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The data-centric construction of inexpensive surrogates for fine-grained, physical models 
has been at the forefront of computational physics due to its significant utility in many-
query tasks such as uncertainty quantification. Recent efforts have taken advantage of the 
enabling technologies from the field of machine learning (e.g., deep neural networks) in 
combination with simulation data. While such strategies have shown promise even in 
higher-dimensional problems, they generally require large amounts of training data even 
though the construction of surrogates is by definition a small data problem. Rather than 
employing data-based loss functions, it has been proposed to make use of the governing 
equations (in the simplest case, at collocation points) in order to imbue domain knowledge 
in the training of the otherwise black-box-like interpolators. The present paper provides 
a flexible, probabilistic framework that accounts for physical structure and information 
both in the training objectives as well as in the surrogate model itself. We advocate a 
probabilistic (Bayesian) model in which equalities that are available from the physics (e.g., 
residuals, conservation laws) can be introduced as virtual observables and can provide 
additional information through the likelihood. We further advocate a generative model i.e. 
one that attempts to learn the joint density of inputs and outputs that is capable of making 
use of unlabeled data (i.e., only inputs) in a semi-supervised fashion in order to reveal 
lower-dimensional embeddings of the high-dimensional input which are nevertheless 
predictive of the fine-grained model’s output.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The complexity and cost of many models in computational physics necessitates the development of less expensive sur-
rogates (or coarse-grained/reduced-order models), which aim to emulate or approximate the mapping implicitly defined by 
the physical process between parametric inputs and the output at a significantly reduced cost. Such surrogates which re-
tain sufficient predictive accuracy can be extremely valuable in many-query applications (e.g., inverse problems, uncertainty 
propagation, optimization) which would otherwise be inaccessible due to computational cost. The difficulty of constructing 
a suitable surrogate becomes particularly pronounced in the high-dimensional setting, i.e. when the number of input-output 
(random) variables is large as in most cases of practical interest. Data-based surrogates must also be capable of dealing with 
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the scarcity of training data [1]. Unlike recent successes in statistical/machine learning, and supervised learning in particular, 
which in large part have been enabled by large datasets (and the computational means to leverage them), the acquisition 
of data, i.e. pairs of input-outputs, is the most expensive task and the reduction of their number, the primary objective of 
surrogate development.

Another critical challenge stems from the nature of the physical models themselves. Their primary utility arises from 
their ability to distill apparent complexity and high-dimensional descriptions into much fewer, essential variables and the 
relations between them, which can in turn be used to make accurate predictions under a variety of settings (e.g. different 
boundary/initial conditions, right-hand-sides). This robustness of physical models as well as their ability to operate un-
der extrapolative conditions is not a property shared by black-box statistical surrogates, which in most cases are used in 
interpolative settings.

We put forward the proposition that to overcome these challenges, domain knowledge, i.e. information about the under-
lying physical/mathematical structure of the problem, must be injected into the surrogates constructed [2]. While this prior 
physical knowledge is generally plentiful and eloquently reflected in the governing equations, it is not necessarily obvious 
how to mine it, nor how to automatically combine it with the data-based learning objectives, especially in a probabilistic 
setting [3].

A probabilistic framework provides a superior setting for such problems as it is capable of quantifying predictive uncer-
tainties which are unavoidable when any sort of model/dimensionality reduction is pursued and when the surrogate model 
is learned from finite (and hopefully, small) data [4].

The development of surrogates for the purposes of uncertainty quantification in the context of continuum thermodynam-
ics where pertinent models are based on PDEs and ODEs has a long history. Some of the most well-studied methods have 
been based on (generalized) Polynomial Chaos expansions (gPC) [5,6] which have gained popularity due to the emergence 
of data-based, non-intrusive, sparse-grid stochastic collocation approaches [7–9]. These approaches typically struggle with 
high-dimensional stochastic inputs, as is the case, e.g. when random heterogeneous media [10] are considered.

Another strategy for the construction of inexpensive surrogates is offered by reduced-basis (RB) methods [11,12] where, 
based on a small set of “snapshots” ,i.e. input-output pairs, the solution space’s dimensionality is reduced by projection 
onto the principal directions. Classical formulations rely on (Petrov-)Galerkin projections [13] for finding the associated 
coefficients, but recently several efforts have been directed towards unsupervised and supervised learning strategies [14–17]. 
Apart from issues of efficiency and stability, RB approaches in their standard form are generally treated in a non-Bayesian 
way and therefore only yield point estimates instead of full predictive posterior distributions. Furthermore, since scalar- or 
vector- or matrix-valued quantities need to be learned as a function of the parametric input in the offline phase, they are 
also challenged by the high-dimensions/small-data setting considered [18].

A more recent trend is to view surrogate modeling as a supervised learning problem and employ pertinent statistical 
learning tools, e.g. Gaussian Process (GP) regression [19–21], which can frequently provide closed-form predictive distribu-
tions. Although several advances have been made towards multi-fidelity data fusion [22–26] and incorporation of physical 
information [27–30] via Gaussian Processes, their performance and scaling with stochastic input dimension remains one of 
the main challenges. In the context of supervised learning, deep neural networks (DNNs) [31,32] have found their way into 
surrogate modeling of complex computer codes [33–37]. One of the most promising developments in the adaptation of such 
tools for physical modeling are physics-informed neural networks [38–41] which are trained by minimizing a loss function 
augmented by the residuals of the governing equations [42]. Physical knowledge in training DNNs has also been introduced 
in the form of residuals in [38,16,43–47] whereas in [48], a Boltzmann-type density containing physics-based functionals or 
residuals were employed as the target for the associated learning problem. Recent reviews of the use of various machine 
learning models, and in particular deep neural networks, for the solution of problems in computational physics, including 
the development of surrogates, can be found in [49,50]. Therein the difficulty of the task of incorporating physical domain-
knowledge into machine learning objectives and tools [51,52] is detailed as well as the scarcity of probabilistic approaches 
in the context of such tasks.

In contrast to the majority of the efforts summarized above, our goal is not to provide a numerical discretization 
technique which aims to solve the PDE for a single case, but instead to learn the general input-output map defined by a 
parametric PDE. For this purpose, we consider as our reference model a discretized version of the PDE which is assumed to 
provide sufficiently accurate resolution (we refer to this as the Fine-Grained Model (FGM)). Furthermore, we wish to differ-
entiate our work from applications of machine learning in problems where the underlying governing equations themselves 
are assumed unknown and one aims to identify them from data [53–55]. While a component of our model makes use of a 
(discretized) coarse-grained model, its form is in this work prescribed.

We propose overcoming the aforementioned challenges by introducing a novel, generative probabilistic model that is 
capable of exploiting labeled (i.e. input-output pairs) and unlabeled (i.e. only inputs) data in discovering lower-dimensional 
embeddings and identifying the right surrogate model-structure (section 2). More importantly, we propose augmenting 
the aforementioned data by injecting domain knowledge in a principled manner in the probabilistic models employed. In 
particular, such physical/mathematical knowledge is incorporated:

• in the learning objectives (section 2.2) through the novel notion of virtual observables [56]. We demonstrate how 
various types of information in the form of (non)linear equalities/constraints as well as minimizing functionals can be 
introduced in the likelihood terms.
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• in an appropriately selected coarse-grained model (CGM, section 2.3) which through coarsened or reduced-physics 
versions of the full-order model provides an integral component of the proposed surrogate.

We complement the aforementioned elements with an integrated, supervised dimensionality reduction scheme which 
can distill lower-dimensional features of the high-dimensional input that are most predictive of the high-dimensional output 
and which is trained simultaneously with the other components by making use of (un)labeled data and virtual observables. 
We employ Stochastic Variational Inference techniques for training the proposed model (section 2.5), which yield a prob-
abilistic surrogate that not only produces point estimates of the high-dimensional output but can quantify the predictive 
uncertainty associated with this task (section 2.6). We discuss the numerical complexity of the proposed algorithms in 
section 2.7 and assess the predictive performance of the proposed framework in section 3, where we demonstrate that 
unlabeled data and virtual observables can lead to significant improvements in its generalization accuracy and can reduce 
the number of labeled data (i.e., input-outputs pairs) to a few tens. Furthermore, we illustrate the model’s ability to perform 
equally well under interpolative and extrapolative conditions, i.e., under boundary conditions seen or not seen during train-
ing. We finally demonstrate its benefits in an uncertainty propagation problem and discuss possible extensions in section 4.

2. Methodology

We illustrate the propose methodological framework in the context of steady-state, physical processes modeled by a 
partial differential equation and associated boundary conditions (i.e. a boundary value problem) of the general form

L(u(s, x); x) =0, for s ∈ �

B(u(s, x); x) =0 for s ∈ ∂�
(1)

over the physical domain � ⊂Rd . The differential L and boundary B operators depend on the random parameters x ∈Rdx

and so does the solution of the PDE u(s, x). We denote by y ∈ Rdy discretized (with respect to s) version of the latter 
and by y(x) the input-output map implied by any of the usual PDE-discretization schemes. The governing equations are 
complemented by boundary conditions which might depend on the parameters x. We refer to this discretized model as 
fine-grained model (FGM). We are interested in FGMs that are computationally demanding, i.e. the number of forward model 
runs determines the cost of the analysis task of interest (e.g. forward or backward uncertainty propagation, optimization). 
Furthermore, the problems of interest are high-dimensional, i.e. dx, dy >> 1, as in most cases of practical interest. Our goal 
is to construct a surrogate with the least possible labeled data Nl , i.e. input-output pairs Dl = {x(il), y(il) = y(x(il))}Nl

il=1,1

while still delivering sufficiently accurate predictions.
It is clear that in the small data setting learning a probabilistic surrogate p (y|x) is possible only if the problem is 

amenable to dimensionality reductions, i.e. there exists a lower-dimensional set of features2 of x that are predictive of y
and/or the latter itself lives in a lower-dimensional manifold. The simultaneous discovery of such lower-dimensional em-
beddings through a latent variable model was demonstrated in [57,58] where the sought density p(y|x) was approximated 
by

pθ (y|x) =
∫

pθ (y|z) pθ (z|x)dz , (2)

with θ being the trainable parameters of the model. The variables z ∈ RQ represent the lower-dimensional (i.e. Q <<

dx, dy) information bottleneck between inputs and outputs. In the aforementioned works, these have been associated with a 
lower-fidelity physical model and have been identified in the presence of small data using sparse Bayesian learning from a 
large vocabulary of physically-motivated features of x (in contrast, in this work we will seek to identify predictive features 
of x purely based on data by making use of general blackbox function approximators, i.e. neural networks).

2.1. Generative model

The most direct approach in order to obtain a probabilistic surrogate would be to specify pθ (y|x) as is the case for wide 
array of methods. In the following we would like to suggest to the reader a different approach. The first novel contribution 
of this work is the use of a generative model, i.e. one that attempts to approximate the joint density p(x, y) and which 
can subsequently be used by conditioning on x for predictive purposes. Such a model offers the capability to incorporate 
unlabeled data (i.e. only inputs) Du = {x(iu)}Nu

iu=1 and therefore enables semi-supervised learning. This in turn allows the use 
of the information provided by the inexpensive (and potentially large) dataset Du which can reduce the dependence on the 
expensive labeled data [59,60]. In particular, we propose a model that performs supervised dimensionality reduction of x

1 Each vector y(il) is the discretized solution u(s, x(il)) of the governing PDE.
2 i.e., there exist dφ << dim (x) functions {φi (x)}dφ

i=1 such that p (y|x) ≈ p 
(

y
∣∣∣ {φi (x)}dφ

i=1

)
.
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Fig. 1. Illustration of differences between probabilistic graphical models discussed (shaded nodes are observed). a) Discriminative model where the latent 
variables z encode lower-dimensional features of the input x which are predictive of the output y, b) Generative model where z represent latent generators 
of both input and output, and c) Generative model which in comparison to (b) is augmented by virtual observables encoding domain knowledge.

and y [61] by postulating the existence of latent variables z that constitute x, y conditionally independent (see Fig. 1b), i.e., 
for each labeled pair il in Dl the model assigns a likelihood

pθ (x(il), y(il)) =
∫

pθ (y(il)|z(il)) pθ (x(il)|z(il)) pθ (z(il)) dz(il) . (3)

We denote again with θ any tunable model parameters, although these are in general different from the ones in Equation 
(2). The unobserved variables z play the role of latent generators of x and y. We specify the form of the aforementioned 
densities, their parameterization as well as their training in the sequel. We note that the generative construction adopted 
provides also a likelihood for each unlabeled data point iu in Du as follows

pθ (x(iu)) =
∫

pθ (x(iu)|z(iu))pθ (z(iu)) dz(iu) . (4)

Furthermore, for predictive purposes, the posterior of z for a new x, i.e. pθ (z|x) ∝ pθ (x|z)pθ (z), can be used in order to 
compute

pθ (y|x) =
∫

pθ (y, z|x) dz =
∫

pθ (y|z)pθ (z|x) dz , (5)

i.e., the predictive posterior on the corresponding output y. Figs. 1a and 1b provide illustrations of the discriminative and 
generative probabilistic graphical models.

