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a b s t r a c t

In this paper, we report a new development of image charge approximations of reaction
fields for a charge inside a dielectric spherical cavity immersed in an ionic solvent with
arbitrary ionic strength. This new development removes the requirement of low ionic
strength of the solvent in a previous result [S. Deng, W. Cai, Extending the fast multipole
method for charges inside a dielectric sphere in an ionic solvent: high-order image approx-
imations for reaction fields, J. Comput. Phys. 227 (2007) 1246–1266], thus extending the
applicability of the image charge approximations of reaction fields in the modeling of bio-
molecular solvation.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Image charge methods are important numerical approaches for calculating electrostatic interactions among charges in-
side a dielectric cavity immersed in an aqueous solution. In hybrid explicit/implicit solvent models [1] of biomolecular sim-
ulations, spherical cavities are often used to enclose biomolecules of irregular shapes with a few layers of surrounding water
molecules. For a spherical cavity, the reaction field can be expressed by the well-known Kirkwood series expansion [2,3] in
terms of Legendre polynomials. However, image charge methods can offer a more efficient calculation of the electrostatic
interactions.

When no salt effects are present in the solvent, Friedman [4] developed a single image charge approximation for the reac-
tion field in the Poisson equation model, and later an improved version was obtained by Abagyan and Totrov [5]. These im-
age charge methods have been widely applied in biomolecular simulations. Recently, a multiple image charge approximation
was proposed [6] to represent the reaction field for the pure water solvent and found to perform about 20–30 times faster
than the direct Kirkwood expansion. Moreover, this method can be combined with the fast multipole method [7,8] in a
straightforward manner so that the electrostatic interactions among N charges inside the dielectric cavity can be calculated
in an OðNÞ complexity. For an ionic solvent, high-order accurate multiple image charge approximations were also developed
[9,10] for the reaction field provided that the ionic strength is low so that u ¼ ka < 1, where k is the inverse Debye screening
length and a is the spherical radius. In this paper, we shall present new image charge approximations for the reaction field
for solvents with arbitrary ionic strength such that no restriction on u will be imposed.
. All rights reserved.
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The paper is organized as follows. In Section 2, the Kirkwood series representation of the reaction field in the Poisson–
Boltzmann theory is reviewed. In Section 3, we present new line image approximations and multiple discrete image charge
approximations. Numerical results and analysis are given in Section 4, and a conclusion is drawn in Section 5.

2. Reaction field of a point charge

In the Poisson–Boltzmann theory, the electrostatic potential U inside a dielectric spherical cavity embedded in a dissim-
ilar dielectric continuum is given by the Poisson equation
r � ð�irUðrÞÞ ¼ �
X

k

qkdðr� rkÞ; r 2 Xi; ð1Þ
where Xi is the interior region of the spherical cavity centered at the origin with radius a, �i is the interior dielectric constant,
and rk is the position of the kth point charge with strength qk. In the exterior medium with salt effects, from the Debye–Hüc-
kel theory, the potential is given by the Poisson–Boltzmann equation after linearization
r2UðrÞ � k2UðrÞ ¼ 0; r 2 Xe; ð2Þ
where Xe ¼ R3 nXi, and k is the inverse Debye screening length determined by the ionic strength of the solvent and the exte-
rior dielectric constant �o. On the surface of the cavity, two boundary conditions for the continuities of the potentials and the
fluxes along the normal direction hold, i.e.
Uðr�Þ ¼ UðrþÞ; �i
oUðr�Þ

on
¼ �o

oUðrþÞ
on

for jrj ¼ a; ð3Þ
where r� and rþ are, respectively, the inner and outer limits at position r, and n is the unit outward vector normal to the
surface of the cavity.

