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Abstract10

This work aims at developing a high-order numerical method for the propaga-

tion of acoustic shock waves using the discontinuous Galerkin method. High

order methods tend to amplify the formation of spurious oscillations (Gibbs

phenomenon) around the discontinuities/shocks, associated to the relative im-

portance of higher-harmonics resulting from nonlinear propagation (in our case).

To handle this critical issue, a new shock sensor is introduced for the sub-cell

shock capturing. Thereafter, an element-centered smooth artificial viscosity is

introduced into the system wherever an acoustic shock wave is sensed. Valida-

tion tests in 1D and 2D configurations show that the method is well-suited for

the propagation of acoustic shock waves along with other physical effects like

geometrical spreading and diffraction.

Keywords: Discontinous Galerkin, Shock capturing, Artificial viscosity,11

Nonlinear acoustics12

1. Introduction13

One of the most spectacular features of nonlinear acoustics is the genera-14

tion of shock waves along the propagation. In this case, the speed c of finite15

amplitude sound waves is not strictly constant, even in homogeneous fluids. It16

is dependent on the wave instantaneous pressure amplitude pa. At first order,17
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one has c ≈ c0 + βpa/ρ0c0 where c0 is the speed of sound of waves of infinitely1

small amplitude, and ρ0 is the medium density. The parameter β characterizes2

the medium nonlinearity and will be defined later on. Accordingly, the parts3

of the waves with the highest amplitude travel faster than those with smaller4

values. This results into a distortion of the waveform that cannot keep its pro-5

file unchanged. Starting, for instance, from a smooth sine wave, this distortion6

first leads to the steepening of parts of the wave profile, and ultimately to the7

formation of acoustic shock waves if the amplitude is high enough, or if the8

propagation distance is sufficiently long [49]. The acoustic shock waves can also9

be produced directly by the source itself and persist along propagation. Atmo-10

spheric acoustic shock waves arise in many situations, like for instance the sonic11

boom from a supersonic aircraft [52], bolide hypersonic atmospheric entries [33],12

or the so-called “buzz saw noise” due to the supersonic rotation of the tip of13

fan blades [54, 25]. Lithotripsy [2] uses ultrasonic shock waves propagating in14

biological tissues to fragment kidney stones, while new medical applications are15

based on HIFU (High Intensity Focused Ultrasound) [11]. Many of these exam-16

ples involve shock formation, reflection, diffraction or focusing in propagation17

media with complex geometries. Most of the numerical methods developed and18

well studied in the field of nonlinear acoustics are for models that govern “one-19

way” wave propagation. The most popular model is the KZK equation [46]20

which is a parabolic approximation of the nonlinear wave equation. Even if this21

model is valid for many situations, it suffers from an angular limitation (±18o).22

Several improvements have been proposed to go beyond the parabolic approxi-23

mation (see [12] or [20]). These methods are highly efficient for modeling long24

distance propagation, for instance, sonic boom in atmosphere. But the intrinsic25

limitation of these methods, is the inability to model back-scattering/reflections.26

This problem can only be addressed by the “full-wave” methods which model27

the nonlinear wave propagation in all the directions. Some of the popular full-28

wave methods are: “Fullwave” by Pinton et al. [58] using a finite difference29

approach, “K-wave” by Treeby et al. [64] using the k-space method, Fourier30

Continuation method [1], these methods are based on Cartesian meshes and31
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can manage weak nonlinear propagation (only the first few harmonics of the1

wave spectrum). A numerical method handling complex geometries by using2

unstructured mesh and acoustic shock waves together is still a challenge, which3

is the aim of this work.4

To solve these two issues, we propose to use the discontinuous Galerkin5

method (DGM) for the propagation of acoustic shock waves on an unstructured6

mesh. DGM is a kind of hybrid between the finite element and the finite volume7

methods. Hence, it gives the advantage of local high order accuracy. Moreover,8

it is suitable to handle complex geometries thanks to the use of unstructured9

meshes. Another advantage is its parallelization potential similar to the finite10

volume methods, which further increases the efficiency of the method. The11

DGM was first proposed by Reed and Hill [59] for solving a steady-state neutron12

transport equation, with its analysis provided by Lesaint and Raviart [48]. At13

present the DGM is widely applied to many areas [35]. In acoustics, it has been14

mainly used for linear acoustics [44], aeroacoustics [63, 26, 27], propagation15

at the interface between moving media and isotropic solids [50], and weakly16

nonlinear propagation in solids [8]. To our knowledge, DGM has not been used17

for propagation of acoustic shock waves in complex geometries.18

Nevertheless, using DGM for acoustic shock wave propagation requires to19

pay attention to the shock handling. One of the main difficulties in shock20

handling is to avoid Gibbs oscillations. In order to tackle this problem for high-21

order schemes, many tools are available in the literature based on slope limiters,22

filters, and artificial viscosity. A lot of work has been done in the area of slope23

limiters by Cockburn and co-workers [13, 16, 17, 14] and further extended by24

Biswas et al. [6] and Burbeau et al. [10]. Recent work in the direction of slope25

limiters are for high-order WENO methods like in ADER-WENO approach [23]26

with a subcell shock limiter, and Zhu et al. [66] proposed the use of Hermite27

WENO limiter for DGM by reconstructing the polynomial using the original28

DG solution from the neighboring cells. Nevertheless, slope limiters are not29

the optimal choice for high-order methods as they flatten the smooth extrema so30

that accuracy is lost. The use of modal filters in spectral methods was initially31
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proposed by Majda et al. [53]. Relevant works on filtering can be found in1

[34, 35]. Here also, the problem could be the flattening of smooth extrema,2

if filters are applied globally. Coupling with shock-capturing tools (based on3

the spectral modes) is not efficient as filtering destroys the natural evolution of4

the modes. Recent application of spectral filtering for discontinuous Galerkin5

methods is achieved by Meister et al. [55], based on the idea of spectral viscosity6

initially proposed by Maday et al. [51] in coupling with sub-cell shock detection7

designed by Persson and Peraire [56]; finally the solution is post-processed using8

what is called as the digital total variation filtering.9

We choose here the method of artificial viscosity introduced by von Neu-10

mann and Richtmyer [65] as an efficient method of shock capturing for acoustic11

shock waves. This approach has been proposed and used with success also to12

stabilize the Euler equations on arbitrary geometric domains by Jameson et al.13

[40]. Relying on this approach, Hughes and co-workers [9, 38, 39, 36, 37] in-14

troduced the streamline diffusion method which was successful in damping the15

oscillations. For DGM in past few years, the local artificial viscosity method has16

gained significant importance. It is possible to couple it with the sub-cell shock17

detection algorithm, which is particularly important for unstructured meshes.18

Persson and Peraire [56] implemented this idea of sub-cell shock detection using19

the highest-order coefficients in an orthonormal representation of the solution.20

Once a shock is sensed in a particular element, a piecewise-constant artificial21

viscosity is introduced depending on the mesh and the solution. This local ap-22

proach makes it highly adaptable for parallelization, which is of key importance23

for DG implementation. The problem with this method are the jump disconti-24

nuities occurring in the viscosity map associated to the solution, which induce25

oscillations at the element boundaries. To dampen these oscillations, Barter26

and Darmofal [3] used a smooth artificial viscosity resulting from a diffusion27

equation. They combined hybrid meshes (structured ones near the shock and28

unstructured ones otherwise) for solving compressible Navier-Stokes equations.29

They also used an inter-element jump indicator proposed by Dolejsi et al. [21].30

