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A new method for solving numerically stochastic partial differential equations (SPDEs)
with multiple scales is presented. The method combines a spectral method with the heter-
ogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, Analysis
of multiscale methods for stochastic differential equations, Commun. Pure Appl. Math.,
58(11) (2005) 1544–1585]. The class of problems that we consider are SPDEs with qua-
dratic nonlinearities that were studied in [D. Blömker, M. Hairer, G.A. Pavliotis, Multiscale
analysis for stochastic partial differential equations with quadratic nonlinearities, Nonlin-
earity, 20(7) (2007) 1721–1744]. For such SPDEs an amplitude equation which describes
the effective dynamics at long time scales can be rigorously derived for both advective
and diffusive time scales. Our method, based on micro and macro solvers, allows to capture
numerically the amplitude equation accurately at a cost independent of the small scales in
the problem. Numerical experiments illustrate the behavior of the proposed method.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Many interesting phenomena in the physical sciences and in applications are characterized by their high dimensionality
and the presence of many different spatial and temporal scales. Standard examples include atmosphere and ocean sciences
[1], molecular dynamics [2] and materials science [3]. The mathematical description of phenomena of this type quite often
leads to infinite dimensional multiscale systems that are described by nonlinear evolution partial differential equations
(PDEs) with multiple scales.

Often physical systems are also subject to noise. This noise might be either due to thermal fluctuations [4], noise in some
control parameter [5], coarse-graining of a high-dimensional deterministic system with random initial conditions [6,7], or
the stochastic parameterization of small scales [8]. High dimensional multiscale dynamical systems that are subject to noise
can be modeled accurately using stochastic partial differential equations (SPDEs) with a multiscale structure. As examples of
mathematical modeling using SPDEs we mention the stochastic Navier–Stokes equations [9] that arise in the study of hydro-
dynamic fluctuations, the stochastic Swift–Hohenberg and stochastic Kuramoto–Shivashinsky equation that arise in the
study of pattern formation [10], the Langevin-type SPDEs that arise in path sampling and Markov Chain Monte Carlo in infi-
nite dimensional dimensions [11] and the stochastic KPZ equation that is used in the modeling of the evolution of growing
interfaces. Most of the equations mentioned above are semilinear parabolic equations with quadratic nonlinearities for
which the numerical algorithm proposed in this paper can be applied, in principle.
. All rights reserved.
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There are very few instances where SPDEs with multiple scales can be treated analytically. The goal of this paper is to
develop numerical methods for solving accurately and efficiently multiscale SPDEs. Several numerical methods for SPDEs
have been developed and analyzed in recent years, e.g. [12–14], based on a finite difference scheme in both space and time.
It is well known that explicit time discretization via standard methods (e.g., as the Euler–Maruyama method) leads to a time-
step restriction due to the stiffness originating from the discretisation of the diffusion operator (e.g. the Courant–Friedrichs–
Lewy (CFL) condition Dt 6 C(Dx)2, where Dt and Dx are the time and space discretization, respectively). The situation is even
worse for SPDEs with multiple scales (e.g. of the form (3) and (4) below) as in this case the CFL condition becomes
Dt 6 C(Dx � �)2, where �� 1 is the parameter measuring scale separation. Standard explicit methods become useless for
SPDEs with multiple scales.

Such time-step restriction can in theory be removed by using implicit methods as was shown in [14]. However the implic-
itness of the numerical scheme forces one to solve potentially large linear algebraic problems at each time step. Furthermore,
it was shown in [15] that implicit methods are not suited for studying the long time dynamics of fast–slow stochastic sys-
tems as they do not capture the correct invariant measure of the system. Although this result has been obtained for finite
dimensional stochastic systems, it is expected that it also applies to infinite dimensional fast–slow systems of stochastic
differential equations (SDEs), rendering the applicability of implicit methods to SPDEs with multiple scales questionable.
We also note that a new class of explicit methods, the S-ROCK methods, with much better stability properties than the
Euler–Maruyama method was recently introduced in [16–18]. Although these methods are much more efficient than tradi-
tional explicit methods, computing time issues will occur when trying to solve SPDEs with multiple scales as considered
here, since the stiffness is extremely severe for small �. Furthermore, capturing the correct invariant measure of the SPDE
for Dt > � is still an issue for such solvers.

In this paper we consider SPDEs of the form
1 Not
assump

2 Usu
f(u) = uo

wherea
@tv ¼ Av þ FðvÞ þ �Qn; ð1Þ
posed in a bounded domain of R with appropriate boundary conditions. The differential operator A is assumed to be a non-
positive self-adjoint operator in a Hilbert space H with compact resolvent, n denotes space-time Gaussian white noise, Q is
the covariance operator of the noise and we take �� 1. We assume that the operator A and the covariance operator of the
noise Q commute, and that A has a finite dimensional kernel.1

The finite dimensional kernel of the operator A leads to scale separation between the slow dynamics in N and the fast
dynamics in the orthogonal complement of the null spaceN?; whereH ¼ N �N?. In this paper we will furthermore assume
that noise acts directly only on the orthogonal complementN?. This assumption is consistent with the scaling of the noise in
(1), i.e. that it is of O(�), and it leads to the singularly perturbed SPDEs (3) and (4) below. When noise acts also on the slow
variables, then, its amplitude has to be scaled differently in Eq. (1); in particular it has to be of O(�2). In this case, and after
rescaling in time, we end up with a non-singularly perturbed equation for which the analysis is easier. A problem of this type
has been studied and the amplitude equation has been derived in [39].

For concreteness, we will focus on the class of SPDEs with quadratic nonlinearities that was considered in [19], and as-
sume that
FðuÞ ¼ f ðuÞ þ �agðuÞ; ð2Þ
where f is a quadratic function (e.g. f(u) = B(u,u), a symmetric bilinear form), g a linear function and the exponent a is either 1
or 2.2 The choice of a will depend on the particular scaling. In order to describe the longtime behavior of the SPDEs we perform
an advective rescaling set v(t) :¼ �u(�t). Using the scaling properties of white noise and (2) with a = 1 we obtain the following
singularly perturbed SPDE
@tu ¼
1
�
Auþ FðuÞ þ 1ffiffiffi

�
p Qn: ð3Þ
Another scaling is of interest, namely the diffusive rescaling v(t) :¼ �u(�2t) which, for (2) with a = 2 leads to the SPDE
@tu ¼
1
�2Auþ 1