Due to the principle of linear superposition, we only need to consider the reaction field of one point charge q located at
r s=ðrs;0;0Þ inside the sphere. The solution UðrÞ inside and outside the sphere for the Poisson–Boltzmann system can be
written in the following form of the classical Kirkwood series expansion [2,3] in a spherical coordinate system ðr;/; hÞ as
UðrÞ ¼

P1
n¼0

q
4p�irs

r
rs

� �n
þ Anrn

h i
Pnðcos hÞ; when 0 6 r < rs;

P1
n¼0

q
4p�ir

rs
r

� �n þ Anrn
h i

Pnðcos hÞ; when rs 6 r < a;P1
n¼0BnknðkrÞPnðcos hÞ; when r P a

8>>><
>>>:

ð4Þ
in which
URFðrÞ ¼
X1
n¼0

AnrnPnðcos hÞ; ð5Þ
defines the potential of the reaction field inside the dielectric cavity. Here, PnðxÞ are the Legendre polynomials, and knðrÞ are
the modified spherical Hankel functions [11] of order n defined by
knðrÞ ¼
pe�r

2r

Xn

k¼0

ðnþ kÞ!
k!ðn� kÞ!

1

ð2rÞk
: ð6Þ
The expansion coefficients An and Bn are found from the boundary conditions in Eq. (3) to be
An ¼
q

4p�ia
1
rn

K

�ðnþ 1ÞknðuÞ þ uk0nðuÞ
�nknðuÞ � uk0nðuÞ

¼ q
4p�ia

1
rn

K

�ðnþ 1ÞSnðuÞ þ 1
�nSnðuÞ � 1

; ð7Þ

Bn ¼
q

4p�ia
rs

a

� �n �ð2nþ 1Þ
�nknðuÞ � uk0nðuÞ

; ð8Þ
where rK¼a2=rs; � ¼ �i=�o and SnðuÞ ¼ knðuÞ
uk0nðuÞ

.

3. Image charge approximations for the reaction field

3.1. Previous image charge approximations

Although the Kirkwood expansion can be used [12], its convergence rate is slow, particularly near the boundary of the
spherical cavity. For a pure water solvent (the term SnðuÞ in (7) simplifies to �1=ðnþ 1Þ), some literature [4,5] approximated
the reaction field due to a point charge inside the sphere as the potential of an image charge, known as the Kelvin image
charge [13], at the conventional Kelvin image point
rK ¼ ðrK;0;0Þ and rK ¼ a2=rs; ð9Þ
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plus a correction term. These treatments speed up the calculation and have been used in many applications of molecular
dynamics and Monte Carlo simulations (see [14–16] for examples). However, approximation with only one image charge
is inaccurate in many simulations. Based on the remarkable results [17–20] which extended the Kelvin image for a conduct-
ing sphere to the case of a dielectric one, the reaction field for the pure water solvent can be represented exactly by a line
image charge in addition to the Kelvin image charge. Recently, using the line image results, a multiple discrete image charge
approximation for the reaction field was obtained [6].

To extend the multiple image approximation to ionic solvents, an asymptotic approach was adopted. For an ionic solvent,
the modified spherical Hankel function holds the following asymptotic expansion in terms of u ¼ ka < 1
knðuÞ ¼ p ð2nÞ!
n!

1

ð2uÞnþ1 þ O
1

un�1

� �
for n P 1 ð10Þ
and
knðuÞ ¼ p ð2nÞ!
n!

1

ð2uÞnþ1 �
p
2
þ O

1
un�1

� �
for n ¼ 0: ð11Þ
We then have
SnðuÞ ¼
knðuÞ

uk0nðuÞ
¼ � 1

nþ 1
þ Oðu2Þ; n P 1; ð12Þ

S0ðuÞ ¼
k0ðuÞ

uk00ðuÞ
¼ � 1

1þ u
:

Applying these asymptotic expansions, a second-order line image charge approximation [9] to the reaction field was ob-
tained as
URFðrÞ ¼
qK

4p�ijr� rKj
þ
Z 1

rK

qline
A ðxÞ

4p�ijr� xjdxþUcor
A þ Oðu2Þ; ð13Þ
where x ¼ ðx;0;0Þ, qK and q line
A ðxÞ denote, respectively, the Kelvin image charge and a line image charge extending from the

Kelvin image point to infinity along the radial direction. Ucor
A is a position-independent constant correction potential which

comes from the additional term in (11) for the case of n ¼ 0. The image charges are defined by
qK ¼ qc
a
rs
; qline

A ðxÞ ¼ q
dA

a
x
rK

� ��rA

for rK 6 x ð14Þ
and
Ucor
A ¼

q
4p�ia

�
1þ u

� 1� c� dA

rA

� �
¼ q

4p�ia
�

1þ u
� �

� �
ð15Þ
with
c ¼ �1� �
1þ � ; rA ¼

1
1þ � ; dA ¼ cð1� rAÞ:
Here the subscript ‘‘A” is used to distinguish this method from the new image charge methods to be presented later in this
paper.