Klockner et al. [43] extended the work of Persson, actually trying to smoothen31
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the viscosity through its linear interpolation in the neighboring elements, while1

choosing the parameters more methodically. Alternatively, Guermond et al. [28]2

proposed to use the entropy viscosity, for which the viscosity coefficient depends3

on the entropy production. The viscosity is then further smoothened, as the-4

oretically justified by Bonito et al. [7]. Recent approaches of shock capturing5

by means of residual-based artificial viscosity are implemented by Kurganov6

et al. [45] based on the concept of weak local residual error [42, 41]. Hart-7

mann and Houston [31, 30] relied on the interior penalty DGM for compressible8

Navier-Stokes while capturing the shocks using local residuals. Reisner et al.9

[60] worked in a direction similar to Barter et al. [3] by modeling the viscos-10

ity coefficient through a linear scalar-diffusion equation where a gradient-based11

source term is introduced to trigger the viscosity. Reisner et al. [60] clearly12

outlined as a perspective that: “In the future, the gradient-based source term13

used in the current implementation of the C-method may be combined with a14

noise-indicator that turns off the current gradient-based source term when it is15

not needed.” Therefore, a detailed study of the combined effect of gradient and16

noice indicators is essential step forward. Moreover, none of these works are17

directly related to nonlinear acoustics.18

In the present work, we derive nonlinear equations of acoustics under a con-19

servative form. Then, we propose a new sub-cell shock capturing for the DG20

method tool based on the gradient and the noise sensors, which we call as the21

shock sensor (SS). A detailed study of the combined effect of the gradient and22

noise indicators is presented, highlighting the motivation behind the develop-23

ment of this very sensitive and robust shock sensor. Though, it still depends24

on global parameters which is the topic of further research. Once an acoustic25

shock is sensed in a particular element, an element centered smooth artificial26

viscosity (ECSAV) is introduced there locally into the system. Note that, as27

we do not model the viscosity coefficient using a PDE, this makes it compara-28

tively simpler to implement while still having only three empirical parameters.29

The validity of the method is demonstrated throughout different problems of30

nonlinear acoustics. Planar wave propagation is used to study the formation of31
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N-wave, along with the illustration on the motivation behind the shock sensor.1

Then, propagation of cylindrical shock waves is studied to demonstrate the abil-2

ity of the method to handle geometrical spreading and nonlinear effects. The3

last test deals with the nonlinear radiation of a piston source. It demonstrates4

the ability of the code to handle diffraction combined with nonlinearity.5

2. Theoretical Model6

Using the fundamental equations of fluid dynamics [47], a first-order system7

of equations is derived, written in conservative form relevant for nonlinear prop-8

agation of acoustic waves. It is equivalent to the Kuznetsov equation [? ] which9

is a second-order, nonlinear scalar wave equation for potential. The fluid is10

assumed to be homogeneous in composition and quiescent i.e., therefore its am-11

bient density and pressure are uniform and there is no ambient flow. Moreover,12

it is assumed to be lossless i.e., the viscous and thermal effects are negligible.13

The state variables, density, velocity, pressure are denoted as ρ, v = (u, v), p,14

respectively.15

State variables can be written as the sum of the ambient state and the16

acoustic perturbation [57, 18, 29]: one has p(x, t) = p0 + pa(x, t) and ρ(x, t) =17

ρ0 + ρa(x, t), where the subscripts 0 and a indicate the ambient quantities and18

acoustic perturbations, respectively. We identify v = va as the medium is quies-19

cent. Substituting these expressions in the conservation laws of fluid dynamics,20

and retaining only terms up to second order whereas neglecting the cubic O(ρ3a)21

and higher order terms, one gets a system of three, first-order equations exact up22

to the quadratic nonlinear terms included. Its non-dimensionalized formulation23

is24

∂ρ̄a
∂t̄

+
∂

∂x̄
(1 + ερ̄a) ūa +

∂

∂ȳ
(1 + ερ̄a) v̄a = O(ε2) (1)

∂

∂t̄
(1 + ερ̄a) ūa +

∂

∂x̄

[
εū2

a + ρ̄a + ε
B

2A
ρ̄2a

]
+ ε

∂

∂ȳ
(ūav̄a) = O(ε2) (2)
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∂

∂t̄
(1 + ερ̄a) v̄a + ε

∂

∂x̄
(v̄aūa) +

∂

∂ȳ

[
εv̄2a + ρ̄a + ε

B

2A
ρ̄2a

]
= O(ε2). (3)

The acoustic pressure pa has been eliminated by means of an expansion of the1

state equation at the same order2

p̄a = ρ̄a + ε
B

2A
ρ̄2a +O(ε2). (4)

The non-dimensionalized variables are: p̄a =
pa
pma

, where pma = max |pa|; ūa =3

ua

um
a

, and v̄a =
va
vma

, where um
a = vma =

pma
ρ0c0

; ρ̄a =
ρa
ρma

where ρma =
pma
c20

for4

the state variables. The spatial and temporal variables are transformed using5

x̄ =
x

L
, ȳ =

y

L
,with L =

c0
ω0

and t̄ = ω0t, respectively. Here, ω0 is the angular6

frequency of the initial wave profile and 2πL is the corresponding wavelength.7

The acoustic Mach number ε, in front of all nonlinear quadratic terms, is defined8

as:9

ε =
max
x

{ua}
c0

=
pma
ρ0c20

. (5)

For most of the applications cited in introduction, the acoustic Mach number10

rarely exceeds 10−2. The assumption of weak nonlinearity and the neglecting11

of cubic and higher order terms is therefore fully justified.12

The ratio B/A is the fluid nonlinear parameter, measuring the quadratic13

nonlinearity of the state equation. For a perfect gas, it is equal to (γ−1)/2 where14

γ is the ratio of specific heats. One also has β = 1+B/2A. This ratio plays a key15

role in nonlinear acoustics. Values for various non-gaseous media are collected16

in [5, 29]. Note that Sparrow and Raspet [62] used the system (1)-(4) for the17

first time to simulate directly the propagation of nonlinear acoustic waves. This18

set of equations can be used to derive the inviscid Kuznetsov equation with just19

algebraic manipulations and without any additional assumption. In 1D frame,20

assuming a one-way propagation, the system (1)-(4) can also be reduced to the21

inviscid Burgers equation which is a nonlinear, scalar and 1D model.22

The method of artificial viscosity involves a parabolic regularization of hyper-23

bolic conservation laws, by adding one or several dissipative terms on the right24
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hand side of each conservation law. The choice of the dissipative term(s) is far1

from unique. Introducing the viscosity coefficient η(x), the most intuitive choice2

would be

(
η
∂2

∂x2

)
. However, the choice of the parabolic term

(
∂

∂x

(
η
∂

∂x

))
is3

more consistent with the form of conservation equations with a variable viscos-4

ity, and will help to develop a first order system of equations as a prerequisite5

for the DGM implementation. Therefore, the parabolic-regularization of the6

above dimensionless system of equations (1), (2), (3) becomes7⎡
⎢⎢⎢⎣

ρ̄a

(1 + ερ̄a)ūa

(1 + ερ̄a)v̄a

⎤
⎥⎥⎥⎦
t

+ ∇ ·

⎡
⎢⎣(1 + ερ̄a)ūa εū2

a + ρ̄a + ε
B

2A
ρ̄2a εūav̄a

(1 + ερ̄a)v̄a εūav̄a εv̄2a + ρ̄a + ε
B

2A
ρ̄2a

⎤
⎥⎦

= ∇ ·

⎡
⎢⎢⎣
η1

∂

∂x
ρ̄a η2

∂

∂x
((1 + ερ̄a) ūa) η3

∂

∂x
((1 + ερ̄a) v̄a)

η1
∂

∂y
ρ̄a η2

∂

∂y
((1 + ερ̄a) ūa) η3

∂

∂y
((1 + ερ̄a) v̄a)

⎤
⎥⎥⎦ .

