probabilistic coarse-to-fine map (section 2.3).
Computational aspects related to inference and prediction are discussed in110

sections 2.4 and 2.5 respectively. Section 3 contains illustrative applications
involving coarse-graining of high-dimensional systems of interacting particles112

(section 3.1) as well as learning the dynamics of a nonlinear pendulum (sec-
tion 3.2) from a sequence of images. We conclude in section 4 which also114

contains a discussion on possible extensions.

2. Methodology116

In general, we use the subscript f or lower-case letters to denote variables
associated with the (high-dimensional) fine-grained(FG)/full-order model and118

the subscript c or upper-case letters for quantities of the (lower-dimensional)
coarse-grained(CG)/reduced-order description. We also use a circumflex ˆ120

to denote observed/known variables. We begin with the presentation of the
FG and the CG model and subsequently explain the essential ingredients of122

the proposed formulation.

2.1. The FG and CG models124

We consider a, generally high-dimensional, FG system with state vari-
ables x of dimension df (df >> 1) such that x ∈ Xf ⊂ Rdf . The dynamics126

of the FG system are dictated by system of deterministic or stochastic ODEs
i.e.,128

ẋt = f(xt, t), t > 0 (1)
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The initial condition x0 might be deterministic or drawn from a specified130

distribution. In the following we do not make explicit use of the FG dynamics
but rely purely on FG data i.e. time sequences simulated from Equation (1)132

with a time-step, say δt. That is, our observables consists of n data sequences
over T + 1 FG time-steps δt i.e.,134

DT,n = {x̂(1:n)
0:Tδt} (2)

We denote the (unknown) CG state variables by X and assume X ∈ Xc ⊂
Rdc , where dc is the dimension of the CG system. We presuppose Markovian136

dynamics2 for the CG system of the form:

Ẋt = F (Xt, t) (3)

which we discretize using a linear multistep method and a CG time step ∆t:138

Rl(X) =
K∑
k=0

(
αkX(l−k)∆t + ∆tβkF (X(l−k)∆t)

)
= 0, l = K,K + 1, . . .

(4)
where αk, βk are the parameters of the discretization scheme and Rl the cor-
responding residual at time step l (Butcher, 2016). We note that depending140

on the values of the parameters K,αk, βk, several of the well-known, ex-
plicit/implicit, numerical time-integration schemes can be recovered. In this142

work, our goal is two-fold:

a) to identify the CG state-variables X and their relation with the FG144

description x,

b) to identify the right-hand side of Equation (3),146

in view of enabling predictions of the FG system over longer time horizons.
Traditionally, the aforementioned tasks are not considered simultaneously.148

Usually the CG state variables are specified a priori using domain-knowledge
(physical insight) or based on the observables of interest (Harmandaris et al.,150

2016). In other efforts, linear or non-linear dimensionality reduction proce-
dures are first employed in order to identify such a lower-dimensional set of152

collective variables X (e.g. (Coifman et al., 2008)). In both of these cases,

2As discussed in section 3, this assumption can be relaxed.
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X are defined using a fine-to-coarse, projection map e.g. X = Π(x) where154

Π : Xf ⊂ Rdf → Xc ⊂ Rdc . Irrespective of whether this map is prescribed
from the physics or learned from data, it is generally a many-to-one function156

that does not have an inverse i.e. if the CG states X are known one cannot
readily reconstruct x (Trashorras and Tsagkarogiannis, 2010).158

We note that that this has nothing to do with the quality of the CG
evolution law (problem b) above). Even if the Mori-Zwanzig (MZ) formal-160

ism were employed, which in principle provides an exact, closed system of
evolution equations for any observable of the FG states and therefore for162

X = Π(x), even if all the terms in the right-hand side were available, one
would simply be able to predict the future evolution of X but not x. This164

might be sufficient for a lot of problems of practical interest where the CG
variables (or observables thereof) are of sole interest. Our goal however is166

a bit more ambitious, i.e. we seek to find a X that would allow us to re-
construct as accurately as possible the whole FG vector x into the future.168

As with any coarse-graining process, we recognize that this would unavoid-
ably imply some information loss which in turn will give rise to predictive170

uncertainty (Katsoulakis and Trashorras, 2006). In this work, we advocate
a probabilistic framework that quantifies this uncertainty.172

With regards to problem b) above, we note that its solution hinges upon
the CG variables X employed (problem a)). Irrespective of the breadth of174

the model forms considered (i.e. functions F in Equation (3)), the evolution
of some X might fall outside this realm. For example, it is known from MZ176

theory that memory terms can become significant for certain observables. It
is well-known that such memory terms can be substituted or approximated by178

additional variables (Kondrashov et al., 2015) which would in turn imply an
augmented CG description X in Equation (3) that contains these auxiliary180

internal state variables (Coleman and Gurtin, 1967).
We address problems a) and b) in the coarse-graining process simultane-182

ously by employing a probabilistic state-space model. This consists of two
densities i.e.184

• the transition law which dictates the evolution of the CG variables X
(section 2.2). Special attention is paid to the definition of virtual ob-186

servables with which the CG states and their dynamics can be injected
with physical information.188

• the emission law which provides the link between CG and FG descrip-
tion through a probabilistic coarse-to-fine map (section 2.3, (Felsberger190
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and Koutsourelakis, 2019)).

We emphasize that in our formulation, the CG state-variables X are im-192

plicitly defined as latent generators of the FG description x. As discussed
in detail in the sequel, this enables a straightforward, probabilistic recon-194

struction of x when X is known. The inverse map (analogous to Π above)
arises naturally through probabilistic inference as explained in section 2.4.196

An overview of the essential elements of the proposed model can be seen in
the probabilistic graphical model of Figure 1.198

2.2. Transition Law: CG dynamics and virtual observables

Typical state-space models (Cappe et al., 2005; Ghahramani, 2004; Durste-200

witz, 2017; Krishnan et al., 2017) postulate Markovian, stochastic dynamics
for the hidden variables X, in the form of a diffusion process, which are202

subsequently discretized explicitly using e.g. a Euler-Maruyama scheme with
time step ∆t. This gives rise to a, generally Gaussian, conditional density204

p(X(l+1)∆t|Xl∆t) which can be stacked over multiple time-instants in order
to formulate a generalized prior on the CG-space.206

When the CG state-variables X are given (in part or in whole) physical
meaning (e.g. as thermodynamic state variables), then some of the equations208

for their evolution are prescribed by associated physical principles e.g. con-
servation of mass, momentum, energy. These can be reflected in the residuals210

Rl of the governing equations as in Equation (4) or alternatively as equality
constraints of the form:212

cl(Xl∆t) = 0, l = 0, 1, . . . (5)

which must hold at each time-step. The function cl : Xc ⊂ Rdc → RMc

enforces these known constraints at each time-step (see specific examples in214

section 3) and the only requirement we will impose is that of differentiability
of cl (see section 2.4). In order to account for the aforementioned constraints216

in the transition law of the CG state variables, we employ the novel (to the
best of our knowledge) concept of virtual observables. In particular for each218

of the residuals Rl in Equation (4), we define a new variable/vector R̂l which
relates to Rl as follows:220

R̂l = Rl(X) + σRεR, εR ∼ N (0, I) (6)

We further assume that R̂l have been virtually observed and R̂l = 0 leading
to an augmented version of the data in Equation (2), by a set of virtual222
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xT∆tx∆tx0

XT∆tX∆tX0

θcf

θc

1 : n

R̂0, ĉ0 R̂∆t, ĉ∆t R̂T∆t, ĉT∆t

Figure 1: Proposed probabilistic graphical model. The CG variables X are latent and
are inferred together with the parameters θc and θcf . Apart from the the FG states x,

the observables are augmented by virtual observables R̂, ĉ (see section 2.2). These virtual
observables can depend on all CG variables but more often this dependence is restricted
to only a few of them. 9



observations and therefore virtual likelihoods of the type:

p(R̂l = 0 | X, σR) = N (0 | Rl(X), σ2
RI) (7)

The “noise” parameter σR determines the intensity of the enforcement of the224

virtual observations and is analogous to the tolerance parameter with which
residuals are enforced in a deterministic solution of the dynamics. Similarly,226

for constraints of the form of Equation (5), additional variables and virtual
observables of the type:228

0 = ĉl = cl(Xl∆t) + σcεc, εc ∼ N (0, I) (8)

can be defined which would lead to an augmented (virtual) likelihood with
terms of the type:230

p (ĉl = 0 |Xl∆t, σc) = N
(
0 | cl(Xl∆t), σ

2
cI
)

(9)

where the role of σ2
c is analogous to σ2

R above.
Since the goal is to identify the right-hand side of the evolution laws in232

Equation (3), we denote by θc the parameters appearing in F i.e. F (Xt, t; θc).
Accordingly, the virtual observations in Equation (6) or Equation (8) would234

depend on θc. We defer until section 3 a detailed discussion on the form,
the parametrization as well as the prior specifications in the Bayesian set-236

ting adopted. The latter plays an important role as with sparsity-inducing
priors we can avoid overfitting and obtain a parsimonious and physically-238

interpretable solution for F . We finally remark that physical information
taking the form of equalities can also be available for the FG states x. While240

this can be incorporated using appropriate virtual observables as above, the
inference framework would exhibit significant differences (in brief, FG states242

would need to be inferred as well) and in order to avoid confusion we do not
discuss such cases here.244

2.3. Emission law: Coarse-to-Fine map

We make use of a probabilistic generative model in the definition of the246

CG state-variables through a coarse-to-fine map (Felsberger and Koutsoure-
lakis, 2019) as opposed to traditional, many-to-one maps from the FG de-248

scription to the CG one. We denote the associated (conditional) density
by:250

pcf (xt| Xt; θcf ) (10)
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x̂
(1:n)
0:T∆t FG simulation Data

Observables D R̂
(1:n)
0:T Virtual Observables corresponding to CG model residuals

ĉ
(1:n)
0:T Virtual Observables corresponding to CG constraints

Latent variables X
(1:n)
0:T∆t CG state variable

Model parameters θ θcf parameters in the coarse-to-fine mapping
θc parameters in the CG evolution law

Table 1: Data, latent variables and model parameters

where θcf denote the (unknown) parameters that will be learned from the
data. The form of pcf can be adapted to the particulars of the problem and252

can be endowed with various levels of domain knowledge. In section 3, we
provide various examples, from particle-systems where pcf is fully determined254

by the physics, to a more abstract case where deep neural networks are
employed in order to learn the full pcf . We note finally that a (probabilistic)256

fine-to-coarse map can still be learned in the current setting, and would
correspond to the posterior of Xt given xt. We discuss this as well as all258

aspects pertaining to inference and learning in the next section.