�
FðuÞ þ 1

�
Qn: ð4Þ
Alternatively, one can start with the singularly perturbed SPDEs (3) and (4) without any reference to the SPDE (1).
Singularly perturbed SPDEs with quadratic nonlinearities provide a natural testbed for testing the applicability of the het-

erogeneous multiscale method to infinite dimensional stochastic systems, since a rigorous homogenization theory exists for
this class of SPDEs [19]. Furthermore, SPDEs of this form arise naturally in stochastic models for climate [1] and in surface
growth [21,22]. Finally, it has already been shown through rigorous analysis and numerical experiments that these systems
exhibit a very rich dynamical behavior, such as noise-induced transitions [23] and the possibility of stabilization of linearly
ice that the compactness of the resolvent of A implies that the operator has discrete spectrum which, together with the self-adjointness of A and the
tion that it commutes with the covariance operator of the noise Q, allow to expand the solution of (1) in terms of the eigenfunctions of A.
ally the functions f and g involve derivatives of the function u. For example, for both the Burgers and the Kuramoto–Shivashinsky equation we have
xu. The linear function g(u) is included to induce a linear instability to the dynamics. In the case of the Burgers equation we will simply take g(u) = u

s in the case of the Kuramoto–Shivashinsky equation we can take gðuÞ ¼ @4
x u. Further discussion can be found in Section 4 and in [20].



2484 A. Abdulle, G.A. Pavliotis / Journal of Computational Physics 231 (2012) 2482–2497
unstable modes due to the interaction between the additive noise and the scale separation [24,20]. We believe, however, that
the methodology developed in this paper has a wider range of applicability and is not restricted to SPDEs with quadratic
nonlinearities. Further comments about the class of SPDEs for which we believe that the proposed numerical method can
be applied can be found in Section 5.

Our numerical algorithm is based on a combination of a spectral method with micro-macro time integration schemes. We
denote by x ¼ Pcu the projection onto N and by y ¼ Psu; Ps ¼ I � Pc the projection onto N?. We then rewrite (3) and (4) as
fast–slow system of SDEs
_x ¼ aðx; yÞ; ð5aÞ

_y ¼ 1
�
Ayþ bðx; yÞ þ 1ffiffiffi

�
p Qn ð5bÞ
and
_x ¼ 1
�

aðx; yÞ; ð6aÞ

_y ¼ 1
�2Ayþ 1

�
bðx; yÞ þ 1

�
Qn; ð6bÞ
where the functions a(x,y) and b(x,y) are the projections of F(u) ontoN andN?. We emphasize the fact that the separation of
scales between x and y is due to the fact that the linear operator A has a non-trivial null space, since Ax is absent in Eqs. (5a)
and (6a). We remark that an Oð1Þ nonlinear term can be added in (6a). The fast–slow systems (5) and (6) resemble fast slow
systems for SDEs [25, Ch. 10,11]. However, the fast process y is infinite dimensional and the well known averaging and
homogenization theorems [26,27] do not apply.

Averaging and homogenization results for SPDEs have been obtained recently [28,19]. In particular, provided that the fast
process y in (5) has suitable ergodic properties, then the slow variable x converges, in the limit as � tends to 0, to the solution
of the averaged equation
_x ¼ âðxÞ; ð7Þ
where the averaged coefficient â is given by the average of a(x,y) with respect to the invariant measure of the (infinite
dimensional) fast process y. When this average vanishes (i.e. the centering condition from homogenization theory is satis-
fied) then the dynamics at the advective time scale becomes trivial and it is necessary to look at the dynamics at the diffusive
time scale, Eqs. (6). It was shown in [19] that the slow variable x of this system of equations, the solution of (6a), converges in
the limit as � tends to 0 to the solution of the homogenized equation
_x ¼ �aðxÞ þ �rðxÞn; ð8Þ
with explicit formulas for the homogenized coefficients – see Section 3 for details. For finite dimensional fast systems, the
coefficients in (7) and (8) can be calculated, in principle, in terms of appropriate long-time averages – see [25] for details. The
numerical method proposed in [29] and analyzed in [8], coined under the name of the heterogeneous multiscale method
(HMM), relies on the numerical approximation of the coefficients in (7) and (8) by solving the original fine scale problem
on time intervals of an intermediate time scale and use that data to evolve the slow variables using either (7) or (8). In this
paper we show how this methodology, when combined with a spectral method, can also be applied to SPDEs with multiple
scales, that is, to the systems (5) and (6). The aim of the present paper is to present the algorithm and report numerical
experiments. The analysis of the proposed numerical method and the extension to more general classes of SPDEs with mul-
tiscale structure will be presented in a forthcoming paper. The rest of the paper is organized as follows. In Section 2 we pres-
ent our new algorithm. Analytical and computational techniques for the analysis of SPDEs with multiple scales at the heart of
the multiscale algorithm are presented in 3. In Section 4 we present numerical experiments. Section 5 is reserved for con-
clusions and discussion on future work.

2. Numerical method

We propose a numerical algorithm to approximate numerically the solution of (1) based on a micro-macro algorithm,
capable of capturing the effective behavior of the SPDE. We explain the numerical algorithm for the case of diffusive time
scale (the hardest numerically) and comment on the advective time scale later in this section.

2.1. Multiscale algorithm

Before stating our algorithm, we first recall our main assumptions. We consider SPDEs 1 in a Hilbert space H with norm
k�k and inner product h�, �i. A denotes a differential operator, n space-time white noise and Q the covariance operator of the
noise. We assume that A is a self-adjoint nonpositive operator on H with compact resolvent. We denote its eigenvalues and
(normalized) eigenfunctions by f�kk; ekg1k¼1:
�Aek ¼ kkek; k ¼ 1; . . . ð9Þ
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The eigenfunctions of A form an orthonormal basis in H. We assume that A and the covariance operator of the noise Q com-
mute. Thus, we can write, formally,
3 To s
for the

4 For
Qn ¼
Xþ1
k¼1

qkeknkðtÞ; ð10Þ
where fnkðtÞgþ1k¼1 are independent one-dimensional white noise processes, i.e., mean-zero Gaussian processes with
hnk(t)nj(s)i = dk jd(t � s), k, j = 1,2, . . . Here dk j and d(t � s) are the usual Kronecker delta functions.