2.2. Virtual observables

The second novelty proposed in this paper pertains to the introduction of domain knowledge as represented in the 
governing equation (Equation (1)) into the learning objectives. We would like the training process not to rely exclusively on 
unlabeled Du or labeled Dl data but also to incorporate physical knowledge. This can appear in several forms but since we 
are interested in their systematic incorporation we consider here various (in)equalities expressing different types of physical 
relations between the model-variables. The governing PDE of Equation (1) for example, is a potentially infinite source of 
information (if one considers that the equality holds at each of the infinite points of the problem domain �) in contrast to 
the limited times these governing equations can be solved due to computational expense. While the introduction of such 
equalities is rather straightforward in deterministic settings in the training loss and has been employed successfully in the 
context of physics-informed neural networks (PINNs [40]), in a probabilistic setting, it has only been achieved for linear ones 
and in order to approximate the solution of the PDE (not its dependence on input parameters) using Gaussian Processes 
[62]. In this work, we generalize the type of equalities that we consider by including nonlinear ones as well as demonstrate 
how other types of information, e.g. that the solution is a minimizer of a functional, can be incorporated. We discuss below 
how these can be integrated in the learning/inference process and we give specific examples of the forms these take in the 
numerical illustrations (section 3).

Consider first equality constraints, i.e.

c(y; x) = 0 , (6)

where c : Rdy × Rdx → Rdc . Such equalities can represent residuals of the governing PDE computed, e.g. at some collo-
cation points or by employing weighted residuals with appropriate test/weight functions. They might also represent the 
enforcement of a physical constraint such as a conservation law (e.g. mass, momentum, energy). The only requirement on c
imposed by our framework is that they are differentiable functions, a property that will prove crucial in the Stochastic Vari-
ational Inference component (section 2.5). In order to incorporate Equation (6), we introduce an auxiliary variable/vector ĉx

which relates to c as follows
4
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ĉx = c(y; x) + σcεc, εc ∼ N (0, I) (7)

We further assume that ĉx is virtually observed and ĉx = 0. This induces a virtual likelihood p(ĉx|x, y), i.e.

p(ĉx = 0 | x, y) ∝ 1

σ
dc/2
c

e
− 1

2σ2
c

|| c(y;x) ||22
. (8)

The parameter σc determines the intensity of the enforcement of the virtual observation and is analogous to the tolerance 
parameter with which constraints or residuals are enforced in deterministic solvers. In the limit that σc → 0, the likelihood 
above degenerates to a Dirac-delta concentrated on the manifold implied by the constraint. In the context of the generative 
model proposed, one can exploit such unlabeled data, {x(ic), ̂c(ic)

x } consisting of pairs of inputs and virtual observables and 
the likelihood of each such data-pair ic will be given by:

pθ (x(ic), ĉ(ic)
x = 0) = ∫

pθ (ĉ(ic)
x , y(ic), z(ic), x(ic)) d y(ic) dz(ic)

= ∫
p(ĉ(ic)

x = 0 |y(ic), x(ic))pθ (y(ic), z(ic), x(ic)) d y(ic) dz(ic)

= ∫
p(ĉ(ic)

x = 0 |y(ic), x(ic))pθ (y(ic)|z(ic))pθ (x(ic)|z(ic)) pθ (z(ic)) d y(ic) dz(ic)

(9)

We emphasize that in this case, the solution vector y(ic) (which satisfies the constraint c(y(ic); x(ic))) is latent and must 
be inferred. We also note that ĉ(ic)

x = 0 in Equation (9) does not imply that we have conditioned on this observation, but 
that ĉ(ic)

x is always assumed to be (pseudo-) observed as equal to zero, and just like x(ic) , is treated as observed data. The 
corresponding graphical model is illustrated in Fig. 1c where the virtual observables are depicted as observed nodes [63]
with y, the solution of the PDE, becoming a latent variable and therefore unknown quantity in this case.

Another type of physical information that can be accommodated with the concept of virtual observables pertains to the 
variational nature of the associated problem. It is well-known that the solutions of most PDEs in computational physics can 
be expressed as minimizers of appropriate functionals. Such functionals have served as the foundation of several numerical 
schemes and appear in various forms, even for irreversible, nonlinear processes [64,65]. Various versions of these functionals 
were incorporated in the machine-learning loss functions of deterministic, deep models [66] as well as in the likelihood 
functions of probabilistic models [48].

Suppose that the discretized solution vector y(x) is obtained as the minimizer of

y(x) = arg min
y

V (y; x) , (10)

where V : Rdy × Rdx → R represents a generalized free energy or potential. Let Vmin(x) = miny V (y; x) be the unknown 
minimum value of V (attained by the solution) for each x. We define a new, auxiliary variable V̂ x as

V̂ x = V (y; x) − Vmin(x) − εV , εV ∼ Expon(β−1) . (11)

The random variable εV is by construction always non-negative and follows an exponential distribution with parameter β .3

We further assume that V̂ x = 0 has been virtually observed which implies a virtual likelihood

p(V̂ x = 0 | y, x) = β−1 e−β−1(V (y;x)−Vmin(x)) . (12)

As it will be become clear in the sequel, the unknown Vmin(x) does not enter the training of the model. One can deduce 
from Equation (12) that the smaller V (y; x) is, the higher the corresponding likelihood becomes and the latter is maximized 
for the y that corresponds to the solution (Equation (10)). Furthermore, the parameter β dictates the decay of the likelihood 
for V (y; x) > Vmin(x) and in the limit β−1 → 0, the likelihood degenerates to a Dirac-delta concentrated at the minimum 
(i.e. the true solution).

As in the previous case of the equality constraints, the introduction of these new observables enables the incorporation 
of the information contained in the discretized functional V in the training of the proposed generative model. In particular, 
given unlabeled data {x(iV ), V̂ (iV )

x } consisting of pairs of inputs and virtual observables V̂ x , the likelihood implied by the 
model for each data-pair iV will be:

pθ (x(iV ), V̂ (iV )
x = 0) = ∫

pθ (V̂ (iV )
x = 0, y(iV ), z(iV ), x(iV )) d y(iV ) dz(iV )

= ∫
p(V̂ (iV )

x = 0 | y(iV ), x(iV )) pθ (y(iV ), z(iV ), x(iV )) d y(iV ) dz(iV )

= ∫
p(V̂ (iV )

x = 0 | y(iV ), x(iV )) pθ (y(iV )|z(iV ))pθ (x(iV )|z(iV )) pθ (z(iV )) d y(iV ) dz(iV )

(13)

As in Equation (9), the solution vector y(iV ) (which minimizes V (y; x(iV )) is latent and must be inferred.
To make our presentation independent of specific choices, in the remainder we denote a dataset of virtual observables 

by DO = {
x(iO), ̂o(iO)}NO

i=1, where x(iO) represents an input query point and the corresponding ô(iO) ∈ RM comprises the 

3 εV can be thought as the probabilistic analogue of a slack variable for the enforcement of inequality constraints in optimization.
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Fig. 2. Node X corresponds to the inputs of a deterministic coarse-grained model (CGM), implying that z is encouraged not only to learn a representation 
of the inputs x, but also features that through the CGM can be predictive of the FGM output y (compare with Fig. 1c - shaded nodes are observed).

corresponding virtually observed values. Without loss of generality, we assume that we enforce the same number of M
constraints at every point (this assumption can easily be relaxed). Parameters that govern how rigidly the constrains are 
enforced, such as σ−1

c or β , are denoted summarily by τ ; in the more general case, different constraints can be enforced 
to varying degrees, i.e. τ can comprise several precision-type parameters and may be a vector instead of a scalar. We 
stress that the parameters τ are conceptually different from the parameters θ of the generative model, since they do not 
pertain to the generative process of (x, y), but rather govern the enforcement of physical constraints. In order to simplify 
the discussion and our notation, in the following we will assume that τ is a-priori specified and therefore we will omit 
to explicitly condition on τ (we discuss in Appendix C how τ could be inferred if not known a-priori by introducing a 
variational approximation q (τ )). We use the term input query point for each x(iO) appearing in DO to emphasize that in 
the general case the corresponding solution of the PDE y (x) is not observed/known, and we only query certain information 
from the underlying physics. The introduction of virtual observables implies that the plausibility of each model contained 
within the hypothesis space of the generative model pθ (y, x) is scored not only according to its performance on unlabeled 
and labeled data, but also with respect to the associated physical constraints.

2.3. Physics-inspired structure for surrogate

The third contribution of the paper in the direction of imbuing physical knowledge into the machine learning framework 
pertains to the meaning of the latent variables z and the density pθ (y|z). While one can make use of a purely statistical 
model by employing, e.g., a Gaussian Process or a (deep) neural network, we advocate here building the surrogate around a 
coarse-grained model (CGM). The latter can be based on simply coarsening the discretization of the governing equations ([57]) 
or by employing simplified physics ([58]). It serves as a stencil that automatically retains the primary physical characteristics 
of the FGM and can therefore lead to a reduction of the amount of data needed for training.

Let X and Y denote the input and output vector of the aforementioned CGM. The physical meaning of these variables 
does not need to be the same as for x or y but they are, by construction, lower-dimensional and the solution of the CGM, 
i.e. the cost of each evaluation of Y (X)4 is negligible as compared to y(x). We propose:

• linking the latent features z with X through a density pθ (X |z) with tunable parameters θ
• linking the sought FGM output y with the output of the CGM Y (X) rather than with z directly. Hence instead of 

pθ (y|z) we propose employing a density

pθ (y | Y (X)) (14)

These two elements combined allow us to express pθ (y|z) in Equation (5) as

pθ (y|z) =
∫

pθ (y | Y (X)) pθ (X |z) dX

and the (analytically intractable) predictive conditional density pθ (y|x) becomes

pθ (y|x) =
∫

pθ (y | Y (X)) pθ (X |z) pθ (z|x) dX dz . (15)

By mapping to the CGM input X , the latent variables z, learn to reconstruct the FGM’s solution y from the output Y of the 
CGM by means of pθ (y|Y (X)) (Fig. 2).

We specify X, Y , the CGM itself as well as the densities involved in subsequent sections and in particular in the context 
of the numerical illustrations (section 3). The introduction of the CGM and the associated latent variables X (and Y for a 
stochastic CGM) does not alter the generative nature of the model. We note though that the CGM can be omitted or simply 
complemented by a phenomenological statistical emulator, in which case the graphical model structure in Fig. 2 would be 
altered.

