Journal Pre-proof
. Journal of
Computational

Robust modeling of hysteretic capillary pressure and relative permeability for two phase PIWSiI}S
flow in porous media

Hyun C. Yoon, Peng Zhou, Jihoon Kim

PIL: S0021-9991(19)30620-5

DOI: https://doi.org/10.1016/j.jcp.2019.108915
Reference: YJCPH 108915

To appear in: Journal of Computational Physics

Received date: 5 June 2018
Revised date: 15 August 2019
Accepted date: 26 August 2019

Please cite this article as: H.C. Yoon et al., Robust modeling of hysteretic capillary pressure and relative permeability for two phase flow in
porous media, J. Comput. Phys. (2019), 108915, doi: https://doi.org/10.1016/j.jcp.2019.108915.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2019 Published by Elsevier.


https://doi.org/10.1016/j.jcp.2019.108915
https://doi.org/10.1016/j.jcp.2019.108915

Highlights

Numerical simulation of hysteretic capillary pressure and relative permeability.
Application of plasticity theory to hysteresis in reservoir simulation.
Mathematical stability analysis of the proposed numerical approach.
Numerical investigation for cyclic imbibition-drainage processes.
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Abstract

We investigate a robust and systematic modeling approach for hysteretic capillary pressure and relative perme-
ability in porous media by using the theory of plasticity, considering that plasticity and hysteresis exhibit both
irreversible physical processes. Focusing on the immiscible two-phase flow, we investigate stability analysis
and find that the method based on the plasticity can yield well posedness (contractivity) and algorithmic sta-
bility (B-stability). This modeling approach can track and compute history-dependent flow properties such as
residual saturation. In numerical simulation, we apply the algorithm of the 1D isotropic/kinematic hardening
plasticity to reservoir simulation of gas-water flow. For weak and strong capillarity, the modeling yields strong
numerical stability even for several drainage-imbibition processes. We also identify differences between with
and without hysteresis, showing the importance of hysteretic capillary pressure and relative permeability. Thus,
the hysteresis modeling based on the theory of plasticity is promising for robust numerical simulation of strong

hysteresis.

Keywords: Hysteresis, Capillary pressure, Relative permeability, Plasticity, Multiphase flow

1. Introduction

Hysteresis in capillary pressure and relative permeability is one of the important physical phenomena in
reservoir engineering such as geological CO4 sequestration, water-alternating gas injection, shale gas develop-
ment by hydraulic fracturing [1, 2, 3, 4, 5, 6, 7]. Cyclic imbibition and drainage processes in multiple fluid
phases such as oil, water, and gas can cause irreversible behavior, which shows history-dependent capillary

pressure and relative permeability [8, 9].
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Significant effort has been made to model the hysteretic capillary pressure and relative permeability. For ex-
ample, at the early stages, Killough [10] proposed a numerical algorithm for the modeling of history-dependent
capillary pressure and relative permeability. Juanes et al. [6] investigated the impact of hysteresis in permeabil-
ity on COs sequestration, and showed the importance of hysteresis modeling. Doughty [11] studied hysteretic
relative permeability and capillary pressure with interpolation between main drainage and imbibition curves.
Cihan et al. [7] proposed a modeling approach based on distribution of pore-size and connectivity of void space
in pore-scale. In soil mechanics, Nuth and Laloui [12] reviewed the modeling of hysteretic capillary pressure
within the frame of elastoplasticity in a two phase system within a deformable soil, indicating the analogy be-
tween hysteretic capillary pressure and elastoplasticity (i.e. irreversible physics). Pedroso and Williams [13]
proposed a different modeling method for capillary hysteresis in the two phase system during the drainage-
imbibition processes. In the previous studies of reservoir engineering, researchers have mentioned difficulty
in numerical modeling the cyclic imbibition and drainage processes, for example, in CO5 sequestration, em-
phasizing importance of the rigorous hysteresis modeling (e.g., Doughty [11]). Compared to other studies, the
approach used by Nuth and Laloui [12] is fundamentally based on the plasticity theory, which has been well
developed in solid mechanics. Total strain is decomposed into elastic (recoverable) strain and plastic (irrecov-
erable) strain. Hysteresis also causes reducible and residual (irreducible) saturations. From the similarity, stress
and plastic strain correspond to capillary pressures and residual saturation, respectively. Numerically stable
return mapping algorithms for modeling plasticity have been proposed and analyzed mathematically and nu-
merically over decades (e.g., Simo and Hughes [14]). The modeling approach yields well-posed mathematical
problems for dissipative physical problems, and the return mapping algorithms inherit well posedness algorith-
mically (i.e., numerical stability). Thus, we can enjoy those methods in modeling hysteresis without significant
modification. Still, only few studies have been reported for the modeling of hysteretic capillary pressure and
relative permeability for reservoir simulation.