2.4. Inference and Learning260

We start this section by summarizing the main elements of the model
presented (i.e. data, latent variables and parameters - see also Table 1) and262

subsequently describe a fully Bayesian inference scheme based on Stochastic
Variational Inference (SVI, (Hoffman et al., 2013)) tools.264

We adopt an enlarged definition of data which we cumulatively denote by
D and which encompasses:266

• FG simulation data as in Equation (2) consisting of n sequences of
the FG state-variables. As the likelihood model implied by the pcf in268

Equation (10) involves only the observables at each coarse time-step we

denote those by {x̂(1:n)
0:T∆t}. We assume that the number of observations270

in each sequence is the same although this is not necessary. In fact,
the length of each time-sequence and the number of time-sequences272

needed could be the subject of an active learning scheme. This would be
particularly important in cases where very expensive, high-dimensional274

FG simulators are employed. The generative, proposed formulation can
account for any type of (in)direct or (in)complete/partial, experimental276

or computational observations relating to FG states which we omit
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here for simplicity of the presentation. We nevertheless illustrate this278

capability of the model in the example of section 3.2.

• Virtual observables relating to the CG states X at each time-step l280

consisting of residuals R̂
(1:n)
l as in Equation (6) and/or constraints ĉ

(1:n)
l

as in Equation (8) (the superscript pertains to the time sequence i =282

1, . . . , n). Assuming they pertain to all time-steps, we denote them by{
R̂

(1:n)
0:T , ĉ

(1:n)
0:T

}
.284

The latent (unobserved) variables of the model are represented by the

CG state-variables
{
X

(1:n)
0:T∆t

}
which relate to the FG data through the pcf286

(in Equation (10)) and to the virtual observables through Equation (7) or
Equation (9).288

Finally, the (unknown) parameters of the model which we denote cumu-
latively by θ consist of3:290

• θc which parametrize the right-hand-side of the CG evolution law (see
end of section 2.2),292

• θcf which parametrize the probabilistic coarse-to-fine map (Equation
(10)),294

• σR, σc involved in the enforcement of virtual observables in Equation
(6) and Equation (8) respectively, and,296

• hyperparameters associated with the priors employed on the latent vari-
ables or the previous parameters.298

Following a fully-Bayesian formulation, we can express the posterior of
the unknowns (i.e. latent variables and parameters) as follows:300

p(X
(1:n)
0:T∆t, θ | D) =

p(D | X(1:n)
0:T∆t,θ) p(X

(1:n)
0:T∆t,θ)

p(D)
(11)

where p(X
(1:n)
0:T∆t,θ) denotes the prior on the latent variables and parameters.

3If any of the parameters in this list are prescribed, then they are omitted from θ.
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We discuss first the likelihood term p(D|X(1:n)
0:T∆t,θ) which can be decom-302

posed into the product of three (conditionally) independent terms, one for
each data-type, i.e.:304

p(D |X(1:n)
0:T∆t,θ) = p(x̂

(1:n)
0:T∆t |X

(1:n)
0:T∆t,θ) p(R̂

(1:n)
0:T |X

(1:n)
0:T∆t,θ) p(ĉ

(1:n)
0:T |X

(1:n)
0:T∆t,θ)

(12)
We further note that (from Equation (10)):

p(x̂
(1:n)
0:T∆t | X

(1:n)
0:T∆t,θ) =

n∏
i=1

T∏
l=0

pcf (x
(i)
l ∆t | X

(i)
l ∆t,θcf ) (13)

and (from Equation (7)):306

p(R̂
(1:n)
0:T |X

(1:n)
0:T∆t,θ) =

∏n
i=1

∏T
l=0N

(
0|Rl(X

(i)), σ2
RI
)

∝
∏n

i=1

∏T
l=0

1

σ
dim(R)
R

exp
{
− 1

2σ2
R

∣∣Rl(X
(i))
∣∣2} (14)

and (from Equation (9)):

p(ĉ
(1:n)
0:T |X

(1:n)
0:T∆t,θ) =

∏n
i=1

∏T
l=0N (0|cl(X(i)

l ∆t), σ
2
cI)

∝
∏n

i=1

∏T
l=0

1

σ
dim(c)
c

exp

{
− 1

2σ2
c

∣∣∣cl(X(i)
l ∆t)

∣∣∣2} (15)

While the complexity of the expressions involved imply a non-analytic solu-308

tion for the posterior, we emphasize that the terms above encode actual and
virtual observables (constraints) and they are differentiable, a property that310

is crucial for carrying out Variational Inference.
Before presenting the inference procedure, we mention an interesting pos-312

sibility for encoding prior information for the latent CG statesX
(1:n)
0:T∆t through

the prior term p(X
(1:n)
0:T∆t). A desirable property of the CG state-variables is314

that of slowness i.e. that they should capture features of the system that
evolve over (much) larger time-scales (Kevrekidis et al., 2003). The discovery316

of such features has been the goal of several statistical analysis procedures
(e.g. Slow Feature Analysis (Wiskott and Sejnowski, 2002)) as well as in318

physics/chemistry literature (see a recent review in (Klus et al., 2018)). In
this work we promote the discovery of such slow features by appropriate prior320

selection, and in particular by penalizing the jumps between two successive
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time-instants, i.e.:322

p(X
(1:n)
0:T∆t) =

∏n
i=1 pc,0(X

(i)
0 )
∏T−1

l=0 p(X
(i)
(l+1) ∆t|X

(i)
l ∆t, σ

2
XI)

=
∏n

i=1 pc,0(X
(i)
0 )
∏T−1

l=0 N (X
(i)
(l+1) ∆t|X

(i)
l ∆t, σ

2
XI)

∝
∏n

i=1 pc,0(X
(i)
0 )
∏T−1

l=0
1

σdc
X

exp

{
− 1
σ2
X

∣∣∣X(i)
(l+1) ∆t −X

(i)
l ∆t

∣∣∣2}
(16)

where pc,0 is a prior density for the initial CG state. We observe that the
strength of the penalty is inversely proportional to the hyperparameter σ2

X324

and in the limit σ2
X → 0 it implies a constant time history of Xt. As the

appropriate value for σ2
X depends on the problem, we include this in the326

parameter vector θ that is inferred/learned from the data.
Given the intractability of the actual posterior, we advocate in this work328

Variational Inference. This operates on a parameterized family of densities,
say qφ(X

(1:n)
0:T∆t, θ) and attempts to find the one (i.e. the value of φ) that330

most closely approximates the posterior by minimizing their Kullback-Leibler
divergence. It can be readily shown (Bishop, 2006), that the optimal qφ,332

maximizes the Evidence Lower Bound (ELBO) F(qφ(X
(1:n)
0:T∆t, θ)) below:

log p(D) = log
∫
p(D, X(1:n)

0:T∆t, θ) dX
(1:n)
0:T∆t dθ

= log
∫ p(D| X(1:n)

0:T∆t, θ)p(X
(1:n)
0:T∆t, θ)

qφ(X
(1:n)
0:T∆t, θ)

qφ(X
(1:n)
0:T∆t, θ) dX

(1:n)
0:T∆t dθ

≥
∫

log
p(D| X(1:n)

0:T∆t, θ)p(X
(1:n)
0:T∆t, θ)

qφ(X
(1:n)
0:T∆t, θ)

qφ(X
(1:n)
0:T∆t, θ) dX

(1:n)
0:T∆t dθ

= F(qφ(X
(1:n)
0:T∆t, θ))

(17)
In the examples analyzed we decompose the approximate posterior as:334

qφ(X
(1:n)
0:T∆t, θ) = qφ(X

(1:n)
0:T∆t) qφ(θ)

=
[∏n

i=0 qφ(X
(i)
0:T∆t)

]
qφ(θ)

(18)

where the first line is the so-called mean-field approximation and the second
is a direct consequence of the (conditional) independence of the time se-336

quences in the likelihood. We note that evaluations of the ELBO F involve
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expectations with respect to qφ i.e.:338

F
(
qφ(X

(1:n)
0:T∆t, θ)

)
= Eqφ

[
log p(D| X(1:n)

0:T∆t, θ)
]

+ Eqφ

[
log

p(X
(1:n)
0:T∆t, θ)

qφ(X
(1:n)
0:T∆t, θ)

]
(19)

and in order to maximize it (with respect to φ), gradients of those are needed.
Given the intractability of these expectations and their derivatives, we make340

use of Monte Carlo estimates in combination with stochastic gradient ascent
for the φ-updates. In order to reduce the Monte Carlo error in these es-342

timates, we make use of the reparametrization trick (Kingma and Welling,
2014), for which the differentiability of the residuals/constraints is necessary.344

We specify the particulars of the algorithm more precisely in the numerical
illustration section (see e.g. Algorithm 3 or 4).346