(6)

Here, the viscosity coefficients ηi = ηi(x, y, t), i = 1, 2, 3 are functions of space8

variables and time, and are non-zero only over a small neighborhood of each9

shock. Details about the viscosity coefficients are given in section 3. The above10

system can be written in a generic conservative form for variables q1 = ρ̄a,11

q2 = (1 + ερ̄a)ūa and q3 = (1 + ερ̄a)v̄a as12

∂qm
∂t

+
∂fm
∂x

+
∂gm
∂y

=
∂

∂x

[
ηm

(
∂

∂x
qm

)]
+

∂

∂y

[
ηm

(
∂

∂y
qm

)]
; for m = 1, 2, 3. (7)

Flux terms fm and gm are obviously deduced from (7).13

The discontinuous Galerkin formulation of such a convective-diffusive sys-14

tem is achieved using the so-called local discontinuous Galerkin method, initially15

proposed by Bassi and Rebay [4] for compressible Navier-Stokes equations. It16

was further studied by Cockburn and Shu [15]. It involves the splitting of the17

convective-diffusive equation into a system of first-order equations. Its weak18

formulation is written using Dubiner basis [22] (constructed using 2D Jacobi19

polynomials) as test functions. The two-dimensional complex domains are dis-20

cretized using an unstructured mesh made up of triangular elements. The key21

feature of the discontinuous Galerkin method is the element-centric approach22

implying that almost all the computations are done independently within each23
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element. The local Lax-Friedrichs flux is used for the connectivity within differ-1

ent elements. This gives the motivation to parallelize the computation within2

each element. This is done using the Nvidia graphic cards with the pycuda3

environment [43]. The temporal advancement is achieved using the low stor-4

age explicit fourth-order Runge-Kutta method. Additional details about the5

method and its implementation can be found in the textbook [35].6

3. Shock Management7

As mentioned above, the problem of spurious oscillations is tackled by lo-8

calizing the regions with non-physical oscillations and introducing there the9

appropriate amount of viscosity (ηi(x), for i = 1, 2, 3) into the system (6).10

3.1. Shock Sensor11

In order to define the shock sensor, the primitive variables ρa, ua, va are12

easily computed from the conserved quantities q1, q2, q3. In discontinuous13

Galerkin method the approximate solution can be represented in two different14

forms, namely, the nodal one and the modal one. For the management of15

shock, the modal solution is of most importance. Indeed, with motivation from16

the work of Persson and Peraire [56], our new sub-cell shock detection tool17

is developed along similar lines using the coefficients of the spectral solution18

(modal solution). The interpolating polynomials ψi(ξ) being two dimensional,19

here, ξ is the coordinate system in the reference element. The modal solution20

can be written using two indices as21

ρa(ξ, t) =
N∑
i=0

N−i∑
j=0

(ρ̂a)ij(t)ψij(ξ). (8)

where i and j denote the order of the interpolating polynomial ψij(ξ) with22

respect to ξ and η, respectively. ψij(ξ) is the 2D orthonormal Dubiner basis23

[22, 35] with the scope in a particular element only. With N as the order of24

interpolating polynomial, the total number of points in one element turns out25

to be Np = 1 . . . (N + 1)(N + 2)/2, see [35] for further details. The coefficients26
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(ρ̂a)ij(t) of the basis functions are often referred as themodes of the DG solution.1

They play a key role in our method for sensing the shock. We intend to exploit2

the modes of kth element which is (ρ̂a)
k
ij(t), this helps us estimate the shape of3

the solution vector in each and every element of the mesh.4

Our shock sensor is based on the linear components i.e., the coefficients of5

ψ01(ξ) and ψ10(ξ), and the highest order components of the modal solution of6

order N , i.e.the coefficients of ψ0N (ξ) and ψN0(ξ). The reason for this choice of7

coefficients is that the linear component measures the gradient of the waveform,8

whereas the highest order coefficients indicate the presence of spurious oscil-9

lations associated to the nonlinear generation of higher harmonics. In various10

tests not reproduced here, the choice of only linear coefficients was insufficient11

as they were not sensitive to spurious oscillations. Different combinations of12

(ρ̂a)ij(t) were considered but no improvement was evident, implying that the13

first and last modes are the first to respond to any change in the waveform in14

nonlinear acoustics. Moreover, this idea was also expressed by Reisner et al. [60]15

as an important perspective for future research. Further details of this choice16

are explained in section 5.1.1. Now, we define the Shock Sensor (SS) in the kth17

element associated to any physical variable (ρa, ua, va) of the system (6), as18

(SS)kρa
(t) =

(SS1)kρa
(t)

max
k

{(SS1)kρa
(t)} +

(SSN)kρa
(t)

max
k

{(SSN)kρa
(t)} , (9)

(SS)kua,va
(t) =

(SS1)kua,va(t)

max{max
k

{(SS1)kua
(t)},max

k
{(SS1)kva

(t)}}

+
(SSN)kua,va

(t)

max{max
k

{(SSN)kua
(t)},max

k
{(SSN)kva

(t)}} , (10)

The notation (SS)kua,va(t) implies that it is either (SS)kua
(t) or (SS)kva

(t). It19

is important to mention here that, the maximum is calculated over all the20

elements. Further, (SS1)fa is the first-order sensor of variable fa equal to21

either ρa, ua or va and defined as22

(SS1)kfa(t) =| (f̂a)k01(t) | + | (f̂a)k10(t) |, (11)
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and (SSN)fa is similarly the Nth-order sensor of variable fa1

(SSN)kfa(t) =| (f̂a)k0N (t) | + | (f̂a)kN0(t) | . (12)

Here (f̂a)
k
ij(t) are the coefficients of the modal solution (8) in the kth element.2

For the sake of brevity we denote the shock sensors (SS)km(t) with m = 13

for (SS)kρa
(t), m = 2 for (SS)kua

(t) and m = 3 for (SS)kva
(t). Note that the4

L∞-norm is used to calculate the shock sensor as the objective is to give the5

maximum importance to the element with the maximum gradient or maximum6

oscillations. Also, it is important to note that (11)-(12) gives a relative value,7

and this choice works efficiently for sensing acoustic shock waves when repre-8

sented using the Dubiner orthonormal basis. Once shock sensors are calculated9

for each element, the need of viscosity ηm in the kth element is checked provided10

the condition11

(SS)km(t) ≥
max

k
{(SS)km(t)}

α1
, k = 1, · · · ,K, (13)

is satisfied. Here α1 is a user-given parameter quantifying the minimum value12

of (SS)km(t) above which a region of high gradient is sensed for m component13

of the solution at time t in element k. When satisfied, the corresponding ele-14

ment is tagged as an infected element. (SS)km(t) ∈ [0, 1] with the highest value15

representing the element with highest contribution from linear and highest or-16

der modes. This shock check condition helps identifying the elements needing17

artificial viscosity. All the numerical results in this paper are computed using18

α1 = 10. According to our numerous tests α1 = 10 gives a sufficiently broad19

range of elements in and around the region of shock, and therefore remains fixed.20

In order to reduce the spread of the viscosity around the shock, the value of the21

parameter α1 can be reduced or vice versa. A physical explanation for our choice22

of shock sensor will be explained by means of various numerical experiments in23

section 5.1.1.24

It is important to sense regions of high gradient at all time steps irrespective25

of the presence or not of a shock. Therefore it is important to calibrate the26

amount of viscosity to be introduced in the domain at each time step. This is27
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done using the Gradient Factor (GF ), defined as1

GF (t) = exp

⎡
⎣max

k
{(SS1)kρa

(t)}
max

k
{(SS1)kρa

(0)} − 1

⎤
⎦ . (14)

The function GF (t) measures the steepening of the wave profile with respect to2

the initial condition. Note that the GF (t) is chosen as an exponential function,3

because the evolution of the modes in time tends to behave exponentially. This4

keeps the artificial viscosity sufficiently low before the acoustic shock is formed5

so that the smooth profile is dissipated as less as possible. In order to keep the6

gradient factor GF (t) under control, it is tapped by an upper limit as7

GF (t) ≤ α2, (15)

where α2 is a user given parameter. All the numerical results in this paper are8

computed using α2 = 20.9

3.2. Element Centered Smooth Artificial Viscosity10

Once shocks are localized (i.e. the infected elements are flagged), an appro-11

priate amount of smooth artificial viscosity is introduced in the kth infected12

element as a two-dimensional Gaussian distribution13

ηkm(xk
i ) = (η0)

k
m exp

[
−
(
xk
i − (x0)

k

(σ0)k

)2

−
(
yki − (y0)

k

(σ0)k

)2
]
, i = 1, ..., Np. (16)

Here xk
i = (xk

i , y
k
i ), i = 1 . . . Np, are the points in the kth element. We label14

(16) as the element centered smooth artificial viscosity (ECSAV). The ECSAV15

reaches its maximum in the element at position (xk
0 , y

k
0 ), naturally chosen as the16

centroid of the considered kth element. The width σk
0 of the ECSAV beyond17

which artificial viscosity exponentially decays is defined as the circumradius of18

the respective infected element. Finally, the choice of the amplitude of ECSAV19

(η0)
k
m in the kth infected element is very crucial because it has to be nonzero20

only around the shock and zero elsewhere. It is defined as21

(η0)
k
m(t) =

⎧⎪⎪⎨
⎪⎪⎩

α3.GF (t).(SS)km(t) if (SS)km(t) ≥
max

k
{(SS)km(t)}

α1

0 otherwise.