In this study we investigate the modeling of hysteretic capillary pressure and relative permeability for two
fluid phases in reservoir simulation. We first construct the equations of the hysteresis modeling, which define
the elastic domain, hardening laws, and the plastic flow rule. Then, for the given equations, we use a return

mapping algorithm to calculate all the plastic variables in the discretized time domain in this study. We employ



the 1D isotropic and kinematic hardening, and the associative flow rule. Just like elastoplasticity, we define a
specific yield function, flow rule, and hardening law, along with the conventional Kuhn-Tucker and consistency
conditions. Total saturation is decomposed into elastic and plastic (residual) saturations additively. We then
perform in-depth theoretical analysis for the formulation motivated by the plasticity theory. Specifically, we
analyze both well posedness (contractivity) and numerical stability (B-stability) with the generalized midpoint
rule for ¢, ., where « is the parameter of time discretization. For numerical simulation, we take a model of
hysteretic capillary pressure model used in Nuth and Laloui [12], validated with the experimental results. We
present numerical examples with several different cases, and find that the proposed numerical approach is robust

and stable even for cyclic imbibition and drainage processes.

2. Mathematical Model

The governing equation for multiphase flow is derived by mass balance as [15]

my +Divf; =qs, )]

where Div(-) is the divergence operator, and the subscript .J indicates the fluid phase. m s is the fluid mass of
phase J, and (-) means the time derivative (i.e. (-) = dm.y /dt).
f 7 and ¢ are mass flow and source terms with a boundary surface I" on the domain €2, respectively. The

mass flow term can be re-written by Darcy’s law, as

k
fr=pjv;, wv;= _M_j (Gradp; —psg), (2)

where py, v, k7, 1y, ps, and g are density, volumetric fluid velocity, rank-2 positive-definite effective perme-
ability tensor, viscosity, pressure of phase .J, and, the gravity vector, respectively. k; = kk, ;, where k and k,.;
are the absolute permeability and the relative permeability of phase .J, respectively.

The fluid mass of phase .J is written by
my = $S5py, 3)
where ¢ is the reservoir porosity, and S is total saturation of phase J. Then Equation 3 provides

1

5mJ_ 1 +
L= e 90Sh, g

TRbTr = 6Shes, )



where §(+) implies variation of a physical quantity. ¢; and S are the fluid compressibility and total saturation
of the phase J, respectively.

We specify initial and boundary conditions for mathematical completeness. For fluid flow we consider the
boundary conditions p; = p; (prescribed pressure) on I',,, and v ; - n = ¥y (prescribed volumetric flux) on I,
where n is the outward unit normal to the boundary, 9€2. For well-posedness of the problem, we assume that
Iynl, =0,andI', UT, = 9. The initial condition of the flow problem is ps|;—o = pg and Sj|i—o = Sf}.

The initial pressure and saturation fields should satisfy thermodynamic and hydrodynamic equilibria.

3. Capillary Hysteresis and Plasticity

We can find fundamental similarity between capillary hysteresis and plasticity in geoemechanics [12]. The-
ory of plasticity relates stress to elastic (recoverable) strain and plastic (irrecoverable) strain. For example, the
left of Figure 1 shows an elastoplastic volumetric stress-strain relation under loading (From Points A to C)and
unloading (From Points C to D) processes. After the yielding point (Point B), plastic strain occurs during load-
ing (From Points B to C) and does not disappear even after unloading of stress. We can find the similarity in
capillary hysteresis, as shown in the right of Figure 1. During the drainage process (from Points P to R), the
irreversible process occurs from Points Q to R, causing residual (irrecoverable/irreducible) saturation, while the
process from Point P to Q is reversible. Then, during the imbibition process from Points R to S, we identify
residual saturation. It is worth noting that plastic strain or residual saturation can only be observed during the
unloading or imbibition process, respectively.

Return-mapping is a numerical approach for modeling plasticity. Specifically, for an example of the gas-
water system, the theory of plasticity [14] allows us to have the following equations for modeling capillary

hysteresis.

Definition of capillary pressure: p. = pg — Pw, (@)
Additive decomposition of total water saturation: S? = S¢ + SP (6)
Elastic capillary pressure-elastic water saturation relationship: p. = —Eg 5"5,, @)

Yield condition: fy = fy (—p., k) <0, ®)
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Figure 1: Similarity between plasticity in geomechanics (a) and capillary hysteresis (b). 07, 0}, e, and ¢, ; are effec-
tive mean stress, effective yield stress, total and plastic volumetric strains, respectively. p., S.,, and S;. ; are capillary
pressure, water saturation, and residual (irreducible) gas saturation. ¢, corresponds to S.. ,. The elastic domain of

o, varies due to hardening.