We note that maximum likelihood or maximum-a-posteriori (MAP) point
estimates for any of the parameters involved can be obtained as a special case348

of the aforementioned scheme by employing a qφ that is equal to a Dirac-delta
function. Furthermore, amortized versions of the approximate posterior qφ350

i.e. forms that explicitly account on the dependence on the data values, can
be employed in part or in whole. These have the capability of being able352

to transfer information across data points and are necessary in the realm of
Big Data. We note though that we operate in the Small Data regime, i.e.354

the number of time sequences n (and time-steps T ) is not particularly large.
Hybrid versions between amortized and non-amortized posteriors could also356

be employed (Kim et al., 2018).
We note finally that while the ELBO F is used purely as the objective358

function for the determination of the approximate posterior, its role can be
quite significant in model validation and refinement. In particular since F360

approximates the model evidence (denominator of Equation (11)), once eval-
uated, it can be used to comparatively assess different models. These could362

have different CG statesX (in type and/or number) or different parametriza-
tions θ. In this regard, the ELBO F could serve as the primary driver for364

the adaptive refinement of the CG model (Grigo and Koutsourelakis, 2019)
in order to better explain the observables and lead to superior predictions.366

2.5. Prediction

An essential feature of the proposed modeling framework is the abil-368

ity to produce probabilistic predictive estimates. These encompass the
information-loss due to the coarse-graining process as well as the epistemic370
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uncertainty arising from finite (and small) datasets. We distinguish between
two settings:372

a) the ”interpolative” i.e. predictions into the future of a sequence i ob-

served up to time-step T i.e. x̂
(i)
0:T∆t which was used in the training374

phase - see section 3, or

b) the ”extrapolative” i.e. predictions for a completely new initial condi-376

tion x̂0 - see section 3.

We note that any predictions should account for the domain knowledge378

incorporated in the training through the residuals Rl or constraints cl. For-
mally that is, one should enlarge the posterior density defined in Equation380

(11), in order to account for the residuals and/or constraints at future time-
steps. This would in turn imply, that future (FG or CG) states should be382

inferred from such an augmented posterior i.e. prediction would imply an
enlarged inference process. In the examples presented we adopt a simpler384

procedure that retains the essential features (i.e. probabilistic nature) but
is more computationally expedient. In particular, for case a) above and if386

qφ(X
(i)
T∆t) is the (marginal) posterior of the last, hidden CG state and q(θ)

the posterior of the model parameters, then we (see also Agorithm 1):388

• sample from q(X
(i)
T∆t), q(θ)

• for each sample, we propagate the CG dynamics dynamics of Equation390

(3) (e.g. by solving the corresponding residual Equations (4)) in order

to obtain X
(i)
(T+1)∆t,X

(i)
(T+2)∆t, . . ., and,392

• we sample x
(i)
(T+1)∆t from pcf (x

(i)
(T+1)∆t|X

(i)
(T+1)∆t,θcf ), x

(i)
(T+2)∆t from

pcf (x
(i)
(T+2)∆t|X

(i)
(T+2)∆t,θcf ) etc.394

We note that this procedure does not necessarily ensure enforcement of the
constraints by future CG states. Nevertheless it gives rise to samples of the396

full FG state evolution from which any observable of interest as well as the
predictive uncertainty can be computed.398

For the extrapolative setting above, i.e. for a new FG initial condition
x̂0, the evolution equations of the CG states as well as the emission density400

pcf can be employed as long as the initial state X0 is specified or better
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Algorithm 1: Prediction - Algorithm for interoplative setting

Result: Sample of x
(i)
(T+P )∆t

Data: qφ(XT∆t), qφ(θ)

1 Sample from qφ(X
(i)
T∆t) and qφ(θ);

2 while Time-step (T + P )∆t of interest not reached do
3 Apply the CG evolution law as described in Equation (4);
4 end
5 Sample from pcf (x(T+P )∆t | X(T+P )∆t,θ)

Algorithm 2: Prediction - Algorithm for extrapolative setting

Result: Sample of xP∆t

Data: pφ(x̂0), qφ(θ)
1 Apply Bayesian Inference as described in Equation (20) to infer

p(X0|x̂0);
2 Sample from p(X0|x̂0) and q(θ);
3 while Time-step P∆t of interest not reached do
4 Apply the CG evolution law as described in Equation (4);
5 end
6 Sample from pcf (xP∆t|XP∆t,θ)

yet inferred. For that purpose, the posterior p(X0|x̂0) of X0 needs to be402

determined which according to Bayes rule will be proportional to:

p(X0 | x̂0) ∝ pcf (x̂0 | X0,θcf ) pc,0(X0) (20)

where pc,0(X0) is the initial state’s prior (see also Equation (16)). For each404

sample of θcf from the (approximate) posterior qφ(θcf ), samples of X0 must
be drawn from p(X0|x̂0) and subsequently propagated as in the 3 steps above406

in order to obtain predictive samples of the full FG state vector (see Algo-
rithm 2).408

2.6. Computational considerations

We note that in multiscale dynamical systems of physical interest, the410

computational cost stems primarily from the simulation of the FG system
due to its generally very high-dimensional state-vector x and very small412

time-step δt. Hence, one of the main objectives of this work is to enable the
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learning of the CG dynamics with the fewest possible and shortest possible414

FG time-sequences.
We note that once such FG simulation (or experimental) data have been416

obtained, neither the training phase of the CG model (section 2.4) nor the
prediction phase (section 2.5) require any additional FG simulations. The418

cost of training depends on the dimension of the CG states X as well as the
number of parameters θc (for the CG dynamics), θcf (for the coarse-to-fine420

map) and φ (for the approximate posterior).
We emphasize that this is a one-time, offline cost i.e. once the CG model422

has been trained, it can be used to produce probabilistic predictive estimates
of the whole FG state-vector into the future without any further recourse to424

the FG model. One needs only to simulate in such case the CG dynamics
which due to the lower-dimensional state-vector X and the much larger CG426

time-step ∆t are much less cumbersome than the FG system.
Finally, if more FG data (e.g. longer or new sequences) become available428

at a later stage, the SVI algorithm can be re-initialized from the previous
values and incorporate the new likelihood terms. If a modest amount of data430

is introduced, one would expect small (or even no changes for faraway states)
changes and therefore rapid convergence. Naturally the introduction of ob-432

servables at new time instants would introduce additional latent variables for
the corresponding CG states.434

3. Numerical Illustrations

We demonstrate the capabilities of the proposed framework in discovering436

predictive, coarse-grained evolution laws as well as effective coarse-grained
descriptions, on three examples. Two of those involve very high-dimensional438

systems of stochastically interacting particles (section 3.1, (Felsberger and
Koutsourelakis, 2019)) and the third, a nonlinear pendulum, the dynamics440

of which we attempt to identify simply from sequences of images (section
3.2, (Champion et al., 2019)). In the sequel, we specify the elements of the442

proposed model that were presented generically in the previous sections and
concretize parametrizations and their meaning. The goals of the numerical444

illustrations are:

• to assess the predictive performance of the model under “interpolative”446

and “extrapolative” conditions (see section 2.5). By “interpolative” we
mean the ability to predict the evolution of an FG states-sequence when448

data from this sequence has been used for training. By “extrapolative”,
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we mean the ability to predict the full FG state evolution from new450

initial conditions that were not used in training.

• to examine the effect of the number n and length T of the data se-452

quences and assess the model’s ability to learn the correct structure
with small n, T and partial observations.454

• to examine the enforcement of the residuals/constraints (e.g. conser-
vation of mass) in the inferred and predicted states.456

• to examine the ability of the model to identify sparse, interpretable
solutions for the CG dynamics.458

• to assess the magnitude and time evolution of the predictive uncertainty
estimates.460

• to assess the ability of the model to learn effective CG state variables
and accurate coarse-to-fine maps.462

Some of the simulation results as well as the corresponding code will be
made available at the following github repository4 upon publication.464

3.1. Particle systems

3.1.1. FG model466

The FG model consists of df identical particles which can move in the
bounded one-dimensional domain [−1, 1] (under periodic boundary condi-468

tions). The FG variables xt consist therefore of the coordinates of the par-
ticles at each time instant t and the dimension of the system df is equal to470

the number of particles. We consider two types of stochastic dynamics that
correspond to an advection-diffusion-type (section 3.1.5) and an inviscid-472

Burgers-type behavior (section 3.1.6). The particulars of the microscopic
dynamics are described in the corresponding sections. In the following, we474

discuss common aspects of both problems that pertain to the CG description,
the CG evolution law and the inference procedures.476

4https://github.com/SebastianKaltenbach/PhysicalConstraints_

ProbabilisticCG.git
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3.1.2. CG variables and coarse-to-fine mapping478

For the CG representation, we employ the normalized particle density
ρ(s, t), s ∈ [−1, 1] (Li et al., 2007) which we discretize in dc bins. The state480

vector Xt = {Xt,j}dcj=1 contains the particle density values in each of the bins

j, i.e.
∑dc

j=1 Xt,j = 1 and Xt,j ≥ 0 ∀t, j. We emphasize that CG and FG482

variables are of a different nature (i.e. proportion of particles in each bin
vs. coordinates of particles) and, more importantly for practical purposes,484

of very different dimension.
The nature of the CG variables Xt suggests a multinomial for the coarse-486

to-fine density pcf (section 2.3) i.e.:
488

pcf (xt|Xt) =
df !

m1(xt)! m2(xt)! . . .mdc(xt)!

dc∏
j=1

X
mj(xt)
t,j , (21)

where mj(xt) is the number of particles in bin j. The underlying assumption
is that, given the CG state Xt, the coordinates of the particles xt are condi-490

tionally independent. This does not imply that they move independently nor
that they cannot exhibit coherent behavior (Felsberger and Koutsourelakis,492

