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Abstract

This work is concerned with the semiclassical approximation of the Schrödinger–Poisson equation modeling ballistic

transport in a 1D periodic potential by means of WKB techniques. It is derived by considering the mean-field limit of a

N-body quantum problem, then K-multivalued solutions are adapted to the treatment of this weakly nonlinear system

obtained after homogenization without taking into account for Pauli�s exclusion principle. Numerical experiments dis-

play the behaviour of self-consistent wave packets and screening effects.
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1. Introduction

This article is the third and last part of a numerical study of semiclassical approximation of the

motion of electrons in short-scale periodic potentials. We have now in mind to take into account also
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for the self-consistent interaction potential, which leads to a weak nonlinearity. More precisely, we are

about to focus onto the following Schrödinger–Poisson equation in one space dimension
i�hotwþ �h2

2m
oxxw ¼ eðV ionsðxÞ þ V extðxÞ þ eV Pðt; xÞÞw; ��0oxxV P ¼ jwj2; x 2 R ð1Þ
with �h the Planck�s constant, �0 the dielectric permittivity of the medium (it will be set to �0 ” 1 throughout

the whole paper), m and e the electronic mass and charge and V ion 2 R the periodic potential modeling the

interaction with a lattice of ionic cores. The smooth and slowly-varying external potential Vext stands usu-

ally for an applied electric field, a confining potential or a doping term.
In order to shed complete light on the derivation and the qualitative properties of the simplified model

(1), we first start from the exact Hamiltonian for a neutral system constituted of N atoms with Z electrons

each in R3:
H ¼
XN
a¼1

P2
a

2M
þ
XZ
i¼1

p2ai
2m

þ
XN

bð6¼aÞ¼1

1

2

ðZeÞ2

jXa � Xbj
þ
XZ
i¼1

� Ze2

jxbi � Xaj
þ 1

2

XZ
j¼1

e2

jxai � xbj j

 !" #( )
. ð2Þ
The notations have been chosen as follows: M, Pa, Xa stand for the mass, momentum and position of the

nuclei while m; pai ; xai refer to those of the electrons in the ath atom. All in all, this constitutes a system of

N(Z + 1) charged particles interacting with each other via Coulombian forces (the atomic cores are

lumped into a unique particle in this model). Ab initio computations will therefore refer to the ones

involving this full Hamiltonian (2) which can be considered as exact in nonrelativistic quantum

mechanics.

However, even for moderate values of N, Z, such ab initio computations become quickly almost impos-
sible in terms of complexity. Hence, several simplifications are usually in order:

� The Born–Oppenheimer assumption states that the nuclei�s motion decouples adiabatically because

M � m; it can be neglected or at least treated classically.

� One can safely restrict (2) to vN valence and conduction electrons. All the others can generally be con-

sidered as tightly tied to the cores and confined inside the inner shells.

At this level, we have reduced our original system to a collection of N ions with v valence/conduction
electrons. So the Hamiltonian (2) boils down to Hions þHe� with
Hions ¼
XN
a¼1

P2
a

2M
þ 1

2

XN
bð6¼aÞ¼1

ðveÞ2

jXa � Xbj

( )
; He� ¼

XvN
i¼1

p2i
2m

þ V ionsðxiÞ þ
1

2

XvN
jð6¼iÞ¼1

e2

jxi � xjj

( )
. ð3Þ
The ionic potential V ionsðxÞ ¼
PN

a¼1V psðjx� X ajÞ where Vps is a smoothered ‘‘pseudo-potential’’ originating
from both Coulomb attraction and screening effects from inner shells electrons; it is referred to as the

‘‘effective core potential’’ in quantum chemistry. In the simplest Bohr–Oppenheimer framework, one

assumes the Xa to be constant and Pa ” 0 thus remains only He�ðx; pÞ which can nonetheless constitute

a delicate quantum many-body problem, especially in case N 2 N is big.

A common way out lies in the mean-field approximation that we shall present in Section 2.1; roughly

speaking, it consists in deriving self-consistently an average potential in place of the Coulomb interaction

by letting N ! 1 with a convenient scaling. Within this framework, electrons move as independent parti-

cles submitted to an overall mean electric field. The Pauli exclusion for fermions can be included or not in
the derivation; Hartree or Hartree–Fock models are obtained accordingly. We shall choose to ignore it;

hence we somehow consider an electron cloud treated as a condensate, that is a system endowed with

the property that all its components share the same one-particle state described by a unique wave function
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w solution of the Hartree equation.1 This model as a ‘‘one-particle equation’’ is a somewhat crude approx-

imation of the original many-body problem; since the wave function contributes to the effective potential

only via its corresponding position density, this is the simplest realization of a time-dependent density func-

tional theory (TDDFT). In the situation we consider in this article where (repulsive) Coulomb interaction is

only to be taken into account, rigorous results have been obtained in case Vions ” 0 in [5,6]. We shall indi-
cate formally the changes that result from the inclusion of this potential. As the number of electrons is con-

sidered infinite, it is reasonable to assume that the number of corresponding ions diverges also; hence Vions

can be seen as a smooth periodic potential admitting a Bravais lattice endowed with a Wigner–Seitz cell in

R3. This matches the physical setting of the articles [23,42,7,8].