Higher-order accurate image charge approximations can be further obtained by expanding the modified spherical Hankel
functions to higher order with respect to u. For example, by using the Kelvin image charge and two line image charges to-
gether with a position-independent and a position-dependent correction potentials, a fourth-order image charge approxima-
tion has been developed in [10].

3.2. Image charge approximations for solvents of high ionic strength

It can be seen that the key in developing the above image charge methods is to approximate the function SnðuÞ in (12)
with some simple rational functions of n and u ¼ ka in the order of OðumÞ for a certain positive integer m. Therefore, the prod-
uct of the inverse Debye screening length k (which is proportional to the square root of the ionic concentration) and the
sphere radius a being small is the precondition for the success of the previous image charge approximations for ionic sol-
vents. However, in circumstances of high salt concentration or large sphere radius or both, it is possible that the product
ka is greater or much greater than 1.

Nevertheless, when u is large, in fact we can expand asymptotically the function SnðuÞ in terms of Oð1=umÞ, instead. In
particular, for a second-order expansion, we have
SnðuÞ ¼ �
1

nþ 1þ u
þ O

1
u2

� �
for n P 0; ð16Þ
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which is a better approximation than that given by (12) for large u because SnðuÞ tends to �1=u as u tends to infinity. In addi-
tion, when u tends to zero, the approximation will still be analytical; that is, the reaction field will reproduce the Born for-
mula [6].

Order of Convergence The order of convergence can be verified by a simple analysis. On the one hand, when u tends to infinity,
since knðuÞ=k0nðuÞ ¼ �1þ Oð1=uÞ, we have SnðuÞ ¼ �1=uþ Oð1=u2Þ; then,
SnðuÞ þ
1

nþ 1þ u
¼ � nþ 1

uðnþ 1þ uÞ þ O
1
u2

� �
¼ O

1
u2

� �
: ð17Þ
On the other hand, as u tends to zero, the approximation is in the order of convergence O(u), because of
SnðuÞ ¼ �1=ðnþ 1Þ þ Oðu2Þand
1
nþ 1

� 1
nþ 1þ u

¼ u
ðnþ 1Þðnþ 1þ uÞ ¼ OðuÞ:
Plugging (16) into (7) leads to an approximation of the expansion coefficient An as
An �
q

4p�ia
1
rn

K
cþ dB

nþ rB

� �
; ð18Þ
where
rB ¼
1þ u
1þ � ; dB ¼ cð1� rBÞ �

u
1þ � :
Because rB and rK are both positive real constants, a simple calculation yields the identity
rnþrB
K

Z 1

rK

1
xnþrBþ1 dx ¼ 1

nþ rB
: ð19Þ
With this identity, we can rewrite the approximation of the reaction field (5) as
URFðrÞ �
qca

4p�irs

1
rK

X1
n¼0

r
rK

� �n

Pnðcos hÞ þ
Z 1

rK

qdB

4p�ia
x
rK

� ��rB 1
x

X1
n¼0

r
x

� �n
Pnðcos hÞdx: ð20Þ
Then, using the expansion of the reciprocal distance
1
jr� xj ¼

1
x

X1
n¼0

r
x

� �n
Pnðcos hÞ; when 0 6 r < x; ð21Þ
we obtain the following line image approximation for the reaction field
URFðrÞ �
qK

4p�ijr� rKj
þ
Z 1

rK

qline
B ðxÞ

4p�ijr� xjdx; ð22Þ
where qK is defined in (14) and the line image charge is now as
qline
B ðxÞ ¼ q

dB

a
x
rK

� ��rB

for rK 6 x: ð23Þ
We remark that, when n ¼ 0, because the approximation to S0ðuÞ exactly equals �1=ð1þ uÞ, no correction term is required
for the reaction field.