2019). The practical consequence of Equation (21) is that no parameters
need to be learned for pcf (in contrast to section 3.2).494

3.1.3. The CG evolution law and the virtual observables

With regards to the evolution law of the CG states (Equation (3)), we496

postulate a right-hand side F (Xt;θc) = {Fj(Xt;θc)}dcj=1 of the form:

Fj(Xt,θc) =
∑M

m=1 θc,m ψ
(j)
m (Xt)

=
H∑

h=−H

θ
(1)
c,hXt,j+h︸ ︷︷ ︸

1storder

+
H∑

h1=−H

H∑
h2≥h1

θ
(2)
c, (h1,h2)Xt,j+h1Xt,j+h2︸ ︷︷ ︸

2ndorder

(22)

which consists of first- and second-order interactions over a window of size498

H with θ
(1)
c and θ

(2)
c denoting the vectors of the corresponding unknown

coefficients. In this case, the total number of unknown coefficients θc, is500

M = dim(θc) = (2H + 1) + (H + 1)(2H + 1) and grows quadratically with
the neighborhood-size H. Since each of the CG variables Xt,j refers to the502

particle density at bin j (and at time t), the neighborhood size H corresponds
to the number of bins to the left or to the right of bin j that affect its504
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evolution in time The feature functions that we generically denote with ψ
(j)
m

in Equation (22) can also involve higher-order interactions or be of non-506

polynomial type. Non-Markovian models could be accommodated as well
by accounting for memory terms. It is obviously impossible to know a priori508

which feature functions are relevant in the evolution of the CG states or what
types of interactions are essential (e.g. first, second-order etc). At the same510

time, and especially in the Small Data regime considered, employing a large
vocabulary of feature functions can lead to overfitting, lack of interpretability512

and poor predictions, particularly under “extrapolative” conditions. This
highly-important model selection issue has been of concern in several coarse-514

graining studies (Noid, 2013). We propose of automatically addressing this
within the Bayesian framework advocated by employing appropriate sparsity-516

inducing priors for θc (Felsberger and Koutsourelakis, 2019). In particular,
we make use of the Automatic Relevance Determination (ARD, (Mackay,518

1995)) model according to which

p(θc,m | τm) = N (θc,m | 0, τ−1
m ), m = 1, 2, . . . ,M = dim(θc). (23)

The following hyperprior for the precision hyperparameters τ = {τm}Mm=1520

was used:
p(τk | γ0, δ0) = Gamma(τk | γ0, δ0) (24)

The hyperparameters γ0 and δ0 are set to very small values 10−9 in all en-522

suing studies (Bishop and Tipping, 2000). As we demonstrate in the sequel,
the hypeprior proposed can give rise to parsimonious solutions for the CG524

dynamics even in the Small Data setting considered.
526

A discretized version of the CG evolution law (Equation (3) and Equation
(22)) with time step ∆t is considered by employing a forward Euler scheme5

528

which implies the following residual vector Rl at each time-step l (Equation
(4)):530

Rl(X) = X(l+1)∆t,j −Xl∆t,j −∆t F (Xl∆t,j,θc), ∀ l (25)

and the corresponding virtual observables R̂l (Equation (6)).
More importantly, the nature of the CG variables suggests a conservation532

of mass constraint that has to be fulfilled at each time step l. In view of

5This corresponds to a multistep method in Equation (4) with K = 1, a0 = 1, a1 =
−1, β0 = 0 and β1 = −1.
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the discussion of section 2.2, this suggests the scalar constraint function as534

in Equation (5):

cl(Xl∆t) =
dc∑
j=1

Xl∆t,j − 1 = 0, ∀ l (26)

and the corresponding virtual observables ĉl (Equation (8)).536

3.1.4. Inference and Learning

Given the multinomial pcf in Equation (21), we employed the following538

procedure for generating training data which consists of n numerical experi-
ments in which the FG model is randomly initialized and propagated for one540

coarse time-step ∆t i.e. for T = ∆t
δt

microscopic time-steps. In particular:

• For i = 1, . . . , n, we:542

– sample CG initial state X̂
(i)
0 from a density pc,0(X̂

(i)
0 ).

– sample FG initial state x̂
(i)
0 from pcf (x̂

(i)
0 |X

(i)
0 ).544

– solve the (discretized) FG model for ∆t
δt

microscopic time-steps

and record final state x̂
(i)
∆t546

The generated FG data {x̂(i)
∆t}ni=1 over a single CG time-step are used subse-

quently to draw inferences on the CG model states and parameters (section548

2.4). We note that longer time sequences could readily be generated (albeit
at an increased cost). The number of samples n is also something that can be550

selected adaptively since inferences and predictions can be updated as soon
as more data become available. The density pc,0(X

(i)
0 ) from which initial CG552

states are drawn, can be selected quite flexibly and some indicative samples
are shown in Figure 2 for the advection-diffusion case, and in Figure 12 for554

the inviscid-Burgers’ case. In summary, the data D employed, apart from
{x̂(i)

∆t}ni=1 above consists of the virtual observables {R̂(1:n)
0 , ĉ

(1:n)
1 }.556

As a result of the data employed and the parametrization adopted, we
haveX

(1:n)
∆t as the sole latent vector and θc, τ as the unknown (hyper)parameters.558

Since only a single CG time-step was considered, we omitted the slow-
ness prior (see Equation (16)). Hence we sought an approximate posterior560

qφ(X∆t,θc, τ ) (Equation (17)) which we factorized as in Equation (18) as
follows:562

qφ(X
(1:n)
∆t ,θc, τ ) =

[
n∏
i=1

qφ(X
(i)
∆t)

]
q(θc)q(τ ) (27)
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Upon substitution in Equation (19), this yields the following ELBO:

F(qφ(X
(1:n)
∆t , θc, τ )) = Eqφ

[
log p(D| X(1:n)

∆t , θc)
]

+ Eqφ [log p( θc | τ )]

+Eqφ [log p(τ )]− Eqφ [log qφ]
(28)

where:564

p(D|X(1:n)
∆t ,θc) = p(x̂

(1:n)
∆t |X

(1:n)
∆t ) p(R̂

(1:n)
0 |X(1:n)

∆t ,θc) p(ĉ
(1:n)
1 |X(1:n)

∆t ) (29)

Based on Equation (28) the optimal variational posterior densities can be
obtained as:566

log qopt(θc) = E
qφ(X

(1:n)
∆t )

[
log p(R̂

(1:n)
0 |X(1:n)

0:1∆t,θc)
]

+ Eq(τ ) [log p(θc | τ )]

(30)
log qopt(τ ) = Eqφ(θc) [log p(θc | τ )] + log p(τ ) (31)

568

log qoptφ (X
(i)
∆t) = log pcf (x

i
∆t |X i

∆t) + Eqφ(θc)

[
log p(R̂

(i)
0 |X

(i)
0:1∆t,θc)

]
+ log p(ĉ

(i)
1 |X

(i)
∆t)

(32)
The equations above are coupled and a closed-form solution can be ob-

tained only for the first two. In particular, the optimal posterior approxima-570

tion for θc is a multivariate normal with mean µθc and covariance Sθc .
572

S−1
θc

= σ−2
R

n∑
i=1

dc∑
j=1

E
qφ(X

(i)
∆t)

[
ψ(j)(X

(i)
∆t)
(
ψ(j)(X

(i)
∆t)
)T]

+ Eqφ(τ )[diag(τ )]

(33)

S−1
θc
µθc = σ−2

R

n∑
i=1

dc∑
j=1

E
qφ(X

(i)
∆t)

[
ψ(j)(X

(i)
∆t)
]

(34)

where the vector ψ(j) consists of the M feature functions ψ
(j)
m in Equation574

(22). The optimal posterior approximation for the vector τ of the hyper-
parameters {τm}Mm=1 reduces to a product of independent Gamma-densities576

(Bishop and Tipping, 2000) with parameters γm and δm which are given by:

γm = γ0+0.5, δm = δ0+
1

2

(
µθc,m + Sθc,(m,m)

)
, m = 0, 1, . . . ,M = dim(θc)

(35)
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Algorithm 3: Inference algorithm for particle systems

Result: {qφ(X
(i)
∆t)}ni=1, q(θc), q(τ )

Data: {X(i)
0 , x̂

(i)
∆t}ni=1

1 Initialize the parameters for the variational distributions;
2 Set iteration counter w to zero;
3 Set convergence limit ε;
4 while ||parametersw − parametersw−1||2 > ε do
5 for i← 1 to n do

6 Update qφ(X
(i)
∆t) by maximizing the ELBO (see Equation

(28))
7 end
8 update q(θc) according to Equation (33) and Equation (34) ;
9 update q(τ ) according to Equation (35) ;

10 update the iteration counter by one ;

11 end

Finally and since closed-form updates for the optimal posterior qoptφ (X
(i)
∆t)578

are impossible, we employed Stochastic Variational Inference (SVI) as de-
tailed in section 2.4 by assuming a multivariate lognormal (in order to en-580

sure positivity of X∆t,j) with parameters φ = {µi,Si}ni=1
6. Noisy gradients

with respect to the parameters φ were estimated with Monte Carlo and the582

reparametrization trick (Kingma and Welling, 2014) and φ were updated
using stochastic gradient ascent (the ADAM algorithm of (Kingma and Ba,584

2014) in particular). The inference steps are summarized in Algorithm 3.

df = dim(x) dc = dim(X) FG time-step δt CG time-step ∆t

Advection-Diffusion 250× 103 ≤ 64 2.5× 10−3 2
inviscid Burgers 250× 103 ≤ 128 2.5× 10−3 4

Table 2: FG/CG state-space dimensions and FG/CG time-steps for particle systems in-
vestigated.