We have in mind to conduct semiclassical computations on this Hartree model by means of the ‘‘two-

scale WKB method’’ originally presented in [31] (see also [18,21,32]) extensively used in the linear setting

(no self-interactions) in [28,26]. Relying on the well-known fact that the Hartree term is but the Green func-

tion of the Laplace operator in R3, we rewrite the mean-field equation as the weakly nonlinear Schrödinger–
Poisson system. Then, assuming translational invariance in two independent space directions, [44], we move

forward to a one-dimensional model like (1) (see [37,41,48] for examples of its physical realizations) to

which it becomes possible to apply a variant of the linear WKB receipe. These derivations are presented

in full detail within Section 2.2. Many (semi)classical limits have been carried out recently by means of

the Wigner transform relying on the compactness lemma of [38]. In the context of the Schrödinger–Poisson

system, it leads to a Vlasov–Poisson like equation possibly including the energy bands corresponding to the

last valence or the first conduction levels; consult Section 2.3 and e.g. [38,7,50]. At a computational level,

simulating measure solutions of this limit equation represents a heavy task even in one space dimension.
Hence, we chosed to stick to the recent framework proposed by Brenier [15] (see also [1,12]) in Sections

3.1 and 3.2 for us to solve the Vlasov–Poisson problem in a mathematically simple but founded sense. It

is then possible to use numerical techniques borrowed from [30] in order to update the intensities and thus

the electric field in a semi-Lagrangian framework, see [10]. This is explained in detail in Section 3.3 assum-

ing the reader familiar with the numerical techniques for K-branch solutions [16,24,25,28,26,27,46]. Other

methodologies have been proposed in e.g. [20,22,34,35,39].

Section 4 is devoted to computational results. The first one is a self-consistent free electrons cloud�s sim-

ulation; it corresponds somewhat to the simplest situation described by (1), namely V 0
ion � 0 and V 0

ext � 0,
with initial data leading to a 5-branch solution thus asking for the inversion routines of [29]. Next, we take

Vion(x) = cos(x), the so-called Mathieu�s potential already studied in [28,26]. At last, we tried to simulate the

screening effect for an impurity in the same periodic potential, but with Vext being a Coulomb term. For

each of these, we expect to validate the proposed WKB algorithm against direct Schrödinger computations

obtained via the Fourier schemes advocated in [3].
2. Hartree equation: mean-field assumption, WKB ansatz and Wigner analysis

2.1. Derivation of the Schrödinger–Poisson system via density functions

In this section, we aim at deriving the Hartree equation emanating from (3) within the strongest Born–

Oppenheimer assumption, i.e., considering the ions steady. More precisely, we shall write down a ‘‘vN-body

Schrödinger equation’’ (recall v as the number of valence/conduction electrons per atom) for the wave func-

tionW : Rþ � R3vN ! C satisfying i�hotW ¼ He�W. It would perhaps be more natural to consider a Hartree–

Fock derivation instead, taking into account for the Pauli exclusion principle. However, recent numerical
1 One speaks also about electrons (or mostly bosons) in coherence.
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experiments suggest that for many physical situations, the parameters� size and the density are such that

‘‘exchange effects’’ can actually be neglected, see [4,43]. Thus, we first change to ‘‘atomic units’’ for which

�h = m = e = 1 and without any loss of generality, we assume v = 1. Making explicit the dependence on

N 2 N of the wave function, there holds
2 A S
3 Aft
iotWNðt; x1; . . . ; xNÞ ¼ � 1

2

XN
i¼1

fDxi þ V ionðxiÞgWN þ 1

N

X
16i<j6N

V Couðjxj � xijÞWN ; ð4Þ
with xi 2 R3 and VCou standing for the Coulomb term, already studied in the semiclassical context in

[26], Section 5. We also introduce the density, DN ðt;XN ;YN Þ ¼ WN ðt;XN ÞWNðt;YN Þ 2 C; where

XN = (x1, x2, . . .,xN) and YN ¼ ðy1; y2; . . . ; yNÞ 2 R3N . At this level, it is convenient to define another
important object, namely its nth marginal for any N 3 n < N :
DN : nðt;x1; . . . ;xn; y1; . . . ; ynÞ ¼
Z
R3ðN�nÞ

DN ðt;x1; . . . ;xn; znþ1; . . . ; zN ; y1; . . . ; yn; znþ1; . . . ; zN Þdznþ1; . . . ;dzN .
One observes at once that the local position density .(t, x) reads: .(t, x) = DN:1(t, x, x) for any x 2 R3. All

these quantities can be deduced from Eq. (4). It is now that the ‘‘coherence assumption’’ comes into play

since we must complete (4) with peculiar initial data like
WNðt ¼ 0; x1; . . . ; xN Þ ¼
YN
i¼1

w0ðxiÞ; ð5Þ
which expresses the fact that initially, all the N electrons located in xi = 1,. . .,N are in the same quantum state

w0, an assumption which violates Pauli�s exclusion principle.2 Nevertheless, the idea is to prove, at least for-

mally, that this ‘‘ansatz’’ propagates in time t 2 Rþ asymptotically in N ! 1.

It is well-known that densities satisfy the Von-Neumann equation
iotDN ðt;XN ;YN Þ ¼ � 1

2
½DXN � DYN �DN ðt;XN ;YN Þ þ

XN
i¼1

½V ionðxiÞ � V ionðyiÞ�DN ðt;XN ;YN Þ

þ 1

N

X
16i<j6N

½V Couðjxj � xijÞ � V Couðjyj � yijÞ�DN ðt;XN ;YN Þ
from where one deduces the BBGYK3 hierarchy for each of the nth marginals [6]:
iotDN : nðt;Xn;YnÞ ¼ � 1

2
½DXn � DYn �DN : nðt;Xn;YnÞ

þ
Xn
i¼1

Z
R3ðN�nÞ

½V Couðjxi � zjÞ � V Couðjyi � zjÞ�DN : nþ1ðt;Xn; z;Yn; zÞ � dz

þ eðn;NÞ þ
Xn
i¼1

½V ionðxiÞ � V ionðyiÞ�DN : nðt;Xn;YnÞ; ð6Þ
since the last integral term coming from Vion vanishes identically; e(n, N) stands for an error term going to

zero as N ! +1.
Now, it is tempting to consider the ‘‘self-consistent one-particle equation’’:
iotw ¼ � 1

2
Dxwþ V ionðxÞwþ

Z
R3

V Couðjx� zjÞjwðt; zÞj2 � dz
� �

w; ð7Þ
later determinant [2], could be considered instead.