Relation between hardening variables: & = —H, hé , )
. 0 . 0
Plastic flow rule from associative plasticity: S¥, = Wi,f = Wﬂ, (10)
Ope ok
~vfy = 0 (Kuhn-Tucker condition), y fy = 0 (consistency condition), (11)

where S€¢, SP, fy, k, £,y are elastic and plastic saturation, yield function, pressure-like and saturation like hard-
ening variables, and plasticity multiplier, respectively. E and Hj, are the positive elasticity and hardening
moduli, respectively. fy is defined as a convex function in the plasticity theory [14]. Then, from Equation 10,

we have

D, = 005’{1’, + /@é = (0¢y K) - (Si,f) >0, (12)

where 0. = —p.. The left figure of Figure 2 shows geometrical interpretation of Equation 12.

Furthermore, the associate flow rule based on the maximum plastic dissipation also provides
(e —0)SP 4+ (n—kK)E<O0 forV(me,n) € B, FE:= {(0c,K) € RX R, 00,k € L*}, (13)

where E is the extended domain of elasticity for the capillary modeling. The geometrical interpretation of
Equation 13 is also shown in the right Figure 2.

Note that the additive decomposition of total saturation in Equation 6 implies that we employ the plasticity
modeling based on infinitesimal transformation used in geomechanics. Potentially, plastic strain, plastic fluid

content, and residual saturation might be related each other in poromechanics [16, 17, 18], although this study



only focuses on the hysteresis modeling for multiphase flow, not being coupled to geomechanics. Thus, it
might be required to modify Equation 6 for large deformation of coupled flow and geomechanics where the

deformation gradient is decomposed into elastic and plastic parts in a multiplicative way [17, 19].

B
fr>0 s‘%g)

Figure 2: Geometrical interpretation of plastic dissipation (left) and the associative flow rule (right). The yield surface

is convex. a = (o¢, k), B = (Sﬁ,,é), and v = (1. — 0c, 1 — K)

Perturbation

Figure 3: Perturbation introduced in the equilibrated domain.

4. Stability Analysis

We study a-priori estimate of numerical stability, by employing a concept of B-stability [20, 21, 22, 23].
B-stability requires contractivity (well-posedness) and algorithmic stability (numerical stability).

We first consider introducing an initial perturbation within the domain in equilibrium as,

d _ ~ d _ ~ d _
Pj = Dpj = Pj, “my =m; —my, °5j = 5; = 5j,



where ?(-) implies the perturbed variables. (°) indicates the solutions in equilibrium. From Equation 4, we have

d d
My 14 dot  Muw I 4 dat
— = — —0%S, — = — St
Pg M, Po = ¢ Su Pw M, Pu 05

The initial values can be considered as perturbation (initial errors introduced to the domain), as shown in
Figure 3. Then, we investigate evolution of the error in time (stability analysis) for the mathematical statements,
given as follows. The flow equations with the homogeneous boundary and non-zero initial conditions, assuming

an incompressible porous medium, are following:

1y, : . k 1
ﬁg dpg — ¢ deu = g Div (ngZ Grad dpg> , E = ngS;cg, (14)

1 : 1 K., 1
Az, Put ¢S, = - Div (pwu— Grad dpw) C 3 = 9Sucu, (15)

where ¢ is porosity. ¢; and S are the compressibility and total saturation for phase J.

For the stability analysis, let us introduce a norm as follows:

1
I = 5 / (PaMy g + Py, P + 0cEy oc + wH ) A9, (16)

T :={x = (pg,Puw:0c; k) E RX RX R X R:py,pu,0c,k € L*(Q)},

where we have positive correlation between o, and SY,. Thus, Ej, and H}, are positive, characterizing a capil-
lary pressure curve. We will show well-posedness (contractivity) followed by algorithmic stability, written as
respectively,

d n n
S <0 15 Hlr < 15| (17)

4.1. Contractivity of the Mathematical Problem

From here, we drop the superscript (-) for simplicity (e.g., x — x,%ps — ps). We first take the time

derivative of Equation 16, which leads to

d 1. 1. 1. 1.
SN = [ (205 5y + pu My b+ 00 By 5 4wy ) do

= / (o My 'y + Pu My o+ 0S5, — iE) AL, (18)



Then, multiply Equation 14 by p,, we have

. 1 k
/ngg—lpg dQ — /pg¢sfn dQ = /pgp—DiV Pg <M—~" Gradpg> dQ,
g g
—_—————
k,
= [ pyvy-ndl'— [ Gradp, - M_ Gradp, df2, (19)
g