6Diagonal covariances Si were employed.
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3.1.5. Advection-Diffusion system586

For the simulations presented in this section df = 250×103 particles were
used, which, at each microscopic time step δt = 2.5×10−3 performed random,588

non-interacting, jumps of size δs = 1
640

, either to the left with probability
pleft = 0.1875 or to the right with probability pright = 0.2125. The positions590

were restricted in [−1, 1] with periodic boundary conditions. It is well-known
(Cottet and Koumoutsakos, 2000) that in the limit (i.e. df →∞) the particle592

density ρ(s, t) can be modeled with an advection-diffusion PDE with diffusion
constant D = (pleft + pright)

δs2

2δt
and velocity v = (pright − pleft) δsδt :594

∂ρ

∂t
+ v

∂ρ

∂s
= D

∂2ρ

∂s2
, s ∈ (−1, 1).. (36)

For the CG description, 64 bins were employed i.e. dc = 64 and a time
step ∆t = 2 (see Table 2). Furthermore we employed first- and second-596

order feature function as in Equation (22) with a neighborhood size H = 5
which implies a total of M = 77 unknown parameters θc. We incorporate598

virtual observables pertaining to the residuals R̂0 with σ2
R = 10−6 (Equation

(7))7 and the virtual observables ĉ1 pertaining to the conservation-of-mass600

constraint with σ2
c = 10−10 (Equation (9)).

We employed n = 32 and n = 64 time sequences for training that were602

generated as detailed in section 3.1.4 with initial conditions {X(i)
0 }ni=1 such as

the ones seen in Figure 2. The initial conditions were generated by sampling604

the amplitude of a sine function, which was shifted up to ensure all values
are positive and then normalized.606

Figure 3 provides a histogram of the function values of the conservation-

of-mass constraint
{
c1(X

(i)
∆t)
}n
i=1

upon convergence. The small values suggest608

that this has been softly incorporated in the CG states. A similar histogram
for the norm of the residuals

{
R0(X(i))

}n
i=1

is depicted in Figure 4 which610

also suggests enforcement of the CG evolution with the parameters θc learned
from the data. The evolution of the posterior mean µθc (Equation (34)) of612

(a subset of) these parameters over the iterations of the SVI is depicted
in Figure 5. Therein, and more clearly in Figure 6, one can observe the614

7A very interesting possibility which is not explored here would be to learn σ2
R i.e. the

strength of the enforcement of the CG evolution law from the data. This would increase
the flexibility of the model in cases where the vocabulary of the feature functions selected
in the right-hand side of the CG dynamics is not rich enough.
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for the Advection-Diffusion problem (or-

ange) and an initial condition (blue) used for“extrapolative” predictions.

ability of the ARD prior to deactivate the vast majority of the right-hand-
side feature functions and reveal a small subset of non-zero, salient terms.616

Both with n = 32 and n = 64 training data sequences, only parameters
θc associated with first-order-interactions (Equation (22)) are activated. In618

particular, these are θ
(1)
c,−3 and θ

(1)
c,1 which are associated with the feature func-

tions Xt,j−3 and Xt,j+1 respectively in Equation (22). This shares similarities620

with a finite-difference discretization scheme for the advection-diffusion and
could be considered as an upwind scheme. The two identified coefficients622

do not form a centered difference operator but the center of the operator is
shifted to the left and therefore takes into account the direction of the par-624

ticle movement. As the value of the coefficients is not exactly the same the
diffusive part is also captured.626

Figure 7 depicts one of the inferred CG states X
(i)
∆t as well as the associ-628

ated posterior uncertainty. Once the CG evolution law is learned, this state
can be propagated into the future as detailed in section 2.5 in order to gen-630

erate predictions. Indicative predictions (under “interpolative” conditions)
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Figure 6: Comparison of the inferred parameters θc for n = 32 (left) and n = 64 (right)
training data sequences. The black bars indicate +/- 1 standard deviation. The red
vertical line separates first- from second-order coefficients.
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Figure 7: Inferred CG state X
(i)
∆t for a data sequence i. Reference is obtained by sorting

the particles into bins according to their position.

can be seen in Figure 8 where the particle density ρx(t, s) up to 25∆t into632

the future is drawn. The latter as well as the associated uncertainty bounds
are estimated directly from the reconstructed FG states. As one would ex-634

pect, the predictive uncertainty grows, the further into the future one tries
to predict. Figure 9 compares the predictive performance as a function of636

the training data used i.e. n = 32 or n = 64. In both cases, the ground truth
is envelopped and as one would expect, more training data lead to smaller638

uncertainty bounds.
640

We also tested the trained model (on n = 64) under “extrapolative”
conditions i.e. for a different initial condition than the ones included in the642

training data (Figure 2). The predictive estimates in Figure 10 show very
good agreement with the reference solution. It is important to point out644

that the model can correctly advect and diffuse the particle-bump initially
introduced around s = 0.5 which suggests that the CG dynamics learned646

reflect the most important features of the problem.
Finally, in Figure 11, the evolution of the mass constraint into the future648

is depicted and good agreement with the target value is observed.
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Figure 8: Prediction based on an initial condition contained in the training data. Top:
Reference data (the vertical lines indicate the time instances with given data), Middle:
Predictive posterior mean, Bottom: snapshots at three different time instances.

3.1.6. Burgers’ system650

The second test-case involved an FG system of df = 500 × 103 particles
which perform interactive random walks i.e. the jump performed at each652

fine-scale time-step δt = 2.5 × 10−3 depends on the positions of the other
walkers. In particular we adopted interactions as described in Roberts (1989);654

Chertock and Levy (2001); Li et al. (2007) so as, in the limit (i.e. when
df → ∞, δt → 0, δs → 0), the particle density ρ(s, t) follows the inviscid656

Burgers’ equation:

∂ρ

∂t
+

1

2

∂ρ2

∂s
= 0, s ∈ (−1, 1). (37)

For the CG description, 128 bins were employed i.e. dc = 128 and a658

time step ∆t = 4 (see Table 2). As compared with the previous case, we
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Figure 9: Comparison of the predictions for n = 32 (left) and n = 64 (right) at 15∆t (top)
and 25∆t (bottom).
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Figure 10: Prediction based on an initial condition NOT contained in the training data.
Top: Reference data, Middle: Predictive posterior mean, Bottom: snapshots at three
different time instances

enlarged the neighborhood size H in the first- and second-order interactions660

toH = 8, which yieldedM = 170 right-hand-side terms in Equation (22). We
incorporate virtual observables pertaining to the residuals R̂0 with σ2

R = 10−7
662

(Equation (7)) and the virtual observables ĉ1 pertaining to conservation-of-
mass constraint with σ2

c = 10−10 (Equation (9)).664

We employed n = 32, n = 64 and n = 128 time sequences for training that
were generated as detailed in section 3.1.4 with initial conditions {X(i)

0 }ni=1666

such as the ones seen in Figure 12. They were generated by randomizing the
width and height of a triangular profile.668

Figure 13 provides a histogram of the function values of the conservation-

of-mass constraint
{
c1(X

(i)
∆t)
}n
i=1

upon convergence. The small values suggest670

that this has been softly incorporated in the CG states. A similar histogram
for the norm of the residuals

{
R0(X(i))

}n
i=1

is depicted in Figure 14 which672
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Figure 11: Evolution of the mass constraint (target value is 1) in time including future
time-instants. ”Predicted” corresponds to the posterior mean.
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also suggests enforcement of the CG evolution with the parameters θc learned
from the data. The evolution of the posterior mean µθc (Equation (34)) of (a674

subset of) these parameters over the iterations of the SVI is depicted in Figure
15. As in the previous example, in Figure 16 one can observe the ability of676

the ARD prior model to yield sparse solutions for the right-hand side of
the CG evolution law. For all three training datasets with n = 32, 64, 128678

time-sequences, only parameters θc associated with second-order-interactions
(Equation (22)) are activated. In particular, these are the negative coefficient680

θ
(2)
c,(0,0) (in all three cases) as well as different second-order coefficients. In the

cases of n = 32 and n = 64 two coefficients are found with positive mean and682

high posterior uncertainty, but they also have negative posterior correlation
(correlation coefficient of −0.88). As all activated coefficients pertain to684

feature-functions involving the actual bin or bins to the left, the learned
evolution law could be interpreted as an upwind scheme, which takes the686

direction of the Burgers’ flow into account. Such schemes are considered
advantageous for numerical simulations of fluid flows.688

Figure 17 depicts one of the inferred CG states X
(i)
∆t as well as the asso-
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Figure 15: Evolution of a subset of θc parameters with respect to the iterations of the SVI
for n = 64.

ciated posterior uncertainty. Given the learned CG dynamics, this state can690

be propagated into the future as detailed in section 2.5 in order to generate
predictions. Indicative predictions (under “interpolative” conditions) can be692

seen in Figure 18 where the particle density up to 25∆t into the future is
drawn. The latter as well as the associated uncertainty bounds are estimated694

directly from the reconstructed FG states. As in the previous example, the
predictive uncertainty grows, the further into the future one tries to predict.696

Figure 19 compares the predictive performance as a function of the training
data used i.e. n = 32 or n = 64. The increase in data leads for this example698

to a better fit of the posterior mean to the reference, which captures the
location of the shock more precisely. The predictive uncertainty bounds are700

particularly large at the location of the shock which is the most challenging
component in such systems.702

We also test the trained model (on n = 64) under “extrapolative” condi-704

tions i.e. for a “bimodal” initial condition which was quite different from the
ones included in the training data (Figure 12). The predictive estimates in706

Figure 20 show very good agreement with the reference solution. We want
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deviation. The red vertical line separates first- from second-order coefficients.
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Figure 17: Example of inferred CG state X
(i)
∆t for data sequence i.