er Born, Bogolyubov, Green, Yvon and Kirkwood.
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for which the density reads simply qðt; x; yÞ ¼ wðt; xÞwðt; yÞ for x, y in R3. The same way, it can be shown to

solve a ‘‘one-particle Von-Neumann equation’’,
iotqðt; x; yÞ ¼ � 1

2
½Dx � Dy�qðt; x; yÞ þ ½V ionðxÞ � V ionðyÞ�qðt; x; yÞ

þ qðt; x; yÞ
Z
R3

½V Couðjx� zjÞ � V Couðjy� zjÞ�qðt; z; zÞ � dz
� �

;

from which we infer that qnðt;Xn;YnÞ ¼
defQn

i¼1qðt; xi; yiÞ is solution of an infinite hierarchy similar to (6):
iotqnðt;Xn;YnÞ ¼ � 1

2
½DXn � DYn �qnðt;Xn;YnÞ þ

Xn
i¼1

½V ionðxiÞ � V ionðyiÞ�qnðt;Xn;YnÞ

þ
Xn
i¼1

Z
R3ðN�nÞ

½V Couðjxi � zjÞ � V Couðjyi � zjÞ�qnþ1ðt;Xn; z;Yn; zÞ � dz.
Hence, it is reasonable to expect that under the same hypotheses as in [5], i.e. w0 2 H 2ðR3Þ and (5), the

following convergence holds:
8t 2 Rþ; ðx; yÞ 2 R6; DN : 1ðt; x; yÞ !N!1
qðt; x; yÞ.
By a uniqueness result for the Cauchy problem on the infinite hierarchies [5], this implies that w solution of

(7) is related to (4) via WNðt; x1; . . . ; xNÞ ¼
QN

i¼1wðt; xiÞ, up to an error that goes eventually to zero as

N! 1. This expresses the fact that electrons remain in coherence as time increases. All in all, mean-field

provides a convenient way to compute approximately a global wave function WN solution of (4) from the
knowledge of a simpler one w solving the self-consistent problem (7); this shortcut is only meant to be rel-

evant for large values of N 2 N. The final step is to rewrite (7) as
iotwðt; xÞ ¼ � 1

2
Dxwðt; xÞ þ V ionwðt; xÞ þ V Pðt; xÞwðt; xÞ; ð8Þ
where the self-consistent potential VP = VCou*xjwj2, which is equivalent to say that VP solves the Poisson

equation:
�DxV Pðt; xÞ ¼ jwj2ðt; xÞ; x 2 R3. ð9Þ
If we restrict ourselves to models endowed with translational invariance in 2 space dimensions [44], a one-

dimensional problem like (1) arises. The preceding derivation seems to indicate that only smooth initial
data wðt ¼ 0; .Þ ¼ w0 2 H 2ðR3Þ are relevant, like in [5].

2.2. Bloch spectrum and the one-dimensional (linear) WKB ansatz

From the former section, one can notice that the mean-field model (7) is mostly concerned with a ‘‘large

system’’ containing an infinite number of strongly delocalized valence/conduction electrons which wander

inside the material. A concrete example of such a system is given by a metal cluster, see [13], where N

can grow from 1000 up to the Avogadro�s number (which may be considered as ‘‘infinite’’ in practice). Typ-
ically, mean-field is too much of a rough approximation for quantum chemistry. Relying on these consid-

erations, it is quite natural to switch to the characteristic scales of the bulk system under consideration; thus

a dimensionless parameter e is introduced, which measures the microscopic–macroscopic ratio. We can as-

sume it small in order to look for ‘‘wave-packet solutions’’ of (7) with a spatial spreading of the order of 1/e.
Physically speaking, this means exactly that only strongly delocalized electrons wandering inside the crystal

are sought.
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Sticking hereafter to our one-dimensional model, we recast (1) in macroscopic variables x ´ x/e, t´ t/e
and taking into account for the slowly-varying exterior potential Vext, we obtain a scaled problem as in

[28,26],
ieotwþ e2

2
oxxw ¼ V ion

x
e

� �
wþ ðV PwÞ þ V extðxÞw; V ionðxþ 2pÞ ¼ V ionðxÞ; ð10Þ
for which VP stands for the self-consistent potential and Vext is smooth and independent of time. From now

on, we assume the lattice period to be 2p on the atomic lengthscale for the sake of simplicity only.

The naive ‘‘WKB plane-wave’’ ansatz A(t, x) exp(iu(t, x)/e) doesn�t have the correct structure hence fol-
lowing [18,21,31], we shall consider instead a two-scale amplitude A(t, x, x/e) exp(iu(t, x)/e) as follows:
A t; x; y ¼ x
e

� �
¼ A0ðt; x; yÞ þ eA1ðt; x; yÞ þ � � � ; Aðt; x; y þ 2pÞ ¼ Aðt; x; yÞ 2 C. ð11Þ
Since we are interested in arbitrary small values of e P 0, the x 2 R and y 2 R variables must be uncorre-

lated. Taking this new dependence into account inside (10) yields the expression:
� Aotuþ 1

2
ðoyyA� AðoxuÞ2 þ 2iðoxuÞðoyAÞÞ � ðV ionðyÞ þ V extðxÞ þ V Pðt; xÞÞA

þ ie
2
ð2otAþ Aoxxuþ 2oxA oxu� 2ioxyAÞ þ

e2

2
oxxA ¼ 0. ð12Þ
� The O(1) terms inside (12) rewrite
� ðotuþ V extðxÞ þ V Pðt; xÞÞ �
1