Furthermore, we will assume that A has a finite dimensional kernelN :¼ fh 2 H : Ah ¼ 0g; dimðN Þ ¼ N < þ1 and write
H ¼ N �N?: We introduce the projection operators
Pc : H# N ; ð11aÞ
Ps ¼ I � Pc : H#N? ð11bÞ
and write x :¼ Pcu; y :¼ Psu. Finally, we will assume that noise acts only on N?, i.e. qk = 0, k = 1 . . . ,N.
Step 1. Decomposition in a fast–slow system.
Using the projection operators defined in (11a) and (11b), Eq. (1) can be written as a fast–slow stochastic system
_x ¼ 1
�
PcFðuÞ; ð12aÞ

_y ¼ 1
�2Ayþ 1

�
PcFðuÞ þ 1

�
Qn; ð12bÞ
where xðtÞ 2 RN since dimðN Þ ¼ N: We order the pairs of eigenfuctions and eigenvalues such that the kernelN is spanned by
the first N eigenfunctions of A. We can write
x ¼
XN

k¼1

xkek and y ¼
Xþ1

k¼Nþ1

ykek:
We introduce the vectors x = (x1, . . . ,xN) and y = (yN+1, . . .) containing the Fourier components (with respect to the basis
fekg1k¼1) of the functions x and y. Writing F(u) = F(x,y), we further introduce
akðx; yÞ :¼ hFðx; yÞ; eki for 1 6 k 6 N; ð13Þ
bkðx; yÞ :¼ hFðx; yÞ; eki for k P N: ð14Þ
Remark 2.1. As mentioned in the introduction we will often consider the case F(u) = f(u) + �2g(u). Then the above
decomposition reads
akðx; yÞ :¼ hf ; eki þ �hg; eki ¼ ak
0ðx; yÞ þ �ak

1ðx; yÞ; ð15Þ
bkðx; yÞ :¼ hf ; eki þ �hg; eki ¼ bk

0ðx; yÞ þ �b
k
1ðx; yÞ; ð16Þ
where we notice that for a linear function g(u) = mu we simply have ak
1ðx; yÞ ¼ mxk; bk

1ðx; yÞ ¼ myk.
Then, in view of (9) and (10)we can rewrite the system (12) in the form
_xk ¼
1
�

akðx; yÞ; k ¼ 1; . . . N; ð17aÞ

_yk ¼ �
1
�2 kkyk þ

1
�

bkðx; yÞ þ 1
�

qknk; k ¼ N þ 1;N þ 2; . . . ð17bÞ
Eqs. (12), resp. (17), are the infinite system of singularly perturbed SDEs that we want to solve numerically.
Step 2. Truncation.
We consider a finite dimensional truncation of the above system and keep M fast processes3:
_x ¼ 1
�

aðx; yÞ; ð18aÞ

_y ¼ � 1
�2 KMy þ 1

�
bðx; yÞ þ 1

�
Q Mn; ; ð18bÞ
where x = (x1, . . . ,xN)T, y = (y1, . . . ,yM)T, n = (n1, . . . ,nM)T 4 and
aðx; yÞ ¼ ða1ðx; yÞ; . . . ; aNðx; yÞÞT ; ð19Þ
bðx; yÞ ¼ ðb1ðx; yÞ; . . . ; bMðx; yÞÞT ð20Þ
implify the notations we will use a new labeling of the index for the truncated fast system and write (y1, . . . , yM) instead of (yN+1, . . . ,yN+M) and similarly
nonzero eigenvalues kk and the nonzero noise intensity qk.
simplicity we use the same notation y for the full and truncated vector containing the Fourier components of the fast process.
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and KM = diag(k1, . . . ,kM) and QM = diag(q1, . . . ,qM). For the decomposition (16),(15), we will use the notations
5 Ind
aðx; yÞ ¼ a0ðx; yÞ þ �a1ðx; yÞ; ð21Þ
bðx; yÞ ¼ b0ðx; yÞ þ �b1ðx; yÞ; ð22Þ
where a0; a1 2 RN and b0; b1 2 RM with components similar as in (19) or (20).
Step 3. Numerical solution of the reduced system.
The reduced system (18) is solved by a micro-macro algorithm following [29,8]. It consists of a macrosolver chosen here

to be the Euler–Maruyama scheme
Xnþ1 ¼ Xn þ Dt�an
M þ �rn

MDWn; ð23Þ
where DWn (the Wiener increment) is Nð0;DtÞ and Xn is a numerical approximation of X(tn), the solution of a homogenized
problem of the type (31). Notice that Dt represents here a macrotime step, i.e., Dt can be chosen much larger than �. The drift
function �an

M ’ �bfaMðXnÞ and diffusion function �rn
M ’ �rMðXnÞ appearing in (23), recovered from a time-ensemble average, are

given by
�an
M ¼

1
KL

XK

j¼1

X‘TþL�1

‘¼‘T

@ya Xn;Y
1
n;‘;j

� �
Y2

n;‘;j

þ 1
KL

dt
�2

XK

j¼1

XnTþL�1

‘¼‘T

XL0

‘0¼0

@xa Xn; Y
1
n;‘þ‘0 ;j

� �
a Xn;Y

1
n;‘;j

� �
; ð24aÞ

�rn
M �rn

M

� �T ¼ 1
KL

2dt
�2

XK

j¼1

X‘TþL�1

‘¼‘T

XL0

‘0¼0

a Xn;Y
1
n;‘þ‘0 ;j

� �
� a Xn;Y

1
n;‘;j

� �
; ð24bÞ
where Y1, Y2 are the solutions of a suitable auxiliary system (given in (25) below) involving the fast problem (18b). Here K
denotes the number of samples taken for the numerical calculation, L, L0 the number of micro timesteps and ‘T a number of
initial micro timesteps that are omitted in the averaging processes to reduce the effect of transients (see below).

Auxiliary system. As observed in [29], for diffusive timescales, computing effective coefficients via time-averaging (rely-
ing on ergodicity), may require to solve (18b) over time T ¼ Oðe�2Þ. To overcome this problem, it was suggested again in [29]
to replace the fast process in (18b) by (y ’ y1 + ey2)
_y1 ¼ � 1
�2 KMy1 þ 1

�
Q Mn; ð25aÞ

_y2 ¼ � 1
�2 KMy2 þ 1

�2 bðx; y1Þ: ð25bÞ
The numerical approximations Y1, Y2 of (25a) and (25b), respectively, are the functions appearing in the averaging procedure
to recover the macroscopic drift and diffusion functions (see (24a)-(24b)). Notice that we fix the slow variables in the system
(25b) at the current macro state Xn. We use again the Euler–Maruyama method and compute Y1, Y2 as
Y1
n;‘þ1 ¼ Y1

n;‘ �
dt
�2 KMY1

n;‘ þ
ffiffiffiffiffi
dt
p

�
Q Mnn; ð26aÞ

Y2
n;‘þ1 ¼ Y2

n;‘ �
dt
�2 KMY2

n;‘ þ
dt
�2 b Xn;Y

1
n;‘

� �
; ð26bÞ
where nn ¼ diag n1
n; . . . ; nM

n

� �
and nk

n is a Nð0;1Þ random variable. The index n refers to the macrotime, tn. We compute (26a)
over L + L0 microtime steps, (26b) over L microtime steps to compute the time-ensemble average (24a). Notice that for the
microsolver, the timestep dt resolves the fine scale �2. The initial values for the micro solver are taken to be for n P 1
Y1
n;0 ¼ Y1

n�1;‘TþLþL0�1; Y2
n;0 ¼ Y2

n�1;‘TþL�1
and Y1
0;0 ¼ Y2

0;0 ¼ 0 for n = 0. The motivation for computing the above time averages is given in the next section.