3.3. Line image charge approximation with one correction term

The accuracy of the line image approximation (22) can be improved by modifying the asymptotical formula of SnðuÞ for
large u as
SnðuÞ ¼ �
1

ðnþ 1Þ þ u2

1þu

þ O
1
u2

� �
: ð24Þ
The second-order accuracy can be analyzed in the same way as u tends to infinity. Furthermore, when u tends to zero, the
approximation is at an order of Oðu2Þ; therefore this new image charge approximation can cover the low ionic strength case
as well [9]. In this case, the approximation (24) is analytical for n ¼ 1. And we need to add a position-independent correction
term for n ¼ 0. Performing a similar deduction yields an approximation to the reaction field
URFðrÞ �
qK

4p�ijr� rKj
þ
Z 1

rK

qline
C ðxÞ

4p�ijr� xjdxþUcor
C ð25Þ
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with a line image charge
qline
C ðxÞ ¼ q

dC

a
x
rK

� ��rC

for rK 6 x; ð26Þ
where
rC ¼
1þ ~u
1þ � ; dC ¼ c 1� rCð Þ �

~u
1þ � ;

~u ¼ u2

1þ u
:

Here, the constant correction term is
Ucor
C ¼

q
4p�ia

�
1þ u

� 1� c� d C

rC

� �
¼ q

4p�ia
�

1þ u
� �

1þ ~u

� �
: ð27Þ
Remark 1. Higher order asymptotic approximation for SnðuÞ can be derived through the Mathematica software [21].
Actually by using the software, a higher-order approximation can also be obtained as
SnðuÞ � �
ð2n� 1Þð1þ uÞ þ ðn� 1Þu2

ð2n� 1Þðnþ 1Þð1þ uÞ þ n2u2 þ ðn� 1Þu3 ; ð28Þ
which is Oðu3Þ when u tends to 0 and Oð1=u2Þ when u tends to infinity. The approximation is analytical when n ¼ 1 and 2.
Consequently, the reaction field can be represented by a point charge and two line charges together with a position-inde-
pendent correction term; see [10] for the treatment of multiple line image charges.
3.4. Discrete image charge approximations

To obtain multiple discrete image charge approximations to the reaction field, each line image charge introduced in (13),
(22), or (25) is approximated with a set of discrete point image charges through Gauss integration quadratures, i.e.
Z 1

rK

qline
X ðxÞ

4p�ijr� xjdx �
XM

m¼1

qX
m

4p�ijr� xX
mj
; ð29Þ
where xX
m ¼ ðxX

m;0;0Þ, and for m ¼ 1;2; � � � ;M,
qX
m ¼

dX

2rX

wmxX
m

a
q; xX

m ¼ rK
2

1� sm

� �1=rX
and sm;wm;m=1;2; � � � ;M, are Jacobi–Gauss quadrature points and weights on the interval ½�1;1� (see [10] for details). Here,
the label X represents ‘‘A”, ‘‘B”, or ‘‘C”. We remark that the main objective to formulate discrete image charge approximations
is to apply the well-known fast multipole methods [7,8] which are of OðNÞ complexity in calculating the electrostatic inter-
actions among N charges.

4. Numerical results

A test example is implemented by taking a ¼ 1 and increasing the salt concentration related parameter k. The dielectric
constants chosen are �i ¼ 2 and �o ¼ 80, respectively. In all the numerical tests, the results obtained by the direct series
expansion with 800 terms are taken to be the exact solutions, and we calculate the maximum relative error of image charge
approximations at 10,000 observation points uniformly distributed inside the sphere. We compare the new image charge
methods with the original second-order image charge method (Approach A) with a position-independent correction term
in (13) [9]. Approaches B and C represent the new methods without correction term (Eq. (22)) and with one position-inde-
pendent correction term (Eq. (25)), respectively.