to point out that the trained model is capable of capturing the development,708

the position as well as the propagation of a shock front. Finally, in Figure
21, the evolution of the mass constraint into the future is depicted and good710

agreement with the target value is observed.
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Figure 18: Prediction based on an initial condition contained in the training data. Top:
Reference data (the vertical lines indicate the time instances with given data), Middle:
Predictive posterior mean, Bottom: snapshots at three different time instances

3.2. Nonlinear Pendulum712

In this final example we consider time sequences of images of a nonlinear
pendulum in two dimensions as in (Champion et al., 2019).714

3.2.1. FG model

For the FG data we generate a series of black-and-white images of a mov-716

ing disc tied on a string and forming a pendulum (see Figure 31). Each image
consists of 29× 29 pixels each and each pixel’s value was either 1 (occupied)718

or −1 (unoccupied). Hence xt was a df = 292 = 581-dimensional vector
of binary variables. The dynamics of the pendulum can be fully described720

by the rotation angle yt which follows a nonlinear, second-order ODE of the
form:722

ÿt + sin(yt) = 0 (38)
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Figure 19: Comparison of the predictions for n = 32 (left) and n = 64 (right) training
data at 15∆t (top) and 25∆t (bottom).
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Figure 20: Prediction based on an initial condition NOT contained in the training data.
Top: Reference data, Middle: Predictive posterior mean, Bottom: snapshots at three
different time instances

The primary goal is to identify the right CG variables as well as CG dynamics
solely from image data i.e. binary vectors {x̂(i)

0:T∆t}ni=1 collected over T time-724

steps as the pendulum is initialized from n states/positions. The length of
time sequences in the following numerical results was T = 74 and the CG726

time-step ∆t = 0.058. We also considered the effect of missing data i.e. only
observing a subset of the T+1 values in each sequence and present respective728

results in Section 3.2.5.

3.2.2. CG variables and coarse-to-fine mapping730

The only knowledge introduced a priori with regards to the CG variables
Xt is that dim(X) = dc = 2. We intend to investigate procedures that can732

8For the generation of images a microscopic time-step δt = 0.01 for the integration of
Equation (38) was used.
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Figure 21: Evolution of the mass constraint (target value is 1) in time including future
time-instants. ”Predicted” corresponds to the posterior mean.
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automatically identify dc i.e. the number of CG variables. We note at this
stage that such efforts could be guided by the ELBO F (e.g. Equation (19))734

which approximates the model evidence and therefore provides a natural
Bayesian score for comparing models with different numbers of CG variables.736

The other pertinent model component is the coarse-to-fine map which
is enabled by the pcf (xt|Xt) (section 2.3). To that end, we employed the738

following logistic model9:

pcf (x|X) =

df∏
s=1

pcf (xs|X) (39)

with740

pcf (xs|X) =


1

1 + exp(−Gs(X;θcf ))
for xs = 1

1

1 + exp(+Gs(X;θcf ))
for xs = 0

(40)

where xs is the value (1, 0) of each of the pixels s = 1, . . . , df . For the

link functions {Gs}
df
s=1, we employed a deep neural net with weights θcf , the742

details of which are shown in Figure 22. One fully connected layer followed
by two transposed convolutional layers were found to be flexible enough to744

accurately represent the functions Gs. The CNNs were specifically chosen
because of their ability to extract/map features from/to images.746

3.2.3. The CG evolution law and the virtual observables

With regards to the evolution law of the CG states Xt = {Xt,1, Xt,2}, we748

postulate the following form:

Ẋt,1 = F1(Xt,θc) = Xt,2

Ẋt,2 = F2(Xt,θc) = θc
Tψ(Xt,1) =

∑M
m=0 θc,m ψm(Xt,1)

(41)

where θc denote the associated parameters. In total we employed M = 101750

feature functions of the following type:

ψm(X) =


1, m = 0
sin(mX), m = 1, . . . ,M/2 = 50
cos((m− 50)X), m = 51, . . . ,M = 100

(42)

9We omit the time-index t for clarity.
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Figure 22: Deep neural net employed for the link functions Gs (Equation (39)). After
one dense layer which 32 · 7 · 7 nodes and rectified linear unit activation function (ReLU),
two two-dimensional transposed convolutional layers with 32 filters and a kernel size of
3 as well as a ReLU activation function are applied followed by one-last two-dimensional
transposed convolutional layers with one filter, kernel size 3 and without activation to
generate the functions Gs .

The form of Equation (41) implies a second-order ODE where the second CG752

variable plays the role of the velocity. With regards to the parameters θc,
the sparsity-inducing ARD prior detailed in section 3.1.2 was employed.754

To enforce the associated dynamics, we made use of the sympletic Euler
time-discretization scheme, which is a first-order integrator, that is explicit756

in the first variable (Xt,1) and implicit in the other (Xt,2)10. The associated

10This corresponds to a multistep method in Equation (4) with K = 1, a0 = 1, a1 =
−1, β0 = 0 and β1 = −1 for the explicit part and K = 1, a0 = 1, a1 = −1, β0 = −1 and
β1 = 0 for the implicit part.
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virtual observables (see Equation (6)) were enforced with σ2
R = 10−5.758

3.2.4. Inference and Learning

As in the previous examples (Equation (27)), the approximate posterior760

was factorized as:

qφ(X
(1:n)
0:T∆t,θc, τ ) =

[
n∏
i=1

qφ(X
(i)
0:T∆t)

]
q(θc)q(τ ) (43)

and closed-form updates were used for q(θc) (see Equations (33) and (34))762

and q(τ ) (see Equation (35)).

SVI was applied for the posterior densities qφ(X
(i)
0:T∆t) on the vector of764

the latent CG states X
(i)
0:T∆t which we approximated with multivariate Gaus-

sians. Since the posterior reveals the fine-to-coarse map which apart from766

insight can be used for predictive purposes as well, we employed an amortized
version of SVI ((Kingma and Welling, 2014)) i.e. explicitly accounted for the768

dependence of each qφ(X
(i)
0:T∆t) on the corresponding FG observables x̂

(i)
0:T∆t

i.e.:770

qφ(X
(i)
0:T ∆t) = N

(
µφ(x̂

(i)
0:T∆t) , Sφ(x̂

(i)
0:T∆t)

)
(44)

The parameters φ were the weights of a deep convolutional neural net, the
architecture of which is shown in Figure 23. This was chosen because it772

mirrors the DNN architecture employed for the coarse-to-fine map in Figure
22.774

Finally it should be mentioned that the ”slowness” prior was employed
on the hidden states X

(1:n)
0:T∆t as described in Equation (16)11. Maximum-776

likelihood estimates for the hyperparameter σ2
X were employed which readily

arise by differentiating the ELBO F and which yield the following update778

equation:

σ2
X =

1

n T dc

n∑
i=1

T−1∑
l=0

E
qφ(X

(i)
0:T∆t)

[∣∣∣X(i)
(l+1) ∆t −X

(i)
l ∆t

∣∣∣2] (45)

Maximum likelihood estimates were also obtained for the parameters θcf780

(Equation (39)) by numerically differentiating the ELBO F and performing
Stochastic Gradient Ascent (SGA).782

11For the prior distribution pc,0(X
(i)
0 ) a Gaussian mixture distribution with means +1.5

and -1.5 and standard deviation 1.5 was used.
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Fully Connected Layer

Convolutional Layer

Convolutional Layer

Figure 23: DNN architecture for approximate posterior qφ. The input consists of a time
series of pictures of the pendulum and can therefore considered to be three-dimensional,
where the first and second dimension are the number of pixels and the third dimension is
the number of time steps available for training. This input is given to a three-dimensional
convolutional layer with kernel size (3, 3, 2), 32 filters and a ReLU activation followod by
another three-dimensional convolutional layer with kernel size 2 in each dimension, 64
filters and a ReLU activation. The last layer is a fully connected layer with 2dc · T nodes
and without activation to generate the mean and variance values for each time step of the
inferred X coordinates.

A general summary of the steps involved for the inference procedure is-
can be found in Algorithm 4. For the implementation we made use of the784

Tensorflow framework (Abadi et al., 2016).
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Algorithm 4: Algorithm for the Pendulum system

Result: φ,q(θc),q(τ ),θcf ,σX
Data: x̂

(1:n)
0:T∆t

1 Initialize all required parameters;
2 Set iteration counter w to zero;
3 while ||ELBOw − ELBOw−1||2 > ε do
4 Update the parameters θcf and φ by SGA of the ELBO (

Equation (19)) ;
5 update q(θc) according to Equation (33) and Equation (34) ;
6 update q(τ ) according to Equation (35) ;
7 update the parameter σX according to Equation (45);
8 update the iteration counter by one;

9 end

786

3.2.5. Results

Each data sequence x̂
(i)
0:T∆t used consisted of 75 images, i.e. T = 74,788

generated with a time-step ∆t = 0.05 (Figure 24). We investigated two
cases for the number of data sequences i.e. n = 16 and n = 64. The data790

generation involved sampling uniformly the initial angle y0 ∈ [−π, π] and
assuming zero initial velocity i.e ẏ0 = 0. We emphasize that none of the792

data sequences contained a complete oscillation of the pendulum i.e. always
partial trajectories were observed.794

Figure 25 indicates the posterior means of the inferred θc that parametrize
the CG evolution law (Equation (41)) for n = 16 and n = 64. Of the 101796

possible terms, only 2 are activated due the ARD prior.
Figure 26 illustrates trajectories in the two-dimensional CG state-space798

obtained with various initial conditions for the CG model identified with
n = 16 and n = 64 data sequences. The blue curves correspond to “inter-800

porlative” settings i.e. to the CG states of an observed sequence of images,
whereas the orange curves to “extrapolative settings” i.e. to the CG states802

inferred by initializing the pendulum from an arbitrary position not contained
in the training data. In Figure 27 the predicted evolution in time of both804

coarse-grained variables is shown. The periodic nature of the CG dynamics
is obvious, even though the CG state variables implicitly identified do not806

correspond to the natural ones i.e. yt and ẏt.
This can be seen in Figure 28 where for data-sequences x