Remark 2.2. We notice that the auxiliary system (25) is degenerate, since the noise in (18b) is additive.5 This implies that the
results presented in [8, App. B] are not applicable in this case and a more elaborate analysis is required for proving geometric
ergodicity. This analysis, based on the ergodic theory for hypoelliptic diffusions [30], will be presented elsewhere. In the present
paper we will assume that the auxiliary process (25) is ergodic.

Advective time scale. A similar algorithm can be derived for the advective time scale. We consider the fast–slow system (5)
that after projection and truncation reads
eed, the auxiliary system in [29,8] will always be degenerate, whenever the noise in the fast/slow system of SDEs that we want to solve is additive.
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_x ¼ aðx; yÞ; ð27aÞ

_y ¼ �1
�

KMy þ bðx; yÞ þ 1ffiffiffi
�
p Q Mn; ð27bÞ
similarly as (18). The macrosolver, chosen to be the Euler explicit method, is given by
Xnþ1 ¼ Xn þ Dtan
M ;
where the effective force aM is given by the time average
�an
M ¼

1
KL

XK

j¼1

X‘TþL�1

‘¼‘T

aðXn; Yn;‘;jÞ; ð28Þ
where Yn,‘,j is a numerical approximation of the truncated fast system (37a) with a slow variable fixed at time tn. As previ-
ously, K denotes the number of samples and L the number of micro timesteps and ‘T is the number of initial micro timestep
ommited to reduce the transient effects. For the advective scaling, there is no need for an auxiliary problem for the micro
solver [29].
3. Averaging and homogenization for SPDEs

In this section we summarize recent results on the averaging and homogenization for SPDEs [28,19] that are the analytical
foundation on which the numerical algorithm presented in Section 2 is built.

3.1. Analytic form of the homogenized coefficients

In this section we briefly discuss the analytical form of the effective system corresponding to (18). Under the assumption
that the vector field a0(x,y) (see (21)) is centered with respect to the invariant measure of the fast process,
Z

RM
a0ðx; yÞlðdyÞ ¼ 0; ð30Þ
then the slow process converges to a homogenized equation of the form
dX ¼ �aMðXÞdt þ �rMðXÞdW; ð31Þ
where W represent an N-dimensional Wiener process and the SDE (31) is interpreted in the Itô sense. The subscript M are
used to emphasise the fact that the homogenized coefficients depend on the number of fast processes that we take into ac-
count. An analytic expression for the coefficients that appear in (31) is given by
�aMðxÞ ¼ lim
�!0

Z
RM�RM

m�xðdy1; dy2Þryaðx; y1Þy2 þ lim
�!0

Z
RM

lðdy1Þ
Z þ1

0
Ey1rxa x; y1

�2s

� �
aðx; y1Þds; ð32aÞ
�rMðxÞð�rMðxÞÞT ¼ 2 lim
�!0

Z
RM

lðdy1Þaðx; y1Þ �
Z þ1

0
Ey1 aðx; y1

�2sÞds: ð32bÞ
Here l(dy1) denotes the invariant measure of the process y1 which is given by (34) and m�xðdy1; dy2Þ denotes the invariant
measure of the the process {y1,y2}. Notice that y1

�2s ¼ ~y1
s is the solution of the rescaled process corresponding to (25a), i.e.,

_~y1 ¼ �KM ~y1 þ QMn. Alternatively, the calculation of the coefficients aM(x) and rM(x) which appear in the homogenized equa-
tion can be obtained by the solution of the Poisson equation
�LM/ ¼ a0ðx; yÞ; ð33Þ
where LM is the generator of the fast (truncated) Ornstein–Uhlenbeck process. This process is ergodic and its invariant mea-
sure is Gaussian6:
lðdyÞ ¼ 1
ZM

e
�
PM
j¼1

kjy2
j

q2
j dy; ð34Þ
where ZM denotes the normalization constant. We notice that the system (18) is a finite dimensional fast–slow system of
SDEs for which standard homogenization theory applies [26,27,25]. For quadratic nonlinearities the Poisson Eq. (33) can be
solved analytically. The calculation of the coefficients in the homogenized (amplitude) equation reduces then to the calcu-
lation of Gaussian integrals that can also be done analytically. This will be done in Section 3.3.
notation used is explained in footnote 3 ; in particular, fkjgM
j¼1 and fqjg

M
j¼1 denotes the first M nonzero eigenvalues/noise intensities.
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3.2. The advective time scale

Averaging problems for fast–slow systems of SPDEs were studied recently in [28] and their results can be applied to (5).
One important observation is that in the system (5), the fast process is, to leading order Oð1=�Þ, an infinite dimensional Orn-
stein–Uhlenbeck process. The ergodic properties of such an infinite dimensional process can be analyzed in a quite straight-
forward way and the invariant measure, if it exists, is a Gaussian measure in an appropriate Hilbert space that can be written
down explicitly [31,32].7 Assuming that the process
7 The
is not p

8 Not
its depe
@tz ¼ Azþ Qn ð35Þ
is ergodic with Gaussian invariant measure l with mean 0 and covariance operator 1
2A

�1Q2; l � N 0; 1
2A

�1Q2
� �

then the
slow process x converges to the solution of the averaged equation
_x ¼ âðxÞ; âðxÞ ¼
Z

aðx; yÞlðdyÞ; ð36Þ
where the integration is over an appropriate Hilbert space. See [Eqn. 5.2][28] and also [31,32] for background material on
integration with respect to Gaussian measures.