=0

where the divergence theorem is applied. The first term of the right hand side is zero due to the homogeneous

boundary condition. Similarly, Equation 15 yields

) k.,
/prlglpw Q) + /pmﬁSL dQ2=0- | Gradp, - H_ Grad p,, d). (20)

w

Also, Equations 6 and 12 provide

chf; — Iié = chz) — UCSZ — /@é = OCSZ} - D, . 21)
-

>0

Then, we have

d L . .
allxll% = / (ngg "Pg + pwMy P + 0S5, — f@f) s

=— [ Gradp, - % Gradp, dQ + /pg¢SfU dQ) — | Gradp, - ﬁ—w Grad p,, df)

g w

- / Puw®SL, dQ + / (aCS; —ng') o

=— / Gradp, - % Gradp, dQ — / Gradp,, - kw Grad p,, dQ — / oSt dQ
g

—|—/ 0. S¢ —ké| dQ
—~
St —Sk,

k k.
=— / Grad p, - —Z Grad p, d2 — /Gradpw - — Grad p,, d)
Hg 1

—/(06554—&5') dQ—i—/ac(l—(b)SfudQ

<0. (22)

Thus, the proposed formulation provides a well-posed problem (contractivity).



4.2. B-Stability

A numerical algorithm is B-stable when, for a given contractive problem, it provides numerical (algorithm)

stability. We employ the generalized mid-point rule in time discretization. Then,

n+1 n St,n+1 _ St,n 1 k
M2 P you v — = Div (22 Gradprte (23)
At At Py Hg
n+l _ . n St,n+1 _ St,n 1 ki
Mt P N Pu | 42w = p—Div(u Gradp"+@> 4
Pyt = apitt + (1 - o) pl,

where At is the time step size and « is the parameter of time discretization.

Let us multiply Equation 23 by pp*, which yields

n+l _ . n t,n+1 t.n
P p St St
n+a 1&g g n—+a w w
/pg M= A = /pg qﬁit de,

1
_ / pg+aDiv< 9 Grad p”+a> dx, (25)
Pg Hg

k
=0- / Gradp"'“’ - -2 Grad p”+a dQQ.
Iig
We also introduce the following identity,

n+l _ .n
P M 1Md9=~ (|l 20 — o2 2 2)+<2a71>1 M = p2 (2. (26)
At g L gL glIL2"

Then, from Equation 25 and 26, we have

1

_ 1
M (g ™Iz = Py l12e) + (20 — 1) 5 M,

T n « SZ)nJrl Sfl}n
; R AR A e e

At

1
- / — Gradp - Ky Grad prte de. @
Pg ' Hg

Similarly, Equation 24 can be written as

St,n+1 St n

1 - s T T n—+o w w
S (B s — I + (2a = DM B = gl + [ piree™ 20 o

=— / — Gradpll ™ - Fu — Grad pt® df). (28)

w Uy
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Then, adding Equation 27 and 28, we have

1 n+1 n+1 n |12 n+o¢ St e Sfun
My (||pg 172 = Iy 1I72) + 5 Sy Hllpw I = NeklIZ2) + P — " dQ
2 2 At
k Kw
= Grad p”+a . Grradp""'CK ds) — / — Grad p"® - =% Grad p/;t* dQ (29)
Pg Hg w
1 n n 1 n n
—(2a-1)7M, Pyt = pyll7e — (20 — 1) Mt — P12

2
The return mapping with the generalized mid-point rule and associative plasticity (i.e., the algorithmic

counterpart of Equation 12) satisfies

Dy = oyt a(SEHL - Spm) + (et —gn) >0,

ot = o™+ (1 —a)o?, K" = ar™ T 4+ (1 — a)k™. (30)

Then, integrating Equation 30 over the domain and multiply the equation by —1, we obtain

_-/O.?-‘roz (Sgn-i-l _ Sqtl;n) dQ + /o.;l-‘roz <53n+1 _ Sz},n) 40 — /h:n-i-a (fn+1 _gn) dQ < 0. (31)

Considering the discretization of Equation 7 and 9 written as,
ot ol = E,(Sem T - §em) kM g™ = —Hy (67T — €M), (32)

Equation 31 yields

1 1
- /U?"'O‘ (St = 55") A2+ 5 /ag“E,;lag“ Q= 5 /agE,;lag dQ

1 1
+5 / KPTLH R dQ — 3 / KU H R dQ

- —1

E H
—Q2a=1) =5 llot ™ = o2 I7: — (20 = ==l = w"|1Ze. (33)

As a result, combining Equations 28, 29, and 33, we show

2 2 1 _ 1
(I )™ = (U Mle)” =5 M (g™ 172 = lpgllz2) + 5 My (e 172 = llpullze) +

2 2
1 — n 1 n n
EEh (|| ae |22 — [loe HL2)+2H (" 22 = [15"]172)
k
< — Gradp"+a~ -4 Gradp”+°‘ Q2

Pg Ng

- — Gradp”*a - — Grad pt* d©

w
Pw w

M*l M
— (20— )=y = pyllie — (20 — 1) =2 IIP”+1 Pyl

—1 —1

E H
— (20— )2l o2|E = 2o - DRl - ke ()
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Thus, we have B-stability for 0.5 < a < 1. The B-stable algorithm is thermodynamically consistent in the

sense that its solution complies with the second law of thermodynamics, dissipative character [24].

