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In this work, we combine the idea of data-driven polynomial chaos expansions with the 
weighted least-square approach to solve uncertainty quantification (UQ) problems. The idea 
of data-driven polynomial chaos is to use statistical moments of the input random variables 
to develop an arbitrary polynomial chaos expansion, and then use such data-driven bases 
to perform UQ computations. Here we adopt the bases construction procedure by following 
(Ahlfeld et al. (2016), [1]), where the bases are computed by using matrix operations 
on the Hankel matrix of moments. Different from previous works, in the postprocessing 
part, we propose a weighted least-squares approach to solve UQ problems. This approach 
includes a sampling strategy and a least-squares solver. The main features of our approach 
are two folds: On one hand, our sampling strategy is independent of the random input. 
More precisely, we propose to sampling with the equilibrium measure, and this measure 
is also independent of the data-driven bases. Thus, this procedure can be done in prior 
(or in a off-line manner). On the other hand, we propose to solve a Christoffel function 
weighted least-square problem, and this strategy is quasi-linearly stable – the required 
number of PDE solvers depends linearly (up to a logarithmic factor) on the number 
of (data-driven) bases. This new approach is thus promising in dealing with a class of 
problems with epistemic uncertainties. A number of numerical tests are presented to show 
the effectiveness of our approach.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty Quantification (UQ) has been a hot topic recently. The aim of UQ is to quantify the impact of the stochastic 
inputs to the stochastic response, and thus a fundamental problem of UQ is to approximate a potentially high dimensional 
parametric function f (ξ1, ξ2, ..., ξd) : Rd → R, d ≥ 1. One popular way to perform UQ analysis is to assume that the distri-
butions of the input parameters {ξk}d

k=1 are known in prior, and this is also well known as aleatory-type uncertainty model. 
Among others, the generalized Polynomial Chaos (gPC) [29] based on the Wiener–Askey formula, which is an extension of 
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the original work by Wiener [25], is a popular approach for aleatory-type uncertainty analysis. The idea is to approximate 
the parametric function f with polynomial bases that are orthogonal with respect to the input density of the parameters. 
The unknown expansion coefficients can then be computed by performing for example the Galerkin projection into a finite 
polynomial space. Notice that in general, one needs to solve a coupled Galerkin system that is much more complicated than 
the original model – the so called intrusive approach. Another popular approach, termed stochastic collocation, has gained 
much attention due to its efficiency and its non-intrusive property. The idea of stochastic collocation is to use efficient 
sample solutions to construct global polynomial approximations. For recent developments of stochastic collocation methods, 
one can refer to [15,16,21,23] and references therein.

In recent years, there is a growing demand to extend the gPC method to more general input distributions (beyond 
the Wiener–Askey formula). One of the first attempts is the multi-element generalized polynomial chaos (ME-gPC) [19,24]
where the random space is divided into small elements and local polynomial expansion is constructed via the Gram–Schmidt 
procedure. While the approach gains advantages when dealing with discontinuity of model responses, the computational 
complexity can be very dramatic. A multi-element probabilistic collocation method was also developed along this direction 
[30]. Global polynomial expansions for arbitrary distributions have also been investigated based on Gram–Schmidt orthogo-
nalisation [27,26]. However, such approaches still rely on the availability of the input density function.

More recently, Oladyshkin and Nowak [18] propose a moment match method to deal with arbitrary distributions (termed 
aPC), and the approach is promising when one has incomplete input information, such as the situation when only sample 
locations are given. The idea in [18] is to set up the moment match equations, and then solve the unknown polynomial 
coefficients. The aPC offers a possibility to propagate only the given information without making assumptions. As showed 
by Oladyshkin and Nowak in [17] that only moments are propagated in all PC approaches, thus the aPC offers the most 
reliable results with limited input data. Although the aPC construction approach are straightforward to implement, it is 
well known that the coefficient matrix of the moment equation maybe ill conditioned when the polynomial order is large. 
Recently, a promising alternative way to calculate the aPC was proposed in [1], where the authors proposed an algorithm 
in which all the required quantities are calculated directly using only matrix operations performed on the Hankel matrix of 
moments. Then, a sparse grid approach based on the Smolyak’s algorithm was proposed in [1] where the collocation points 
are generated by the constructed bases, yet again by using matrix operations.

Unlike the traditional gPC methods, where one perform UQ computations directly based on well known polynomial bases 
choosing according to the Wiener–Askey formula, the aPC approach can normally be divided into the following two steps:

• Bases construction. One uses the input information (moments, samples locations, ect.) to construct the so called arbi-
trary polynomial bases (data-driven bases). Notice that this procedure is somehow model-independent and only input 
information is used.

• UQ computations. One adopts the data-driven bases to perform UQ computations. This procedure is obviously model-
dependent, and one could consider a stochastic Galerkin approach, or a sparse grid stochastic collocation approach as 
in [18] (where collocation points are generated using the arbitrary polynomial bases).