4 We assume a deterministic CGM for simplicity although this can be relaxed.
6
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Fig. 3. A schematic overview of the building blocks of the generative model. All solid black arrows correspond to the conditional 
densities Eq. (17)–(19), i.e. encode conditional dependence assumptions, and therefore define the joint distribution pθ

(
z, x, X, y, ô

) =
p (z) p (x|z, θ) p (X |z, θ) p (y|Y (X) , θ) p (ô∣∣y, x,τ

)
. The dashed lines correspond to the amortized encoder (Eq. (34)) as an auxiliary tool for inference, 

as well as the mapping y (x) implied by the fine-scale resolution of the differential operator L. The latent space encoding z ∼ N (0, I) (Eq. (16)) is as-
sumed to have given rise to all other observed quantities via a series of conditional densities involving complex, parametric nonlinear transformations 
defined by θ and the CGM Y (X). Since the latent dimension Q = dim (z) is considerably smaller than dx = dim (x) , dy = dim (y), this implies that the 
model (via an information-bottleneck) has to identify a lower-dimensional embedding of the data (x, y) defined by p (z|x, y, θ), which in turn is used to 
derive effective properties X via p (X |z, θ) (see Eq. (18)) entering the coarse-grained model Y (X); subsequently the predictions of the CGM are used to 
reconstruct the fine-scale solution via p (y|Y (X) , θ), see Eq. (19). If any of the nodes in this graph are observed, we can probabilistically reason about the 
parameters θ that have given rise to these observations (using variational inference, see section 2.5). It is possible to leverage any kind of data (unlabeled, 
labeled, domain knowledge) to reason about θ (by optimizing the combined ELBO Eq. (28)), and thereby identifying a suitable coarse-grained physics model 
in conjunction with some latent encoding out of an a-priori defined parametric family of candidates.

2.4. Specification of generative model

In the following we suggest a specific architecture for the probabilistic model which satisfies all of the previously dis-
cussed key aspects; i.e., a generative model that implicitly defines (and learns) a joint distribution pθ (x, y) via unobserved, 
latent variables z (see Eq. (3)), and where predictions for y are obtained by identifying a coarse-grained physical process 
based on the latent space encoding via the densities pθ (y|Y (X)) and pθ (X |z) (see Eq. (14), (15)). Assuming real-valued 
x, z, X, y we propose the following probabilistic generative model (for a schematic overview see also Fig. 3)

z ∼ N (0, I) (16)

x = f (z; θ x) + S1/2
x (z; θ x)εx εx ∼ N (0, I) (17)

X = g
(
z; θ g

)+ S1/2
X εX εX ∼ N (0, I) (18)

y = h
(
Y (X) ; θ y

)+ S1/2
y εy εy ∼ N (0, I) (19)

where f (·) and g (·) are nonlinear functions (e.g. neural networks) parameterized by θ x and θ g respectively. We have 
assumed here a Gaussian noise model, implicitly parameterized by a set of symmetric positive definitive matrices S x , S X

and S y .5 We defer any further discussion of the specifics until section 3 where the meaning of the different variables is 
presented. Since we operate under the assumption of small labeled data, the complexity of g(z; θ g ·) is chosen relatively low 
compared to f (z; θ x), in order to allow learning a mapping from latent space to effective properties X with comparably 
few examples. The role of h(Y (X); θ y) is to define the map from the CGM’s output Y (X) to the (mean of the) output y of 
the FGM. All the conditional densities in (17) - (19) are multivariate Gaussians which have constant covariances with the 
exception of Equation (17) where the covariance S x depends on the z variables as dictated by the associated parameters θ x .

We denote by θ = {
θ x, θ g, θ y, S X , S y

}
the parameters of the generative model, which we wish to learn from a dataset 

D = {
Du,Dl,DO

}
which, in the most general case, consists of Nu unlabeled examples Du = {

x(iu)
}Nu

iu=1, Nl labeled input-
output examples Dl = {(x(il), y(il))}Nl

il=1, and a collection DO = {x(iO), ô(iO)}NO
iO=1 of NO query input points and virtual 

observables. We may then write the marginal likelihood as

5 We adopted a heteroscedastic noise model for pθ (x|z) due to S x (z; θ x) depending on the latent variables, while S X and S y are assumed constant. 
This difference in the noise models was necessitated by the fact that the identification of a heteroscedastic noise model requires (much) larger amounts of 
data, and we wish to operate (in the ‘supervised’ branch of the model) in the small data regime.
7
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p (D|θ) = p(Du|θ) p(Dl|θ) p(DO|θ)

=∏Nu
iu=1 p(x(iu)|θ)

∏Nl
il=1 p(x(il), y(il)|θ)

∏NO
iO=1 p(x(iO), ô(iO)|θ)

, (20)

where each of the likelihood terms in the products are given by Equations (4), (3) and (9) (or (13)) respectively. In view of 
the densities in Equations (16) - (19) these become

p(x(iu)|θ) = ∫
N
(
x(iu)| f

(
z(iu); θ x

)
, S x

(
z(iu); θ x

))
N
(
z(iu)| 0, I

)
dz(iu) , (21)

p(x(il), y(il)|θ) = ∫
N
(

y(il)| h
(
Y
(

X (il)
) ; θ y

)
, S y

)
N
(

X (il)| g
(
z(il); θ g

)
, S X

)
N
(
x(il)| f

(
z(il); θ x

)
, S x

(
z(il); θ x

))
N
(
z(il)| 0, I

)
dX (il) dz(il) ,

(22)

and

p(x(iO), ô(iO)|θ) = ∫
p(ô(iO)|y(iO), x(iO);τ ) N

(
y(iO)| h

(
Y
(

X (iO)
) ; θ y

)
, S y

)
N
(

X (iO)| g
(
z(iO); θ g

)
, S X

)
N
(
x(iO)| f

(
z(iO); θ x

)
, S x

(
z(iO); θ x

))
N
(
z(iO)| 0, I

)
d y(iO) dX (iO) dz(iO)

,

(23)

where p(ô(iO)|y(iO), x(iO); τ ) depends on the nature of the virtual observable (e.g. Equation (8) or Equation (12)). A fully 
Bayesian model could be defined by the introduction of appropriate priors for θ leading to a posterior on those, i.e. 
p (θ |D) ∝ p (D|θ) p (θ).

2.5. Inference and learning

Our primary objective is to learn the model parameters θ on the basis of the mixed data D = {Du,Ds,DO} so that 
the trained probabilistic surrogate can be used for predictive purposes. This task is hindered by the intractability of all 
the likelihood terms in Equations (21)-(23) due to the presence of the latent variables which must be integrated out. In the 
following we will discuss how such an intractable model can be trained, even if the likelihood cannot be evaluated in closed 
form. In order to simplify notation for our following discussion, let us denote summarily by R = {Zu,Zl,ZO,Xl,XO,YO}
the latent variables appearing in Equations (21) - (23) which consist of:

• Zu = {z(iu)}Nu
iu=1 associated with Du (see, e.g., Equation (4) or Equation (21)),

• Zl = {z(il)}Nl
il=1, Xl = {X (il)}Nl

il=1 associated with Dl (see, e.g., Equation (3) or (22)),

• ZO = {z(iO)}NO
iO=1, XO = {X (iO)}NO

iO=1, YO = {y(iO)}NO
iO=1 associated with DO (see, e.g., Equation (23)).

To enable the training of the intractable latent variable model, we advocate the use of Stochastic Variational Inference 
(SVI, [67,68]), which produces closed-form approximations of the true posterior p(θ , R|D) and simultaneously of the model 
evidence p(D). In contrast to sampling-based procedures (e.g., MCMC, SMC), stochastic variational inference yields biased 
estimates at the benefit of computational efficiency and computable convergence objectives in the form of the Evidence 
Lower Bound (ELBO [69]). In particular, we denote the variational approximation to the joint posterior as qξ (θ , R) where ξ
are its tunable parameters and note that the model evidence p(D) can be lower-bounded as [70]:

log p(D) = log
∫

p(D, θ ,R)dθ dR
= F (ξ) + K L

(
qξ (θ ,R)

∣∣∣∣ p (θ ,R|D)
)

≥ F(ξ)

, (24)

where

0 ≤ K L
(
qξ (θ ,R)

∣∣∣∣ p (θ ,R|D)
)= −

∫
qξ (θ ,R) log

(
p(θ ,R|D)

qξ (θ ,R)

)
dθ dR (25)

is the KL-divergence between approximate and true posterior, and F(ξ ) is the ELBO, i.e.

F(ξ) = ∫
qξ (θ ,R) log

(
p(D, θ ,R)

qξ (θ ,R)

)
dθ dR

= Eqξ

[
log

(
p(D, θ ,R)

qξ (θ ,R)

)] . (26)

Maximizing the ELBO over the parameters ξ is therefore equivalent to minimizing the KL-divergence from the true 
posterior. The ELBO provides a score function for comparing different approximations (e.g. different family of distributions 
q ∈Q or different parametrizations ξ ) and as an approximation to the model evidence can also be used to compare different 
models (e.g., with different structure or different parametrizations θ ).
8
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We employ a (partial) mean field approximation, i.e. a qξ that factorizes as follows

qξ (θ ,R) = qξ (θ)
∏Nu

iu=1 qξ

(
z(iu)

)∏Nl
il=1 qξ

(
z(il)

)
qξ

(
X (il)

)∏NO
iO

qξ

(
z(iO

)
qξ

(
X (iO)

)
qξ

(
y(iO)

)
. (27)

While this might appear drastic, we note that the elements of Zu are conditionally (given θ ) independent of the rest even 
in the true posterior. The same holds for the latent variables in the following two groups {Zl, Xl} and {ZO, XO, YO}. 
Furthermore, q (R) is only an auxiliary distribution which facilitates the training of the intractable generative model (i.e. it 
only has an impact on later predictions to the extent that it influences qξ (θ)). Given this, the ELBO becomes:

F (ξ) = Eqξ

[
log

(
p (D, θ ,R)

qξ (θ ,R)

)]

= Eqξ

[
log p (Du|θ ,R) + log p (Dl|θ ,R) + log p (DO|θ ,R) + log p (R, θ) − log qξ (θ ,R)

]
=

∑Nu

iu=1
Eqξ

[
log p

(
x(iu)

∣∣∣z(iu), θ
)]

+
∑Nl

il=1
Eqξ

[
log p

(
y(il)

∣∣∣X (il), θ
)

+ log p
(

x(il)
∣∣∣z(il), θ

)]
+
∑NO

iO=1
Eqξ

[
log p

(
ô(iO)

∣∣∣y(iO), x(iO), θ
)

+ log p
(

x(iO)
∣∣∣z(iO), θ

)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Eqξ [log p (Du|θ ,R)]

Eqξ [log p (Dl|θ ,R)]

Eqξ [log p (DO|θ ,R)]

+
∑Nu

iu=1
Eqξ

[
log p

(
z(iu)

)]
+
∑Nl

il=1
Eqξ

[
log p

(
X (il)

∣∣∣z(il), θ
)

+ log p
(

z(i)
)]

+
∑NO

iO=1
Eqξ

[
log p

(
y(iO)

∣∣∣X (iO), θ
)

+ log p
(

X (iO)
∣∣∣z(iO), θ

)
+ log p

(
z(iO)

)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
Eqξ [log p (R|θ)]

+Eqξ [log p (θ)]

−Eqξ

[
log qξ (R) + log qξ (θ)

]
.

(28)

In all subsequent illustrations we used point estimates for the parameters θ , i.e. computed their maximum-a-posteriori 
(MAP) estimate θ M A P . This is equivalent to introducing a Dirac-delta

qξ (θ) = δ (θ − θ M A P ) (29)

in the variational approximation in which case the parameters ξ include also θ M A P . In this case, the expectations with 
respect to qξ (θ) can simply be computed by substituting θ M A P wherever θ appears and the entropy term Eqξ

[log qξ (θ)]
can be ignored as it is independent of θM A P .