(17)

12



Numerical Paramters Values

α1 10

α2 20

α3 O(2ε× 10−2)

Table 1: Numerical Parameters

We recall here that the inequality (13) is used as an indicator function to turn1

on/off the viscosity. Parameter α3 is empirically chosen. At present, we do2

not have an expression/bound for this parameter. Nevertheless, based on our3

experience relying on numerous numerical tests, we propose4

α3 ≈ O(2ε× 10−2), (18)

where ε is the acoustic Mach number. Note that proportionality of numerical5

viscosity to wave amplitude ε is nevertheless coherent with the expansion order6

of the system (1)-(4). All the numerical parameters in this implementation7

are summarized in the Table 1. It is important to mention that the use of8

smooth viscosity instead of a piecewise constant viscosity gives a significantly9

better solution. Sudden inter-element jumps in the viscosity induce oscillations10

that will propagate and may even lead to new unphysical tiny shocks due to11

cumulative nonlinearity. Further details are given in the forthcoming sections,12

and especially in subsection 5.1.4, different ways of implementing ECSAV are13

discussed so as to make viscosity as smooth as possible.14

4. One-dimensional validation tests15

First, the method is implemented in 1D. This preliminary stage allows to16

focus on the design of the shock sensor and to validate the method carefully17

by comparing the numerical results to a quasi-analytical solution [32, 19]. In18

1D, the system of equations (6) can be simplified into the Burgers equation in19

retarded time :20

13



∂p

∂σ
− ∂

∂τ

[
p2

2

]
=

∂

∂τ

[
η(τ , σ)

(
∂p

∂τ

)]
, (19)

with the following dimensionless variables:1

σ =
x

Lsh
, τ = ω0

(
t− x

c0

)
. (20)

The characteristic length Lsh is the shock length i.e., the distance required for2

an initially sine wave to become an acoustic shock wave. It is given by3

Lsh =
1

βεk
, (21)

where k = ω0/c0 is the wavenumber. We choose as initial condition a single sine4

wave period5

p(0, τ) =

⎧⎨
⎩ sin(π(τ − 0.05)) if − 2π ≤ τ − 0.05 ≤ 2π

0 otherwise.
. (22)

Quasi-analytical solution of Burgers equation is given by the so-called Burgers-6

Hayes method [32, 19], which consists in Poisson’s implicit solution expressed7

for potential rather than pressure. In case of shock formation, Poisson’s solution8

gets multivalued. Then physically admissible solution for potential is the maxi-9

mum value, in order to satisfy the entropy condition. Analytical Burgers-Hayes10

solution will be referred as ‘Quasi-Analytical’ in the following. The numerical11

parameters used for DGM are chosen as τ̄ ∈ [−2π, 2π], σ̄ ∈ [0, 1.5].12

4.1. Shock Sensor Vs Smoothness Indicator13

The efficiency of our shock sensor (SS) is highlighted over the Persson’s14

smoothness indicator (SI) in this section. Figure 1 shows the comparison of the15

two using the same unstabilized DG solution computed (left subplot) slightly16

beyond shock formation (σ̄=1.07) with no viscosity. In Persson’s approach17

(center subplot), the value of SI must be greater than (note SI is a negative axis)18

the value of the black dotted line in order to turn on the viscosity. The method19

responds well but at the central element. However, the value of SS (right20

14



Figure 1: Comparison between smoothness indicator (SI) and shock sensor (SS). Left: the

unstabilized DG solution at distance σ̄=1.07 computed with 40 elements and polynomial order

8 with no viscosity, compared to the quasi-analytical solution. Center: Persson’s SI for the

unstabilized DG solution. Right: Shock sensor SS for the unstabilized solution. The black

dotted line shows the threshold above which a shock is sensed.

subplot) is obviously well above the threshold for all three central elements1

located around the shock, and much below elsewhere. Therefore, SS is more2

sensitive to such numerical oscillations, which makes it more susceptible to3

shocks than to smoothness.4

4.2. Smooth Artificial Viscosity Vs Piecewise constant viscosity5

Figure 2 shows the comparison of the solutions obtained using the differ-6

ent methods of artificial viscosity allocation. Persson’s algorithm combining7

smoothness indicator and constant viscosity per element is denoted by ‘SI+CV’.8

The second approach is a kind of hybrid of Persson’s approach and ours, using9

SS to detect the shock but introducing a constant viscosity (equal to the maxi-10

mum of ECSAV) when (13) is satisfied. This is denoted by ‘SS + max(ECSAV)’.11

Lastly, Figure 2 displays the full method combining SS shock sensor and EC-12

SAV smooth viscosity. These three ways of introducing artificial viscosity are13

compared with quasi-analytical solution. Computation is shown at position14

σ̄ = 1.455 close to maximum shock amplitude, and is performed with K = 5015

elements and fourth polynomial order approximation (N = 4). The overall wave16

profile (left upper subplot) shows that all methods well localize the shock and17

simulate the waveform away from it. The artificial viscosity map (left lower18

15



Figure 2: Comparison of the three viscosity implementations namely, Persson’s ap-

proach (SI+CV), constant viscosity based on SS (SS+max(ECSAV)), ECSAV based on SS

(SS+ECSAV) with the quasi-analytical solution in a domain with K = 50 elements and order

of polynomial N = 4 at distance σ̄ = 1.455. Top left-subplot shows the pressure variation

with corresponding viscosity distribution in lower subplot. The zoom-in of the lower part of

discontinuity is shown in the right plot.

16



Figure 3: Full propagation of a sine-period in a domain with K = 50 elements and order of

polynomial N = 4 at different distances, the pressure(top) and its respective ECSAV(bottom)

is presented. Top Left: σ̄ = 0.182; Top Right: σ̄ = 0.545; Bottom Left: σ̄ = 1.091; Bottom

Right: σ̄ = 2.0.

17



subplot) nevertheless shows for ECSAV a smooth viscosity distribution well lo-1

calized around the shock, while the two other methods with piecewise constant2

viscosity necessarily introduce some discontinuities and a more widespread dis-3

tribution. From the zoom-in of the lower part of the discontinuity (right sub-4

plot), the full ‘SS+ECSAV’ method shows a very smooth solution with no oscil-5

lations at all, thanks to the smooth viscosity distribution, while other methods6

are not as efficient and lead to oscillations just before shock. Same conclusions7

could be drawn by examining the solution just after shock.8

Full propagation of this case is shown in Figure 3, i.e., before and after shock9

formation till two shock lengths. It is important to observe that even before the10

shock is formed, ECSAV is present with a very small amplitude.11

4.3. Handling of Multiple Shocks and Shock Merging12

We now consider an initial condition leading to multiple moving shocks,13

chosen as14

p(0, τ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− (τ + 0.5π)

π
, if − π ≤ τ ≤ −0.7π

− τ

π
, if − 0.7π < τ ≤ π

0, otherwise

(23)

The numerical parameters chosen for DGM are15

Space: τ̄ ∈ [−2.2π, 2.2π],

Time: σ̄ ∈ [0, 5],

Elements: K = 110,

Polynomial: N = 6.

(24)

Figure 4 shows the initial condition (left column) and the waveform after16

propagating over two shock lengths (right column). The three initial shocks are17

now moving, the two first ones leftwards, the last one rightwards, which leads18

to a lengthening of the waveform. All these features are well simulated, the19

only approximation being a slight spreading of the numerical solution resulting20

from the introduction of the stabilizing artificial viscosity. One can observe that21

18



Figure 4: Top: Comparison of the complete numerical method (DG+SS+ECSAV) with the

quasi-analytical solution for initial condition with three shocks. Middle: Viscosity allocation

in the domain. Bottom: SS in each element, the dotted line indicates the threshold above

which a shock is sensed. Left: Initial condition. Right: Simulation at around 2 shock lengths.

Figure 5: Same as Figure4. Left: at around 3 shock lengths. Right: at around 5 shock lengths.