In this work, the only information we needed are some sample locations (The density of the input is unknown). We shall 
then adopt the aPC construction procedure in [1]. However, in the second (postprocessing) step, we propose a weighted 
least-squares approach to obtain the aPC expansion coefficients. This approach includes a sampling strategy and a least-
squares solver. We propose to sample from the equilibrium measure which is independent of the data driven bases (or the 
input information). Thus, this procedure can be done in prior (or in a off-line manner). Then we propose to solve a Christof-
fel function weighted least-squares problem, and in many cases of interests this approach is quasi-linearly stable – the 
number of samples (the number of PDE solvers) depends linearly (up to a logarithm factor) on the number of (data-driven) 
bases. We shall present theoretical motivations and several numerical tests to support our statements.

The rest of this paper is organized as follows. In Section 2, we introduce the traditional gPC approach. The construction 
procedure of data-driven polynomial bases is introduced in Section 3. In Section 4, we present a weighted least-squares 
approach to perform UQ computations. Numerical experiments are then shown in Section 5 to indicate the applicability and 
effectiveness of our approach. Finally, we give some concluding remarks in Section 6.

2. Generalized polynomial chaos

In parametric uncertainty quantification studies, the main goal is to trace the effect of the random inputs, here denoted 
by ξ = (ξ1, ξ2, . . . , ξd) through the model and to quantify their effect on the model output (prediction) f (ξ) : Rd → R. 
This is frequently done via the generalized polynomial chaos expansions. Concretely, we assume that the components of 
the random input ξ = (ξ1, ξ2, . . . , ξd) are mutually independent, and for each ξi in �i ⊂ R it admits a marginal probability 
density ρi . Then the joint density function for ξ yields ρ(ξ) = ∏d

i=1 ρi(ξi) : � → R
+ with � := ∏d

i=1 �i ⊂ R
d . The gPC 

approach seeks to construct a polynomial approximation of f (ξ) as follows:

f (ξ) ≈
∑

cα�α(ξ), (2.1)

α∈�
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where α = {α1, α2, . . . , αd} is a multi-index and � is a finite multi-index set. And �α is the multivariate orthogonal poly-
nomials that are orthogonal with respect to the density ρ(ξ), i.e.,∫

�

ρ(ξ)�α(ξ)�β(ξ)dξ = δα,β , α,β ∈ �, (2.2)

with δα,β the Kronecker delta function. Notice that the polynomials are defined as tensor–products of the univariate orthog-
onal polynomials in each direction, i.e.,

�α =
d∏

i=1

φi
αi

(ξi) with
∫
�i

φi
αk

(ξi)φ
i
αl

(ξi)ρi(ξi)dξi = δk,l.

In this work we focus on the total degree polynomial space that is defined as

P (�) = span

{
�α

∣∣ α ∈ �TD
k , with �TD

k :=
{
α
∣∣ |α|1 =

d∑
i=1

αi ≤ k

}}
. (2.3)

It is usually more convenient to use the single index instead of the multi-index, and to this end, one can place an order on 
the multi-indices, i.e.,{

α | α ∈ �TD
k

}
←→ {1, . . . , N} . (2.4)

Thus we have

{�α(ξ)}α∈�TD
k

⇔ {� j(ξ)}N=dim(P (�))
j=1 . (2.5)

Hereafter, for simplicity, we will use the single index { j = 1, 2, . . . , N}. Therefore, the gPC approximation (2.1) can be written 
as

f (ξ) ≈ f N(ξ) =
N∑

j=1

c j� j(ξ). (2.6)

The main purpose now is to estimate the coefficients {c j}N
j=1 in an efficient way. Many numerical techniques on how to 

obtain the polynomial coefficients in UQ problems have been developed in recent years, such as the intrusive stochastic 
Galerkin methods [22,12,29] and the non-intrusive collocation methods [5,16,31,28,32,11,8,9].

3. Data-driven polynomial chaos: a moment-based approach

The gPC methods discussed above assume exact knowledge of the involved probability density functions. However, the 
distribution information of the random input is very limited in many engineering applications, which is also known as 
epistatic uncertainty. To deal with these situations, more general types of polynomial chaos expansions have been investi-
gated in the past few years, see e.g. [27,26,6,20,18,1]. Here we shall review the idea of arbitrary polynomial chaos (aPC for 
short) approach developed in [18,1]. Such an approach can handle the situation when one only has sample locations (or 
only moments information is available for the random input).

3.1. Moment match approaches

In this section, we shall review the basic idea in [18,1]. We suppose that we are given moments information for the 
random input (while the associated distributions are unknown). The aim is to construct a set of polynomials bases {� j }
that they are orthonormal with respect to arbitrary distributions. This will be done by using the moment match methods. 
This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms 
(data sets) as long as their moments exist and the determinant of the moment matrix is strictly positive (see details below). 
We first present the idea in the one dimensional setting.