The presence of three sets of conditionally independent datasets, i.e. Du ,Dl and DO (Equation (20)) leads to an additive 
decomposition of the ELBO of the form F =Fu +Fl +FO + log p(θ M A P ), where

Fu(ξ) =∑Nu
iu=1 Eqξ

[
log p(x(iu)|z(iu), θ)

]+∑Nu
iu=1 Eqξ

[
log p(z(iu))

]−∑Nu
iu=1 Eqξ

[
log qξ (z(iu))

]
(30)

accounts for the terms associated with the unlabeled data Du ,

Fl(ξ) =∑Nl
il=1 Eqξ

[
log p(y(il)|X (il), θ) + log p(x(il)|z(il), θ)

]
+∑Nl

il=1 Eqξ

[
log p(X (il)|z(il), θ) + log p(z(il))

]
−∑Nl

il=1 Eqξ

[
log qξ (X (il)) + log qξ (z(il))

] (31)

accounts for the terms associated with the labeled data Dl , and

FO(ξ) =∑NO
iO=1 Eqξ

[
log p(ô(iO)|y(iO), x(iO), θ) + log p(x(iO)|z(iO), θ)

]
+∑NO

iO=1 Eqξ

[
log p(y(iO)|X (iO), θ) + log p(X (iO)|z(iO), θ) + log p(z(iO))

]
−∑NO

iO=1 Eqξ

[
log qξ (y(iO)) + log qξ (X (iO)) + log qξ (z(iO))

] (32)

accounts for the terms associated with the virtual observables/data DO .
We note that in Equation (30), Equation (31) and Equation (32) the expected log-likelihood terms (i.e. first sum) promote 

a good fit of the generative model to the unlabeled Du , labeled Dl and virtual data DO data respectively, while the second 
and third sums correspond to the Kullback-Leibler divergence between approximate posteriors and priors which act as regu-
larization that prevents overfitting. The common model parameters θ appear in all components of the ELBO and synthesize 
9
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Algorithm 1: Training generative model using SVI.

Data: Generative Model, Du = {
x(iu )

}Nu

iu=1, Dl = {
x(il), y(il)

}Nl

il=1 , DO =
{

x(iO ), ô(iO )
}NO

iO=1

1 while ELBO not converged do
// Reparametrization trick

2 Sample ε(k) ∼ p (ε) , k = 1, ..., K ;

3 R(k) ← 
R
ξ

(
ε(k)

)
θ (k) ← 
θ

ξ

(
ε(k)

)
k = 1, ..., K ;

// Monte Carlo estimate of ELBO
4 Estimate F̂ ←∑K

k=1 F
(
θ (k),R(k)

)
; // Equation (28)

5 // Backpropagate

6 gξ ← ∇ξ

∑K
k=1 F

(
θ (k),R(k)

)
;

// Stochastic Gradient Update
7 ξ (n+1) ← ξ (n) + ρ(n) 
 gξ ;
8 n ← n + 1
9 end

the information provided by the different data-types. We highlight the term log p(ô(iO)|y(iO), x(iO), θ) in Equation (32), 
which is driven by the virtual dataset and reflects the incorporation of our (in)equality constraints. In this case, the model 
attempts to infer the solution y(iO) through qξ

(
y(iO)

)
. Hence the updates of the model parameters θ are affected also by 

the inferred solutions and the uncertainty associated with them.
For the structured mean-field approximation qξ (θ ,R) in Equation (27) we adopt diagonal Gaussians, primarily due to 

their linear scaling with the dimension of the corresponding latent variables. The following forms and parametrizations for 
the variational posteriors qξ in Equation (27) were adopted:

• ∀iu ∈ {1, ..., Nu}: qξ

(
z(iu)

)=N
(

z(il)
∣∣∣ μ(iu)

z ,diag
(
σ (iu)

z

))
• ∀il ∈ {1, ..., Nl}: qξ

(
z(iu)

)=N
(

z(il)
∣∣∣ μ(il)

z ,diag
(
σ (il)

z

))
qξ

(
X (il)

)=N
(

X (il)
∣∣∣ μ(il)

X ,diag
(
σ (il)

X

))
• ∀iO ∈ {1, ..., NO}: qξ

(
z(iO)

)=N
(

z(iO)
∣∣∣ μ(iO)

z ,diag
(
σ (iO)

z

))
qξ

(
X (iO)

)=N
(

X (iO)
∣∣∣ μ(iO)

X ,diag
(
σ (iO)

X

))
qξ

(
y(iO)

)=N
(

y(iO)
∣∣∣ μ(iO)

y ,diag
(
σ (iO)

y

))

which, in combination with Equation (29) suggest that the parameter vector ξ consists of

ξ =
{
θ M A P ,

{
μ(iu)

z ,σ (iu)
z

}Nu

iu=1

{
μ(il)

z ,σ (il)
z ,μ(il)

X ,σ (il)
X

}Nl

il=1

{
μ(iO)

z ,σ (iO)
z ,μ(iO)

X ,σ (iO)
X ,μ(iO)

y ,σ (iO)
y

}NO

iO=1

}
. (33)

For the parameters that are constrained to be positive, a suitable transformation (e.g. exp (·)) is employed such that maxi-
mizing the ELBO becomes an unconstrained optimization problem.6

From Equation (33) it is obvious that the number of variational parameters associated with the, potentially large unla-
beled dataset, Du scales linearly with Nu . One may therefore consider introducing an amortized encoder q�

(
z(iu)

∣∣x(iu)
)

[71], 
i.e. an approximate posterior that explicitly accounts for the dependence of each z(iu) on the data x(iu) . In particular, we 
adopt an approximate posterior of the form

q�

(
z(iu)

∣∣∣x(iu)
)

= N
(

z(iu)
∣∣∣μ�

(
x(iu)

)
,diag

(
σ�

(
x(iu)

)))
∀iu ∈ {1, ..., Nu} , (34)

where the amortization implies that the parameters � are shared between all instances iu of unlabeled data. Similarly to the 
choice of q (R) the specific structure of Eq. (34) follows from numerical considerations.7 While the approximate posterior 
in Equation (34) can, at best, achieve the same ELBO as the qξ (z(iu)) above, it contains fewer parameters that need to be 
optimized (at least for large Nu) and once trained can be readily used as an approximation to the true posterior pθ (z|x) for 
predictive purposes in Equation (15). In our simulations, the parameters � pertain to deep neural nets (see section 3) and 
from a practical point of view, the only difference is that 

{
μ(iu)

z , σ (iu)
z
}Nu

i=1 are substituted by the parameters � in the vector 
ξ of Equation (33), and that the unlabeled data is subsampled in batches during training.

We conclude this section by enumerating the basic steps associated with the variational inference task in Algorithm 1. 
The intractable expectations with respect to qξ appearing in the ELBO F and its gradient ∇ξF are estimated with Monte 
Carlo. In order to reduce the variance of these estimators, we apply the well-established reparametrization trick [71].

6 We note that σ denotes a vector of variances, not standard deviations.
7 This specific choice is amenable to reparametrization (see Algorithm 1). As detailed in the seminal paper of [71] this enables low-variance estimates of 

the gradients of the ELBO needed in training (see Algorithm 2).
10
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Algorithm 2: Making predictions for new x using the generative model.
Data: x, trained generative model

1 if amortization then
2 q∗ (z) ← q� (z|x) ; // Equation (34)
3 else
4 q∗ (z) ← arg maxζ F̂u

(
qζ (z)

)
; // Equation (37)

5 end
6 for k ← 1 to K do
7 Sample z(k) ∼ q∗ (z) ;

8 Sample X (k) ∼ p (X
∣∣z(k), θ M A P

)
; // Equation (18)

9 Sample y(k) ∼ p (y
∣∣X (k), θ M A P

)
; // Equation (19)

10 end

11 Construct sample-based approximation p̃ (y|x,D) using samples y(k), k = 1, ..., K

We combine the noisy estimates of the gradient ∇ξF with stochastic gradient ascent [72] and the Adam algorithm in 
particular [73]. We note that training requires the propagation of gradients through the whole model, including the CGM 
and the constraints associated with virtual observables. Propagating gradients through the model can readily be done using 
algorithmic differentiation [74] whenever possible; i.e., when evaluating a Monte Carlo estimate of the evidence lower bound 
F a computational graph is built, such that in a backward pass gradient information propagates from F to the leaf nodes 
of the computational graph (e.g. given by the variational parameters ξ ) [75]. The CGM and the virtual observables o (y; x)

must be embedded within this computational graph, i.e. it is required that the CGM also allows the back-propagation of 
gradient information. If the CGM involves the solution of a (coarse-grained) PDE, the reverse-flow of information required 
during back-propagation corresponds to the solution of the adjoint problem (at a cost equivalent to the forward solution 
of the CGM). Obtaining derivatives of the virtual observables is equally a cheap operation but also problem-specific and 
discussion is deferred until section 3.3.

2.6. Predictions

Once an (approximate) posterior qξ (θ) on the model parameters θ has been computed, the interest shifts to using the 
trained model for predictions. The adoption of a generative model however implies that by learning a joint distribution 
pθ (x, y), the desired posterior predictive p (y|x,D) no longer directly exists in closed form. In the simplest case, given a 
new (unobserved) input x, we seek the corresponding output y. The probabilistic nature of the proposed generative model 
yields a probability density on y (see also (5)), i.e. the predictive posterior p (y|x,D) given by

p (y|x,D) =
∫

p (y|X, θ) p (X |z, θ) p (z|x, θ) p (θ |D) dz dX dθ (35)

≈
∫

p (y|X, θ M A P ) p (X |z, θ M A P ) p (z|x, θ M A P ) dX dz , (36)

where the variational approximation qξ (θ) = δ (θ − θM A P ) was used in place of the intractable posterior p (θ |D).8

If an amortized approximate posterior q�(z|x) has been found in the inference step as detailed in the previous section, 
then this can be used in place of p (z|x, θ M A P ) in Equation (36). Alternatively, one might employ sampling methods (e.g. 
MCMC) or another round of (stochastic) variational inference in order to obtain an approximation, say qζ (z). The latter is 
found by maximizing an analogous ELBO, i.e.

q∗ (z) = arg min
ζ

KL
[
qζ (z)

∣∣∣∣p (z|x, θ M A P )
]

= arg max
ζ

Eqζ (z) [log p (x|z, θ M A P )] − KL
[
qζ (z)

∣∣∣∣p (z)
]

= arg max
ζ

F̂u
(
qζ (z)

)
. (37)

We note that irrespective of the adopted method, no additional model solves of the FGM are required and for the results 
reported in subsequent sections the variational approximation qζ was used. The integral in the predictive posterior of (36)
can be approximated with Monte Carlo and requires solely solutions of the CGM. In Algorithm 2 we briefly summarize how 
probabilistic predictions p (y|x,D) can be obtained for new (unobserved) inputs x.

8 We also briefly mention the possibility (without pursuing it further in this work) to incorporate (additional) constraints o(y; x) at x during the 
prediction stage as well, i.e. to perform prediction by inference and update the posterior predictive using again the virtual likelihood p (y

∣∣x, ô,D
) ∝

p (ô∣∣y, x
)

p (y|x,D) where ô denotes the associated virtual observables.
11
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2.6.1. Predictive performance metrics
In the context of making (probabilistic) predictions, it is essential to score the predictive utility of the probabilistic 

surrogate in a way that assesses how well the model has learned to generalize the underlying mapping (i.e. the mapping 
y (x) implicitly defined by the PDE and the FGM). To this end we consider a validation dataset Dv = {

x(iv ), y(iv )
}Nv

iv =1
consisting of Nv input-output pairs of the FGM not appearing in the training data. On this validation dataset we evaluate the 
following two metrics using the predictive posterior density:

Coefficient of determination R2 The coefficient of determination R2 is a standard metric [76] which assesses the accuracy 
of point estimates, and in particular of the mean μ(x(iv )) of the predictive posterior of our trained model for each 
validation input x(iv ) , i.e.

μ(x(iv )) = Ep
(

y
∣∣x(iv ),D

) [ y] , iv = 1, . . . , Nv . (38)

The mean of the posterior predictive is estimated using Monte Carlo (see Algorithm 2) and is compared to the 
reference FGM outputs {y(iv )}Nv

i=1 using the coefficient of determination

R2 = 1 −
∑Nv

iv=1

∣∣∣∣y(iv ) − μ(x(iv ))
∣∣∣∣2

2∑Nv
iv=1

∣∣∣∣y(iv ) − yv

∣∣∣∣2
2

, (39)

where yv = 1
Nv

∑Nv
iv =1 y(iv ) is the sample average of the validation dataset. It can be noted that R2 attains its 

maximum value, i.e. R2 = 1, when the mean predictive estimates coincide with the actual FGM outputs in the 
validation dataset and deviations from these are weighted by the variability of the validation data appearing in 
the denominator of Equation (39).