5. Hysteresis Modeling of Capillary Pressure and Relative Permeability

In this study, we employ a hysteresis model for capillary pressure used in Nuth and Laloui [12], based on
application of one dimensional plasticity with kinematic hardening [14], focusing on the two phase flow system

(e.g., gas and water). We specifically have a yield function of
1
fy =|logp. —logg+oy|—oy <0, oy = §(logq0 —logpen), (35
where p. g7 is the entry pressure. The elastic modulus, hardening relation and plastic flow followed by the plastic

multiplier are given respectively as

B, = K, Pe 7 q :BH’Y%a S"p y 8fY

peri’ q oq "~ Top.

v =L sign(log pe — log g + o), (36)
By

where K, is a positive modulus that characterizes Fy, and ¢ is a pressure-like hardening variable. oy is a
constant that limits the elastic domain. By is the coefficient of compressibility for the plastic part of degree of

saturation:

q = qo-exp(BySt). (37

Then, from Equations 35 and 36, the elastoplastic tangent modulus (E7) can be calculated as follows.

T dst T T dst - G8)

By (_ do. dpc) _ P dlogp 1
T pe 1 e 1
e T g

Note that the plastic water saturation corresponds to the residual gas saturation in the capillary pressure
curve, as shown in Figure 1. For the modeling of relative permeability, we assume that the residual saturation

of gas can be related to plastic water saturation, as follows.
krg (ng Srg) 757'9 - 1?55’ (39)

where 1) is a factor that indicates the difference between capillary pressure and relative permeability for the

residual saturation. From Pruess et al. [25], ¢ is recommended to be slightly less than unity. We use the
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modified version of Stone’s relative permeability model, written as

St —Seg\™ St — S\
- . g rg _ . w rw
krg = max { 0, min (—1 5. ) , 1 , kryy = max {O,mm { (—1 5. ) , 1}} , (40)

where we take n, = 4 and ¢ = 1.0 unless noted otherwise. Then, return mapping algorithm is applied to
model the drainage and imbibition process with the details given in Table 5. For particular ranges of capillary

pressure and saturation, within the saturated state (p. < p.z) on the one hand and the residual saturation state

(Sw = Srw) on the other hand, the elastic increment remains null, and the degree of saturation equals either

1 — 8,4 or S, respectively.
Hysteresis in P_ Hysteresis in krg
0.01 T !
O 1st Drain?lge O 1st Drainage
O 1st Imbibition O 1st Imbibition VV
X 2nd Dral.ne.a.ge ] 0.008 > 2nd Drainage VVV
> 2nd Imbibition X 2nd Imbibition v V
v 3rd Dralln..a\lge -+ 3rd Drainage v
7 3rd Imbibition 7 3rd Imbibition g
. 0.006 [ RN
g e 753
~ =< AR
0.004 [ g >><< g
¥4
X 3 9
F 4
; 0.002 [
0
v. 3 3
¥ oA
b i
: : b 0 Y v .
0.6 0.8 1 0.8 1

0 0.2 0.4

Figure 4: Hysteresis by the drainage-imbibition process in a single gridblock by arbitrarily changing the capillary

pressure (Algorithm I). Left: capillary pressure. Right: relative permeability of gas. The algorithm provides numerical

stability.

When the fully implicit method is taken with the Newton-Raphson method, p ™ is updated every iteration.
As a result, the return mapping is invoked every iteration, too. The algorithm of Table 5 is based on the given
capillary pressure field (e.g., the case where the flow problem takes the primary variables of p, and p,,). When
the saturation field is given (e.g., the case where the primary variables are p, and S?,), we can easily modify the
procedure of the return mapping, shown in Table 2, which corresponds to the 1D isotropic/kinematic hardening
in Simo and Hughes [14] after taking the logarithms of p. and q.
In this study, the reservoir is initially saturated mostly with water, assuming the constant maximum residual

water saturation. This return algorithm can straightforwardly be applied to the opposite case where the reservoir

is initially saturated mostly with gas, assuming the constant maximum residual gas saturation and calculating
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Hysteresis in Pc

Hysteresis in k
]

\ 5 T I 0.01 T T '
5F i ] ¢
O 1st Dra|.n.a.ge O 1st Drainage X
ab OG-+ 1st Imbibition O+ 1st Imbibition Vv
S X 2nd Drainage i
ash ¥ nag 1 0.008 F X 2nd Drainage 1
R X 2nd Imtybmon X+ 2nd Imbibition Y
Ni %7 o 3rd Dral.nfd_ge ] /- 3rd Drainage
VV /- 3rd Imbibition W+ 3rd Imbibition v
= 25l 0.006 1
g % '
X 4 2 i
= R "
o 2r
0.004 1
151
0.002 1
1 | I L L 0
0 0.2 0.4 0.6 0.8 1 !