Suppose that the density function for a continuous random variable η ∈ I is ρ(η), then the k-th raw moment μk is 
defined by

μk =
∫
I

ηkρ(η)dη, k = 0,1, . . . . (3.1)

Similarly, if the random variable η is of discrete-type η ∈ Î then its k-th moment is defined as
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μk =
∑
η∈̂I

ηkρ(η), k = 0,1, . . . . (3.2)

Finally, if random variables is only presented as a set of M sample locations {η1, η2, . . . , ηM} (The setting in this work), the 
k-th moment μk can be calculated approximately by

μk = 1

M

M∑
m=1

ηk
m, k = 0,1, . . . . (3.3)

Suppose we know the moments of η up to the index 2K , then we can consider to construct a set of orthogonal polynomial 
bases {φk(η)}K

k=0 with the general form

φk(η) =
k∑

j=0

β jη
j, k = 0, ..., K .

By matching the moments information [18], we obtain⎡⎢⎢⎢⎢⎢⎣
μ0 μ1 · · · μk
μ1 μ2 · · · μk+1
...

...
...

...

μk−1 μk · · · μ2k−1
0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
β0
β1
...

βk−1
βk

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
0
0
...

0
1

⎤⎥⎥⎥⎥⎥⎦ . (3.4)

Thus one can obtain the polynomial coefficients by inverting the above Vandermonde matrix. However, this matrix may 
become very ill-conditioned when k becomes large. An alternative approach by considering matrix operations on the Hankel 
matrix of moments was proposed in [1]. To introduce the idea, we first define the Hankel matrix of moments as

H =

⎡⎢⎢⎢⎣
μ0 μ1 · · · μk
μ1 μ2 · · · μk+1
...

...
...

...

μk μk+1 · · · μ2k

⎤⎥⎥⎥⎦ . (3.5)

If the moments are given by samples (3.3), we require that the set of M samples is determinate in the Hamburger sense, 
meaning that all the corresponding quadratic forms are strictly positive, that is det(H) > 0. Given the above Hankel matrix 
of moments, we first perform the Cholesky decomposition to obtain H = R�R with

R =

⎡⎢⎢⎢⎣
r11 r12 · · · r1,k+1

r22 · · · r2,k+1
. . .

...

rk+1,k+1

⎤⎥⎥⎥⎦ . (3.6)

Then, the Mysovskih theorem [13] states that the entries of the inverse matrix R−1 of R can form an orthogonal system of 
polynomials. Moreover, the following three-term recurrence holds [1]:

ηφ j−1(η) = b j−1φ j−2(η) + a jφ j−1(η) + b jφ j(η), j = 1, ...k. (3.7)

Here a j and b j can be computed by the components of matrix R:

a j = r j, j+1

r j, j
− r j−1, j

r j−1, j−1
, b j = r j+1, j+1

r j, j
, (3.8)

where r0,0 = 1 and r0,1 = 0.

Remark 3.1. In the above discussions, we have only presented the one dimensional case. For high dimensional cases, one can 
simply perform the similar procedure as above, and then obtain the multi-variate bases by using the tensor–product rule. 
Given such data-driven (or moment driven) polynomial bases, one can then perform UQ computations for the underline 
models. For example, a sparse grid method was proposed in [1], where the stochastic collocation points are generated again 
by using matrix operations based on the data-driven bases discussed above.
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3.2. Some theoretical discussions

We have reviewed the moment match approach for constructing data-driven bases for UQ studies, by requiring that the 
moment problem is uniquely solvable. Following closely [6], we now provide with some mild conditions that can guarantee 
such a requirement. Our basic assumptions are as follows:

• Assumption 1: we assume that each basic random variable η possesses finite moments of all orders.
• Assumption 2: the associated distribution functions Fη(x) := P (η ≤ x) of the basic random variables are continuous.

Notice that such assumptions are just for theoretical analysis, the approach above can still be used even if the probabil-
ity density functions are of discrete type as long as their moments exist and the determinant of the moment matrix is 
strictly positive. In other words, the following theorem only works when the input random variables satisfy the above two 
assumptions. For more general settings, the relevant theoretical foundation is still open.

Theorem 3.1 ([6]). If one of the following conditions is valid, then the moment problem is uniquely solvable and therefore the set of 
polynomials (that constructed by the moment match approach) in the random variable η is dense in the space L2(�, σ(η), P ), where 
� is the abstract set of elementary events, σ(η) is a σ -algebra of subsets of � and P is a probability measure on σ(η).

1. The distribution Fη has compact support, i.e., there exists a compact interval [a, b], a, b ∈R, such that P (η ∈ [a, b]) = 1.
2. The moment sequence {μk}k∈N0 of the distribution satisfies

lim
k→∞

inf
2k
√

μ2k

2k
< ∞.

3. The random variable is exponential integral, i.e., there holds

〈exp(a|η|) =
∫
R

exp a|x|Fη(dx)〉 < ∞,

for a strictly positive number a. An equivalent condition is the existence of a finite moment-generating function in a neighbourhood 
of the origin.