Logscore L S This metric assesses not just point estimates of the predictive posterior but also the associated predic-
tive uncertainty. In particular and for the purpose of computing L S we approximate the otherwise intractable 
p(y|x(iv ), D) in Equation (36) at each validation input x(iv ) , by a Gaussian with a mean equal to the actual mean 
of the predictive posterior μ(x(iv )) (Equation (38) - estimated by Monte Carlo) and a diagonal covariance matrix 
S(x(iv )) containing the actual variances (also estimated by Monte Carlo - see Algorithm 2), i.e.

S(x(iv )) = diag
(
σ 2

j

(
x(iv )

))
, iv = 1, . . . , Nv (40)

where

σ 2
j (x(iv )) =Ep

(
y
∣∣x(iv ),D

) [(y j − μ j(x(iv )))2
]
, iv = 1, . . . , Nv . (41)

Subsequently, L S is evaluated as

L S = 1

Nv

Nv∑
iv=1

logN
(

y(iv ) | μ(x(iv )), S(x(iv ))
)

. (42)

One notes that high L S values are achieved not only when the predictive mean μ(x(it )) is close to the true 
y(it ) but also when the predictive uncertainty (as measured by the variances σ 2

j (x(it ))) is simultaneously as small 
as possible. It can finally be shown [57] that L S approximates the Kullback-Leibler divergence between the true 
p(y|x) and the (Gaussian approximation of the) predictive posterior pθ (y|x, D) averaged over the true distribution, 
say p(x), of the inputs.

2.7. Numerical complexity analysis

In the following we discuss the computational complexity of the proposed algorithms and their scaling with the dimen-
sions of the problem, as well as with the number of, virtual or actual, training data. In such a discussion it is necessary 
to distinguish between the training phase (i.e., obtaining θMAP - frequently referred to as offline phase) and the prediction 
phase (frequently referred to as online phase). Since the CGM is directly embedded in the probabilistic graphical model, the 
numerical cost of training (with the exception of unlabeled data) depends on the cost of the CGM, which we need to solve 
for a forward pass of our model (as well as an adjoint solve of the CGM for the backpropagation of gradient information). 
Forward evaluations of the CGM are also required, if - after training - the model is used for predictive purposes. As such, 
the overall numerical complexity depends on dcgm ≈ dim (Y ) ≈ dim (X). The numerical effort of the entire algorithm there-
fore scales with dcgm , and the specific dependence follows from the type of the CGM; i.e., how the numerical discretization 
technique used for the CGM scales with the dimension of dcgm . In the following we shall assume O(d2

cgm) and note that 
dcgm and the cost of a CGM solve is by construction much smaller than the corresponding dimension and cost of the FGM.
12
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During training the algorithm exhibits linear scaling in the number of labeled data points Nl and query points NO , as 
variational inference is carried out separately for qξ (z(i)) and qξ (X (i)) for i = 1, ..., (Nl + NO). The same statement extends 
to the memory requirements resulting from the variational inference for the X (i) and z(i) . In contrast, sub-linear scaling 
can be achieved in terms of the number of unlabeled data Nu , assuming that an amortized encoder q�(z|x) is introduced 
which enables the batched sub-sampling of data. In addition, the number of parameters dim(�) of the amortized encoder 
which one has to infer is constant irrespective of Nu . One of they key points is of course that the virtual observables enable 
the incorporation of a set of M = dim

(
ô
)

physical constraints at a cost that is dictated by the number of constraints M , 
and does not directly relate to the dimension arising from the fine-scale discretization, i.e. dy = dim (y) (in Appendix B we 
discuss the special case of closed form updates with the complexity being bounded by O(M3)) . As such the incorporation 
of virtual observables and the subsequent optimization of FO scales overall as O(NO · M3 · d2

cgm).
The cost of the generation of predictive estimates with the trained model is dictated primarily by the cost of the forward 

solve of the CGM, which makes the surrogate usable in a multi-query setting (for which we provide a numerical illustration 
in section 3.9). Since pθ (y|x,D) is not available in closed form, several evaluations of the CGM (at an assumed complexity 
O(d2

cgm) each) are required to obtain a sufficient estimates of the integrals involved (see section 2.6 and Algorithm 2). The 
numerical cost in the prediction phase is further reduced if an amortized encoder q� (z|x) has been employed, since this 
enables to bypass variational inference for any new x at which the surrogate is to be evaluated. Hence, FGM solves are 
needed only in the generation of Nl labeled data Dl = {

x(il), y(il)
}Nl

il=1 provide to the model. Since the cost of each FGM call 
for most problems outweighs the others, the primary cost metric used for our illustrations is the number of labeled data, 
which we try to reduce as much as possible while retaining predictive accuracy.

3. Numerical illustrations

We demonstrate the capabilities of the proposed framework in discovering predictive, probabilistic surrogates on a two-
dimensional diffusion problem. In the sequel, we specify particular elements of the proposed model that were presented 
generically in the previous sections and additionally concretize parametrizations and their meaning. The goals of the nu-
merical illustrations are:

• to examine the effect of the number labeled data Nl which are the most expensive to obtain and to assess whether the 
model can perform well under small Nl (i.e. a few tens of FGM runs, section 3.4).

• to assess the ability of the model to learn effective and interpretable CGMs that provide insight to the relevant features 
of the high-dimensional input x which are predictive of the output y (section 3.4).

• to examine the effect of the amount of virtual observables DO and assess whether the model’s predictive performance 
can be improved by increasing the number NO of such data (section 3.5).

• to examine the effect of the type of virtual observables provided for training. In particular, we consider three different 
types (namely coarse-grained residuals, hybrid and potential energy) and assess the model’s predictive performance for 
each one of those (section 3.5).

• to examine the effect of unlabeled data Du which are inexpensive to obtain and to assess whether the model’s predic-
tive performance can be improved by increasing the number Nu of such data (section 3.6).

• to examine the effect of the information bottleneck implied by the latent variables z and the CGM and to assess the 
effect of the dimension of z and the CGM’s state variables (i.e. X and Y ) on the predictive performance of the model 
(section 3.7)

• to assess the predictive performance of the model under high-dimensional parametric inputs x and under “interpola-
tive” and “extrapolative” conditions. The latter distinction refers to the ability to predict the (equally high-dimensional) 
output vector y under boundary conditions that were (interpolative) or not (extrapolative) used during training (sec-
tion 3.8).

• to investigate the efficiency and accuracy of the trained surrogate in a many-query application involving uncertainty 
propagation (section 3.9).

Some of the simulation results as well as the corresponding code will be made available at the following github reposi-
tory9 upon publication.

3.1. Definition of physical problem

For the numerical illustration of our modeling framework we consider a linear elliptic PDE defined on the unit square 
� = [0,1]d in dimension d = 2. We can write the governing equations as a two-field problem

conservation law: ∇ · J (s) = f , ∀s ∈ � (43)

constitutive law: J (s) = −∇ (κ (s) u(s)) ∀s ∈ � (44)

9 https://github .com /bdevl /PGMCPC.
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with boundary conditions

u = uD , s ∈ 
D (45)

J · n = 0, s ∈ 
N , (46)

where u(s) is a scalar field to which one might attribute the physical meaning of temperature or pressure or concentration, 
J (s) is a vector field representing flux, and n is the unit outward normal vector. 
N denotes the part of the boundary where 

Neumann boundary conditions are prescribed and is comprised of the top and bottom sides of the unit square �, i.e. for 
{s|s2 = 0 or s2 = 1}. At the remaining boundary 
D , i.e. the left and right side of the domain, we introduce randomized 
boundary conditions of the form

uD (s) = a0 · s2 + a1 (1 − s2) s ∈ {s|s1 = 0}
uD (s) = a2 · s2 + a3 (1 − s2) s ∈ {s|s1 = 1} (47)

with ai ∼ U [−0.5,0.5].
We model κ (s) with a log-normally distributed random field, i.e., κ(s) = eλ(s) where the underlying Gaussian field has a 
spatially constant mean μλ and a covariance Cλ

(
s, s′) function given by

Cλ

(
s, s′)= σ 2

λ · exp

(
−1

2

∣∣∣∣s − s′∣∣∣∣2
2

l2λ

)
. (48)

The following values were used for the parameters: μλ = 0.4, σλ = 0.8 and lλ = 0.04 or 0.15 (depending on the resolu-
tion of the FGM). The resulting random field κ(s) exhibits significant variability with a coefficient of variation of 0.95 and 
the small correlation lengths necessitate fine discretizations resulting in a high-dimensional random input x. A discretized 
sample of κ (s) is obtained by sampling the underlying Gaussian field on a spatial grid defined by the discretization of the 
FGM, which will be discussed in the following.

The numerical solution of the governing equations is obtained using a standard Finite Element (FE) schemes. For the 
purposes of our illustrations we consider the following two FE discretizations giving rise to the fine-grained (FGM) and 
coarse-grained (CGM) models in the previous discussion:

FGM This employs a fine(r) discretization using a regular grid of size d f × d f .10 Our simulations are based on d f = 32 (for 
lλ = 0.15) and d f = 64 (for lλ = 0.04) giving rise to dim(y) = (d f +1)2 using the standard FE scheme, i.e. dim(y) = 1089
and 4225, respectively. The random field κ(s) is discretized using piece-wise constant functions over each grid element, 
and the vector x represents the value of κ(s) at the centroid of each pixel. Hence dim(x) = d2

f .
In anticipation of the virtual observables that will be enforced and are discussed in more detail in section 3.3, we review 
here the weak form of the governing PDE which, in view of Equation (43) and the boundary conditions in Equation (45)
and Equation (46) becomes

−
∫
�

∇s w · J ds −
∫
�

w f ds = 0 , (49)

or upon making use of the constitutive equation (44)∫
�

∇s w · κ ∇su ds −
∫
�

w f ds = 0 . (50)

The admissible weight functions w ∈ W belong in the set W = {w(s) | w(s) ∈ H1(�), w(s) = 0 on 
D}. We denote by 
y the discretized representation of u(s) with the usual FE shape functions which, upon substitution in Equation (50), 
and for each w ∈W yields a residual rw :Rdx ×Rdy →R

rw(y; x) = 0 . (51)

We note that depending on the choice of the weight functions w (at least) six methods (i.e. collocation, sub-domain, 
least-squares, (Petrov)-Galerkin, moments) arise as special cases [79].

10 The use of regular grids is pursued in order to enable the use of convolutional neural networks (CNNs) ([77], [78]) for the parameterized densities, 
enabling a parsimonious description of a complex hierarchy of features. We note that expressing physically meaningful spatio-(temporal) features on 
possibly non-regular and unstructured domains is a challenge in itself, but not the subject of this investigation. As such we have chosen to constrain 
ourselves to the representation of the random field on a regular grid, which enables the use of methods that have reached maturity due to their extensive 
use in computer vision.
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Fig. 4. Comparison of a sample x(i) of the discretized of the Gaussian random field λ(s) of the FGM (left - Equation (48) with lλ = 0.15) with the (log of 
the posterior mean of the) corresponding X (i) for three different CGM discretizations, i.e. 1 × 1 , 2 × 2 and 4 × 4 (The posterior means E[q(X(i))] are based 
on Nl = 512 training data). The CGMs encode effective properties X (i) via the trained model density p (X |x). As the CGM is refined, it captures more details 
of the underlying FGM properties, e.g. areas in the problem domain with higher/lower conductivity x in the FGM correspond to higher/lower values of X
in the CGM. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

It is also well-known that the solution to this problem, as with many problems in computational physics, can be 
obtained by minimizing an appropriate functional which in this case reduces to the potential energy function V given 
by

V = 1

2

∫
�

κ |∇su|2 ds −
∫
�

f u ds . (52)

Upon discretization, this suggests that the solution vector y can be found by minimizing V , i.e.

min y V (y; x) , (53)

where V is the discretized potential energy obtained by using the discretized versions of κ and u in V of Equation (52).
We note that the output vector y which corresponds to the discretization of u(s) is of similar dimension dy = dim(y) =
(d f +1)2 as well11 (Fig. 4). We do not consider the discretization error of the FGM, as our goal in this work is to predict 
y (i.e. the discretized solution), and as such assume it to be of sufficient accuracy.