19



there is no viscosity initially (center-left plot), however the viscosity allocation1

during the propagation (center-right plot) is proportional to the shock strength.2

Shock sensors (two lower plots) and viscosity maps well follow the shock dis-3

placement. The two first shocks keep perfectly separated from one another,4

despite the fact they are quite close from one another. Figure 5 shows the same5

figures (waveforms, viscosity maps, shock sensors) after traveling over three6

shock lengths (left) and five shock lengths (right). At three shocks lengths, the7

two first shocks are about to merge, the shock sensor is spread over 3 elements8

only instead of 2, and the two viscosity maps now slightly interfere locally. At9

five shock lengths, the two head shocks have merged, wave profile has stabilized10

into an N-wave, with two shocks moving in opposite directions. These ones are11

perfectly well-tracked over one single element by Shock Sensor.12

20



5. Two-dimensional validation tests1

In this section, three numerical tests are presented for the validation of the2

2D method. First, the numerical solution for the propagation of a plane wave3

is compared to the quasi-analytical solution of the inviscid Burgers equation4

for plane waves [32, 19]. This test is also used to underline the motivations5

behind the shock sensor, along with the different approaches of implementation6

of ECSAV on an unstructured mesh. The second test deals with the nonlinear7

propagation of cylindrical waves. The numerical results are compared to a8

quasi-analytical solution of the Burgers equation for cylindrical waves [24]. The9

last test is a comparison between the numerical results and results computed by10

another method: a one-way method called HOWARD (Heterogeneous One-Way11

Approximation for the Resolution of Diffraction) presented in Dagrau et al. [20]12

for simulating nonlinear radiation from a piston-transducer.13

5.1. Propagation of Nonlinear Plane Waves14

In this part, a simulation of a plane-wave along x̄-axis is done on a 2D15

unstructured mesh (boundary conditions are rigid walls). For this configuration16

it is possible to compare the numerical results to the quasi-analytical solution of17

the Burgers equation, as the initial and the boundary conditions are consistent18

with the assumptions underlying the Burgers equation.19

5.1.1. Numerical motivations behind the shock sensor20

To illustrate the interest of the composite shock sensor (between the first21

and the highest orders), its behavior is analyzed for the case of a plane wave22

propagating in a 2D unstructured mesh. The importance of SS1 is highlighted23

in subsection 5.1.2, and that of SSN is discussed in subsection 5.1.3. The com-24

putational domain is rectangular (x̄, ȳ) = [−21, 21] × [−4.2, 4.2]. The unstruc-25

tured mesh consists in 1308 triangular elements and the order of polynomial26

approximation is 8. The initial conditions are set to correspond to a plane wave27

21



Figure 6: Comparison of the different numerical solutions after the propagation of a sine-

period (25) over three shock lengths. SS maps corresponding to ρa are shown in subplots (a),

(b), (c) using the definition ‘SS1’:(26), ‘SSN’: (27), ‘SS1+SSN’: (9)-(10), respectively. A zoom

of pressure plot p̄a over x̄-axis ȳ = 0 of p̄a of all the three cases is shown in subplot-(d).

22



propagating toward +x̄ and the waveform is an inverted sine-period:1

p̄a(x̄, ȳ, t = 0) = − sin (x̄) ; if |x̄| ≤ π,

ūa(x̄, ȳ, t = 0) = p̄a(x̄, ȳ, t = 0),

v̄a(x̄, ȳ, t = 0) = 0.

(25)

The acoustic Mach number is set equal to ε = 2.2 × 10−4. The numerical2

parameters related to ECSAV taken for this configuration are: α1 = 10, α2 =3

20, and α3 = 6× 10−6.4

5.1.2. First-Order Contribution to the Shock Sensor5

Figure 6 presents three different shock sensors corresponding to ρa, along6

with a zoom-in of the plot over x̄-axis of pa. All these plots are made after the7

propagation over around three shock lengths.8

The subplot-(a) shows (SS)kρa
(t), k = 1, · · · ,K, when only the linear con-9

tribution of the modal solution (8) is considered to construct the shock sensor.10

Recall that the SSk
ρa

is constant in each element as it is computed from the11

modal solution of that element, and this constant is assigned to each node in12

that particular element. In this case, the shock sensor takes the form:13

(SS)kρa
(t) =

2(SS1)kρa
(t)

max
k

{(SS1)kρa
(t)}

(SS)kua,va(t) =
2(SS1)kua,va(t)

max{max
k

{(SS1)kua
(t)},max

k
{(SS1)kva

(t)}} .
(26)

The subplot-(b) shows (SS)kρa
(t), k = 1, · · · ,K, when only the highest-14

order contribution of the modal solution (8) is considered to construct the shock15

sensor. In this case, the shock sensor takes the form:16

(SS)kρa
(t) =

2(SSN)kρa
(t)

max
k

{(SSN)kρa
(t)}

(SS)kua,va
(t) =

2(SSN)kua,va(t)

max{max
k

{(SSN)kua
(t)},max

k
{(SSN)kva

(t)}} .
(27)

Lastly, the subplot-(c) shows (SS)kρa
(t), k = 1, · · · ,K, with the actual defi-17

nition of SS as given by (9)-(10). Note, the factor 2 in (26) and (27) is due to18

the purpose of normalization.19
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After propagation over around three times the shock length, the sine-period1

is transformed into a sawtooth waveform due to nonlinear effects. Shock is2

clearly located by the first order shock sensor (26) as evident from Figure 6-3

(a). Also, the value of the shock sensor is very high around the shock, thus4

inducing as expected a high viscosity introduced into the system to suppress5

the oscillations.6

In the case of a highest-order sensor (27), the shock front is not as clearly7

visible on Figure 6-(b), and the value of the shock sensor is not as high as previ-8

ously in the elements around the shock. Consequently, the viscosity introduced9

is much smaller and nonuniform around the shock. Therefore, there remains a10

possibility of spurious oscillations due to insufficient dissipation.11

In the case of full shock sensor SS, a clear shock front is once again captured12

by the shock sensor as evident from Figure 6-(c). This case is similar to the13

first order sensor, with high values of shock sensor implying the sufficiently high14

viscosity required for dissipating spurious oscillations.15

All the above remarks are supported by the resulting axial pressure p̄a16

zoomed around the shock and shown in Figure 6-(d). As expected p̄a corre-17

sponding to SSN (green) keeps some unphysical spurious oscillations, whereas18

the other two curves corresponding to the first-order sensor and full SS display19

no oscillations at all and are close to one another. It can therefore be concluded20

that highest-order sensor SSN is not sufficient alone to manage shocks, at least21

in the framework of weak acoustic shock waves on unstructured mesh. On the22

other hand, first-order sensor SS1 seems to be the key ingredient for tackling23

such situations. However, there are some numerical artifacts which the sensor24

SSN is capable of controlling, as will be discussed in the next subsection.25

5.1.3. Highest-Order Contribution to the Shock Sensor26

Since we are simulating the propagation of a plane wave along the x̄-axis27

in a 2D domain, v̄a should remain zero. But due to non-smooth ICs or dis-28

continuities, it may become significant in our method. Therefore, it is required29

to locate resulting mild oscillations right at the beginning of the simulation so30
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Figure 7: Comparison of the different numerical solutions after the propagation of a sine-period

(25) till half shock length. Shock Sensor maps (SS) corresponding to v̄a is shown in subplots

(a), (b), (c) using the definition ‘SS1’:(26), ‘SSN’: (27), ‘SS1+SSN’: (9)-(10), respectively.

Plot over x̄-axis of v̄a of all the three cases is shown in subplot-(d).