(i)
0:T∆t (corre-808

sponding to the pendulum at various positions i.e. angles y0:T∆t), we compute
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1

32

48

75

Figure 24: Indicative positions of the pendulum in a data sequence x̂
(i)
0:T∆t. The number

indicates the corresponding time-step.

from the approximate posterior qφ(X
(i)
0:T∆t|x

(i)
0:T∆t) (Equation (44)) the mean810

of the corresponding CG states X
(i)
0:T ∆t as well as the (in this case negligible)

standard deviation. For each time instant l = 0, 1, . . . , T , we plot the pairs812

of yl∆t and (the mean of) Xl∆t,1 (i.e. the first of the CG variables identified)
to show the relation between the two variables. While it is obvious from the814

scales that the first CG variable identified is not the angle, it appears to be
isomorphic to y. The latter property persists for n = 64 even though the816

sign of the relation has been reversed. The difference between the first CG
variable identified and the natural angle y explains the difference between818

the CG evolution law identified (Figure 25) and the reference one Equation
(38).820

Figure 29 provides predictive estimates of the position of the center of
mass in time. These were obtained by propagating the CG variables in time822

and for each time instant, sampling pcf for corresponding images x. From
the latter, the center of mass was computed from the activated pixels i.e.824

the pixels with value 1. Naturally, predictive uncertainty arises due the
stochasticity in the initial conditions of X as well as in pcf . The latter is826

quantified by the standard deviation and plotted in Figure 29. As in the
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Figure 25: Posterior means of the inferred θc that parametrize the CG evolution law
(Equation (41)) for n = 16 (left) and n = 64 (right) training data.
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Figure 26: Comparison of trajectories in state space X of the CG dynamics learned for
n = 16 (left) and n = 64 (right) training data.
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Figure 27: Predicted posterior mean of CG state variables Xt
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Figure 28: Mapping between the angle of the pendulum and the coarse-grained coordinates
for 32 training data and 64 (right) training data.

previous examples, the predictive uncertainty grows, albeit modestly, with828

time.
Figure 30 depicts predictions in time for two pixels in the image. One830

can clearly distinguish the change-points i.e. when the pendulum crosses the
pixel and its value is changed from 0 to 1 as well as the predictive uncertainty832

which is concentrated at those change-points. This demonstrates one of the
strengths of our approach as due to the coarse-to-fine mapping the whole FG834

state is reconstructed and every observable can be computed together with
the associated predictive uncertainty.836

Finally, Figure 31 compares actual images obtained by the reference dy-
namics of the pendulum with the predictive posterior mean obtained by the838

CG model and pcf trained on the data. Even though these extend up to
875 time-steps i.e. more than 11 times longer than the time-window over840

which observations were available, they match the reference quite accurately,
a strong indication that the right CG variables and CG dynamics have been842

identified. An animation containing all frames can be found by following this
link.844

3.2.6. Missing data

The generative nature of the proposed model makes it highly suitable for846

handling missing FG data either in the form of partial observations of the FG
state vector xt or observations over a portion/subset of the time-sequence848

considered. We investigate the latter case in this section but note that in
both situations the only modification required is removing the likelihood850

terms corresponding to the missing data from Equation (13).
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Figure 29: Inferred/Predicted evolution of the center of mass of the pendulum. The
vertical line separates the inferred states from the predictions

In particular, we investigated the performance of the model when every852

second FG state xt in the training sequences was not observed i.e. the FG
observables consisted of {x(i)

0 ,x
(i)
2∆t,x

(i)
4∆t, . . . ,x

(i)
T∆t} for each data sequence854

i (where T = 74 as before). As one would expect, fewer observations lead
to higher inferential uncertainties as seen when comparing Figure 28 (fully856

observed case) with Figure 32 (partially observed case). More importantly,
fewer observations lead to higher predictive uncertainty as seen when com-858

paring the predictions for the center of pendulum in Figure 29 (fully observed
case) with Figure 33 (partially observed case).860

4. Conclusions

We proposed a probabilistic generative model for the automated discov-862

ery of coarse-grained variables and dynamics based on fine-grained simulation
data. The FG simulation data are augmented in a fully Bayesian fashion by864

virtual observables that enable the incorporation of physical constraints at
the CG level that appear in the form of equalities. These could be resid-866

uals of the CG evolution law or more importantly conservation laws that
are available when CG variables have physical meaning. This is particu-868
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Figure 30: Predicted time history of a single pixel: Pixel 1 (left) and Pixel 2 (right)
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(a) Time step 125 (b) Time step 275

(c) Time step 425 (d) Time step 575

(e) Time step 725 (f) Time step 875

Figure 31: Predictive posterior means of images of the pendulum compared to the reference
data
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Figure 32: Effect of missing data on the CG variables.The figure on the right is zoomed-in
to show the higher uncertainty associated with CG states with missing data
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Figure 33: Inferred/Predicted evolution of the center of mass of the pendulum for the
missing data case. The vertical line separates the inferred states from the predictions

larly important in the context of physical modeling as in many cases such
domain knowledge is a priori available and its inclusion can, not only re-870

duce the amount of training data, but endow the CG model learned with the
necessary features that would allow it to provide accurate predictions in out-872

of-distribution settings. Our approach learns simultaneously a coarse-to-fine
mapping and an evolution law for the coarse-grained dynamics by employing874

probabilistic inference tools for the latent variables and model parameters.
The use of deep neural nets for the former component can endow great expres-876

siveness and flexibility. The concept of sparsity, which is invoked in learning
CG dynamics from a large vocabulary of right-hand-side terms, is readily878

incorporated using sparsity-inducing Bayesian priors without any hyperpa-
rameter tuning. Furthermore, appropriate priors can promote the discovery880

of slow-varying CG variables which better capture the macroscopic features
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of the system. As a result of the aforementioned characteristics, the frame-882

work can learn from Small Data (i.e. shorter and fewer FG time-sequences)
which is a crucial advantage in multiscale models where the simulation of the884

FG dynamics is expensive and slow in exploring the state-space. The model
proposed was successfully tested on coarse-graining tasks from different ar-886

eas. In all three examples, the method performed well under interpolative,
and more importantly under extrapolative settings i.e. in cases where ini-888

tial conditions different from the ones seen during training, are prescribed.
Partial or incomplete FG observations can readily be handled due to its gen-890

erative nature. Moreover, as it is able to reconstruct the entire FG state
vector at any future time instant, it is capable of producing predictions of892

any FG observable of interest as well as quantify the associated predictive
uncertainty.894

There exists various possibilities to extend the proposed framework, both
methodologically as well as in terms of applications. In the latter case and896

apart from using it for predictive purposes, the CG model learned could also
be employed in optimization and control applications. On the methodological898

front an obvious extension would be to account for the virtual observables
at future time-instants as well. This would ensure their enforcement by900

future CG states but would unavoidably complicate their simulation as a
probabilistic inference scheme would need to be employed in order to draw902

samples.
Another important question pertains to the stability of the CG dynam-904

ics identified (Pan and Duraisamy, 2020). This is not currently guaranteed
in the discretized nor in the continuous version. This could potentially be906

achieved by an a-priori parametrization of the CG dynamics in a way that
guarantees stability which could in turn reduce the expressivity of the model.908

Finally, we note that, in our opinion, the most difficult question in coarse-
graining multiscale systems, is finding the number of CG state variables that910

are needed. In physics problems, very often one has an idea of which variables
would be suitable either based on the analysis-objectives and/or physical in-912

sight. Almost never though does one have a guarantee that these variables
are sufficient. Assuming they are, the problem then reduces to finding the914

appropriate closures (i.e. right-hand sides in the CG dynamics) which is the
problem we try to address in this paper. The discovery of additional, poten-916

tially non-physical CG state variables, would require additional advances for
which we believe the ELBO, i.e. the (approximate) model evidence, could918

serve as the guiding objective.
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space variational inference for non-equilibrium coarse-grained systems,1032

Journal of Computational Physics 314 (2016) 355–383. URL: http://

www.sciencedirect.com/science/article/pii/S002199911600173X.1034

doi:10.1016/j.jcp.2016.03.021.

M. A. Katsoulakis, P. Vilanova, Data-driven, variational model reduction1036

of high-dimensional reaction networks, Journal of Computational Physics
(2019) 108997.1038

H. Mori, Transport, collective motion, and brownian motion, Progress of
theoretical physics 33 (1965) 423–455.1040

R. Zwanzig, Nonlinear generalized langevin equations, Journal of Statistical
Physics 9 (1973) 215–220.1042

A. Chorin, P. Stinis, Problem reduction, renormalization, and memory, Com-
munications in Applied Mathematics and Computational Science 1 (2007)1044

1–27.

59

https://doi.org/10.1007/s00332-017-9437-7
https://doi.org/10.1007/s00332-017-9437-7
https://doi.org/10.1007/s00332-017-9437-7
http://dx.doi.org/10.1007/s00332-017-9437-7
https://www.jstor.org/stable/86114
https://www.jstor.org/stable/86114
https://www.jstor.org/stable/86114
http://www.sciencedirect.com/science/article/pii/ S002199911600173X
http://www.sciencedirect.com/science/article/pii/ S002199911600173X
http://www.sciencedirect.com/science/article/pii/ S002199911600173X
http://dx.doi.org/10.1016/j.jcp.2016.03.021


H. Lei, N. A. Baker, X. Li, Data-driven parameterization of the generalized1046

langevin equation, Proceedings of the National Academy of Sciences 113
(2016) 14183–14188.1048

Y. Zhu, J. M. Dominy, D. Venturi, On the estimation of the Mori-Zwanzig
memory integral, Journal of Mathematical Physics 59 (2018) 103501. URL:1050

https://aip.scitation.org/doi/10.1063/1.5003467. doi:10.1063/1.
5003467.1052

M. D. Hoffman, D. M. Blei, C. Wang, J. Paisley, Stochastic variational
inference, The Journal of Machine Learning Research 14 (2013) 1303–1054

1347.