CGM This is based on a FE solver on a coarse(r) regular grid of size dc × dc . Analogously to the FGM, the CGM input vector 
X represents the property within each of the pixels and is therefore of dimension dim(X) = d2

c . The FE solver yields 
the output vector Y (which represents u(s)) and is therefore of dimension dim(Y ) = (dc + 1)2 as well.12 The values 
dc = 1, 2, 4 were considered (see Fig. 4) - in all cases dc << d f ) in order to assess the effect of the dimensionality of 
the CGM in the predictive estimates. We note that this particular form of the CGM was adopted for simplicity and due 
to the fact that boundary conditions can be readily incorporated in it rather than having to learn their effect as well 
(e.g. by including them in x, X ). Nevertheless, any coarse-grained or reduced-order model from the vast literature on 
this topic can be employed instead.

3.2. Specification of the generative model

Given the physical problem above and the definitions of the associated input X , x and output vectors Y , y, we provide 
details on the parameterization of the generative model which was generically described in section 2. In particular, the 
following modeling choices were made:

(a) we employ a densely connected convolutional neural network [80] to parameterize the mean f (z; θ x) as well as the 
input-dependent diagonal covariance matrix S x(z; θ x) in Equation (17). In addition, we make use of the same architec-
ture for the amortized encoder q� (z|x) (section 2.5). More specifically, the implementation is based on a variation of 
the architecture proposed in [34]. The alterations refer predominantly to a reduction in the complexity and expressivity 
since the latent space z encodes the salient features of x, i.e., we primarily wish to retain information to the extent that 
it can help us in predicting effective properties by means of p (X |z, θ) (Equation (18)).

(b) The conditional density N (X
∣∣g(z; θ g), S X ) defined by Equation (18) relates the latent encoding z to the input X of 

the CGM (i.e. the apparent/effective/homogenized properties). The mean vector g(z; θ g) depends on the latent variables 
z and is parameterized using a linear layer, i.e. g(z; θ g) = W g z + bg such that θ g = {W g, bg}, which was found to be 
most robust in the low-data regime (this could be trivially expanded to a shallow feedforward neural network).

(c) For the dimension of the latent space we adopt the choice dim (z) = 0.5 · dim (X). To motivate this choice, we note 
that the primary function of z is to induce an information bottleneck which is able to retain information about effective
properties X . A suitable choice however will always be problem-dependent (see also section 3.7).

11 Excluding boundary conditions.
12 Excluding boundary conditions.
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Fig. 5. The left column provides examples of the mean of the predictive posterior p (y|x,D) for various x not seen during training. The middle column con-
tains the actual output y obtained by solving the FGM (ground truth / reference). Finally on the right column we compare the reference with the posterior 
predictive distribution by cutting along the diagonal of the unit square domain; the shaded area corresponds to the 95% credible interval ((64 × 64) FGM, 
(8 × 8) CGM, lλ = 0.04).

The general implementation of the model leverages and intertwines both Fenics [81] as well as PyTorch [75]. The CGM 
and its adjoint have been fully embedded within the automatic differentiation framework of PyTorch, enabling the fast and 
parallel solution of the CGM on the GPU (i.e. in batches).

3.3. Virtual observables

Following the general discussion in section 2.2 on how domain knowledge can be introduced consistently in a proba-
bilistic graphical model as artificial nodes (virtual observables), we discuss several types of such virtual observables DO
derived from the governing equations. We are primarily interested in those that can inexpensively augment the training 
data and improve the predictive ability of the trained model even though they might provide incomplete or partial pieces of 
information at each input query point x(iO) about the underlying governing equations. This property (partial information) 
will be reflected in the fact that most constraints we consider only carry information about a small subset of dimensions 
in the y-space. We note that when the virtual observables o (y; x) are linear with respect to y, then low-rank, closed-form 
updates for {q(y(iO))}NO

iO=1 (Equation (27)) can be employed. Detailed information on these technical matters is provided in 
Appendix B and in the appendices referenced in the ensuing discussion.

Weighted Residuals As discussed in the previous section, the method of weighted residuals can be used to enforce the 
governing equations. Hence we propose using Equation (50) as constraints that are probabilistically incorporated 
in the proposed model as discussed in section 2.2. We note that the use of weighted residuals of PDEs has also 
been advocated in deterministic machine-learning loss functions [46]. We consider two categories of residuals 
rw(y; x) based on two different types of weight functions w . The latter can be thought of as the lens through 
which the governing equations are viewed.
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Fig. 6. Illustration of 4 randomly sampled radial basis-type weight functions (Eq. (55)) corresponding to the Randomized Residuals. Instead of using col-
location points at which the PDE is enforced, we randomly sample Galerkin weight functions that enforce governing equations in a spatially-averaged 
sense.

The first type, which we call Coarse-Grained Residuals, employs weight functions w that correspond to 
the coarser discretization of the CGM. Due to the lower resolution of the corresponding mesh, they can be 
thought as enforcing the governing equations in a spatially-averaged sense. In particular and if we denote by 
�(s) = {�m(s)}M1

m1=1 the vector containing the shape-function of the CGM, we consider M1 weight functions 
{wm1 }M1

m1=1 of the form13

wm1(s) = �m1(s), m1 = 1, . . . , M1 . (54)

The second type of residuals considered and which we call Randomized Residuals are based on using M2

radial basis-type functions as weight functions w , i.e.

wm2(s) = exp

(
−||s − s0,m2 ||2

�2
m2

)
, m2 = 1, . . . , M2 . (55)

The scale parameters {�m2 }M2
m2=1 were set equal to 0.1 in subsequent investigations, and the centers {s0,m2 }M2

m2=1
are sampled uniformly over the problem domain, i.e. [0, 1]2 (Fig. 6).

In contrast to the first type of residuals, these are capable of providing more localized information and over 
subdomains the size of which is determined by the scale parameters �m2 which can be adjusted accordingly. In the 
extreme where �m2 → 0, the weight function wm2 becomes a Dirac-δ function and the corresponding constraint, 
a collocation-type one. The constraints associated with weighted residuals are enforced with infinite precision, i.e. 
σc = 0 in Equation (8).

Conservation (Flux) Constraint The second category of constraints that we employ can also be cast as a special case of 
weighted residuals, but operating instead directly on the conservation law (Equation (43)), i.e. on the flux vari-
able J as in Equation (49). In particular, we make use of indicator functions of subdomains �m3 ⊆ � as weight 
functions wm3 , i.e.

wm3(s) = 1�m3
(s), m3 = 1, . . . , M3 . (56)

We note that in this case, Equation (49) reduces to∫
∂�m3

J d
 −
∫

�m3

f ds = 0 , (57)

where the first integration is over the boundary of �m3 . The subdomains �m3 are selected to coincide with the 
finite elements of the CGM (Fig. 4). The flux J is computed using the constitutive law in Equation (44) from the 
discretized solution vector y. Even though the spatial resolution of the weight functions is analogous to the ones in 
the Coarse-Grained Residuals above, the information the residuals of Equation (57) provide is of a different physical 
nature. Since not even the FGM satisfies such flux constraints perfectly, we learn the precision σ−2

c (Equation (8)) 
with which these constraints are enforced by introducing a prior that promotes larger values (Appendix C). This is 
analogous to the well-known Automatic Relevance Determination (ARD, [70]) on the associated constraints.

Energy The final constraint that we make use of pertains to the type presented in Equation (10) (section 2.2) where the 
actual potential energy (Equation (53)) is employed. In contrast to the other constraints discussed, this provides 
complete information at each input query point, i.e. by minimizing V which implies fully enforcing the corre-
sponding virtual observable, one can perfectly determine the solution vector y. This precludes low-rank updates 

13 We always ensure these are admissible.
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Fig. 7. Predictive performance in terms of the R2 and L S metrics as a function of the number of labeled data points Nl (Nu = NO = 0), for d f = 32 and 
lλ = 0.15. Results have been averaged by repeatedly training the model on resampled data.

and makes the incorporation of this constraint more expensive. We provide details on how {q(y(iO))}NO
iO=1 is up-

dated using stochastic second-order optimization in Appendix D.

3.4. Predictive performance and the effect of Nl

In the simplest scenario, the model is given access solely to a set of labeled data Dl = {x(il), y(il)}Nl
il=1 (i.e. Nu = NO = 0). 

In the following we demonstrate as a baseline that the model generalizes well in the small labeled data regime, as a result 
of the information-bottleneck variables z as well as the CGM. We provide indicative samples of the mapping to the CGM 
inputs learned in Fig. 4 and indicative predictions for new inputs in Fig. 5.

As observed in Fig. 7, the model achieves very high scores with only Nl = 128 labeled data in terms of the R2 (the 
largest possible value of R2 is 1) and Nl = 64 in terms of the L S score. We observe that further increase of Nl results in 
minimal if not negligible improvement, i.e. the model has saturated. While alterations in the neural networks involved can 
be expected to change the particular values, we note that the saturation effect is a consequence of the limited capacity of 
the CGM which lies at the center of the model proposed. That is, even assuming an optimal choice for θ , the information 
bottleneck and the CGM implies that we can only predict the FGM output y up to a certain level of detail. Hence even 
if infinite (labeled) data were available, the predictive scores of the model would not improve further and the remaining 
pieces would be enveloped by the predictive uncertainty (see Fig. 5). On the other hand, if the CGM was removed and 
was substituted by a more expressive (and with more parameters) black-box model (e.g. another neural net), its predictive 
performance would not be as high with so few labeled data but would continue to increase (as much as its capacity would 
allow) with increasing Nl . This saturation effect arising from the CGM has also been observed in the discriminative model 
proposed in [58] where procedures for the adaptive refinement of the CGM were proposed. These were driven by the ELBO 
F , which provides a natural score function for each model, but were not pursued in this work.

3.5. Effect of the amount and type of virtual observables

In the following, we demonstrate the benefits of the inclusion of virtual observables to the predictive performance of the 
proposed model. In order to quantify this benefit, we consider the posterior predictive density p (y|x,Dl,DO) (section 2.6) 
as a function of labeled data Dl as well as of the virtual observables DO = {x(i), ô(i)

)}NO
i=1. We omit in these experiments, 

unlabeled data Du (i.e. Nu = 0), the effect of which will be examined in section 3.6. In particular, we examine the improve-
ment in the predictive performance, i.e. in the metrics R2 and L S (section 2.6.1), of the three baseline models (for NO = 0) 
corresponding to the following number of labeled data, i.e.

Nl = {16, 32, 64} , (58)

when NO virtual observables are added, where:

NO = {32, 64, 128, 196, 256} . (59)

Furthermore, we examine the effect of the different types of virtual observables by considering the following three cate-
gories:

• CGR: At each input query point x(iO) , M1 = 25 Coarse-Grained Residuals (Equation (54)) are observed .
• Hybrid: At each input query point x(iO) the CGR (M1 = 25), a set of randomized weighted residuals (M2 = 60, Equation 

(55)) and the conservation of flux (M3 = 32, Equation (56)) are observed.
• Energy: At each input query point x(iO) the potential energy is observed.
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Fig. 8. Left Column: Predictive performance of a model trained on Nl labeled data, NO virtual observables of type CGR (Nu = 0). Right Column: Comparison 
of predictive performance in terms of the L S metric with respect to 3 different types of virtual observables. The baseline performance for NO = 0 has been 
removed to improve clarity but the corresponding values can be found in the left column as well as Fig. 7. Results have been averaged by repeatedly 
training the model on resampled data.