4. (Carleman’s condition) The moment sequence {μk}k∈N0 of the distribution satisfies

∞∑
k=0

1
2k
√

μ2k
= ∞.

5. (Lin’s condition) If the distribution has a symmetric, differentiable and strictly positive density fη and for a real number x0 > 0
there holds

∞∫
−∞

− log fη(x)

1 + x2
dx = ∞ and

−xf ′
η(x)

fη(x)
↗ ∞(x → ∞, x ≥ x0)

The theorem above states that the orthogonal polynomials form a set of complete bases in L2(�, σ(η), P ) and thus one 
can expect a good approximation property using such bases. Notice that in practice, we just assume that there exists such a 
measure, yet it could be unknown. Also, for the random variables with discrete and mixed distributions, similar results are 
given in [7] to show that the determinacy of discrete or mixed distributions is also sufficient for the density of polynomials 
in L2(�, σ(η), P ) in that sense.

4. Weighted least-squares for postprocessing

As mentioned above, once we have the data-driven bases, one can perform UQ studies based on such bases. A sparse grid 
method was proposed in [1], where the collocation points are generated based on the data-driven bases. In this section, we 
shall propose to use the least-squares approach to do postprocessing computations. Our approach admits many advantages. 
First of all, we simply sample with a known measure (the equilibrium measure) to generate collocation points, and the 
sampling strategy is very cheap and no matrix operations are needed compared to the spares grid approach in [1]. Secondly, 
our sampling strategy is independent of the data-driven bases, and thus this procedure can be done in advance. Finally, our 
least-squares solver is linearly stable in many cases of interests. Details of our approach are presented in the following 
subsections.
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4.1. Christoffel function weighted least-squares

Now, we introduce the weighted least-squares procedure for computing the expansion coefficients {c j}N
j=1 in the follow-

ing expansion

f (ξ) ≈
N∑

j=1

c j� j(ξ),

with {� j(ξ)}N
j=1 being the data-driven orthogonal bases constructed in Section 3, and we denote the associated polynomial 

space by

P N := span
{
� j(ξ), 1 ≤ j ≤ N

}
.

We recall that the polynomial space we considered in this work is of total degree type (2.3), and the associated maximum 
polynomial order is denoted by k. The weighted least-squares approach suggests to compute the coefficients via sample 
evaluations. To this end, suppose we have some sample evaluations { f (zm)} at some properly chosen samples {zm}M

m=1. 
Then, we seek the following weighted discrete least-square approximation f N ∈ P N by requiring

f N := P N
m f = argmin

p∈P N

1

M

M∑
m=1

wm

(
p(zm) − f (zm)

)2
. (4.1)

Here {wm}M
m=1 are properly designed weights. An equivalent algebraic formula for the above problem yields:

c = argmin
c∈RN

∥∥∥W
1
2 Ac − W

1
2 f
∥∥∥2

2
, (4.2)

where

f = ( f (z1
)
, ..., f (zm)), A = [� j(zm)

] ∈ R
M×N , j = 1, ..., N, m = 1, ..., M,

and W = diag(w1, ..., wM) is the preconditioning matrix. Notice that in the above approach, the sampling strategy and the 
pre-conditioner are two key points. Here we shall adopt the strategy in [14]: Christoffel function weighted least-squares 
approach. To this end, we define the associated (scaled) Christoffel-type function of P N by

K(ξ) = N∑N
j=1 �2

j (ξ)
, (4.3)

The components of the preconditioning matrix W in our weighted least-squares are evaluations of the (scaled) Christoffel 
function. i.e.,

wm = K(zm), m = 1, ..., M,

with {zm}M
m=1 chosen from the probability density ρ̂ of an equilibrium measure, which depends on the input density ρ . 

When ξ is a random vector with unbounded state space, then ρ̂ also depends on k, the maximum polynomial degree of the 
total degree polynomial space P N . In this case, we denote the sampling measure by ρ̂k . More detailed discussions for the 
sampling strategies will be given in the following Sections and we shall show they are straightforward to implement.

4.1.1. Sampling measure for bounded domain
We first consider the bounded case, where we assume (without loss of generality) that the computational domain for ξ

is [−1, 1]d . In this case, our sampling measure is always the tensor–product Chebyshev measure, i.e.,

ρ̂(ξ) ∼ 1

πd
∏d

i=1

√
1 − ξ2

i

, (4.4)

regardless of the underlying measure (if exists, yet unknown) of the random vector ξ . In other words, the only information 
we require is that the random variable is located in a bounded domain.

Notice that the equilibrium measure for a bounded domain with any admissible input density is the Chebyshev measure, 
or in other words, the Chebyshev measure is universal in the bounded setting. Moreover, sampling with Chebyshev measure 
is straightforward: one can simply generate uniform distributed samples {um}M

m=1 and then generate {zm}M
m=1 by requiring

zm = cos(πum), m = 1, ..., M.
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4.1.2. Sampling measure for unbounded domain
We now consider the unbounded case. We remark that very few results are known for the equilibrium measure in 

unbounded domains. Thus, the results in what follows are our conjectures for which the effectiveness have been well 
studied numerically in [14].

