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We present an efficient numerical algorithm to approximate the statistical moments of 
stochastic problems, in the presence of models with different fidelities. The method 
extends the multi-fidelity approximation method developed in [18,26]. By combining the 
efficiency of low-fidelity models and the accuracy of high-fidelity models, our method 
exhibits fast convergence with a limited number of high-fidelity simulations. We establish 
an error bound of the method and present several numerical examples to demonstrate the 
efficiency and applicability of the multi-fidelity algorithm.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, many efforts have been devoted to the development of efficient numerical methods for uncertainty 
quantification (UQ). In practical computations, the most widely used method is stochastic collocation, as it is nonintrusive 
sampling based and allows one to use existing deterministic codes. Unfortunately, this number of deterministic simulations 
required by accurate stochastic collocation methods grows very rapidly for high dimensional random inputs — the curse 
of dimensionality. For large scale simulations, the computational cost can become prohibitive, as the computation of each 
individual deterministic sample is highly costly. Many options have been investigated to tackle this challenge. For example, 
methods that explore more efficient sampling strategies using sparse grids, adaptivity, smoothness or sparsity of the solu-
tions, cf. [25,2,1,11,5,8,9,12,16,17,19,20,23]. There is also a recent surge of interest in multilevel Monte Carlo method, which 
uses the hierarchy models by physical space refinement to achieve variance reduction in random space, cf., [14,4,3,7,21]. 
Other approaches to achieve variance reduction have also been presented, cf., [6,22].

In this paper we focus primarily on the computation of solution statistics using models with different fidelities. In 
particular, we focus on the case with one high-fidelity model and one low-fidelity model. Here, the high-fidelity model is 
able to produce high resolution solution to the underlying physical problem. The simulation cost is high, thus preventing 
us from using the standard sampling strategy (Monte Carlo, sparse grids, etc.). The low-fidelity model, on the other hand, 
is not highly accurate but can capture the essential behavior of the underlying problem. It is computationally cheap and 
can be sampled a large number of times. Typically, the low-fidelity models are constructed using simplified physics and/or 
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much coarser discretization. Examples are abundant in many problems, for example, the fine-scale versus the coarse grained 
models in multi-scale problems.

We present an efficient stochastic collocation algorithm for computing solution statistics using a high-fidelity model 
and a low-fidelity model. A distinct feature of our method is that it “seperate” the low-fidelity solutions and high-fidelity 
solutions. It uses the low-fidelity solutions, which consist of a large number of samples, to construct a best approximation 
of the target solution statistics (mean, variance, etc.), and then apply the best approximation to the high-fidelity samples. 
Our method is essentially a “learning” algorithm, where the low-fidelity samples are used to “train” the best approximation. 
It is different from most of the existing methods, which usually achieve improved performance via variance reduction or 
by exploring the hierarchical structure (if available) of the models. The current method is an extension of the method 
developed in [18,26], where the same training idea was first proposed and used to predict the solutions at arbitrary sample 
locations. A straightforward way to use the technique of [18,26] to compute solution statistics is to compute the bi-fidelity 
solutions at every sample points and then compute the statistics. Although computing each bi-fidelity solution is efficient, 
computing such solutions at a large number of samples becomes expensive. The major contribution of this paper is to 
present a mathematically equivalent algorithm that directly computes the solution statistics and bypasses the step of a large 
number of bi-fidelity computations. Here we show that the method can be highly efficient in approximating the statistics 
(mean, variance, etc.) of the underlying stochastic problem. We establish an error bound of the method and use extensive 
numerical examples to demonstrate its performance. In the examples with varying multiple dimensions, accuracy solutions 
can be obtained by O (10) number of high-fidelity simulation samples.

2. Problem setup

Let w be the solution of a system of governing equations in a bounded spatial domain D ⊂ R
� , � = 1, 2, 3, and a random 

parameter domain I Z ⊆ R
d , d ≥ 1. For general discussion we do not assume any specific form of the governing equations. 

We are interested in a quantity-of-interest (QoI), which is a function of the solution w , i.e.,

v = q(w) : D̄ × I Z →R. (2.1)

Hereafter we denote x = (x1, . . . , x�) the spatial variable and z = (z1, . . . , zd) the random variable. Let ρ : Iz → R
+ be the 

probability distribution function of z. We are interested in evaluating the statistical average of the QoI, ν : D̄ → R,

ν(·) = E[v] =
∫

v(·, z)ρ(z)dz. (2.2)

For example, when v = wk , k ≥ 1, it stands for the k-th moment of the solution.