When F(�) in (1) is given in terms of a symmetric bilinear map, i.e., F(v) = B(v,v) the calculation of the vector field that
appears in the averaged equation reduces to the calculation of Gaussian integrals and can be performed explicitly. In this
case we have
PcBðx; yÞ :¼ aðx; yÞ ¼ Dðx; xÞ þ Cðx; yÞ þ Eðy; yÞ;
where
Dmðx; xÞ ¼
XN

k;‘¼1

Bk‘mxkx‘;

Cmðx; yÞ ¼ 2
XN

k¼1

X1
‘¼Nþ1

Bk‘mxky‘;

Emðx; yÞ ¼
X1

k;‘¼Nþ1

Bk‘myky‘; m ¼ 1; . . . N
and where we used the notation Bk‘m :¼ hB(ek,e‘),emi and N :¼ dimðN Þ denotes the dimension of the null space of A. Then,
the fast–slow system (5) becomes
_x ¼ Dðx; xÞ þ Cðx; yÞ þ Eðy; yÞ; ð37aÞ

_y ¼ 1
�
Ayþ bðx; yÞ þ 1ffiffiffi

�
p Qn ð37bÞ
and the averaged equation for (37) reads8
_x ¼ Dðx; xÞ þ E; ð38Þ
where
Em ¼
Xþ1

k¼Nþ1

q2
k

2kk
Bkkm; m ¼ 1; . . . N:
In the case when the null space is one-dimensional, N = 1, the averaged equation becomes
_x ¼ DX2 þ E; ð39Þ
with D = B111 and Em ¼
Pþ1

k¼Nþ1
q2

k
2kk

Bkk1. This equation can be solved in closed form:
xðtÞ ¼
ffiffiffiffi
E
D

r
tan

ffiffiffiffiffiffi
ED
p

t þ arctan
Dx0ffiffiffiffiffiffi

ED
p
� �� �

:

We remark that solutions to (39), depending on the choice of the initial conditions, do not necessarily exist for all times. We
also remark that it is straightforward to consider the case where there is an additional higher order linear term (in �) in the
equation, i.e. F(v) = B(v,v) + �mv in the unscaled Eq. (1). In this case the averaged Eq. (38) becomes
_x ¼ Dðx; xÞ þ mxþ E;
where x 2 RN .
analysis presented in [28] also applies to the case where the fast process is given by a semilinear parabolic SPDE. In this more general case, however, it
ossible to obtain an explicit formula for the invariant measure of the fast process.
ice that, in view of the fact that the invariant measure of (35) centered and independent of x, the linear term in y averages to 0 irrespective of the form of
ndence on x.
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3.3. The diffusive time scale

We consider the system (4) obtained after a diffusive time rescaling to (1). In order to describe the homogenized equation,
we further assume that F(v) in (1) is of the form
9 Thi
10 Giv

tensor p
bilinear
FðvÞ ¼ Bðv; vÞ þ �2mv ; ð40Þ
where B(�, �) is a symmetric bilinear map satisfying PcBðek; ekÞ ¼ 0.9

We recall that the noise does not act directly on the slow variables, hQ ek,eki = 0, k = 1 . . . ,N, where N is the dimension of
the null space of A. Under appropriate assumptions on the quadratic nonlinearity and on the covariance operator of the
noise, together with the assumptions on A and Q stated earlier in this section, it is possible to prove [19] that the projection
of the solution to (4) onto the null space of A; x :¼ Pcu, converges weakly to the solution of the homogenized SDE (the
amplitude equation)
dX ¼ �aðXÞdt þ �rðXÞdWðtÞ; Xð0Þ ¼ X0; ð41Þ
where the noise is interpreted in the Itô sense and the drift �aðxÞ given by
�aðxÞ ¼ A1x� B1ðx; x; xÞ þ mx; ð42Þ
where the linear map A1 : N ! N and the trilinear map B1 : N 3 ! N are defined by
A1x ¼ 2BcððI�sAÞ�1ðBs�sIÞ þ ðI �A�1BsÞ þ 2ðBc �A�1ÞÞÞðx� bQ Þ; ð43aÞ

B1 ¼ �2Bcðx; cA�1Bsðx; xÞÞ: ð43bÞ
In the above we used the notation Bs :¼ PsB and Bc :¼ PcB, whereas �s stands for the symmetric tensor product10 and where
we have defined
bQ ¼ X1
k¼Nþ1

q2
k

2kk
ðek � ekÞ:
The quadratic form associated with the diffusion matrix �r2 is given by
hy; �r2ðxÞyi ¼ 4
Xþ1

k¼Nþ1

q2
khy;Bcðek; xÞi2 þ

Xþ1
k;‘¼Nþ1

q2
k q2

‘

2k‘ðkk þ k‘Þ
hy;Bcðek; e‘Þi2: ð44Þ
Furthermore, the fast process can be approximated by an infinite dimensional Ornstein–Uhlenbeck process. The precise
statement and proof of the above results can be found in [19].

Remark 3.1. The assumption that the Oð�2Þ term in (40) is linear is needed in order to go from (1) to (4) after rescaling or,
equivalently, to (6). If our starting point is the already rescaled SPDE (4), then we can apply the results from [19] to
nonlinearities of the form F(v) = B(v,v) + �2 h(v) where h(�) is an arbitrary nonlinearity. In this case the drift term in the
amplitude Eq. (42) becomes
�aðxÞ ¼ A1x� B1ðx; x; xÞ þ
Z
Pchðx; yÞlðdyÞ; ð45Þ
where l(dy) denotes the invariant measure of the fast OU process.
When the null space of A is one dimensional and, consequently, the homogenized SDE is a scalar equation, it is possible to

obtain sharp error estimates and to prove convergence in the strong topology. In this case Eq. (41) becomes
dX ¼ �aðXÞdt þ �rðXÞdW; Xð0Þ ¼ hu0; e1i; ð46Þ
where
�aðXÞ ¼ A1X � B1X3; �rðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ D1X2

q
: ð47Þ
s is essentially the centering condition from homogenization theory, see Eq. (30) below.
en a Hilbert space Hwe denote byH�sH its symmetric tensor product. Similarly, we use the notation v1�sv2 ¼ 1

2 ðv1 � v2 þ v2 � v1Þ for the symmetric
roduct of two elements and ðA�sBÞðx� yÞ ¼ 1

2 ðAx� Byþ By� AxÞ for the symmetric tensor product of two linear operators. Furthermore, we extend the
form B to the tensor product space by B(u � v) = B(u,v). More details can be found in [19, Section 4].
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In the one dimensional case the formulas for the coefficients that appear in the homogenized equation have a simpler form
than in the multidimensional case. In particular, we have, with Bk‘m = hB(ek,e‘),emi:
A1 ¼ mþ
X1
k¼2

2B2
k11q2

k

k2
k

þ
X1
k;‘¼2

Bk11B‘‘kq2
‘

kkk‘
þ
X1
k;‘¼2

2Bk‘1Bk1‘

kk þ k‘

q2
k

kk
; ð48aÞ

B1 ¼ �
X1
k¼2

2Bk11B11k

kk
; ð48bÞ

C1 ¼
X1

m;k¼2

2B2
km1q2

kq2
m

ðkk þ kmÞ2kk

; D1 ¼
X1
k¼2

4B2
k11q2

k

k2
k

: ð48cÞ
It is worth mentioning that if we are using a non-orthonormal basis, i.e. a basis êk ¼ ckek, then the coefficients that appear on
the right hand side of the above equation transform according to
bBk‘m ¼

ckc‘
cm

Bk‘m: ð49Þ
We also have q̂k ¼ ckqk.