The domain Rd with Gaussian density. We consider the domain Rd with Gaussian-type input N(σ , μ) (yet the param-
eters σ , μ can be arbitrary/unknown). As in our setting, we assume that we only have some sample locations, we shall 
first compute an approximated pair (μ̂, ̂σ ) of the input. Then, a simple linear transformation ̂ξ = (ξ − μ̂)/σ̂ can be used to 
make sure that the input has distribution N(1, 0) (approximated). A conjecture result [14,11] for the equilibrium measure 
associated with N(1, 0) is given by

ρ̂k(ξ) = C
(

2 − ‖ξ‖2
)d/2

, (4.5)

with C a normalization constant. Furthermore, we shall expand the associated samples (generated by the above measure) 
by the square root of the maximum polynomial degree k. The following is a concrete way to sample from this expanded 
density:

1. Compute k, the maximum polynomial degree of P N .
2. Generate a vector y = (y1, . . . , yd) of d independent normally distributed random variables.
3. Draw a scalar sample ν from the Beta distribution on [0, 1], with distribution parameters α = d/2 and β = d/2 + 1.
4. Finally, we set

z = y

‖y‖2
(2kν)

1
2 .

The above procedure generates samples on the Euclidean ball of radius 
√

2k in Rd . We emphasize that our methodology 
samples from a density that is only a conjecture for the correct equilibrium measure. We also remark that we have intro-
duced a density error to this approach, as the mean and variance are computed approximately. How to quantify and control 
such errors will be our future projects.

The domain Rd+ with exponential density. Let ξ take values on Rd+ with associated exponential-type probability density 
(again the associated parameters can be arbitrary). Again, we shall compute an approximated mean value so that we can 
work with the standard exponential-type probability density. In this case we sample from the following density function

ρ̂k(ξ) = C

√√√√√(
4 −∑d

i=1 ξi

)d

∏d
i=1 ξi

(4.6)

As we conjectured in [14,11], this is the equilibrium measure associated to this choice of ρ . We shall also expand the 
samples by the maximum polynomial degree k. The following is a concrete way to sample from this expanded density:

1. Compute k, the maximum polynomial degree of the polynomial space.

2. Generate a (d + 1)-dimensional Dirichlet random vector y with parameters 
(

1
2 , 1

2 , . . . , 1
2 , d

2 + 1
)

.

3. Truncate the last ((d + 1)’th) entry of y.
4. Set z = 4ky.

Now we are ready to summarize the procedures of our Christoffel function weighted least-squares:

• Sample with respect to (4.4) for bounded domain, (4.5) or (4.6) for unbounded domain, respectively.
• Evaluate the function f (ξ) (the underlying model) at the selected samples {zm}M

m=1.
• Form M × N Vandermonde-like matrix A with entries �n(zm).
• Form the diagonal preconditioning matrix W using evaluations of the (scaled) Christoffel function.
• Solve the preconditioned least-squares problem (4.2) to approximate the expansion coefficients {c j}N

j=1.

Remark 4.1. Notice that in our weighted least-squares approach, the main feature is that the sampling strategy is indepen-
dent of the data-driven bases, thus this procedure and the associated model simulations can be done in prior.

Remark 4.2. In the above, we have only discussed two most commonly used densities in unbounded domains, i.e., the 
Gaussian density and the exponential density. For more general unbounded densities, less is known for the equilibrium 
measure (even in the conjecture sense). A possible way to handle such situations is to truncate the domain into a finite one, 
and then perform the Chebyshev sampling in the finite domain. However, this is non-trivial due to the truncated error and 
we left such cases for future studies.
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4.2. Theoretical motivations

In this section, we shall provide with some motivations for our Christoffel weighted least-squares. We shall only show 
the motivation in the bounded domain setting, and one can refer to [14] for the motivation of unbounded domain cases. 
We first present the following fundamental result for the least-squares stability [3]:

Theorem 4.1. For a d-dimensional function f (ξ), consider its approximation in a finite orthogonal bases space P N = span{� j(ξ), 1 ≤
j ≤ N} with the associated orthogonal density ρ(ξ). Suppose the samples {zm}M

m=1 are generated with respect to ρ(ξ). Consider the 
following least-squares approach

c = argmin
c∈RN

‖Ac − f‖2
2 , (4.7)

Then, the above algorithm is stable in the following sense

Pr
{
‖A − I‖ ≥ 1

2

}
≤ 2M−r

provided that

κ(N) := max
ξ

N∑
j=1

�2
j (ξ) ≤ δ

M

log M
with δ = 1 − log 2

2 − 2r
.

Here I is the identity matrix.