2
ðoy þ iðoxuÞÞ2 � V ionðyÞ

� �� �
A;
thus they cancel if and only if y ´ A0(t, x, y) exp(ijy) is an eigenstate of Hðp̂; yÞ ¼ � 1
2
oyy þ V ionðyÞ,

p̂ ¼ ioy , written in Bloch wave form, see [11,45] and associated to the eigenvalue E(oxu) =
�otu�Vext(x)�VP(t, x):
Hðy; p̂ÞðA0 expðijyÞÞ ¼ �ðotuþ V extðxÞ þ V Pðt; xÞÞ ðA0 expðijyÞÞ; j ¼ oxu.
That is to say, we want y ´ Wj(y) = exp(ijy)A0(t, x, y) to satisfy for all ðt; xÞ 2 Rþ � R:
8y 2 R; Hðp̂; yÞWj ¼ � 1

2
oyyWj þ V ionðyÞWj ¼ EðjÞWj. ð13Þ
Note that the slow variable x shows up only as a parameter; thus an Hamilton–Jacobi equation has been

derived from this cell problem
otuþ EðoxuÞ þ V extðxÞ þ V Pðt; xÞ ¼ 0. ð14Þ

However, it isn�t clear at this level why the Poisson potential doesn�t depend on the fast scale y = x/e as
A0 does.

� The second step consists in writing A0(t, x, y) = a0(t, x)zj(y) with stationary 2p-periodic orthonormal
modulations: kzjkL2ð0;2pÞ ¼ 1. Then following [18], the solvability condition to make O(e) remainder terms

in (12) vanish leads to the modified transport equation:
ota0 þ E0ðoxuÞoxa0 þ
a0
2
oxE0ðoxuÞ þ bðt; xÞa0 ¼ 0. ð15Þ
The phase-shift term is purely imaginary; bðt; xÞ ¼ iIbðt; xÞ (I. standing for the imaginary part of a com-

plex number). It is sometimes referred to as the Berry phase which stems from the interaction between the

periodic lattice and the exterior potentials. However, one can always multiply (15) by 2�a0 and take its

real part in order to derive the more usual continuity equation for the intensity ja0j2:
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otja0j2 þ oxðja0j2 E0ðoxuÞÞ ¼ 0. ð16Þ

� We must at last indicate how to extract the Poisson potential VP from u, Wj and the principal amplitude

a0. The computation is shown for the pre-caustic region, and for a smooth wave-function w (we recall

from Section 2.1 that presumably, w0 2 H 2ðRÞ). Let us start from
�oxxV Pðt; xÞ ¼ jwj2ðt; xÞ ¼ ja0ðt; xÞj2jzjðx=eÞj2; j ¼ oxu.
Since y ´ zj(y) is 2p-periodic and C1 (energy bands are isolated in 1d, see e.g., the introduction of [8]), it

can be written as its Fourier series:
�V Pðt; xÞ ¼
Z x Z x0

ja0ðt; sÞj2jzjðt;sÞðs=eÞj2 � ds � dx0

¼
X
j;j02Z

Z x Z x0

ða0 � a0Þðt; sÞẑjj � ẑj
0

j

n o
expðiðj� j0Þs=eÞ � ds � dx0.
This self-consistent potential is defined up to 2 constants coming from boundary/decay conditions for the

Poisson equation. We now integrate by parts making use of expðiðj� j0Þs=eÞ ¼ �ie
j�j0 osfexpðiðj� j0Þs=eÞg

and the smoothness of a0 and zj. The terms j = j
0
yield an adiabatic decoupling:
�V Pðt; xÞ ¼
Z x Z x0

ja0ðt; sÞj2 kzjðt;sÞð�Þk2L2ð0;2pÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}P
j2Z

ĵzjjj2¼1

�ds � dx0 þOðemÞ; ð17Þ
where m 2 N is the smoothness of a0, i.e., x ´ a0(t, x) is of class C
m for t in some time interval. This is

somewhat a homogenization process for the Poisson equation arising in this 1d context. In a 3-D case, a

stationary phase argument on the Hartree term would (formally) give a similar result with m = 1 (see also

[19,40]).

All in all, starting from the Schrödinger equation (10), one has to consider the Bloch spectral decompo-

sition (13) producing a countable set of distorted plane waves Wn
j, n 2 N, associated to the energy bands

En(j); consult [2,7,11,18,21,31,28,26,42] for more details. Thus a convenient nth band ansatz reads (as in
the linear case) at least before breakup,
we
nðt; xÞ ¼ a0ðt; xÞ exp

iuðt; xÞ
e

� �
znjðx=eÞ; j ¼ oxuðt; xÞ; ð18Þ
where the unknowns evolve according to the nth band weakly nonlinear WKB system:
otuþ EnðoxuÞ þ V extðxÞ þ V Pðt; xÞ ¼ 0; otlþ oxðE0
nðoxuÞ lÞ ¼ 0; �oxxV Pðt; xÞ ¼ l ¼ ja0j2. ð19Þ
Eqs. (18) and (19) mean in particular that an initial datum in the nth band EnðjÞ; znj always leads to an

approximate solution in the same band; hence the Poisson nonlinearity induces a behaviour not so different

compared to the linear cases in [26]. This is one of the reasons why it is possible to extend K-branch solu-

tions to cover the present situation.

Remark 1. The post-caustic region is more delicate to handle as we expect uand l to become multivalued

as in [28,26]. So, in order to remain consistent, the Poisson equation will involve l1,2,. . ., plus many cross-

terms which go weakly to zero (as formally shown in [28] Section 3.2) except on caustics and at the edges of
the Brillouin zone. Hence another O(e) error term comes into play when neglecting them. We shall go back

to that in Section 4.
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2.3. Rigorous semiclassical limit: the Wigner–Bloch series

In this section, we shall recall briefly the main result from [7] concerning the semiclassical behaviour of

mixed-states for (8) and (9), in our 1D context (10) though. More precisely, we consider a scaled system of

equations in Rþ � R
ieotw
e
j þ

e2

2
oxxw

e
j ¼ V ion

x
e

� �
we

j þ ðV e
Pw

e
jÞ; V ionðxþ 2pÞ ¼ V ionðxÞ;we

jðt ¼ 0; xÞ ¼ we
j;0ðxÞ; j 2 N;