C. Archambeau, M. Opper, Approximate inference for continuous-time1056

Markov processes, Bayesian Time Series Models (2011) 125–140.

R. G. Krishnan, U. Shalit, D. Sontag, Structured inference networks for non-1058

linear state space models, in: Thirty-First AAAI Conference on Artificial
Intelligence, 2017.1060

V. Fortuin, G. Rätsch, S. Mandt, Multivariate time series imputation with
variational autoencoders, arXiv preprint arXiv:1907.04155 (2019).1062

J. C. Butcher, Numerical methods for ordinary differential equations, John
Wiley & Sons, 2016.1064

R. Coifman, I. Kevrekidis, S. Lafon, M. Maggioni, B. Nadler, Diffusion maps,
reduction coordinates and low dimensional representation of stochastic sys-1066

tems, Multiscale Modeling & Simulation 7 (2008) 842 – 864.

J. Trashorras, D. Tsagkarogiannis, From Mesoscale Back to Microscale:1068

Reconstruction Schemes for Coarse-Grained Stochastic Lattice Sys-
tems, SIAM Journal on Numerical Analysis 48 (2010) 1647–1677.1070

URL: http://epubs.siam.org/doi/abs/10.1137/080722382. doi:10.
1137/080722382.1072

M. A. Katsoulakis, J. Trashorras, Information loss in coarse-graining
of stochastic particle dynamics, Journal of statistical physics 1221074

(2006) 115–135. URL: http://link.springer.com/article/10.1007/

s10955-005-8063-1.1076

60

https://aip.scitation.org/doi/10.1063/1.5003467
http://dx.doi.org/10.1063/1.5003467
http://dx.doi.org/10.1063/1.5003467
http://dx.doi.org/10.1063/1.5003467
http://epubs.siam.org/doi/abs/10.1137/080722382
http://dx.doi.org/10.1137/080722382
http://dx.doi.org/10.1137/080722382
http://dx.doi.org/10.1137/080722382
http://link.springer.com/article/10.1007/s10955-005-8063-1
http://link.springer.com/article/10.1007/s10955-005-8063-1
http://link.springer.com/article/10.1007/s10955-005-8063-1


D. Kondrashov, M. D. Chekroun, M. Ghil, Data-driven non-Markovian
closure models, Physica D: Nonlinear Phenomena 297 (2015)1078

33–55. URL: http://www.sciencedirect.com/science/article/pii/

S0167278914002413. doi:10.1016/j.physd.2014.12.005.1080

B. D. Coleman, M. E. Gurtin, Thermodynamics with Internal
State Variables, The Journal of Chemical Physics 47 (1967) 597–1082

613. URL: http://scitation.aip.org/content/aip/journal/jcp/47/
2/10.1063/1.1711937. doi:10.1063/1.1711937.1084

O. Cappe, E. Moulines, T. Ryden, Inference in Hidden Markov Models,
Springer-Verlag, 2005.1086

Z. Ghahramani, Unsupervised Learning, in: O. Bousquet, G. Raetsch,
U. von Luxburg (Eds.), Advanced Lectures on Machine Learning LNAI1088

3176, Springer-Verlag, 2004.

D. Durstewitz, A state space approach for piecewise-linear recurrent1090

neural networks for identifying computational dynamics from neural
measurements, PLOS Computational Biology 13 (2017) e1005542. URL:1092

http://journals.plos.org/ploscompbiol/article?id=10.1371/

journal.pcbi.1005542. doi:10.1371/journal.pcbi.1005542.1094

L. Wiskott, T. J. Sejnowski, Slow feature analysis: Unsupervised learn-
ing of invariances, Neural Computation 14 (2002) 715–770. doi:10.1162/1096

089976602317318938.

C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.1098

D. P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: The
International Conference on Learning Representations (ICLR), volume1100

abs/1312.6114, Banff, Alberta, Canada, 2014. URL: http://arxiv.org/
abs/1312.6114.1102

Y. Kim, S. Wiseman, A. C. Miller, D. Sontag, A. M. Rush, Semi-amortized
variational autoencoders, arXiv preprint arXiv:1802.02550 (2018).1104

C. Grigo, P.-S. Koutsourelakis, Bayesian model and dimension reduction
for uncertainty propagation: applications in random media, SIAM/ASA1106

Journal on Uncertainty Quantification 7 (2019) 292–323.

61

http://www.sciencedirect.com/science/article/pii/ S0167278914002413
http://www.sciencedirect.com/science/article/pii/ S0167278914002413
http://www.sciencedirect.com/science/article/pii/ S0167278914002413
http://dx.doi.org/10.1016/j.physd.2014.12.005
http://scitation.aip.org/content/aip/journal/jcp/47/2/ 10.1063/1.1711937
http://scitation.aip.org/content/aip/journal/jcp/47/2/ 10.1063/1.1711937
http://scitation.aip.org/content/aip/journal/jcp/47/2/ 10.1063/1.1711937
http://dx.doi.org/10.1063/1.1711937
http://journals.plos.org/ploscompbiol/article?id=10.1371/ journal.pcbi.1005542
http://journals.plos.org/ploscompbiol/article?id=10.1371/ journal.pcbi.1005542
http://journals.plos.org/ploscompbiol/article?id=10.1371/ journal.pcbi.1005542
http://dx.doi.org/10.1371/journal.pcbi.1005542
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://dx.doi.org/10.1162/089976602317318938
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114


J. Li, P. G. Kevrekidis, C. W. Gear, I. G. Kevrekidis, Deciding the1108

Nature of the Coarse Equation Through Microscopic Simulations: The
Baby-Bathwater Scheme, SIAM Rev. 49 (2007) 469–487. URL: http:1110

//dx.doi.org/10.1137/070692303. doi:10.1137/070692303.

W. G. Noid, Perspective: Coarse-grained models for biomolec-1112

ular systems, The Journal of Chemical Physics 139 (2013).
URL: http://scitation.aip.org/content/aip/journal/jcp/139/9/1114

10.1063/1.4818908. doi:http://dx.doi.org/10.1063/1.4818908.

D. Mackay, Probable Networks and Plausible Predictions - a Re-1116

view of Practical Bayesian Methods for Supervised Neural Networks,
Network-Computation in Neural Systems 6 (1995) 469–505. doi:10.1088/1118

0954-898X/6/3/011.

C. M. Bishop, M. E. Tipping, Variational relevance vector machines, in:1120

Proceedings of the Sixteenth conference on Uncertainty in artificial intel-
ligence, Morgan Kaufmann Publishers Inc., 2000, pp. 46–53.1122

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).1124

G.-H. Cottet, P. D. Koumoutsakos, Vortex Methods: Theory and Practice,
2 edition ed., Cambridge University Press, Cambridge ; New York, 2000.1126

S. Roberts, Convergence of a Random Walk Method for the Burgers Equa-
tion, Mathematics of Computation 52 (1989) 647–673. URL: http:1128

//www.jstor.org/stable/2008486. doi:10.2307/2008486.

A. Chertock, D. Levy, Particle Methods for Dispersive Equations, Jour-1130

nal of Computational Physics 171 (2001) 708–730. URL: http://

www.sciencedirect.com/science/article/pii/S0021999101968032.1132

doi:10.1006/jcph.2001.6803.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.1134

Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale
machine learning on heterogeneous distributed systems, arXiv preprint1136

arXiv:1603.04467 (2016).

S. Pan, K. Duraisamy, Physics-informed probabilistic learning of linear em-1138

beddings of nonlinear dynamics with guaranteed stability, SIAM Journal
on Applied Dynamical Systems 19 (2020) 480–509.1140

62

http://dx.doi.org/10.1137/070692303
http://dx.doi.org/10.1137/070692303
http://dx.doi.org/10.1137/070692303
http://dx.doi.org/10.1137/070692303
http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4818908
http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4818908
http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4818908
http://dx.doi.org/http://dx.doi.org/10.1063/1.4818908
http://dx.doi.org/10.1088/0954-898X/6/3/011
http://dx.doi.org/10.1088/0954-898X/6/3/011
http://dx.doi.org/10.1088/0954-898X/6/3/011
http://www.jstor.org/stable/2008486
http://www.jstor.org/stable/2008486
http://www.jstor.org/stable/2008486
http://dx.doi.org/10.2307/2008486
http://www.sciencedirect.com/science/article/pii/ S0021999101968032
http://www.sciencedirect.com/science/article/pii/ S0021999101968032
http://www.sciencedirect.com/science/article/pii/ S0021999101968032
http://dx.doi.org/10.1006/jcph.2001.6803


Declaration of interests

X The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 


	Introduction
	Methodology
	The FG and CG models
	Transition Law: CG dynamics and virtual observables
	Emission law: Coarse-to-Fine map
	Inference and Learning
	Prediction
	Computational considerations

	Numerical Illustrations
	Particle systems
	 FG model
	CG variables and coarse-to-fine mapping
	The CG evolution law and the virtual observables
	Inference and Learning
	Advection-Diffusion system
	Burgers' system

	Nonlinear Pendulum
	FG model
	CG variables and coarse-to-fine mapping
	The CG evolution law and the virtual observables
	Inference and Learning
	Results
	Missing data


	Conclusions