25



as to damp them as soon as possible. Otherwise, they could get dominant in1

long propagation due to the cumulative nonlinear effect. In this subsection, the2

importance of highest-order sensor SSN is highlighted for this purpose. Figure3

7 presents the same three different shock sensors as in previous subsection, but4

now corresponding to v̄a, along with a zoom-in of the plot over x̄-axis of v̄a5

around shock. Recall that the SSk
va is constant in each element as it is com-6

puted from the modal solution of that element, and this constant is assigned to7

each node in that particular element.8

All these plots are made after the propagation over around a half shock9

length. As before, the subplot-(a) shows the value of (SS)kva
(t), k = 1, · · · ,K,10

when only the first-order sensor (26) is considered, whereas the subplot-(b)11

shows the map (SS)kva
(t), k = 1, · · · ,K, when considering only the highest-12

order sensor (27). Lastly, the subplot-(c) shows the map of (SS)kva
(t), k =13

1, · · · ,K when the full shock sensor is used.14

It is important to observe that there is no clear pattern in Figure 7-(a)15

for a first-order sensor. Moreover, the value of the shock sensor keeps very16

small compared to the previous case, and consequently, the viscosity imposed is17

feeble. It can therefore be concluded that mild, noisy oscillations of the velocity18

v̄a are not detected by the shock sensor (26). On the other hand, a much19

better pattern is visible on Figure 7-(b), with also a large value of the Nth-20

order shock sensor. As a result the imposed viscosity is stronger. However, the21

shock sensor is distributed over all the numerical domain. Because of this non-22

distinguishable pattern of SS map, the viscosity is spread almost everywhere.23

This could lead to unwanted dissipation. Nevertheless, SSN is definitely required24

as it senses the oscillations. In the case of Figure 7-(c), a clearly distinguishable25

pattern is obviously visible where the oscillations are important. Also, SS value26

is significant enough to impose the required viscosity. As the contrast in the27

SS pattern is significant, introduction of viscosity is more localized near the28

oscillations compared to the previous case.29

All the above observations are supported by the plot over x̄-axis of v̄a shown30

in Figure 7-(d). The value of v̄a corresponding to SS1 (blue) is, as expected,31
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greater than other two, because there is almost no viscosity damping it. On the1

contrary, the dissipation is maximum in the case corresponding to SSN (green)2

as the shock sensor is the largest. However, in the case corresponding to the3

full shock sensor (red), the dissipation keeps nevertheless evident compared to4

the first-order sensor. Therefore, the first-order sensor is not able to sense the5

mild oscillations caused by non-smooth ICs or discontinuities, contrarily to the6

highest-order sensor and the full shock sensor. We can conclude this section7

with the inference that neither SS1 nor SSN are by themselves sufficient to8

capture weak acoustic shock waves in the numerical method based on DGM9

using fully unstructured meshes. However, the full shock sensor (9)-(10) which10

is the amalgamation of SS1 and SSN, is able to simultaneously capture shocks as11

well as detect mild oscillations caused by the non-smooth part of the waveform.12

5.1.4. Implementation of ECSAV13

In this part, the influence of the implementation of the maps of artificial14

viscosity is analyzed for different strategies. At this point, it is important to15

highlight that the method is implemented to use GPU (Graphical Processing16

Units) and especially Nvidia graphic cards with the CUDA framework. Par-17

allelization is done in an element-centric way where all the computations are18

made in parallel in each element. If the artificial viscosity is not taken into19

account, communication between elements arise only for one stage (exchange of20

the numerical flux across the boundaries) and requires only for each element to21

communicate with their closest neighbors. As mentioned in section 3.2, the key22

idea in ECSAV is to have smooth maps of viscosity. It is important to recall that23

DGM involves elements (triangle in this work) with quadrature points inside,24

which depend on the order of polynomials (see Figure 8-a for an illustration).25

Formulation given in section 3.2 provides a smooth viscosity inside each element26

(on the quadrature points) but do not necessarily between elements.27

Four different ways of implementing artificial viscosity are proposed here.28

Figure 8 provides an illustration of the allocation through the unstructured29

mesh. Let us assume the rth element is an infected element i.e., (η0)
r
m �= 0.30
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Figure 8: Illustration of different approaches for viscosity allocation in an unstructured mesh.

Left plot (a) : example of unstructured mesh. Plots (b) to (e): examples of viscosity maps

for CV (b), ECSAV (c), ECSAV+EN (d) and ECSAV+EN+VN approaches (e). See text for

more details.

It shares its edges with three different elements, say, re1 , re2 , re3 , we call these1

neighbors edge neighbors (ENs) (in case of a boundary element, it will have two2

edge neighbors only). Moreover, its vertices are shared by elements other than3

just the edge neighbors, let us label them , rv1
, · · · , rvR

, (say), and we call them4

vertex neighbors (VNs).5

The first approach is when a piecewise constant viscosity denoted as ‘CV’6

(similar to [56]) is introduced instead of a smooth artificial viscosity, as shown7

in Figure 8-(b):8

ηrm(x) = (η0)
r
m. (28)

The second approach is when ECSAV is introduced only in the respective9

element without any interaction with the neighbors, as shown in Figure 8-(c):10

ηrm(xr
i ) = (η0)

r
m exp

[
−
(
xr
i − (x0)

r

(σ0)r

)2

−
(
yri − (y0)

r

(σ0)r

)2
]

(29)

The third approach is when the ECSAV in the rth element interacts with11

the ECSAVs of its three neighbors elements. In the following it is referenced12

as ECSAV + EN, as shown in Figure 8-(d): (29) is appended by the edge13

28



Figure 9: Comparison of the different numerical solutions after the propagation of a sine-

period around five shock lengths. Viscosity corresponding to ρ̄a is shown in subplots (a), (b),

(c), (d) using the definition ‘CV’:(28), ‘ECSAV’: (29), ECSAV+EN: (30), ECSAV+EN+VN:

(31), respectively. Plot over x̄-axis of p̄a of all the four cases is shown in subplot-(e) with

zoom-in near the discontinuities in subplots (f),(g).
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contributions, given by1

ηr
m(xr

i ) = (η0)
r
m exp

[
−
(

xr
i−(x0)

r

(σ0)r

)2

−
(

yr
i−(y0)

r

(σ0)r

)2
]

+(η0)
re1
m exp

[
−
(
xr
i − (x0)

re1

(σ0)re1

)2

−
(
yr
i − (y0)

re1

(σ0)re1

)2
]

+(η0)
re2
m exp

[
−
(
xr
i − (x0)

re2

(σ0)re2

)2

−
(
yr
i − (y0)

re2

(σ0)re2

)2
]

+(η0)
re3
m exp

[
−
(
xr
i − (x0)

re3

(σ0)re3

)2

−
(
yr
i − (y0)

re3

(σ0)re3

)2
]

(30)

This makes the viscosity map smoother than the two previous approaches. This2

is important because, as shown in 1D, discontinuities in the viscosity function3

could induce oscillations at the element boundaries. To further smoothen the4

viscosity function, it is convenient to take also into account the viscosity con-5

tributions of the vertex neighbors, as shown in Figure 8-(e) and referenced by6

ECSAV + EN + VN. This is achieved by appending the viscosity function in7

(30) by viscosity of vertex neighbors, given by8

ηr
m(xr

i ) = (η0)
r
m exp

[
−
(

xr
i−(x0)

r

(σ0)r

)2

−
(

yr
i−(y0)

r

(σ0)r

)2
]

+(η0)
re1
m exp

[
−
(
xr
i − (x0)

re1

(σ0)re1

)2

−
(
yr
i − (y0)

re1

(σ0)re1

)2
]

+ · · · · · · · · · · · ·

+(η0)
rv1
m exp

[
−
(
xr
i − (x0)

rv1

(σ0)rv1

)2

−
(
yr
i − (y0)

rv1

(σ0)rv1

)2
]

+ · · · · · · · · · · · ·

+(η0)
rvR
m exp

[
−
(
xr
i − (x0)

rvR

(σ0)
rvR

)2

−
(
yr
i − (y0)

rvR

(σ0)
rvR

)2
]

(31)

9

These different strategies are tested on the propagation of a plane wave on10

a 2D domain with unstructured mesh. Parameters are the same as in sec-11

tion 5.1.1 except the initial waveform which is chosen to be the opposite :12

p̄a(x̄, ȳ, t = 0) = sin (x̄) ; if |x̄| ≤ π. Note that this change of sign in the13

initial waveform has an important consequence in nonlinear acoustic, since the-14

oretically the solution after a shock distance is no longer a sawtooth wave, as15

in previous section, but an N-wave. Figure 9 presents results for the four dif-16

ferent implementations of artificial viscosity. The viscosity is computed on each17
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Figure 10: Comparison of the plot over x̄-axis of the numerical solution (ECSAV+EN+VN)

after the propagation of a sine-period around five shock lengths with a quasi-analytical solution

of the 1D inviscid Burgers equation. The numerical solution is obtained using the approach