.eðt; xÞ ¼
X
j2N

kejjw
e
jðt; xÞj

2
; �oxxV e

P ¼ .e. ð20Þ
The infinite vector ðwe
jÞj2N represents the quantum mixed state of the system under consideration. Further-

more, it is assumed:
kej P 0;
X
j2N

kej ¼ 1;
X
j2N

ðkejÞ
2
6 Oð1Þe3.
Then, from the Bloch decomposition recalled in Section 2.2, one defines the Wigner–Bloch series as follows,
we
nðt; x; nÞ ¼

X
c22pZ

fen;n xþ e
2
c; x� e

2
c

� �
expð�icnÞ;
with fen;p standing for the Bloch density matrix built from the projectors I�
n onto the wave-packet subspaces

S�
n (notation borowed from [28], Section 2.3 is used here),
8x; y 2 R2; fen;pðt; x; yÞ ¼
X
j2N

kejI
�
nw

e
jðt; xÞIe

pw
e
jðt; yÞ.
Now, let the initial data concentrate inside an isolated energy band En(j), like e.g., (18), then it follows

that, in convenient topologies,
we
nðt; x; nÞ *

e!0
f ðt; x; nÞ P 0; .eðt; xÞ *e!0

.ðt; xÞ :¼
Z 1

2

�1
2

f ðt; x; nÞ � dn; V e
P ! V P.
Moreover, the kinetic distribution f satisfies the semiclassical (nth band) Vlasov–Poisson equation
otf þ E0
nðnÞoxf � oxV Pðt; xÞonf ¼ 0; �oxxV P ¼ .; ð21Þ
in the sense of distributions. One sees here one big advantage in using WKB methods in the present con-

text when compared to Wigner techniques. Indeed, WKB construction delivers a rather simple expression
(18) for a wave function belonging to the nth energy band and approximately satisfying (1) for t P 0 and

e positive but small enough through the solving of (19). In sharp constrast, Wigner techniques furnish

only information on the ideal e = 0 case discarding fine-scale modulations znjð�=eÞ; it would therefore

be more difficult to study numerically the weak consistency of physical observables relying on this

approach, left apart the more singular moment systems admitting measure-valued solutions, see

[27,33,46,49]. However, results of this type do provide a guideline as we shall see in the forthcoming

section.
3. K-branch solutions with a weak nonlinearity

K-branch solutions, see e.g. [14,16,24,25,46], have been used up to now exclusively in the context of lin-

ear dispersive equations. Hence, we must show now how to adapt this tool in order to tackle the weakly

nonlinear problem (19).



334 L. Gosse, N.J. Mauser / Journal of Computational Physics 211 (2006) 326–346
3.1. Lagrangian solutions for Vlasov–Poisson in 1D with V 0
ext � 0

The Hamilton–Jacobi equation in (19) must be considered in a ‘‘geometric sense’’, i.e., relying on the

method of characteristics. We also want our framework to be fully consistent with the ‘‘ideal case’’ e = 0

studied in [7,44,50] by means of Bloch–Wigner series where a (nth band) Vlasov–Poisson equation is
derived
otf þ oxðE0
nðnÞf Þ þ onðF ðt; xÞf Þ ¼ 0; f ðt ¼ 0; x; nÞ ¼ f0ðx; nÞ ð22Þ
and where F(t, x) stands for the electric field F = �oxVP. We aim at building solutions by means of a meth-

od which can easily be implemented on a computer. So, following a recent paper by Brenier [15], we start

with a N-particle density function,
fNðt; x; nÞ ¼
1

N

XN
a¼1

dðx� X aðtÞÞdðn� U aðtÞÞ; t P 0;
d(Æ) the Dirac measure in 0, which evolves according to the differential system:
_X aðtÞ ¼ E0
nðU aÞðtÞ; _U aðtÞ ¼ F ðt;X aðtÞÞ. ð23Þ
The trick is based on the fact that the Laplacian�s Green function in 1d is but the Heaviside function H;

accordingly,
oxF ðt; xÞ ¼
Z
R

fN ðt; x; nÞ � dn ¼ 1

N

XN
a¼1

dðx� X aðtÞÞ;
which yields:
F ðt; xÞ ¼ 1

N

XN
a¼1

Hðx� X aðtÞÞ; Hð0Þ ¼ 1

2
. ð24Þ
From [12,15], we know that the nonlinear differential system (23) and (24) is well-posed in phase-space for

any value N 2 N thus we get:
_X aðtÞ ¼ E0
nðU aÞðtÞ; _U aðtÞ ¼

1

N

XN
b¼1

HðX aðtÞ � X bðtÞÞ.
We stress that, since N 2 N is finite, this is but a 2N · 2N autonomous first-order differential system
with a BV right-hand side. So the associated Liouville equation is linear and the renormalization property

of [12] fully applies hence ensures well-posedness. However, we now intend to pass formally to the con-

tinuous limit N ! 1 hence f ðt; x; nÞ ¼
R
R
dðx� X ðt; aÞÞdðn� Uðt; aÞÞ � da for which (23) and (24) boils

down to:
otX ðt; aÞ ¼ E0
nðUðt; aÞÞ; otUðt; aÞ ¼

Z R

0

HðX ðt; aÞ � X ðt; a0ÞÞ � da0; ð25Þ
where R ¼ ka0ðt ¼ 0; .Þk2L2ðRÞ. This is a one-dimensional bicharacteristics system for the semiclassical Vlasov-

Poisson equation and we shall interpret (19) in this ‘‘geometric sense’’ hereafter, (see also Remark IV.6 in