The above theorem states that to make the algorithm stable, it is essential to control the quantity κ(N) as one requires 
approximately M � κ(N) (up to a logarithmic factor). However for many cases, the quantities κ(N) behaves super-linear 
in N leading to too much demanding conditions on the sampling size M to guarantee stability. For example, the most 
commonly used Legendre polynomials gives κ(N) ∼ N2 meaning that one requires M ≥ C N2, which is not satisfactory.

The above observations motivate us to use a weighted version of least-squares. In our approach, by introducing the 
pre-conditioner W, we are in fact working with a scaled bases set (see (4.3) for the definition of K(ξ))

P̂ N = span

{
�̂ j = � j√

K(ξ)

∣∣ 1 ≤ j ≤ N

}
. (4.8)

It is easy to show that for the new bases �̂ j it holds

κ̂(N) := max
ξ

N∑
j=1

�̂2
j (ξ) ≡ N. (4.9)

This means that we have the optimal control of the associated quantity κ̂ (N).
However, to show the optimal stability by Theorem 4.1 (which use samples according to the orthogonal measure), we 

have to sample with a transformed measure

ρ̃(ξ) ∼ K (ξ)ρ(ξ) = Nρ(ξ)∑N
j=1 �2

j (ξ)
, (4.10)

as our new bases are orthogonal according to ρ̃(ξ). Notice that ρ̃(ξ) depends on the polynomial space, and furthermore, 
sampling with ρ̃(ξ) seems to be non-trivial. Nevertheless, we learn from potential theory in the bounded setting that [14]

ρ̃(ξ) → ρ̂(ξ), when N → ∞. (4.11)

The above result motivated us to sample with ρ̂(ξ) – the equilibrium measure. In this way, we can get a stable approach in 
the asymptotical sense (N → ∞). And furthermore, our sample strategy now is independent of the polynomial space, and 
this is advantage for adaptive computations where the polynomial spaces are constructed adaptively. In the bounded setting, 
for any admissible input density, the equilibrium measure is just the Chebyshev density, and this is the exact motivation for 
us to introduce the Christoffel weighted least-squares.
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Table 1
Test examples for the two-dimensional case.

Type Parametric distributions

1 ξ1 ∼ Bino(20,1/2), ξ2 ∼ U [−0.6,0.6]
2 ξ1 ∼ U [−0.8,0.8], ξ2 ∼ U [−1,1]
3 ξ1 ∼ Bino(20,1/2), ξ2 ∼ Pois(10)

4 ξ1 ∼ U [−0.6,0.6], ξ2 ∼ N(0.1,1.2)

5. Numerical experiments

In this section, we present several numerical examples to show the effectiveness of our Christoffel weighted least-squares 
for data-driven polynomial approximations. We are interested primarily in investigating how the sampling rates between M
and N affect stability and accuracy. Due to the probabilistic nature of the random sampling method, all reported results are 
averaged over 100 independent tests to reduce the statistical oscillations, and moreover, we shall also present the variance 
information (the error bar). In all our figures and numerical tests, we shall show the performance with a linear and a 
log-linear dependence between M and N , namely, M = C N and M = C N log N . The following stochastic input distributions 
will be considered:

• Discrete Binomial distribution: Bino(n, p) in [−1, 1]:

f (k;n, p) = P(ξ = 2k

n
− 1) = n!

k!(n − k)! pk(1 − p)n−k, k = 0,1, . . . ,n;

• Discrete Poisson distribution: Pois(λ) in [−1, 1]:

f (k|λ) = λk

k! exp(−λ);
• Uniform distribution: U [a, b]:

f (x) =
{

1
b−a , x ∈ [a,b]
0, otherwise.

• Exponential distribution Exp(μ) in (0, ∞) with parameters μ:

f (x|μ) = 1

μ
exp

(− x

μ

)
.

• Normal distribution N(μ, σ) in (−∞, ∞) with parameters μ, σ :

f (x|μ,σ ) = 1√
2πσ

exp
(− (x − μ)2

2σ 2

)
.

5.1. Stability tests

We first test the condition number of the design matrix

Cond(̂A) = λmax(̂A)

λmin (̂A)
with Â = W

1
2 A.

The main focus is how this quantity is affected by the sampling rate M/N . Notice that this quantity measures the sensitivity 
of the solution of a system of linear equations to errors in the data, that is, it directly reflects the stability of the method. 
In all our tests we shall report the mean condition number by repeating the test 100 times.