Figure 5: Hysteresis by the drainage-imbibition process in a single gridblock by arbitrarily changing the total gas sat-
uration (Algorithm Il). Left: capillary pressure. Right: relative permeability of gas. The algorithm provides numerical

stability.

Table 1: Algorithm | of the return mapping for hysteretic capillary pressure and relative permeability

1. Given the capillary pressure field at the n+1 time step: p" ™! = p” + Ap”,

2. Compute fir"* = [logp?*! —log¢" + oy| — oy,
Gtrial — gn _ i
w W Ky (peT /pen)

3. 1If firtel <0, then
Elastic step: S7F! = Sirial gpntl — gpn gntl — gn,
Else
Plastic step: proceed to Step 4.

4. Return mapping

n+1 _ Qtrial Ap?
Sw - Sw - BHp§+1?

n+1l __ n Apy
ST =50+ g

q" = qo - exp(Bu SE™T).

5. Update relative permeability: kj'.tt (Strtt, Spobl), Srobl — ¢ Shntt,
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dynamic residual water saturation. One might also be able to extend this algorithm to the case for both dynamic
residual gas and water saturations, which will be part of the future study. Also, without significant modification,
the return mapping algorithm of 1D isotropic/kinematic hardening can potentially be applied to Brooks-Corey
and van Genuchten models [26, 27, 28], although the elastic and elastoplastic moduli are not constant but

calculated from capillary pressure at the previous step due to nonlinearity.

Table 2: Algorithm Il of the return mapping for hysteretic capillary pressure and relative permeability

1. Given the saturation field at the n+1 time step: SL," 1 = Shntl 4 AGLn,
2. Compute the trial variables:

logplr ! = logpl! — Jt ASH™,

trial

log q =logq",

Ctrial trial trml

log ptr*e —log ¢
flrial = |¢trial 5| — gy
3. If firial <0, then
Elastic step: log p?*! = log ptriel, g+l = gtriel gpmtl — gpmn
Else

Plastic step: proceed to Step 4.

4. Return mapping

trial K .
log 7+t = log ptriat — 7:’;; o pos ign(¢trieh),
. frzal
IOg qn+1 — IOg qtmal + BHSlgn(Ctmal)

Kh +Bx

trial .
Sg;nJrl — Sﬁ;n + KJ:LY - Slgn(Ct”al),
?HJr H

5. Update relative permeability: kJt! (SEmHE, Sroft), Sikt — qpSpntL,

Figures 4 and 5 show the numerical results of capillary pressure and relative permeability for the cyclic
drainage-imbibition processes by arbitrarily changing the capillary pressure (Algorithm I) and the total gas
saturation (Algorithm II), respectively. In this test case we have p.y = 1.2kPa, qo = 2.0kPa, K}, = 4.8k Pa,
and By = 1.0Pa. We take constant residual water saturation, S,,, = 0.1. Even though the drainage and

imbibition processes are changed repeatedly and significantly, we identify that the numerical algorithms based
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on the plasticity theory are stable for the hysteretic modeling. Figure 6 shows the extended elastic domain of o,
and k, which corresponds to Equation 35. We identify that the extended elastic domain is convex as well as that

the evolution of . and x occurs within the extended elastic domain.

Extended elastic domain

T T

k=-q (kPa)

10 ‘ ‘
-10 -8 -6 -4 -2

0,=P_(kPa)

Figure 6: The extended elastic domain, which corresponds to Equation 35, colored in green. The blue line indicates

the evolution of o and « during the cyclic drainage-imbibition processes.

6. Numerical Examples

We perform several numerical experiments in order to investigate stability and robustness of the proposed
hysteresis modeling method. We consider an isothermal flow problem in a 1D horizontal reservoir to show
the hysteresis effect in capillary pressure and relative permeability on multiphase flow. We take the finite
volume method for space discretization [15]. The domain is uniformly discretized with 60 gridblocks, where the
gridblock sizes are uniform, (Ax = 4m, Ay = 10m, Az = 10m) and the length of the domain is L, = 240m.
We take no-flow boundary conditions at both sides, as shown in Figure 7. The permeability and porosity are
3.0 x 107 m? and 0.1, respectively. We take the backward Euler method (i.e., « = 1.0). We use the Peng-
Robinson equation to solve the equation of state for gas, which determines gas properties such as viscosity and
compressibility. We take the properties of water defined at given reservoir pressure and temperature.