[38]). Of course, the symbol a which refers to the Lagrangian mass variable has here a completely different

meaning compared to [43].
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Let us now show that this (Lagrangian) construction is consistent with (22):
d

dt

Z
R2

f ðt; x; nÞ/ðx; nÞ � dx � dn ¼ d

dt

Z
R

/ðX ðt; aÞ;Uðt; aÞÞ � da

¼
Z
R

fox/ðX ;UÞotX þ on/ðX ;UÞotUgðt; aÞ � da

¼
Z
R

fox/ðX ;UÞE0
nðUðt; aÞÞ þ on/ðX ;UÞF ðt;X ðt; aÞÞg � da

¼
Z
R

f ðt; x; nÞfox/ðx; nÞE0
nðnÞ þ on/ðx; nÞF ðt; xÞg � dx � dn.
The third step uses the definition of the differential system (25) and the last one is just a consequence of the
definition of f by means of Dirac masses. So clearly we have derived a weak formulation of (22) for any test

function / 2 C1ðR2Þ. At last, the case V 0
ext 6¼ 0 can be handled by replacing F(t, Xa(t)) by

F ðt;X aðtÞÞ � V 0
extðX aðtÞÞ in (23) and so on.
3.2. Consistency of bicharacteristics� system (25) before breakup

We shall consider monokinetic initial data, like in [50]
f ðt ¼ 0; x; nÞ ¼ .0ðxÞdðn� u0ðxÞÞ; .0 ¼ a20 P 0;
which leads to a monokinetic solution .(t, x)d(n�u(t, x)) at least for some time if .0, u0 are smooth, [40].

Indeed, we can initialize (25) as follows:
X ðt ¼ 0; aÞ ¼ X 0ðaÞ; Uðt ¼ 0; aÞ ¼ u0ðX 0ðaÞÞ; ð26Þ

with X0 the reciprocal mapping of .0 (i.e., the pseudo-inverse of the antiderivative of .0) in the sense of [30].

That is to say, we consider r0ðxÞ ¼
R x
�1 .0ðsÞ � ds, an increasing function. There obviously holds

limx!þ1r0ðxÞ ¼ ka0ðt ¼ 0; .Þk2L2ðRÞ ¼ R; usually R = 1 because of the probabilistic interpretation of the

kinetic distribution. The reciprocal mapping X0 is defined as a pseudo-inverse of r0, i.e.,
X 0 : ½0; 1� ! R

a 7!X 0ðaÞ :¼ inf supfy 2 R such that r0ðyÞ ¼ ag. ð27Þ
Now, by definition (27), X0 is a solution at time t = 0 of the Jacobian equation:
.ðt;X ðt; aÞÞ oX
oa

ðt; aÞ
����

���� ¼ 1. ð28Þ
Pushing further, one observes from (19) that r(t, x), any antiderivative of l, solves the transport equation
otr + E 0(u)oxr = 0; hence a = r(t, X(t, a)) = r0(a) holds before breakup. Moreover, assuming the solution of

(25) and (26) being given (by a suitable extension of the recent theorems in [1,12,50]), let us consider any

function r(t, x) satisfying (28) with r(t = 0, x) = .0(x). This means that for any continuous test-function

/ 2 C0ðRÞ,
Z
R

/ðX ðt; aÞÞ � da ¼
Z
R

/ðxÞrðt; xÞ � dx.
Then, differentiating on both sides with respect to time and using (25) leads to:
Z
R

/ðxÞotrðt; xÞ ¼
Z
R

ox/ðX ðt; aÞÞE0
nðUðt; aÞÞ � da ¼

Z
R

ox/ðxÞE0
nðuÞðt; xÞ � rðt; xÞ � dx;
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which is but a weak formulation of the continuity equation otrþ oxðrE0
nðuÞÞ ¼ 0 holding for t ´ r(t,.)

smooth enough. Hence by a uniqueness result,4 we have r(t,.) = .(t,.) since intial data coincide.

A consequence is that for any / 2 C0ðR2Þ and X, U solution of (25) and (26), there holds:
4 A
5 Na

f(t, x,

irrever
Z
R

dðx� X ðt; aÞÞdðn� Uðt; aÞÞ/ðx; nÞ � dx � dn ¼
Z
R

/ðX ;UÞðt; aÞ � da ¼
Z
R

/ðx; uðt; xÞÞ.ðt; xÞ � dx;
with u(t,.) implicitly defined by u(t, X(t, a)) = U(t, a) as long as a ´ X(t, a) remains a diffeomorphism (an

admissible change of variables!). This precisely means that the density built out of (25) and (26) reads

f(t, x, n) = .(t, x)d(n � u(t, x)) on this time interval.

3.3. Updating the intensities within a time-marching scheme

We have presented in the former section a Lagrangian framework to solve the Vlasov–Poisson Eq. (22).

Following [36], the WKB strategy can be seen as a mean to manufacture a quantum wave function starting

from the knowledge of the classical motion in phase space. The theory of ‘‘K-branch solutions’’ [16,24,46] is

well-suited5 to compute efficiently multivalued velocities~u ¼ oxu (or crystal momentum); it is moreover eas-

ier to handle when compared to the processing of the full moment systems emanating from a Wigner anal-

ysis, see [47,33,28,27,25]. Indeed, as the treatment of the corresponding (possibly multivalued) intensities l
is decoupled, moment systems become less singular hence less demanding at a computational level. In re-
turn, original algorithms have to be devised in order to update ~l at each time-step: in [28,25], some sort of

‘‘backwards ray-tracing’’ has been introduced (because the bicharacteristics are straight lines for homoge-

neous problems) whereas the conservation of the Hamiltonian along trajectories in phase space has been

used in [26].

Both techniques fail when considering the Poisson coupling here; however, an algorithm consistent with

the analysis of Section 3.1 can be easily deduced. Indeed, the right-hand side of the second equation in (25)

corresponds to the field created by all the electrons located on the left of the one at X(t, a); this is what is
needed in order to set up a semi-lagrangian scheme.