We first consider the two dimensional tests. Four different test cases are given in Table 1, where the uniform distribution 
with different parameters for each dimension and mixture distributions (including binomial, Poisson distribution and nor-
mal) are taken into account. Notice that the fourth test case includes both bounded and unbounded distributions, and thus 
in our test, we shall sample with different equilibrium measures in each dimension. Here we use the associated moments di-
rectly (so that the numerical error for computing the moments with samples can be neglected) to construct the data-driven 
bases (by the moment match method). Then, we sample with the equilibrium measure and construct the associated design 
matrix. We have presented the condition numbers of the design matrix for the four test cases in Fig. 1. Different sampling 
rates are reported, i.e., M = 1.5N , M = 2N , M = N log N , and M = 1.5N log N . We notice that the log-linear sampling rate 
produces more stable results – the condition number is bounded from above for the first three test cases. However, for the 
fourth test case, we still observed a slightly growing trend, and this is due to the involved unbounded random variable.
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Fig. 1. Condition number with respect to the polynomial degree in the 2-dimensional case (Table 1) with different sampling rates. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

We next consider a synthetic example for an empirical data distribution. The simulation data set is generated as the 
superposition of uniform, normal and log-normal distributions (with sample size M = 10000), see Fig. 2 (Left). Here we 
construct the data-driven polynomial bases based on the moments that are computed by those samples. The corresponding 
condition number for this test case is shown in Fig. 2 (Right). Again, we observe that the log-linear sampling rate provides 
more stable result.

Finally, we test the stability for the five dimensional case. The input random parameters used are listed in Table 2, and 
the corresponding condition numbers of the different test cases are reported in Fig. 3. For all test cases, the design matrix 
admits more stable property with the log-linear sampling rate. However, for cases that involve unbounded parameters, we 
can still observe a slightly growing trend.

5.2. Accuracy tests

We now test the approximation accuracy of the data-driven bases with Christoffel least-squares post-processing. We shall 
use the discrete �2-error to measure the performance of the approximation, namely, for a given function f (ξ) and a given 
set of random samples {zl}L

l=1 in the state space, we evaluate the numerical error via

ε =
(

1

L

L∑
l=1

| f N(zl) − f (zl)|2
)1/2

,

where f N is the lease-square solution using the data-driven bases.
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Fig. 2. Left: Data distribution showed by histogram. Right: Condition number with respect to the polynomial degree in the 2-dimensional polynomial space.

Table 2
Test examples for the five dimensional case.

Type Parametric distributions

1 ξi ∼ U [ai ,bi ], a = [−0.1,−0.5,−0.8,−1,−1.2], b = −a.
2 ξi ∼ N(μi , σi), μ = [0,01,−0.1,0.2,−0.2], σ = [1,1.1,1.2,1,0.9].
3 ξ1,2 ∼ U [−0.6,0.6], ξ3,4 ∼ Bino(20,1/2), ξ5 ∼ Pois(10).
4 ξ1, ξ2 ∼ U [−1,1], ξ3 ∼ N(0,1), ξ4 ∼ N(0.1,1.5), ξ5 ∼ N(0.2,2).

5.2.1. Function approximations
We first consider the following different test functions:

f1(ξ) = exp

(
d∑

k=1

ξk

)
, f2(ξ) =

d∑
k=1

0.3 + sin

(
16

15
(ξk − 0.7)

)
+ sin2

(
16

15
(ξk − 0.7)

)

f3(ξ) = exp

(
−

d∑
k=1

c2
k (ξk − 0.01)2

)
, ck = exp (−6k/d) , f4(ξ) = sin

(
d∑

k=1

ξk

)
.

The distribution information for the above parameters coincides with Table 1. The convergence rates of our approach for 
the two-dimensional case are presented in Fig. 4. It is clear shown that the Christoffel least-squares provide very stable and 
accurate approximation results. In Fig. 5, we have also tested the five dimensional cases with parameters defined in Table 2
(type 1 and 4), for the test functions f1(ξ) and f3(ξ), respectively. Again, our approach admits very stable approximation 
results.

Finally, we consider tests with histograms data for both the two and five dimensional cases. We consider two sets of 
data generated as superposition of uniform, normal and log-normal distributions. Results of these approximations are given 
in Figs. 6 and 7.

5.2.2. Resistor network
We now consider the electrical resistor network given in Fig. 8 ([14]). The network is comprised of d = 2p resistances Ri

of uncertain Ohmage and the network is driven by a voltage source providing a known potential V 0 = 1. We are interested 
in determining the voltage at V , which depends on the d = 2p resistances. We assume that the resistances as independent 
random variables. To be concrete, we consider the two dimensional parameters uniformly distributed in the interval ξi ∈
[10, 100] and the four dimensional parameters with different exponential distribution (ξ1 ∼ Exp(0.9), ξ2 ∼ Exp(1.1), ξ3 ∼
Exp(0.8), ξ4 ∼ Exp(1.0)). We first use the moments (that are computed with 1000 samples) information to construct a 
data-driven bases set and then construct the approximation via the weighted least-squares approximation. The accuracy as 
a function of polynomial order is displayed in Fig. 9. Similar as in the previous examples, the Christoffel least-squares can 
provide very stable and accurate approximation results.



140 L. Guo et al. / Journal of Computational Physics 381 (2019) 129–145
Fig. 3. Condition number with respect to the polynomial degree for the five-dimensional tests in Table 2.