4.1. Accuracy of new line image approximations

We first test the accuracy of the line image approximations versus the source location. For this purpose, we take M ¼ 20
quadrature points for the line image integrals, and four different inverse Debye screening lengths k ¼ 0:5;1;5 and 50. We
remark that usually 2–4 quadrature points can keep the approximation to the line image integral within a very small error
[6], and thus 20 discrete images can be regarded as an exact calculation of the line image. The errors of the three approaches
are shown in Fig. 1. It is seen that at low ionic concentrations (k ¼ 0:5 and 1), the second-order approaches A and C have less
errors than the first-order approach B. Approaches A and C have almost the same performance. The errors increase gradually
when the source location rs tends to 1. However, the overall errors of Approach C are less than 0.1%, and in contrast, the ori-
ginal method (Approach A) has some errors greater than 0.1% with rs close to 1 for k ¼ 1. With the increase of k, the merit of



rs

Er
ro
r

0 0.2 0.4 0.6 0.8 110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
B
C

λ = 0.5

rs

Er
ro
r

0 0.2 0.4 0.6 0.8 110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
B
C

λ = 1.0

rs

Er
ro
r

0 0.2 0.4 0.6 0.8 110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
B
C

λ = 5.0

rs

Er
ro
r

0 0.2 0.4 0.6 0.8 110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A
B
C

λ = 50

Fig. 1. Accuracy comparison for the methods vs. the source location rs . A, B and C, respectively, represent the original method, the new method without
correction term and the new method with one constant correction term.
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the new method is clearer. At k ¼ 5, the largest error of the original method is bigger than 1% while those of Approaches B
and C are 0.73% and 0.56%, respectively. In particular, when k is very large (k ¼ 50), the advantage of the new method is much
more clear. Approaches B and C have almost the same behavior when rs is close to 1, and their largest errors are both less
than 0.4%. In comparison, Approach A has the largest error over 3% which is unacceptably large in many practical
simulations.

4.2. Accuracy of new discrete multiple image approximations

To investigate the accuracy of discrete multiple image approximations in relation to the inverse Debye screening length k,
we use two different charge locations rs ¼ 0:5 and rs ¼ 0:95. For each value of u ¼ ka, we take M ¼ 2 and 20 quadrature
points (corresponding to 2 and 20 image charges), respectively. A comparison of accuracy with the increase of u is made
in Fig. 2. As predicted from analysis, we can see that the new image methods perform well for large u; an almost second-
order of convergence is confirmed numerically. On the other hand, although using 20 discrete image charges can achieve
better accuracy, the errors with only two image charges are already small. The results agree with those of Table 2 in Ref.
[9], indicating that only several image charges are needed to achieve high accuracy in the reaction field with the multiple
image charge approximations. More importantly, the original method does not converge with the increase of u. It has an er-
ror over 1% for both rs ¼ 0:5 and 0.95 for a relatively large u, and for rs ¼ 0:95 the errors are even over 3% when u reaches 20.
Thus, the original method will produce inaccurate results for solvents with high salt effects. Moreover, the new methods
work as well for u < 1. In particular, Approach C with one correction term has smaller errors than Approach A does, and they
are both second-order accurate with respect to u for M ¼ 20. Though it should be noted that for M ¼ 2 the accuracy for both
the original method (Approach A) and the new method (Approach C) does not decrease further as u tends to zero. This is due
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to the fact that the discretization error of the line image integral by M ¼ 2 quadrature points becomes the dominating error
while the asymptotic error Oðu2Þ becomes negligible. Still the overall errors for the reaction fields are less than 0.1%.

As expected, the new methods should have their worst performance for u � 1. Still, they are superior to the original one,
as seen in Fig. 2. An error less than 0.8% for rs ¼ 0:95 is usually acceptable in applications for both Approaches B and C with
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M ¼ 2. Even when rs reaches 0.99, additional tests show that the error is less than 1% for both cases. Moreover, we can al-
ways obtain better approximation by adjusting the size of the sphere in the hybrid explicit/implicit solvent bio-molecular
simulations to avoid the situation of u � 1, of course at the expense of a larger simulation system inside the sphere when
the size of the sphere is increased.

5. Conclusions

In this paper, high-order accurate multiple discrete image charge approximations have been extended to calculate the
reaction field inside a dielectric spherical cavity immersed in a continuum solvent of arbitrary ionic strength. These approx-
imations can be used for rapid and accurate electrostatic computations of large molecules in solvent with high salt effects.
Numerical results confirm the validity and improved performance of the new image charge approximations for the whole
range of ionic strength of the solvent.
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