From now on, Dx and Dt will stand for the usual parameters of a cartesian grid in the t, x-plane and we

assume the reader familiar with the numerical schemes of [28,26] which generate ~unj ¼ ðuk¼1;...;KÞnj , an

approximation of ~uðtn ¼ nDt; xj ¼ jDxÞ 2 RK for j; n 2 Z�N. Then let us consider an auxiliary quantity

Fk(t, x) at each time-step; at time t = 0, it is defined as follows:
F kðt ¼ 0; xjÞ ¼
Z xj

lkðt ¼ 0; sÞ � ds ¼
Z xj

ja0j2ðt ¼ 0; sÞ � ds; k ¼ 1; . . . ;K.
Once again, this quantity is defined up to a constant coming from the Poisson equation. Then, as an anti-
derivative of lk, each Fk solves a transport equation otÆ + ukoxÆ = 0 (see Section 3.2), so from (18), (25) and

[26] Section 3.1, we update it at every time-step like
F kðtnþ1; xj þ E0ðukðtn; xjÞÞDtÞ ¼ F kðtn; xjÞ; k ¼ 1; . . . ;K;
for some energy band j ´ E(j) corresponding to the initial data (18). It is easy to interpolate the values

Fk(t
n + 1,.) on the original Eulerian grid xj = jDx for instance by means of quadratic splines just solving a

3 · 3 Vandermonde system in every computational cell (see [10] for some mathematical properties of inter-

polation operators in a related context). Intensities lk(t
n+1, xj) := oxFk(t

n+1, xj) can be recovered by means

of e.g., centered differences, as in [30].
simple energy estimate gives d
dt

R
R

r2
2 � dx ¼ �

R
R
rðoxrÞE0

nðuÞ � dx ¼
R
R

r2
2 oxE

0
nðuÞ � dx which makes sense for Lipschitz u�s.

mely, this ‘‘interpolation between geometric and viscosity solutions’’ essentially leads to K · K moment systems from which

n) can be exactly recovered as long as K is big enough; otherwise entropy is produced through compressive Lax shocks and

sibility appears.
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Now, in order to compute an approximation of ~uðtnþ1; xjÞ, a value for the electric field independent of k

can be deduced:
6 Th

time-sp
R 3 F ðtnþ1; xjÞ ¼
X

k s.t. jF kðtnþ1;xjÞ�F k�1ðtnþ1;xjÞj>Dx

F kðtnþ1; xjÞ;
where we chosed arbitrarily Dx to be the threshold value (this can be seen as the correct answer to the issue

raised in [26], Appendix A). This means that, in case several electrons with different momenta uk show up at

xj, the total electric field is given by summing the fields Fk produced by each electron, as written in (25). At

last, the velocities can be updated by, e.g., a simple extension of the ‘‘Riemann split-schemes’’ of [26], Sec-

tion 2.3. Of course, the aforementioned algorithm can be used for simpler cases, like for instance the ones
presented in [26]. At last, in case V 0

ext 6¼ 0, one has to include the corresponding terms in the moment sys-

tem�s right-hand side, see again [26].

Remark 2 (Consistency with the d-closure [34]). It isn�t easy at this level to state whether or not the

approximate solutions (18) built out of the aforementioned algorithm are consistent with the ones
obtained in [34]. First, in case K is chosen too low, they will surely be different as they already are in

the linear case, as seen in [27]. Now, even if K is big enough, one should need a genuine comparison

with Schrödinger computations since there is no uniqueness result for the Vlasov–Poisson equation with

measure-data [50].
4. Numerical experiments

We want now to check numerically the outcome of our WKB approach by a systematic comparison

with the quadratic observables coming out of a Fourier scheme [3] for the Schrödinger–Poisson equa-

tion (10) as done in [28,26] for the linear case. We shall use the same parameter, namely dt = 0.01.6

Following [17], we tried to check on the right column a weak convergence as e ! 0 by looking at

the antiderivative of the difference of the position densities (the first quadratic observable); thus we shall

study the function
x 7!
Z x

0

ð.eWKBðT ; sÞ � jweðT ; sÞj2Þ � ds; ð29Þ
which can be expected to flatten as e is decreased. .eWKB stands for the position density obtained from the
WKB ansatz (18) as done in [28,26]. Lemma 2.1 in [17] ensures that the L1 norm of (29) going to zero is

equivalent to the weak convergence of qe
WKB. It appeared absolutely necessary to filter numerically the input

or the outcome of the Fourier schemes; here we used a standard convolution receipe involving a Gaussian

kernel exp(�an2), a 2 Rþ. Different values of a have been used, from 0.01 to 0.1. More precisely, to initialize

the Fourier time-split schemes, we shall always use
1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffi
pa

p
Z
R

we
nð0; sÞ expð�ðx� sÞ2=4aÞ � ds () ŵ

e

nð0; nÞ expð�an2Þ;
instead of (18); of course, letting a ! 0, one recovers the correct initial signal.
e notation Dt refers to the time-step used to compute the solution of hyperbolic moment systems. dt stands for the one used in the

litting Fourier schemes.
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4.1. Free self-consistent electron cloud

This first test-case corresponds to (10) with constant ionic and exterior potentials; of course this leads

to a trivial Bloch decomposition with a unique energy band EðjÞ ¼ j2

2
, an infinite Brillouin zone and

constant modulations involved. The WKB system (19) is just made of the classical Eikonal/continuity
equations (as in [24,25]) coupled by the Poisson potential. We selected the following initial data, inspired

by [27,29]:
u0ðxÞ ¼ sinðxÞj sinðxÞj; l0ðxÞ ¼ expð�ðx� pÞ2Þ=2p; ð30Þ
which leads to a 5-branch solution after some time. The inversion routines of [29] have been used to

generate the results of Fig. 1 (T = 0.5), Figs. 2 and 3 (T = 2.5), pre- and post-breakup, respectively.