5.2.3. PDEs with random input
We finally consider the following stochastic elliptic PDE{

−∇ · (a(y,ω)∇u(y,ω)) = f (y,ω) in D × �,

u(y,ω) = 0 on ∂D × �
(5.1)

with spatial domain D = [0, 1]2. We set a deterministic load f (y, ω) = cos(y1) sin(y2) for these numerical examples. The 
random diffusion coefficient a(y, ω) is chosen as in [2]:

log(a(y,ω) − 0.5) = 1 + ξ1(ω)
(√

π L

2

)1/2 +
d∑

i=2

ζi gi(y)ξi(ω),

where

ζi := (
√

π L)1/2 exp
(−(� i

2 �π L)2

8

)
, for i > 1

and

gi(y) :=

⎧⎪⎪⎨⎪⎪⎩
sin
(−(� i

2 �π y1
L p

)
, i even,

cos
(−(� i

2 �π y1
L

)
, i odd.
p
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Fig. 4. Approximation error against polynomial degree for the two dimensional case.

Fig. 5. Approximation error against polynomial degree for the five dimensional case.
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Fig. 6. Approximation error against polynomial degree for the two dimensional case.

Here {ξi}d
i=1 are independent random variables. For y1 ∈ [0, 1], let Lc = 1/12 be a desired physical correlation length for 

a(y, ω). Then the parameter Lp and L are Lp = max{1, 2Lc} and L = Lc
Lp

, respectively. In our numerical test, for each 
sample, the deterministic elliptic equation are solved by a standard finite element method with a fine mesh. The quan-
tities of interests is the solution u(y) = u(0.5, 0.5; ξ). We first set the parametric density as ξ1, ξ2 ∼ Bino(20, 0.5) and 
ξ1 ∼ N(0, 1), ξ2 ∼ N(0.1, 1.2) respectively. Then we test the ten dimensional case by setting ξi ∼ U [ai, bi], i = 1, ..., 10, 
a = [−0.1, −0.2, −0.5, −0.6, −0.8, −1, −1.2, −1.4, −1.5, −2], b = −a. We also consider the ten dimensional case with his-
tograms data. Approximation results are shown in Fig. 10 and Fig. 11 with different sampling rates for both cases. Good 
approximation results can be observed.

6. Conclusions

We have combined the idea of data-driven polynomial chaos expansions with the weighted least-square approach to 
solve UQ problems. We adopt the bases construction procedure by following [1] and then propose to use the weighted 
least-squares approach to solve UQ problems. Our sampling strategy is independent of the random input. More precisely, 
we propose to sampling with the equilibrium measure, and this measure is also independent of the data-driven bases. 
Thus, the procedure can be done in prior (or in a off-line manner). Moreover, the proposed Christoffel function weighted 
least-squares problem is linearly stable in many cases of interests – the required number of PDE solvers depends linearly 
(up to a logarithmic factor) on the number of bases.

There are, however, many unsolved problems related to this topic:

• Theoretical foundation. As discussed in Section 3.2. The assumption is that the probability density functions are con-
tinuous. However, this approach also work well for densities of discrete type as long as their moments exist and the 
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Fig. 7. Approximation error against polynomial degree for the five dimensional case.

Fig. 8. Resistor network comprised of d = 2p resistances {Ri}d
i=1 of uncertain ohmage and the network is driven by a voltage source providing a known 

potential V 0.

determinant of the moment matrix is strictly positive (see more numerical examples in [18]). Thus, the relevant theorem 
for these cases is still open.

• Density error. We have assumed that only sample locations are given, and all the moments are computed by these finite 
sample locations, and thus this definitely introduces density error. How to quantify (theoretically) and control this error 
is of great importance. This is also related to the density sensitivity of the underlying model.

• Unbounded domains. We have provided two simple cases for unbounded domain setting. However, unlike the bounded 
domain cases, for unbounded cases we need to assume that the type of the density is known (while the associated 
parameters can be unknown). This is obviously unsatisfactory. Another possible approach to deal with such situations 
is to truncate the domain into a bounded one (potentially large), and perform the computation in the bounded domain. 
However, this again introduce the truncation error.
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Fig. 9. Approximation error against polynomial degree k. Left: The two-dimensional isotropic uniform distribution. Right: The four-dimensional anisotropic 
exponential random distribution.

Fig. 10. Approximation error against polynomial degree of 2-d parametric PDE.

Fig. 11. Approximation error against polynomial degree for the ten dimensional parametric PDE test. Left: ξi ∼ U [ai , bi ], i = 1, ..., 10, where a =
[−0.1, −0.2, −0.5, −0.6, −0.8, −1, −1.2, −1.4, −1.5, −2], b = −a; Right: Histograms data generated as superposition of uniform, normal and log-normal 
distributions.
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We finally close this work by remarking that our strategy can also be used in the compressed sampling setting (or, in 
the �1 approach) [4,11,10] and we shall report this in our future studies.
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