Methane gas (CH4) and liquid water are injected continuously and successively into the reservoir in order

to model the drainage and imbibition processes. The simulation time is 70 days. Initial saturations of gas and
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Figure 7: lllustration of the 1D reservoir, boundary conditions, source, and monitoring point locations.

water are S; = 0.1and S, = 0.9, respectively. We take initial gas pressure of p, = 100 Pa and temperature of

T = 20°C, respectively. We take a monitoring point located at x = 182m to observe variation of the saturation

and capillary pressure. The entire simulation is divided into six steps (Figure 7) as follows:

1. A first CHy injection (0.3kg/s for 2 days) in the element at (x = 182m) for the first drainage

2. A first H»O injection (0.02kg/s for 23 days) in the element (z = 194m) for the first imbibition

3. A second CHy injection (0.05kg/s for 10 days) in the element at (x = 206m) for the second drainage

4. A second H»O injection (0.01kg/s for 20 days) in the element (z = 218m) for the second imbibition

5. A third CHy injection (0.02kg/s for 10 days) in the element at (x = 230m) for the third drainage

6. A third H2O injection (0.01kg/s for 5 days) in the element (x = 238m) for the third imbibition

With the drainage and imbibition cycles of the six steps, we investigate the effects of hysteresis in capillary

pressure and relative permeability with 6 different test cases, considering weak and strong capillarity. Cases 1,

2, 3, and 6 have weak capillarity while Cases 4 and 5 have strong capillarity (See Table 3).

Specifically, Cases 1, 2, 3, and 6 take p.y = 1.5kPa, qo = 4.0kPa, Eyg = 15.0kPa, and By = 1.0Pa,

while Cases 4 and 5 have p.y = 1.5M Pa, qy = 4.0kPa, Exy = 15.0M Pa, and By = 1.0Pa. Initial residual

saturations of gas and water are S,, = 0.0 and S, = 0.15, respectively. The specific values of the parameters

of perr, E'xy, and go are summarized in Table 3.

Those cases are separated by the different scenarios in hysteresis. For example, we consider hysteresis

effects in both capillary pressure and relative permeability for Case 1, while only hysteresis in capillary pressure

is considered for Case 2. Case 3 takes neither hysteretic capillary pressure nor relative permeability. Only Case

6 takes n, = 2 for Equation 40, while all the other cases take n, = 4. We take Case 1 as a reference case.

Table 4 summarizes the six different scenarios.
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Table 3: Parameters of capillary pressure

Case 1 Case 2 Case 3 Case 6 Case 4 Case 5

Parameters Weak capillarity Strong capillarity
Der 1.5 kPa 1.5 MPa
Ey 15.0 kPa 15.0 MPa
do 4.0 kPa 4.0 MPa

Table 4: Six different scenarios. O: Hysteresis, X: No hysteresis

Capillary Pressure Relative Permeability
Case 1 O o
Case 2 (0] X
Case 3 X X
Case 4 O o
Case 5 o X
Case 6 o o

6.1. Hysteresis in capillary pressure and relative permeability

Figures 8 and 9 show dynamic capillary pressure and relative permeability at the monitoring point for Cases

1 (reference case), 2, and 3. For those cases, we identify cyclic drainage and imbibition processes from Step 1

through Step 6. For the reference case, we find that the modelings of hysteretic capillary pressure and relative

permeability are stable even for the complex drainage and imbibition processes.

Capillary pressure (P )

. Capillary pressure (P) Capillary pressure (P)
T -
* 55 i 54 \
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+ .
. 45 n
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Figure 8: Evolution of capillary pressure for the reference case (left), Case 2 (center), and Case 3 (right).
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Figure 9: Evolution of gas relative permeability for the reference case (left), Case 2 (center), and Case 3 (right).

Even when the relative permeability of gas is zero, the residual saturation of gas can decrease (the left of
Figure 9) due to mass influx of water into the gridblock. For Case 2, the behavior of capillary pressure is
different from that of the reference case, because only hysteretic capillary pressure is considered, not hysteretic
relative permeability.

The relative permeability significantly affects the flow regime. From Figures 10 and 11, we identify the
considerable differences in gas pressure and water saturation between the reference case and Case 2, while
the results of gas pressure and water saturation between Cases 2 and 3 are almost identical. This implies an
important role of relative permeability in multiphase flow. For capillary pressure, we find different distributions

and evolutions for all three cases.

Gas pressure Water saturation 4 Capillary pressure
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Figure 10: Distribution of gas pressure (left), water saturation (center), and capillary pressure (right) after Step 6 for

the reference case, Cases 2 and 3. 'Ref’ indicates the reference case. L, = z/L.. is a normalized distance.