2.1. Numerical approximations

For numerical approximation, we seek an approximate solution u in a linear subspace V for any fixed random variables,

u : Iz → V . (2.3)

Obviously, the choice of the linear subspace V depends on the chosen numerical method. We assume that the numerical 
method is deterministic and satisfies

u(·, z) ≈ v(·, z), ∀z ∈ I Z ,

in a proper norm in the physical space.
Since the solution dependence in the random space can also be complex, the mean operator E in (2.2) also needs to 

be approximated. In this paper we focus on linear sampling based approximation, which is the predominant approach in 
practice. Let � = {z1, . . . , zm} ⊂ I Z be a set of samples, then for any integrable function f : I Z →R we define

Ẽ[ f ;�] :=
m∑

i=1

wi f (zi) ≈ E[ f ], (2.4)

where wi is the weight at the sample zi , for i = 1, . . . , m. For example, the standard Monte Carlo method has an uniform 
weight wi ≡ 1/m, whereas for most cubature rules the weights are non-uniform. Hereafter we assume the weights satisfy

m∑
i=1

wi = 1, ‖w‖�2 < ∞, (2.5)

where ‖w‖�2 is the 2-norm of w = (w1, . . . , wm). Although it is highly desirable to have wi > 0, this is not the case for 
many cubature rules.

With the approximations in both the physical space and the random space, we have

μ(·) = Ẽ[u;�] ≈ ν(·) (2.6)

as an approximation to the true statistical average (2.2).
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2.2. High and low fidelity approximations

We assume there is a high-fidelity deterministic numerical approximation

uH : I Z → V H , (2.7)

in a high-fidelity Hilbert subspace V H , equipped with inner product 〈·, ·〉H and its induced norm ‖ · ‖H . Similarly, we assume 
there is a low-fidelity approximation

uL : I Z → V L, (2.8)

equipped with inner product 〈·, ·〉L and norm ‖ · ‖L . We assume that uH is much more accurate than uL , but also much 
more time consuming to obtain.

Let �N = {z1, · · · , zN } ⊂ I Z be a set of dense samples, from which an accurate approximation of the expectation Ẽ (2.4)
can be obtained. We assume N � 1. We then readily have the low-fidelity estimation of the mean

μL(·) = Ẽ[uL;�N ] =
N∑

i=1

wiu
L(·, zi), (2.9)

which is not highly accurate due to the limited accuracy of uL at each sample points. The high-fidelity approximation Ẽ[uH ]

μH (·) = Ẽ[uH ;�N ] =
N∑

i=1

wiu
H (·, zi) (2.10)

should be accurate, but it is not computable due to the exceedingly large simulation cost of N � 1. Our goal is to construct 
a bi-fidelity approximation μB ≈ μH , by using the low-fidelity mean (2.9) and a limited number of high-fidelity samples.

We remark that the method developed in [18,26] allows one to compute bi-fidelity solutions at any given sample point, 
i.e., uB(z) ≈ uH (z), z ∈ I Z . It is then natural to approximate the high-fidelity mean by using the bi-fidelity solutions, i.e.,

μ̃B(·) = Ẽ[uB;�N ] =
N∑

i=1

wiu
B(·, zi).

This straightforward approach requires the bi-fidelity approximations of the solution at the dense sample set �N and can 
become computationally expensive. In the following, we shall present a mathematically equivalent method that directly 
constructs the bi-fidelity mean and avoids the bi-fidelity approximation at the dense set �N . The new method is thus much 
more efficient.

3. Bi-fidelity method for expectation

In this section we describe the bi-fidelity algorithm for computing the expectation (2.4). The method is an extension of 
the work of [18,26], which developed a multi-fidelity approximation of the solution at any sample location z.

3.1. The main algorithm

Again, let �N = {z1, . . . , zN } ⊂ I Z with N � 1 be a set of dense samples, from which an accurate approximation of the 
expectation Ẽ (2.4) can be obtained. Let

γn = {zi1 , . . . , zin } ⊂ �N (3.1)

be a subset of samples. The general procedure of our bi-fidelity algorithm is as follows.

(1) Conduct the low-fidelity sampling at the dense sample set �N and obtain the low-fidelity approximation μL(·) via (2.9).
(2) Select a subset of samples γn ⊂ �N , where n � N .
(3) Conduct the high-fidelity computations at the subset γn and obtain the high-fidelity solution samples, uH (γn) =

{uH (·, zi1 ), . . . , uH (· · · , zin )}.
(4) Construct a bi-fidelity approximation μB = μB(μL, uH (γn)).

The key issue lies in Step (2), the selection of the subset γn , and Step (4), the construction of the bi-fidelity approxima-
tion μB . We now present the detail of these two steps.



X. Zhu et al. / Journal of Computational Physics 341 (2017) 386–396 389
3.1.1. Selection of the subset γn
For any set of samples δk = {z1, . . . , zk}, we denote

uL(δk) =
{

uL(z1), . . . , uL(zk)
}

, (3.2)

and define the corresponding space

U L(δk) = span(uL(δk)) = span{uL(z1), · · · , uL(zk)}. (3.3)

Similarly, for the high-fidelity model, we define

uH (δk) =
{

uH (z1), . . . , uH (zk)
}

, U H (δk) = span(uH (δk)). (3.4)

Our choice of the n-point subset γn follows the procedure proposed in [18,26]. It is a greedy algorithm that seeks to 
find the next sample whose corresponding low-fidelity solution is furthest to the space spanned by the existing low-fidelity 
solution set. Starting from a trivial initial choice γ0 = {}, we let γk = {zi1 , . . . , zik } ⊂ �N be the k-point existing subset in �N . 
We then find the (k + 1)-th point by

zik+1 = argmax
z∈�N

dist(uL(z), U L(γk)), γk+1 = γk ∪ zik+1 , (3.5)

where the distance function dist(g, G) between the function g ∈ uL(�N ) and the space G ⊂ U L(�N ) follows the standard 
definition. This greedy algorithm can be readily implemented via simple operations of numerical linear algebra.