Remark 3.2. The formulas for the coefficients that appear in the amplitude Eq. (41) can be also obtained by writing the SPDE
(6) in Fourier space, truncating and then using singular perturbation theory-type of techniques for the corresponding
backward Kolmogorov equation [33,34]. More details on this approach can be found in [35]. We also remark that, in general,
both additive as well as multiplicative noise will appear in the amplitude equation, although only (degenerate) additive
noise is present on the SPDE (1).
4. Numerical experiments

In this section we apply our numerical method to several SPDEs and report its convergence and performance. We consider
here several examples of SPDEs with quadratic nonlinearities and check that the theory developed in [19] and summarized in
Section 3 applies. For all of these examples we can derive rigorously the homogenized equation, with explicit formulas for
the coefficients and therefore, we can present a rigorous numerical study for our algorithm and test the effectiveness of the
proposed numerical algorithm.

4.1. Theoretical considerations

We will consider variants of the Burgers and the Kuramoto–Shivashinsky (KS) equations (with a linear instability term
added) in one dimension with either Dirichlet or periodic boundary conditions. In particular, we will consider the singularly
perturbed SPDEs (i.e. we have already rescaled to the diffusive time scale)
@tu ¼
1
�2 @2

x þ 1
� �

uþ 1
�

u@xuþ muþ 1
�

Qn ð50Þ
and
@tu ¼
1
�2 �@

2
x � @

4
x

� �
uþ 1

�
u@xuþ muþ 1

�
Qn; ð51Þ
respectively, where the noise n is as in Section 3. The operator Q, the covariance operator of the noise, has eigenvalues fqkg
1
k¼1

and eigenfunctions fekg1k¼1, which are also the eigenfunctions of the differential operator that appears in either (50) or (51),
i.e. the two operators commute. We will consider these two equations either on [0,p] with Dirichlet boundary conditions or
on [ � p,p] with periodic boundary conditions.

Remark 4.1. For the Burgers nonlinearity and for the boundary conditions that we consider it is straightforward to check
that the centering condition PcBðek; ekÞ ¼ 0 is satisfied. A more natural equation to consider than (51) would be the KS
equation in the small viscosity regime, i.e.
@tu ¼
1
�2 �@

2
x � l@4

x

� �
uþ 1

�
u@xuþ 1

�
Qn;
where l = 1 � m, m 2 (0,1). This equation can be rewritten in the form
@tu ¼
1
�2 �@

2
x � @

4
x

� �
uþ 1

�
u@xuþ m@4

x uþ 1
�

Qn: ð52Þ
The theory presented in [19] and the numerical scheme developed in this paper apply to this equation. The application of the
numerical method developed in this paper to Eq. (52) and to related models will be presented elsewhere. Some recent ana-
lytical and numerical results on the behaviour of solutions to (52) have been reported in [20].
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We will use the notation
11 We
AB ¼ @2
x þ 1

� �
and AKS ¼ �@2

x � @
4
x :
It is possible to check that for the above equations and for the chose boundary conditions the theory developed in [19] and
summarized in Section 3 applies. Consider first equations (50) and (51) on [0,p] with Dirichlet boundary conditions. In this
case the null space of AB and AKS is one dimensional:
NðA	Þ ¼ spanfsinð�Þg:
with ⁄ being either B or KS. The normalized eigenfunctions of AB and AKS are ek ¼
ffiffiffi
2
p

q
sinðpkÞ. The corresponding eigenvalues

are
kB
k ¼ k2 � 1 and kKS

k ¼ k4 � k2
; for k ¼ 1;2; . . . :
Since the null space is one-dimensional, the homogenized equation is a scalar SDE. For the nonlinearity B½u;v 
 ¼ 1
2 @xðuvÞ it is

straightforward to calculate Bk‘m = hB(ek,e‘),emi. We have
Bk‘m ¼
1

2
ffiffiffiffiffiffiffi
2p
p ðjkþ ‘jdkþ‘;m � jk� ‘jdjk�‘j;mÞ; ð53Þ
where dk‘ denotes the Kronecker delta. We can then use formulas (48) to calculate the formulas that appear in the homog-
enized equation. Let f�kkgþ1k¼1 of either AB or AKS with Dirichlet boundary conditions. The homogenized equation is given by
(46) that we recall here for convenience
dX ¼ �aðXÞdt þ �rðXÞdW; ð54Þ
where
�aðXÞ ¼ A1X � 1
4k2

X3; �rðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

q2
2

8k2
2

X2 þ C1Þ
 !vuut : ð55Þ
The coefficients that appear in (55) can be computed as11
A1 ¼ mþ 1
8

q2
2

k2
2

þ 1
8

Xþ1
k¼2

kkkq2
kþ1 � kkþ1q2

kðkþ 1Þ
ðkkþ1 þ kkÞkkkkþ1

 !
; ð56aÞ

C1 ¼
1

16

Xþ1
k¼2

q2
kq2

kþ1

kkkkþ1ðkk þ kkþ1Þ

 !
: ð56bÞ
In the case where only the second mode is forced with noise, q2 = r, qM = 0, M = 3, . . . then the coefficients become
A1 ¼ mþ 1
8

r2

k2
2

� 3
8

r2

k2ðk2 þ k3Þ
; C1 ¼ 0:
In this case only multiplicative noise appears in the homogenized equation and it can lead to intermittent behavior of solu-
tions as well as noise induced transitions [20].