6.2. Effect of strong capillarity

We further investigate the modeling capability of hysteresis for strong capillarity. In Cases 4 and 5, from

Figure 12, we find numerical stability of strong hysteretic capillary pressure, where the capillary pressure in-
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Figure 11: Evolution of gas pressure (left), water saturation (center), and capillary pressure (right) at the monitoring
point for the reference case, Case 2, and Case 3. t; = A%—{t is a normalized time, where Qf and )M, are the average

mass rate of injection and the original total mass of fluid in the reservoir, respectively.
creases up to 10 MPa. Figure 13 shows evolutions with and without hysteresis in gas relative permeability when

the hysteresis of strong capillary pressure is considered, which corresponds to Figure 12. These results show

numerical stability in the relative permeability field, too.
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Figure 12: Evolution of strong capillary pressure for Case 4 (left) and Case 5 (right).

Figure 14 shows spatial distributions of gas pressure, water saturation, and capillary pressure after Step 6 for
Cases 4 and 5 as well as the reference case. The behavior of relative permeability in Case 4 (the left of Figure 13)
is almost identical to that in the reference case. Thus, the distributions of gas pressure and water saturation of
Case 4 are almost same as those of the reference case, although the distribution of the capillary pressure is
different. Similarly, shown in Figure 15, evolutions of gas pressure and water saturation at the monitoring point
between Case 4 and the reference case are almost identical, while those of capillary pressure are different. From

the results of both weak and strong capillarity cases, the capillary hysteresis changes residual gas saturation
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Figure 13: Evolution of gas relative permeability for Case 4 (left) and Case 5 (right), which corresponds to Figure 12.

dynamically. When the dynamic residual saturation is reflected in relative permeability, it alters the flow regime

significantly, affecting the fields of pressure and saturation.
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Figure 14: Distribution of gas pressure (left), water saturation (center), and capillary pressure (right) after Step 6 for

the reference case, Cases 4 and 5.
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Figure 15: Evolution of gas pressure (left), water saturation (center), and capillary pressure (right) at the monitoring

point for Cases 4 and 5.
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6.3. Effect of relative permeability

We take a different model of gas relative permeability while keeping the same model of capillary pressure
(i.e., Case 6). In this case, we still obtain numerically stable results of hysteretic capillary pressure and relative
permeability for cyclic drainage and imbibition processes, as shown in Figure 16. In particular, the relative
permeability of Case 6 is mostly higher than that of the reference case. As a result, as shown in the center
of Figure 17, water movement in this case is faster than that of the reference case. From Figure 17, we find
the different distributions of water saturation and capillary pressure between Case 6 and the reference case. At
the monitoring point, the two different models of relative permeability also yield different evolutions of gas

pressure, water saturation, and capillary pressure (Figure 18).
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Figure 16: Evolution of capillary pressure (left) and gas relative permeability (right) for Case 6.
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Figure 17: Distribution of gas pressure (left), water saturation (center), and capillary pressure (right) after Step 6 for

Case 6.
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Figure 18: Distribution of gas pressure (left), water saturation (center), and capillary pressure (right) after Step 6 for

Case 6.

6.4. Computational performance

We compare computational costs of the test cases in terms of the total number of Newton’s iteration during
simulation, shown in Table 5. We define the convergence criterion based on the relative error, €, = 7% /mk,
where r’} and m§ are the residual and mass of phase J at the kth iteration, respectively [25]. We then take
tolerance of 10~° for all test cases in this study, and convergence for the Newton-Raphson method is achieved
every time step when |e,.| < 107° each gridblock. No significant difference of iteration was found among the
cases except Case 6, where n,=2 while ny=4 for the other cases. It is natural that different exponents of the
relative permeability model (Case 1 and Case 6) induce different computational costs. In particular, the iteration
number of Case 1 is lower than that of Case 3, which implies that the hysteresis modeling of this study does
not cause significant extra computational cost. It is worth noting that the return mapping algorithm used in this

study is linear. Thus, computational efforts between with and without hysteresis are almost the same.

Table 5: Total number of Newton’s iteration during simulation

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Iteration

413

430

431

413

442

347

7. Conclusions

We analyzed applicability of the plasticity theory to the modeling for hysteretic capillarity and relative
permeability in the two-phase flow system. This modeling approach is generic, not being restricted to a specific

type of equations for capillary pressure and relative permeability. We can also make use of systematic algorithms
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and mathematical rigorousness previously developed in computational plasticity. We performed mathematic
analysis and found that the plasticity-based modeling provides contractivity and B-stability. This implies that
the modeling scheme is numerically stable even for many cyclic drainage-imbibition processes. The numerical
experiments supported the mathematic analysis, showing that the proposed modeling approach is robust and
rigorous, which can track residual saturation dynamically. We identified the importance of hysteresis modeling
from numerical results, which showed substantial differences between with and without hysteresis modeling for

strong hysteretic capillary pressure and relative permeability.
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