(31) for the introduction of viscosity. Zoom-in of the left and the right shock are shown in

the center and the right subplots, respectively.

point of the element. Subplot (a) takes the constant state as each point of the1

element, subplot (b) computes a Gaussian within an element with centroid of2

that element as the center of the Gaussian, subplot (c) constructs the Gaussian3

like in (b) and also adds the overlapping three Gaussian adjacent to the edges,4

whereas subplot (d) does everything as (c) and also adds the overlaps from5

the vertices (respectively CV, ECSAV, ECSAV + EN and ECSAV + EN +6

VN). The results are shown for a distance of propagation of around five shock7

lengths. One can see that the viscosity maps are smoother and smoother as8

expected. The locations of the high values of viscosity are also remarkable, on9

each subplot, they correspond to the locations of the two shocks of the N-wave.10

Subplot (e) shows the waveform extracted at the center of the computational11

domain (ȳ = 0) for the different implementations. Each of them allows to re-12

cover the classical N shape. Nevertheless, the zooms provided in subplots (f)13

and (g) show that spurious oscillations are reduced if the viscosity is smoother.14

It demonstrates that the strategies with the edge neighbors and with the vertex15

neighbors are better than the ones without interaction between elements. The16

additional cost of communication between elements is not very important and17

this strategy can easily be implemented in practice.18

In the following parts, the viscosity maps are computed with the fourth19

option (ECSAV + EN + VN). Figure 10 shows the comparison between the20
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Figure 11: Comparison of the plot over x̄-axis of the numerical solution (ECSAV+EN+VN)

after the propagation of a two sine-periods with amplitudes: 5 MPa and 5%, 10%, 20% of the

maximum amplitude with their quasi-analytical solution in subplot (left), (center), (right),

respectively. The distance of propagation is taken to be 20 shock lengths of the bigger sine-

pulse.

numerical solution with this implementation and the 1D reference solution for1

the dimensionless pressure. There is an excellent agreement concerning the2

position of the shocks and their amplitude. Moreover the zooms (second and3

third subplots) show that spurious oscillations are very weak.4

To further demonstrate the robustness of the shock sensor, we consider the5

following initial condition made of two signals with different amplitudes:6

p̄a(x̄, ȳ, t = 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R sin(x̄+ π) if |x̄+ π| ≤ π

sin(x̄− π) if |x̄− π| ≤ π

0 otherwise

,

ūa(x̄, ȳ, t = 0) = p̄a(x̄, ȳ, t = 0),

v̄a(x̄, ȳ, t = 0) = 0,

where R < 1 is the amplitude of the first sine-pulse, the amplitude of the second7

sine-pulse is assumed to be 1 (ie the reference for the computation). This initial8

condition is an extension of the initial condition taken in the previous test.9

Three different cases are considered with R = {0.05, 0.10, 0.20}. All the10

other numerical parameters and the mesh are the same as in the previous test.11

This maintains the same ECSAV parameters as in the above case, and thus12

can be used to study the effect of ECSAV (triggered by a larger amplitude) on13

smaller amplitudes. Also, unlike the previous test, the distance of propagation14
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is taken to be 20 shock lengths (Eq. 21) for the bigger sine-pulse (previously1

it was 5 shock lengths). Figure 11 presents the comparison of the three cases2

with their quasi-analytical solutions. The shock length is inversely proportional3

to the amplitude of the wave: the higher the amplitude, the shorter the shock4

length. Therefore, the values of R correspond to 1, 2 and 4 shock lengths based5

on the smallest signal respectively. So the nonlinear effects are up to 20 times6

smaller for the small sine-pulse than for the high sine-pulse. Nevertheless, in7

all the cases, none of the smaller amplitudes are excessively dissipated. This8

test demonstrates the ability of the method to handle shocks with very different9

amplitudes. Indeed, the method does not impose extra dissipation in smooth10

regions of the waveform, and is capable to model propagation of signals of11

different amplitudes for long distances.12

Results of this section illustrate the ability of the proposed method to simu-13

late the propagation of a plane acoustic shock waves on an unstructured mesh.14

In the next section, more complex 2D configurations are investigated.15

5.2. Propagation of Nonlinear Cylindrical Waves16

The goal of this section is to compare the numerical results to a quasi-17

analytical solution in the case of nonlinear propagation of cylindrical waves. This18

test is meant to demonstrate the shock formation along with the geometrical19

spreading away from the center. We consider a circular domain and choose the20

physical parameters to be those of water: ρ0 = 1000 kg.m−3, c0 = 1500 m.s−1,21

β=3.5. The cylindrical waves are generated by imposing a Gaussian pulse as22

initial condition:23

pa(x, y, t = 0) = pma exp

(
−x2 + y2

λ2

)
, (32)

where the amplitude pma = 1.5 × 108 Pa and λ = 1.5 × 10−3 m. Note that24

the width of the pulse is approximatively λ. The computational domain has25

a radius of 40λ as shown in Figure 12-(a). It is meshed anisotropically, the26

left part of the mesh is discretized using 1 element per wavelength, whereas 427

elements per wavelength are used on the right side. The polynomial order is28
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N=6. This mesh allows to have a very good accuracy along the positive x-axis1

and to limit the global number of nodes. In Figure 12-(b) the x-component of2

the velocity ua is shown, the global shape of the waveform remains the same in3

all directions, however some numerical dispersion is clearly visible on the left4

side of the domain, due to a poor discretization. Consequently, the distribution5

of ECSAV, η2, is significantly different in the left and right semi-circles, as seen6

in Figure 12-(c). This difference highlights the sensitivity of the shock sensor to7

small amplitude oscillations (like noise) due to dispersion in the coarser mesh,8

which increases the magnitude and the spread of the ECSAV.9

The numerical results can be compared to a quasi-analytical solution. The

nonlinear propagation of cylindrical waves can be described by the generalized

inviscid Burgers equation for cylindrical waves [61, 24]:

∂v

∂r
+

v

2r
− β

c20
v
∂v

∂t
= 0, (33)

where v is the particle velocity, r is the propagation distance.10

This equation is valid outside the source region for small acoustic Mach

number, for more details see [61, 24]. This equation can be rewritten under a

dimensionless formulation:
∂v̄

∂σ̄
− μv̄

∂v̄

∂τ̄
= 0, (34)

where v̄ = v
v0

(
r
r0

)1/2

, and σ̄ =
(

r
r0

)1/2

, with r0 and v0 are the radius of11

the source and the maximum particle velocity at r = r0. The dimensionless12

retarded time is τ̄ = ω(t−r/c0), and μ = 2βkεr0 measures the importance of the13

nonlinear effects, smaller values imply weaker nonlinearity. This dimensionless14

formulation is analogous to the Burgers equation for plane wave. Therefore, the15

Burgers-Hayes quasi-analytical solution [32, 19] of the previous section can also16

be used here by changing the variables.17

As mentioned above, the cylindrical Burgers equation is only valid away18

from the source. Therefore, the velocity field is extracted at a distance greater19

than λ, the approximate width of the source. We choose to extract the velocity20

field at r0 = 2λ. In practice, a probe located at (x = r0, y = 0) is used during21
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Figure 12: (a) Mesh used for the simulation, (b) velocity field, and (c) ECSAV map for ua.

the numerical simulation to store the velocity field every time step. This signal1

is used as an initial condition for the quasi-analytical method, that is why it2

is referred to “initial condition” in the following paragraphs. Then, the quasi-3

analytical solution is compared to the numerical signals extracted with other4

probes located every λ on the positive x-axis. Note that the value of the initial5

pressure of the Gaussian pulse has been chosen in order to have μ ≈ 1 with6

r0 = 2λ. It is important that the initial conditions have a high amplitude to7

observe nonlinear effects because the geometrical spreading for cylindrical waves8

scales as r1/2.9

Figure 13 shows the comparison between the quasi-analytical solution and10

the numerical solution at three different distances of propagation 1λ, 17λ, 35λ,11

respectively. Here, the distances of propagation are along the positive x-axis,12

defined from the the point where the initial condition has been extracted. The13

waveforms are presented in the left column and their respective spectra are14

presented in the right one. Each subplot shows 1) the initial condition (black),15