We report results in Fig. 8, where the left column depicts the evolution of the R2 and L S for different values of NO and 
for virtual observables of the CGR type. One can readily observe that, for all three Nl values (i.e. number of labeled data), 
the introduction of the domain-knowledge in the form of these residual-type constraints leads to a significant improvement 
of the model’s predictive accuracy. Furthermore, with the virtual observables introduced, one can attain with only Nl = 16
predictive performance scores that in Fig. 7 required Nl = 512 labeled data i.e. a significant reduction in the number of times 
the FGM needs to be solved. As one would perhaps expect, the gains from the virtual observables are more pronounced for 
small numbers of labeled data, i.e. when the model still struggles to generalize based on the too few labeled data points 
and therefore has more room to improve. Despite the fact that these virtual observations ô ∈ R32 only provide partial 
information, the model is still able to leverage this to improve upon its predictive performance.
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Fig. 9. L S score as function of Nl (number of labeled data) and NO (number of virtual observables). Results have been averaged by repeatedly training the 
model on resampled data.

In the right column of Fig. 8 we expand upon these results by considering different types of virtual observables and 
by quantifying the impact of their informational content on the model’s predictive performance. We note that the energy 
virtual observables have the most striking benefit which is expected as they provide complete information on the associated 
FGM output. Secondly, the Hybrid-type seems to yield a higher improvement in the model’s predictive score as compared to 
the CGM-type. Finally in Fig. 9, we provide additional details by depicting the L S metric as a function of both NO and Nl .

3.6. Effect of unlabeled data

In this section we study the effect of unlabeled data Du = {x(i)}Nu
i=1, i.e. semi-supervised learning, in the model’s pre-

dictive accuracy. To this end we investigate the predictive posterior p (y|x,Du,Dl) as the number of unlabeled data Nu

increases. We re-emphasize that unlabeled data are inexpensive to obtain (i.e. just inputs) and if the generative model 
proposed can exploit their informational content in improving its predictive ability, this would be of high utility.

In Fig. 10 we present the evolution of predictive metrics R2 and L S as a function of the number of labeled data Nl
for two models. The blue line corresponds to no unlabeled data, i.e. Nu = 0, whereas the red line corresponds to Nu = 256
unlabeled data. In both Figures the benefit of Du can be clearly observed. The unlabeled data contribute in the identification 
of the lower-dimensional encoding z, i.e. a compressed description of the input x which in turn informs the prediction of 
20
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Fig. 10. A model trained on a certain number of labeled data Nl is compared to a model which in addition had access to Nu = 256 unlabeled data points, 
the latter achieving consistently better performance. Results have been averaged by repeatedly training the model on resampled data.

Fig. 11. The predictive performance of the generative model as a function of the number of unlabeled data Nu for Nl = 32 (left) and Nl = 64 (right). Results 
have been averaged by repeatedly training the model on resampled data.

the output y through X i.e. the CGM (Fig. 2). As one can also observe, the benefit of unlabeled data decreases the higher 
Nl (i.e. the number of labeled data) is. This is not unexpected as the room for improvement is smaller for higher Nl .

Fig. 11 conveys similar information by varying the number of unlabeled data points while Nl if fixed (either to Nl = 32 or 
Nl = 64). The improvement in the predictive performance due to addition of unlabeled data points can be clearly observed. 
We further note that this improvement is always less than what one would attain with additional labeled data or with 
virtual observables (Fig. 9).

3.7. Effect of the lower-dimensional encoding and the CGM

In the following we provide a brief exposition of the effect of the dimension of the latent encoding z and the state 
variables X (and Y ) of the CGM on the predictive accuracy. In Fig. 12a we alter the dimension of the dim (z) and clearly 
observe the existence of the information bottleneck, i.e. there exists threshold for dim(z) up to which an improvement of 
the generative model is observed (for a fixed number of labeled data Nl = 256 and Nu = 256). After this threshold, the 
predictive capability of the model deteriorates, since the ability to retain more information in the latent encoding z is 
now superseded by the inability of the model to generalize well in the low-data-regime about the (increasingly complex) 
mappings linking the latent space to effective properties X and random field discretizations x.

With regards to the dimension of X (or equivalently the resolution of the CGM), and as one would perhaps expect, there 
is an improvement in performance, as long as the dimension of the latent space as well as the number of data points afford 
the ability to exploit the increasing expressivity of the CGM. In Fig. 12b we illustrate the improvement of the predictive 
performance as the discretization of the CGM is increased from dim(X) = 2 (i.e. a CGM resolution of (1 × 1) - dc = 1) to 
dim(X) = 32 (i.e. a CGM resolution of (4 × 4) - dc = 4). The resolution of the FGM was (32 × 32) (i.e. d f = 32) and the 
results presented were obtained for Nl = 512, Nu = 512 and dim(z) = 32. We refer also to Fig. 4 for an illustration of the 
learned inputs X for various resolutions of the CGM.
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Fig. 12. Effect of the dimension of the latent encoding z and X on the predictive performance. Results have been averaged by repeatedly training the model 
on resampled data.

Table 1
(a) Different BCs considered, and (b) Predictive performance L S score obtained when training a model 
under the BCs indicated by the row and tested on the BCs indicated by the column.

Boundary Conditions

A B C D

a0 0 1 U (−0.5,0.5) 0
a1 0 1 0 Beta (2,5)

a2 1 0 0 −Beta (2,5)

a3 1 0 U (−0.5,0.5) 0

Logscore L S

prediction on
A B C D

trained on

A 1.30 1.30 2.61 2.34
B 1.40 1.40 2.64 2.39
C 1.26 1.24 2.75 2.30
D 1.17 1.13 2.44 2.42

3.8. Effect of different BCs

In the following we evaluate the predictive performance of the model in an extrapolative setting, i.e. when the model 
is asked to provide predictions for boundary conditions not observed during training. To this end we consider the set of 
boundary conditions listed in Table 1a, where the coefficients ai refer to the definition of a parametric Dirichlet B.C. as given 
in Equation (47) (for any ai we specify either a fixed value, or a distribution of it to be randomly sampled from).

In Table 1b we report the L S score obtained on a validation dataset (Nv = 256). In all cases the model was trained 
on Nl = 512 labeled and Nu = 2048 unlabeled data (with NO = 0) using an amortized encoder. The diagonal terms cor-
respond to predictive scores on the same BCs as the ones used for training (interpolative), whereas the off-diagonal ones 
to scores obtained on different BCs than the ones used for training (extrapolative). The results indicate that the predictive 
performance does not significantly depend upon the type of boundary condition the model has been trained on, i.e. the pre-
dictive performance in Table 1b only varies marginally across a column (BC used for training), and the variation is mostly 
determined (see row-wise), on which kind of boundary conditions we wish to make predictions.

3.9. Application: uncertainty propagation

As mentioned earlier, many-query applications represent one of the main incentives for learning probabilistic surrogates. 
We consider here the case of uncertainty propagation where the goal is to compute statistics of Quantities of Interest (QoIs) 
associated with the output y when the input x is random with a density, say p (x). In the following, we compare the 
reference solution for the density of such a scalar QoI v(y) obtained by direct Monte Carlo employing NMC = 8192 FGM 
runs with the marginal distribution p̃ (v|D) over the QoI obtained from the posterior predictive as

p̃ (v|D) =
∫ ∫

δ (v − v (y)) p (y|x,D) p (x)dx d y , (60)

where p(x) is the sampling density of the FGM inputs. We chose as v(y) the value of the solution of the PDE at the 
middle of our computational domain, i.e. at s = (0.5, 0.5). The generative model was trained with Nu = 8192, Nl = 32 and 
NO = 256 and the results obtained are illustrated in Fig. 13. The approximation p̃ (v|D) obtained from the probabilistic 
surrogate matches closely with the Monte Carlo reference. If we had adopted a fully Bayesian approach, i.e. if p (θ |D)

was captured beyond a point estimate, additional uncertainty bounds on the probability density function p̃ (v|D) could be 
derived [82]. Note that the approximate marginal distribution p̃ (v|D) as seen in Fig. 13 has been obtained by leveraging 
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Fig. 13. The predictive posterior density p (v|D) over the QoI v(y) as compared with the Monte Carlo reference p(v) obtained with NMC = 8192 FGM 
solves. The model has been trained using Nl = 32 (compare this with NMC ), Nu = 8192 and NO = 256 hybrid virtual observables (see section 3.5). An 
amortized encoder was used for training and predictions.

the amortized encoder p� (z|x), such that each prediction merely requires to pass x through a neural network, followed by 
solving the CGM.

4. Conclusions

We have proposed a generative probabilistic model for constructing surrogates for PDEs characterized by high-
dimensional parametric inputs x and high-dimensional outputs y. In the following we summarize the most important 
and novel characteristics which enable the model to generalize in the small (labeled) data setting

• it learns the joint density p(x, y) in contrast to the conditional p(y|x) that most discriminative models in the literature 
target. As a result, it can make use of unlabeled data (i.e., only inputs x) and enable training in a semi-supervised 
fashion.

• the choice of a latent variable model defines an information-bottleneck, and as such provides a mechanism to identify 
salient features of the random vector x which are predictive of the output. In other words, the information bottleneck 
forces the model to identify a small set of (complex and non-linear) features, which exhibit high mutual information 
with the solution y. This is achieved by maximizing of the ELBO which yields an encoding pθ (z|x) in the latent space 
that is ‘rich‘ in information concerning the output y we wish to predict [83].

• it employs a coarse-grained model at its core which serves to further tighten the information-bottleneck between the 
high-dimensional inputs x and outputs y. We have demonstrated how such models can be flexibly constructed by coars-
ening the FGM and have shown that this can lead to superior predictive performance in the small labeled data regime 
as well as under extrapolative conditions (i.e., boundary conditions not used during training). Part of the complexity of 
the expensive FGM is absorbed by the CGM which in turn reduces the dependence on (labeled) data. Alternatively one 
may regard this as an additional constraint imposed upon the generative model, as the mean predictions for p ( y|x,D)

are restricted to the manifold that is defined by a coarse-grained physical process [47].
• it makes use of domain knowledge in the form of constraints/equalities or functionals that govern the original phys-

ical problem. These are incorporated in the likelihood in a fully Bayesian fashion as virtual observables and can lead 
to significant performance gains while reducing further the need for expensive, labeled data. Furthermore, we have 
demonstrated the beneficial effect of such virtual observables even in cases where they only provide incomplete/partial 
information of the FGM solution vector.

• it yields a predictive posterior density that can be used not only for point estimates, but for quantifying the predictive 
uncertainty as well. The latter is most often neglected in similar efforts but it is an unavoidable consequence of any 
coarse-graining or dimensionality-reduction or reduced-order-modeling scheme that is trained on finite amounts of 
data.

The proposed modeling framework provides a fertile ground for several extensions. Apart from the obvious refinement, 
both in terms of breadth and depth, of the neural networks employed, these improvements would involve:

• the automatic discovery of the dimension of the latent variables z as well as of the CGM. In the latter case, this could 
involve the dimension of the state variables X , Y as well as the model-form itself, i.e. the relation between X and Y . 
As previously mentioned, the ELBO F could serve as the driver for such investigations since it quantifies the plausibility 
of the data under a given model by balancing the quality of the fit with the model’s complexity [84,58].