512 points of discretization have been used for both methods; the CFL number has been chosen to

be 0.95. Beyond caustic onset, one observes the appearance of the double cusp on Fig. 2; there is

a quite good agreement between the WKB approximation and the direct Schrödinger computation

in both logarithmic and normal scales away from caustics. One can observe the nice convergence in

log-scale as e is decreased on Figs. 1 and 3; interestingly, the two curves look similar despite bigger

errors in the 5-valued context. Notingly, the 5-valued region x 2 [2.5,3.5] seems to produce the right
values for the position density. Finally, it seems that the error terms coming from multivaluations
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Fig. 2. 5-branch velocity (left) and corresponding intensities (right) at time T = 2.5.
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are indeed of little influence when carrying out practical computations: this (partially) answers the

question raised in Remark 1.

4.2. Self-consistent electron cloud within Mathieu�s potential

This test-case corresponds to (10) with Vion(x) = cos(x) and V 0
ext � 0. The main novelty with respect to

the former one lies in the handling of the Bloch decomposition and the energy bands when computing the

moment systems which govern the evolution of the K-branch solutions; this has been done according to the

routines proposed in [28,26]. We selected an initial datum leading only to a 3-branch solution,
7 Co
u0ðxÞ ¼ 0.3 sinðxÞ; l0ðxÞ ¼ 0.3 expð�ðx� pÞ2Þ=p. ð31Þ

Since the Poisson term is repulsive, a strong initial position density prevents numerous multivaluations to

develop in the solution. The 3-branch solutions are displayed on Fig. 4 where the dispersive effect of the

repulsive Poisson term is clearly seeable. We compared with a direct Schrödinger computation at time

T = 2, see Fig. 5. The agreement looks satisfying away from caustics; even the central spike is produced

by both schemes. A decay of the L1 norm of (29) in T = 2 (and even a harsh strong L1 convergence) has
also been observed,7 see Fig. 6. The error coming from the spurious blowup on the caustics seems to de-

crease and the results in the multivalued region contribute at most up to 10% of the overall (as seen on
mpare especially with Figs. 11 and 12 in [26].



340 L. Gosse, N.J. Mauser / Journal of Computational Physics 211 (2006) 326–346
the antiderivatives of the position densities� difference, right of Fig. 6. We believe that the slight increase of

the L1 norm of (29) as e . 1/40 comes from a shortage of Fourier modes; 512 points of discretization have

been used here.

It is interesting to notice that one main difference with Section 4.1 is the number of multivaluations;

hence part of the error reported on Fig. 3 with respect to Fig. 6 comes from the algorithm used to invert
Markov�s moment problem as proposed in [29]. Also the simulation of a bigger hyperbolic moment system

is likely to produce slightly higher truncation errors.
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Fig. 4. 3-branch velocities (left) and corresponding intensities for Mathieu�s potential at times T = 0.5,1.5,2,2.5,3.5 (top to bottom).
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L. Gosse, N.J. Mauser / Journal of Computational Physics 211 (2006) 326–346 341
4.3. A smoothered model for screening

The situation described now is still given by Vion(x) = cos(x) supplemented by an exterior Coulomb term

V extðxÞ ¼ �1
jx�x0j

; i.e., a potential induced by an impurity inside the periodic lattice. It has already been studied in

[26] in a linear context, that is to say, without considering any self-interaction among the electrons. Roughly

speaking, Vext creates a potential well around x0, but the repulsive Poisson term has the opposite effect and

both mechanisms should balance after some transient regime. However, it hasn�t been possible to work with

the normal Coulomb term because it is too singular; hence we turned back to a smoother potential,
V extðxÞ ¼ � cosð0.5ðp� xÞÞ2.

The initial data are rather simple:
u0 � 0; l0ðxÞ ¼ expð�ðx� pÞ2Þ=2p.

Results at time T = 2 are shown in Fig. 7. The validation is done by means of a comparison with a direct

Schrödinger computation with 1024 Fourier modes in Fig. 8. It�s been more difficult to obtain a reliable
outcome while decreasing the parameter e thus we show a decay of the L1 norm of (29) only for moderate

values, see Fig. 9. We notice that for e 2 [1/25,1/5], the weak consistency is quite satisfying.
5. Conclusion and outlook

An extension of the Homogenization/WKB techniques to the weakly nonlinear Schrödinger–Poisson

equation has been introduced, in the spirit of [7,50]. It somehow ‘‘closes a loop’’ initiated in the joint
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work [28] and the earlier ones [24,46]. The validation of our numerical algorithms has been entirely

done by systematic comparisons of quadratic observables with the ones obtained from direct compu-

tations on Schrödinger–Poisson models with time-splitting Fourier schemes. A clean convergence of the

position densities has been observed for problems of increasing difficulty. This confirms the results
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from [25] concerning the validity of these 1D WKB techniques with K-branch solutions, [16,24,29,46],

even for weakly nonlinear problems of the type (1). Indeed one could be tempted to go down this
track and study the semi-classical limit of the so-called Xa equation heuristically derived in [43] which

reads:
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i�hotwþ �h2

2m
oxxw ¼ eðV ionðxÞ þ V extðxÞ þ V Pðt; xÞ � ajwj

2
3Þw; ��0oxxV P ¼ ejwj2. ð32Þ
The strong focusing nonlinearity emanating from Pauli�s exclusion principle forbids to apply any known

technique to obtain rigorously the semiclassical behaviour of w, see [19]. However, the local exchange term

�aq ¼ að�0e oxxV PÞ might be treated as a small perturbation (for a below a critical threshold [4]) inside the

present approach. At best, this equation is likely to describe ballistic transport of electron ensembles inside

solid-state materials. These basic concepts don�t address the issue of collisions (phonons, impurities, see [2]);

they are incorporated by linking the ballistic quantum transport picture to a classical Boltzmann-type equa-
tion and by assuming that quantum effects and collisions aren�t relevant in the same computational subdo-

mains, see [9].
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