2) the linear analytical solution (green with μ = 0, models geometrical spreading16

only), 3) the nonlinear quasi-analytical solution (red), and 4) the numerical17

DG solution (blue). Concerning the waveforms, it is important to observe the18

different evolutions of the linear and nonlinear solution. After a propagation over19

1λ, all solutions are very close, but after a propagation over 15λ, the solutions20

are different, even though the positive amplitudes of the linear and nonlinear21
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Figure 13: Temporal waveforms(Left) and their corresponding spectra(Right) at three dis-

tances from the point on the +x-axis where the initial condition is extracted : (d =

{1λ, 17λ, 35λ}, from top to bottom). The black curve is the initial condition (i.e., the signal

extracted at r0 = 2λ in the DG simulation), the green curve corresponds to the solution

after a linear propagation of the initial condition, the red curve corresponds to the solution

after a nonlinear propagation of the initial condition, the blue curve is the numerical solution

computed by the DG method.
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simulations are close to one another because of the geometrical spreading. A1

very evident shock formation is occurring in the nonlinear solution, and the2

steepening increases with the radial distance. The nonlinear steepening is very3

well-matched with the quasi-analytical solution in all cases. Concerning the4

spectrum, the three subplots show the transfer of energy to the higher harmonics5

with the propagation distance. The steeper the shock, the greater the energy6

in the higher harmonics. A close match of both nonlinear and quasi-analytical7

spectrum is observed, while the linear spectrum remains similar in all three8

cases without any transfer of energy to higher harmonics. It is important to9

note here that, the propagation of the acoustic shock is from right to left, this10

is counter-intuitive, as the wave is propagating outwards i.e., from left to right.11

This is due to the fact that we are working in a retarded time frame (i.e., when12

we move with the wave in a time window). Further, the combined effects of13

nonlinearity and geometrical spreading is illustrated using Figure 14. It shows14

the maximum amplitude of the first shock, in retarded time, for both numerical15

and quasi-analytical solutions. Since the comparison is made in retarded time,16

the shock moves from right to left. Since, the figure is presented in retarded17

time, if the same curve was plotted for a linear propagation, then the position18

would remain unchanged (no shift just a decrease of the amplitude due to the19

geometrical spreading). There is a good agreement between the two curves,20

which is a proof of the ability of the numerical method to accurately reproduce21

the shock speed, even after the introduction of artificial viscosity, though some22

noise is visible around 1.4μs.23

In this configuration, geometrical spreading is a much more dominant effect24

than nonlinearity, this is why a very high amplitude initial pulse is chosen to25

be able to see the nonlinear effects. In the following test case, a configuration26

where nonlinear effects are stronger is investigated.27
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Figure 14: Shock position along the x-axis vs the amplitude, note the shock is moving leftward

by the virtue of retarded time formulation. The data are extracted along the positive x-axis.

5.3. Nonlinear radiation from a piston-transducer1

In order to further validate the method, the DG results are compared with2

the numerical results obtained with the HOWARD method [20]. It is a one-way3

method (the propagation is modeled only in one direction and cannot model4

reflections or back-scattering) which is able to simulate the propagation of non-5

linear acoustic waves in weakly heterogeneous media. One-way methods are6

very popular in nonlinear acoustics because they give good results in a short7

time. Nevertheless, they suffer from intrinsic limitation: due to the one-way8

approximation they cannot simulate the backscattering, if any.9

The chosen validation test is based on Dagrau’s test case [20]. It deals with10

the radiation of a pure tone piston in a homogeneous medium. The Rayleigh11

distance and the shock formation distance are chosen to be of the same order of12

magnitude in order to provide a test case involving diffraction and nonlinearity13

with equal importance.14

The piston is located on the left side of a two-dimensional computational15

domain. It radiates a pure tone at the amplitude pma = 1360 Pa and a frequency16

f0 = 1000 Hz for t = 0.03 s (30 periods). The medium is homogeneous, its17
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physical parameters are being taken from Dagrau et al. [20]: c0 = 340 m/s,1

ρ0 = 1.2 kg/m3 and the nonlinear parameter β = 1.2 (these values correspond2

to propagation in air, the acoustic Mach number is ε = 0.0098). The piston3

radius a is equal to 2λ. So, the Rayleigh distance is LR = ka2/2 = 4πλ. The4

choice of these parameters implies comparable values for the Rayleigh distance5

LR and the shock formation distance Lsh (Eq. 21): Lsh/LR ≈ 1.077.6

The computational domain is rectangular but its size depends on the nu-

merical method. Indeed, the HOWARD method is based on Fourier transforms

and requires a large lateral extension while it is not necessary (and numeri-

cally costly) for the DG method. The numerical domain considered for the DG

method is presented in the Figure 15-left, the piston transducer is shown in

y ∈ [−2λ, 2λ]. The mesh is built using the 6 elements per wavelength along the

central axis and 1 elements per wavelength elsewhere. The polynomial order of

approximation is taken to be 8 throughout the mesh. The ECSAV parameters

are taken to be α1 = 10, α2 = 20, α3 = 1e − 4. For DG, the boundary condi-

tions are non reflecting conditions (using characteristic method [35]) on all the

boundaries except along the left boundary where the pressure is imposed:

p(x = 0, y, t) = w(y) sin(2πf0t),

where w(y) = 1
2 +

1
2 tanh

(
y+a
d

)
tanh

(−y−a
d

)
with a = 2λ the piston radius and7

d = a/15 a parameter controlling the smoothness of the piston. For HOWARD8

method, the same left boundary condition is used. The lateral boundary con-9

ditions are absorbing boundary conditions to mimic non reflecting conditions.10

Figure 15-right shows the maximal pressure for each point of the computa-11

tional domain. The color map is computed by the DG method and the contour12

lines are computed using the HOWARD method. There is an excellent agree-13

ment between the two methods concerning the positions of the maxima and14

minima. Figure 16 presents the maximum pressure along the x-axis (y = 0)15

in both the a) linear and b) nonlinear regimes. Linear regime is simulated by16

forcing ε = 0 which deactivates nonlinearities in both methods. Therefore, we17

can see the comparison without nonlinear effect. The two curves are well su-18
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Figure 15: left: Geometry and its corresponding mesh; Right: Maximum pressure for each

point of the computational domain, the color map is computed by DG and the contours by

Howard

perimposed. Nonlinear effects increase the maximum value of the pressure field1

after the near-field. This is due to the formation of shock waves which are in-2

teracting with diffraction. Acoustical shock waves are visible in Figure 17-(a)3

which displays a snapshot of the pressure field. They correspond to very sharp4

transitions between positive and negative parts near the central region. Figures5

17-(b) and (c) shows the corresponding ECSAV maps for ρa and ua. We can6

see that the artificial viscosity is mainly located at the position of the acoustic7

shocks. It is also evident that the two maps of artificial viscosity are not exactly8

the same.9
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Figure 16: Maximum pressure along the axis computed by DG (line) and HOWARD (dash)

methods for Dagrau’s test case [20]: (Left) in linear regime, (Right) in nonlinear regime

Figure 17: Snapshots of the pressure (a), and the ECSAV introduced for ρ (b) and u (c).
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6. Conclusions1

The present paper introduces three new ingredients for the numerical sim-2

ulation of weak acoustic shock wave propagation by means of discontinuous3

Galerkin method. The first one is a novel sub-cell shock capturing tool (Shock4

Sensor), coupling a gradient sensor and a noise sensor. Though here imple-5

mented in the framework of the DG method, we believe this tool is more gen-6

eral and can be made independent from the choice of the numerical method.7

The second innovation is the Element Centered Smooth Artificial Viscosity -8

ECSAV introduced to smoothen the solution in case a shock is detected by the9

shock sensor in one mesh element. The last element is the Gradient Factor10

measuring the steepening of the waveform and accordingly scaling the artificial11

viscosity. Special attention is paid to discuss the implementation of the shock12

sensor and the element centered artificial viscosity on unstructured meshes. The13

resulting numerical solver is equipped for simulating the propagation of weak14

acoustic shock waves on unstructured meshes, as modeled by a first-order sys-15

tem of equations in conservative form. Validation tests are performed for 1D16

and 2D configurations, highlighting that the method can model the nonlinear17

effects well along with the other physical effects like geometrical spreading and18

diffraction.19
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