• active learning in terms of unlabeled data and virtual observables. As it has been demonstrated, such data provide 
valuable information in improving the model. It is not necessary though that all inputs x or pairs of inputs and virtual 
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Fig. A.14. If the source term f i associated with subdomain �i is zero, then the integrated flux across the boundary should net to zero. The discrepancy of 
this flux oi := ���i corresponds to a virtual observable (equality constraint) introduced as artificial node in our probabilistic graphical model.

observables (x, ̂o) provide the same information. A critical component in improving the overall training efficiency would 
be to employ active learning schemes [85] in order to adaptively select the inputs and/or virtual observables (e.g. weight 
functions) at each step that are most informative. We note that such a scheme and in the context of a deterministic PDE-
surrogate has been proposed in [46]. Extensions in the probabilistic setting advocated could also make use of the ELBO 
in selecting from a vocabulary of options, the one that would lead to the largest increase in F .
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Appendix A. Encoding conservation laws as equality constraints

A wide range of PDEs imply physical conservation laws, i.e. the governing equation state that some quantity � is con-
served and unchanging. Since this holds for any arbitrary subdomain �i ⊂ � and time interval we may express this in 
integral form [86] as

���i (t) = d

dt

∫
�i

∫
�(s, t)d�i +

∫
∂�i

J i (s, t)d (∂�i) −
∫
�i

f i (s, t)d�i (A.1)

where s, J i and f i denote the spatial coordinates, (boundary) flux and source term of subdomain �i , respectively. We 
may introduce this physical conservation constraint into our model by introducing oi = ���i as a virtual observable. A 
virtual observable may then for instance correspond to violation of energy conservation resulting from the CGM predictions, 
entering into the probabilistic model by virtue of a zero-mean virtual Gaussian likelihood, i.e. oi := ���i ∼N

(
0, τ−1

i

)
. For 

our steady-state elliptic problem with no time-dependence Equation (A.1) simplifies to

���i =
∫

∂�i

J i (s)d
 −
∫
�i

f i (s) ·d�i , (A.2)

which states that the net-flow across the boundary ∂�i must be equal to production specified by the source term (see also 
Equation (43) and (57)). With u (s) =∑dy

j=1 ϕu
j (s) y j given by a Finite Element discretization of local (linear) shape functions 

defined on some triangulation T of the computational domain, Equation (A.2) results in a linear constraint, since the flux 
J (s) reduces to an element-wise constant quantity (see Fig. A.14), enabling us to compute
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∫
∂�i

J (s)d
 =
Ne∑
j=1

nT
e j

J e j
, (A.3)

where the element-wise constant flux J ei
= B(i) y is linear in y with B(i) ∈ R2×dy , and we sum over all finite elements 

comprising the subdomain �i (assuming a compliant mesh). As such for the choice of M subdomains �i, i = 1, ..., M we 
may define as virtual observable a vector o (y; x) (where the i-th entry corresponds to ���i ) which can be expressed as

o (y; x) = � (x) y − α (x) , (A.4)

with the entries of � (x) deriving from (A.3) and J ei
= B(i) y, while αi = ∫

�i
f i (s) ·d�i .

Appendix B. Low-rank mean-field updates for virtual observables

While in principle the entire model can be trained using stochastic variational inference14 as outlined in Algorithm 1, 
for linear equality constraints we are able to perform closed-form mean-field updates for q (YO), providing both additional 
insight as well as computationally efficient updates. For any ensemble of linear physical constraints enforced with a certain 
precision � we may write

o (y, x) := � (x) y − α (x) ∼ N
(
0,�−1) � (x) =

[
γ 1 (x)T , ...,γ M (x)T

]
∈RM×dy (B.1)

where the entries of � (x) and α (x) derive from the particular choice of constraint and the underlying physics at a query 
point x (see section 3.3). The precision matrix � = diag (λ1, ..., λM) is chosen diagonal, such that the set of parameters 
τ governing the enforcement of our constraints follows as τ = {λi}M

i=1. Given the assumed structure of the variational 
approximation qξ (θ,R) (see Equation (27)), note that the optimal q∗ (YO) follows by integrating out all other factors of qξ

[70]

log q∗ (YO) = Eq̃ξ

[
log

(
p
(
Ô
∣∣∣YO,XO,�

)
p (YO|XO, θ) p (XO|ZO, θ) p (XO|ZO, θ) p (ZO) p (θ)

)]

= Eq̃ξ

⎡
⎣−

NO∑
iO=1

[
1

2

(
y(iO) − h

(
X (iO)

))T
S−1

y

(
y(iO) − h

(
X (iO)

))]⎤⎦

+Eq̃ξ

⎡
⎣−

NO∑
iO=1

[
1

2

(
�
(

x(iO)
)

y − α
(

x(iO)
))T

�
(
�
(

x(iO)
)

y − α
(

x(iO)
))]⎤⎦+ const. , (B.2)

where Ô = {ô}NO
iO=1 comprises all virtual observations and q̃ξ denotes all other factors of the structured mean-field ap-

proximation aside from q(YO), i.e. qξ = q(YO)q̃ξ . Inspecting Equation (B.2) we find that it is linear-quadratic in y, which 
implies a Gaussian q(y(iO)) =N (μ(iO),�(iO)) at every query point with mean and covariance implicitly defined by (for 
iO = 1, ..., NO)

�(iO) −1
μ(iO) = �

(
x(iO)

)T
�
(

x(iO)
)
α
(

x(iO)
)

+ 〈
S−1

y

〉 〈
h
(

Y
(

X (iO)
)

; θ
)〉

�(iO) −1 = �
(

x(iO)
)T

��
(

x(iO)
)

+ 〈
S−1

y

〉
, (B.3)

where 〈·〉 denotes an expectation with respect to all remaining factors of the variational approximation q̃ξ . Given our model 
choices (Eqs. (16) - (19)), the expectation of the precision matrix 〈S−1

y 〉 is constrained to be diagonal while the matrix 
�
(
x(i)

)T
��

(
x(i)

)
with � ∈ RM×dy exhibits low-rank structure. This low-rank structure reflects the fact that we only have 

introduced partial or incomplete information, and as such the constraints are only informative for a certain (low-dimensional) 
subspace. It simultaneously allows us to cheaply incorporate this physical knowledge into our model, since we may exploit 
the low-rank structure and use the Woodbury matrix identity to obtain mean vector and covariance matrix of the Gaussians 
q
(

y(iO)
)=N

(
μ(iO), �(iO)

)
at a cost O

(
M3

)
, i.e. numerical expense of updating q

(
y(i)

)
depends on the number of enforced 

constraints rather than the dimension of y . Making use of the Woodbury matrix identity one finds

�(iO) = 〈
S y
〉− 〈

S y
〉
�
(

x(iO)
)T

�(iO) −1
�
(

x(iO)
) 〈

S y
〉
, (B.4)

14 The required Jacobian of the virtual observables o (y, x) in order to propagate gradients simply reduces to the well-known Gateaux derivative, and is 
easily (as well as cheaply and parallelizable) obtained in most Finite Element frameworks (see e.g. Unified Form Language [87]).
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where we have introduced the M × M matrix �(iO) = �(x(iO))〈S y〉�(x(iO))T + �−1. In the limit case of components of 
the diagonal precision matrix � being infinite (i.e. absolute enforcement of the constraint), the result is an am improper 
Gaussian with rank-deficient covariance, i.e. the epistemic uncertainty of the epistemic uncertainty of the model collapses to 
a subspace which is completely in compliance with the enforced constraints; the update of q (YO) then becomes similar to 
the updates of Bayesian Conjugate Gradient (BCG) [88], which poses the solution of a linear equation system as a problem 
of probabilistic inference conditionally on the observance of a set of search directions.

Appendix C. Adaptively inferring finite precisions

For some physical constraints as, e.g., the flux constraint (Appendix A) it is neither plausible to assume infinite precision, 
nor do we a-priori know a suitable finite precision value with which to enforce the constraint. In such cases we may 
chose to treat the precision parameters τ = {λm}M

m=1 probabilistically as well. We propose to introduce a Gamma prior 
λm ∼ 
(α

(m)
0 , β(m)

0 ) for each of the unknown precision values λ(m) , or alternatively assume identical precision for all virtual 
observables (or subgroups thereof). For notational simplicity we discuss the latter case where all virtual observables are 
governed by a singular precision parameter λ

λ ∼ β
α0
0


(α0)
λα0−1 exp (−β0λ) . (C.1)

The variational approximation is extended to include q (λ), and following the same approach as for the closed-form 
updates of q (YO) in Appendix B, the optimal variational approximation q∗ (λ) can be found to be a Gamma distribution 

(α, β), with parameters α and β given by

α =
⎛
⎝ NO∑

iO=1

1

2
M

⎞
⎠+ α0 β = 1

2

NO∑
iO=1

E
q
(

y(iO )
) [∣∣∣∣∣∣o (y(iO); x(iO)

)∣∣∣∣∣∣2
2

]
+ β0 , (C.2)

where M the number of constraints at each query point governed by λ. For a linear constraint (B.1) and a Gaussian 
q(y(iO)) =N (μ(iO),�(iO)) as given by Equation (B.3) the expectation involved in finding β becomes tractable; otherwise 
they can be cheaply estimated using Monte Carlo. For the Gamma prior we chose α0 = β0 = 10−6.

Appendix D. Stochastic second order optimization for the energy-based virtual observables

The introduction of the energy as a virtual observable at NO query point differs from the other constraints we con-
sidered, since in contrast to M << dy equality constraints it fully summarizes all the information about the governing 
equations. Specifically, for a Finite Element discretization of the linear elliptic PDE given by K (x) y = f (x), the energy can 
be expressed in discretized form as

V
(

y(iO), x(iO)
)

= 1

2
y(iO) T

K
(

x(iO)
)

y(iO) − f
(

x(iO)
)T

y(iO) , (D.1)

and we find that the minimization of the quadratic potential V
(

y(iO), xiO
)

is the dual problem to solving the linear equation 
system associated with the solution of the discretized PDE itself. The introduction of the energy similarly implies that 
the ELBO becomes a quadratic potential in μ(iO); i.e. plausibility of the model as scored by the ELBO now depends on 
the energy state obtained for predictions at all NO query points. With the virtual likelihood defined by a Exponential 
distribution as given by Equation (12) and following the same mean-field approach as in Appendix B, the optimal q

(
y(iO)

)=
N
(
μ(iO), �(iO)

)
is similarly found to be a Gaussian with mean and covariance defined by (for iO = 1, ..., NO)

�(iO) −1
μ(iO) = τ f (iO) + 〈

S−1
y

〉 〈
h
(

Y
(

X (iO)
)

; θ
)〉

�(iO) −1 = 〈
S−1

y

〉+ τ K
(

x(iO)
)

, (D.2)

where τ is a precision or tempering parameter which governs the weight given to the virtual observables - for the limit 
case of τ approaching infinity, the belief about yiO will entirely depend on the energy state and becomes independent of 
the probabilistic surrogate. In contrast to the enforcement of M << dy equality constraint, the precision matrix �(iO) −1

is 
sparse but exhibits full-rank structure, precluding the possibility to perform low-rank updates. As such the maximization of 
the evidence lower bound as a quadratic potential w.r.t. μ(iO) on first glance appears to be the dual problem to solving the 
linear PDE itself if no amortization is applied. Note however that

• the maximization of the ELBO defines a simplified transfer problem since cond(τ K (x(iO)) + 〈S−1
y 〉) ≤ cond(K (x(iO))), 

i.e. the probabilistic surrogate implicitly acts as a preconditioner. When optimizing the evidence lower bound we merely 
use the energy to correct the predictions of the surrogate and to pull them gradually in the right direction, instead of 
solving the PDE from scratch. This suggests an approach where one slowly tempers τ during training

• knowledge is transferred and mediated by the probabilistic model, as opposed to solving NO entirely disjoint problems
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• we are not intrinsically interested in q
(

y
)

but only to the extend to which it is able to inform our probabilistic surrogate, 
(i.e. learn the parameters θ of the generative model). As such, due to the inherent irreducible error introduced by the 
CGM, beyond a certain point there is no benefit in increasing τ (which, e.g., can be seen to correspond to the tolerance 
parameter of iterative solvers)

Despite this, it has to be noted that the incorporation of this inequality constraint is comparably much more expensive 
and bears more resemblance to the original forward problem defined by the FGM. Since we want to avoid solving the equa-
tion system implied by Equation (D.2) directly, we constrain the covariance matrix �(iO ) of the variational approximation 
q(y(iO)) =N (μ(iO),�(iO)) to be diagonal and chose to optimize F iteratively with respects to the parameters of q(y((iO))

using second order stochastic optimization. Here we use randomized Newton [89,90], which can be seen to iteratively up-
date parameters such that the iterates are as close as possible in the L2 norm, while simultaneously forcing the error to be 
zero with respect to a randomly sampled subspace (see sketching-viewpoint of [89]).
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