We will also consider either the Burgers or the KS equation on [ � p,p] with periodic boundary conditions. In this case the
null space of both AB and AKS is two-dimensional and is spanned by
NðA	Þ ¼ spanfsinð�Þ; cosð�Þg;
with ⁄ being either B or KS. The homogenized equation is given by (41), where X = (X1,X2). It consists of a system of two cou-
pled SDEs. We can use formulas (42) and (44), together with the formula for the nonlinearity B½u;v
 ¼ 1

2 @xðuvÞ to calculate
the coefficients that appear in the homogenized equation.

4.2. Numerical experiments

We shall now apply our numerical algorithm to the model problems (50), (51) described in Section 4.1. As the behavior of
our algorithm is similar for the Burgers and the Kuramoto–Shivashinsky equation we will do a thorough numerical study on
the Burgers equation and comment on the results for the Kuramoto–Shivashinsky equation.

Burgers Equation. We consider Eq. (50) on [0,p] with homogeneous Dirichlet boundary conditions. We know from Sec-
tion 4.1 that, for � sufficiently small, we have that
uðx; tÞ � XðtÞ sinðxÞ; ð57Þ
use the non-normalized basis êk ¼ sinðpkÞ and use formula (49).
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where X(t) is the solution of (54). The precise statement of this result together with an error estimate can be found in [19,
Thm. 7.1, Thm. 7.4]. The function �aðXÞ; �rðXÞ in (47) depends on A1, C1 which for the Burgers equation can be computed
using formulas (56) with kk = k2 � 1. They read A1 = 0.0026744370, C1 = 0.0002659283 (the fast convergence of the series
(56) allows to compute numerically A1, C1 with high precision, given here up to ten digits). Following the algorithm de-
scribed in Section (2), we look for a solution to (50) of the form
uðx; tÞ ’ xðtÞ sinðxÞ þ
XM

k¼1

ykðtÞ sinðkxÞ; ð58Þ
substitute the expansion in (50) to obtain the a fast–slow system of SDEs as described in (18). Following the algorithm of
Section 2 we compute numerically the slow variable Xn as
Xnþ1 ¼ Xn þ Dt�an
M þ �rn

MDWn; ð59Þ
where an
M; rn

M are given by (24a) and (24b), respectively. We also consider the truncated homogenized problem, i.e.,
dX ¼ �aMðXÞdt þ �rMðXÞdW; ð60Þ
where
�aMðXÞ ¼ AMX � 1
12

X3; �rðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1
72

X2 þ CMÞ
� �s

ð61Þ
and where AM, CM, are obtained from (56a) and (56b) with the sums truncated at M. For numerical comparison we also
compute
Xnþ1;inf ¼ Xn;inf þ Dt�aðXn;infÞ þ �rðXn;infÞDWn; ð62Þ

Xnþ1;hom ¼ Xn;hom þ Dt�aMðXn;homÞ þ �rMðXn;homÞDWn; ð63Þ
the Euler–Maruyama approximation of the SDEs (54) and (60), respectively. The same Brownian path will be used in (54),
(59) and (60). We emphasize that the numerical solutions for (54) and (60) rely on analytically computed homogenized coef-
ficients, whereas for (59) we implement the multiscale algorithm of Section 2, where the coefficients an

M ;rn
M are computed

‘‘on the fly’’ and rely on the microsolver (26a) and (26b). Hence no a-priori analytical knowledge of the amplitude equation is
required.

We choose the values of the various parameters entering in the averaging process for the computation of �an
M ; �rn

M as sug-
gested in [8], i.e., K ¼ 1; dt=�2 ¼ Oð2�pÞ; nT ¼ Oð1Þ; L ¼ Oð23pÞ; L0 ¼ Oðp � 2pÞ. According to [8], this guarantees (for the case
of non-degenerate fast processes) that the error is bounded by 2�p. In our case with a degenerate fast process an error bound
is still to be established. Here we monitor such convergence numerically. More precisely, we set nT = 16, L = 23p, L0 = p � 2p and
monitor the error using
EM
p ¼

1
N

XN

n¼1

�an
M � �aMðXn;homÞ

		 		þ �rn
M � �rMðXn;homÞ

		 		� �
; ð64aÞ

EM
l;p ¼

1
N

XN

n¼1

�an
M � �aðXn;inf Þ

		 		þ �rn
M � �rðXn;homÞ

		 		� �
ð64bÞ
for various values of p, where Dt = T/N and T represent the final time. Notice that (64a) captures the error between (60)–the
homogenized solution of the truncated system–and the numerical solution of the truncated system, while (64b), where the
index l stands for limit, captures the error between the homogenized solution of the limit problem (54) and the numerical
solution of the truncated system.

2-mode truncation. We set M = 2 in (58) and substitute the expansion in (50) to obtain the following system of equations
_x ¼ mx� 1
2�
ðxy1 þ y1y2Þ; ð65aÞ

_y1 ¼ m� 3
�2

� �
y1 �

1
�

xy2 �
1
2

x2
� �

þ q1

�
n1ðtÞ; ð65bÞ

_y3 ¼ m� 8
�2

� �
y2 þ

3
2�
ðxy1Þ þ

q2

�
n2ðtÞ: ð65cÞ
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Fig. 1. Numerical convergence for 2-mode truncation. On the horizontal axis we monitor the accuracy of the micro-timestep and on the vertical axis we
measure the error as given by (64a) and (64b) with M = 2.
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Fig. 2. Euler–Maruyama methods (59) (solution denoted Xn), (63) (solution denoted Xn,hom) and (62) (solution denoted Xn,inf) for three paths (upper panel,
left p = 3 for Xn, upper panel right p = 4 for Xn, lower panel p = 5 for Xn). We use 2-mode truncation for (59) and (63).
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The auxiliary process can be derived as explained in Section 2 and reads
4

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 3.
u(�, t) ’
_y1
1 ¼ �

3
�2 y1

1 þ
q1

�
n1ðtÞ; ð66aÞ

_y1
2 ¼ �

8
�2 y1

2 þ
q2

�
n2ðtÞ; ð66bÞ

_y2
1 ¼ �

3
�2 y2

1 �
1
�2 xy1

2 �
x2

2

� �
; ð66cÞ

_y2
2 ¼ �

8
�2 y1

2 þ
3

2�2 xy1
1: ð66dÞ
We apply the algorithm of Section 2 to get a numerical approximation of the homogenised problem corresponding to (65).
The final time is T = 1 and N = 10, which corresponds to macro time-step of size Dt = 0.1. The macro solver for the method is
given by (59). As mentioned above, we compare our results with (62) and (63). The unknown coefficients A3, C3 in (61) can be
computed using (56a) and (56b), where the sum is truncated at M + 1 = 3 and read A3 = 0.003735726834,
C3 = 0.0002593873518.

We observe in Fig. 1 that we get numerically the expected order of convergence corresponding to dt=�2 ¼ Oð2�pÞ. Further-
more, as the micro time-step becomes smaller, the numerical scheme gets closer to (59) and slightly deviates from (54). This
is expected as the numerical solution is not converging to that latter solution. We observe nevertheless that with only two
fast modes, the numerical scheme already captures quite well the effective behavior of the slow variable of the infinite
dimensional system.

We also illustrate the time evolution of one trajectory comparing over the time 0 6 t 6 T with T = 10, the Euler–Maruyama
method for the amplitude Eq. (62), the homogenized Eq. (63) and the macro solver (59). The same Brownian path is used for
generating the three trajectories and as well as the same macro time step. We perform this comparison for increasing accu-
racy of the micro solver used to recover the macro data, namely, dt=�2 ¼ Oð2�pÞ; p ¼ 3;4;5: We see in Fig. 2 that the trajec-
tory for the amplitude equation and the homogenized equation coincide, while the macro solver gets closer to the true
dynamics as we refine the micro time step. For the same trajectory we also give in Fig. 3 a space-time plot for the approx-
imation of the original SPDE u(�, t) � X(t)sin(�), with X(t) solution of the amplitude equation, the homogenized equation or
the macro solver. Again we see that the numerical method captures the right behavior of the solution.

3-mode truncation. We set M = 3 in (58) and obtain the following system of equations
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Approximation (57) of the solution u(x, t) of the SPDE; u(�, t) ’ Xn(t)sin(p�) (left figure p = 3), u(�, t) ’ Xn,hom(t)sin(p�) (middle figure) and
Xn,inf(t)sin(p�) (right figure).
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_x ¼ mx� 1
2�
ðxy1 þ y1y2 þ y2y3Þ; ð67aÞ

_y1 ¼ m� 3
�2

� �
y1 �

1
�

xy2 þ y1y3 �
1
2

x2
� �

þ q1

�
n1ðtÞ; ð67bÞ

_y2 ¼ m� 8
�2

� �
y2 �

3
2�
ðxy3 � xy1Þ þ

q2

�
n2ðtÞ; ð67cÞ

_y3 ¼ m� 15
�2

� �
y3 þ

1
�

2xy2 þ y2
1

� �
þ q3

�
n3ðtÞ: ð67dÞ
The auxiliary process can be computed similarly as for the 2-mode truncation. We perform the same set of numerical exper-
iments as for the 2-mode truncation, reported in Fig. 4. Similar behavior than previously noted can be observed. Observe that
the discrepancy between the numerical scheme and (54) gets smaller. This is expected as with additional modes, the
homogenized Eq. (60) (that we aim at approximating with our multiscale scheme) gets closer to (54).

4-mode truncation. We set M = 4 in (58) and apply the similar procedure as previously. For the sake of brevity, we do not
write the system of equations in this case and just report the numerical convergence.

We see in Fig. 5 a similar behavior of our numerical scheme as observed previously. We again notice that the discrepancy
between the numerical scheme and (54) is smaller than for lower order truncation. We also notice that for the auxiliary pro-
cess, one of the SDE reads _y4 ¼ m� 24

�2

� �
y4 þ . . . As we solve the auxiliary process with the explicit Euler–Maruyama scheme,

we have a stepsize restriction of the type 24dt/�2
6 2 to ensure boundedness of the (micro) numerical solution (see e.g., [36,

Section 4.2]). Thus, the micro-timesteps 2�p, p 6 3 cannot be used and we therefore only report numerical results for micro-
timesteps 2�p, p P 4.

The Kuramoto–Shivashinsky equation. The equations for the M-mode truncation of the Kuramoto–Shivashinsky equation
are very similar to the ones for the Burgers equation and will not be presented here. The only difference is that the fast
process is more dissipative than for the Burgers equation, due to the stronger dissipativity of the operator AKS compared
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Numerical convergence for 4-mode truncation. On the horizontal axis we monitor the accuracy of the micro-timestep and on the vertical axis we
e the error as given by (64a) and (64b) with M = 4.
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Numerical convergence for 3-mode truncation. On the horizontal axis we monitor the accuracy of the micro-timestep and on the vertical axis we
e the error as given by (64a) and (64b) with M = 3.
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to AB. As the results of the numerical experiments for the KS equation are very similar to the results reported in this section
for the Burgers equation, they will not be presented here.
5. Conclusions and further work

We have presented a new numerical method for the efficient and accurate solution of stochastic partial differential equa-
tions with multiple scales. The new numerical scheme is based on a combination of a spectral method with the HMM meth-
odology and has been tested on SPDEs with quadratic nonlinearities for which a rigorous homogenization theory exists. This
enables us to check the performance of our method. The numerical experiments presented in this paper suggest that the new
method performs well and allows to solve accurately multiscale SPDEs by solving a low dimensional fast–slow system of
SDEs. The method is suitable for infinite dimensional stochastic systems for which there is clear separation of scales, and
for which a low dimensional homogenised (or averaged) equation for the slow modes exists.

There are still many questions that are left open. First, the rigorous analysis of the proposed method and a careful study of
the convergence and stability properties of the proposed method remains to be done. In addition, the optimisation of the
proposed method by tuning appropriately the parameters of the algorithm has not been performed yet. This appears to
be an open problem even when the HMM methodology is applied to finite dimensional fast/slow systems of SDEs [37].

The proposed numerical algorithm could be used to study in detail the qualitative and quantitative properties of solutions
to SPDEs with quadratic nonlinearities, since SPDEs of this form exhibit very rich dynamical behaviour. Furthermore, we
would like to apply the numerical algorithm to more general classes (and systems) of semilinear SPDEs, for which an aver-
aged or homogenised equation is known to exist. Examples include systems of reaction/diffusion equations that were con-
sidered in [28] as well as the Swift–Hohenberg SPDE [38].

In our algorithm, we did not make use of the fact that the form of the amplitude equation (i.e. a Landau equation with
additive and multiplicative noise) is known. Knowledge of the functional form of the coefficients that appear in the homog-
enised or averaged equation can be used in order to simplify the numerical algorithm. The stochastic Landau equation ap-
pears as the amplitude equation for several infinite dimensional stochastic dynamical systems, not only for SPDEs with
quadratic nonlinearities, e.g. [39]. Thus, the algorithm proposed in this paper, could be modified to develop an efficient
method for studying the dynamics of SPDEs near bifurcation. All these topics are currently under investigation.
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