• Let W be the Gramian matrix of the low-fidelity solution uL(�N ), i.e.,

W = (wij)1≤i, j≤N , wij =
〈
uL(zi), uL(z j)

〉L
. (3.6)

• Apply the pivoted Cholesky decomposition to the matrix W,

W = PT LLT P, (3.7)

where L is lower-triangular and P is a permutation matrix due to pivoting. This will produce an ordered permutation 
vector P = (i1, . . . , iN), from which we choose the first n points to define γn = {zi1 , . . . , zin }.

More details and properties of the algorithm can be found in [18,26].

3.1.2. Bi-fidelity approximation
Once the steps (1)–(3) are finished in the main algorithm in Section 3.1, we possess the following

• Low-fidelity solutions at the dense sample set �N , uL(�N ), and the corresponding low-fidelity average, μL (2.9).
• The subset samples γn ⊂ �N .
• High-fidelity solutions in the subset γn , uH (γn).

To construct the bi-fidelity approximation of the average, we first construct the best approximation of μL in the low-
fidelity space U L(γn), and then apply the same construction to the high-fidelity space U H (γn). To accomplish this, we first 
construct the orthogonal projection operator that maps the low-fidelity solution space U L(γn) onto the mean μL . That is, 
we define

P[U L(γn);μL] :=
n∑

k=1

ckuL(·, zik ) ≈ μL(·), (3.8)

where the coefficients are determined by solving, for each sample zi j ∈ γn , j = 1, . . . , n,

n∑
k=1

〈uL(zik ), uL(zi j )〉Lck = 〈μL, uL(zi j )〉L, j = 1, . . . ,n, (3.9)

which is a linear system of equations. The notation P[U L(γn); μL] implies this operator is constructed by using μL and U L

constrained on the set γn .
Our bi-fidelity approximation of the average is then defined by

μB(·) := P[U H (γn);μL] =
n∑

k=1

ckuH (·, zik ), (3.10)

where the coefficients ck are computed in (3.9). This implies that the bi-fidelity approximation is the output of the same 
operator P, which is constructed using μL , with U H (γn) as input.
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3.2. Error analysis

The algorithm is a straightforward extension of the bi-fidelity method in [18,26], which seeks to approximate the solution 
at arbitrary parameter location of z ∈ I Z . (Note that the method in [18,26] does not require probability.) For any z ∈ I Z , we 
denote

ε(z) =
∥∥∥uH (z) − P[U H (γn); uL(z)]

∥∥∥H
< ∞ (3.11)

the error bound of the bi-fidelity approximation. The bound was established in Theorem 4.4 of [18]. Its detailed expression 
is difficult to summarize without invoking too many notations unnecessary for this paper. Interested reader should consult 
Theorem 4.4 of [18].

Based upon this result, we derive the following error estimate for the bi-fidelity average μB (·), compared to the high-
fidelity average Ẽ[uH ; �N ] (which is not feasible to compute).

Theorem 3.1. Let μB be the bi-fidelity mean (3.10) and μH be the high-fidelity mean (2.10). If the assumptions in Theorem 4.4 of [18]
are satisfied, then∥∥∥μB(·) − μH (·)

∥∥∥H ≤ C w‖ε(z)‖�2(�N ), (3.12)

where ε(z) is defined in (3.11) and C w = ‖w‖�2 is the 2-norm of the weight vector w = (w1, . . . , w N). Furthermore, if all weights are 
positive, i.e., wi > 0, i = 1, . . . , N, then∥∥∥μB(·) − μH (·)

∥∥∥H ≤ max
z∈�N

ε(z). (3.13)

Proof. The linearity of the operator P immediately gives us

μB(·) = P[U H (γn);μL] = P

[
U H (γn, ); Ẽ[uL;�N ]

]
= Ẽ

[
P

[
U H (γn); uL

]
;�N

]
.

Then,

‖μB − μH‖H =
∥∥∥Ẽ[

P

[
U H (γn); uL

]
− uH ;�N

]∥∥∥H =
∥∥∥∥∥

N∑
i=1

wi

(
P[U H (γn); uL(zi)] − uH (zi)

)∥∥∥∥∥
H

.

A straightforward use of the Cauchy–Schwarz inequality completes the proof. �
4. Numerical examples

In this section, we present several numerical examples to illustrate the effectiveness and efficiency of our method. For 
benchmarking purpose, all examples have relatively small computational cost so that we can run the high-fidelity model 
many times to compute the reference solution μH , from which we compute the numerical errors of the bi-fidelity solu-
tions. The errors are reported as the standard L2 norm in physical space. Without loss of generality, we employ uniformly 
distributed random variables in all the examples.

4.1. Function example

We first consider a simple example using a function with known analytical form,

u(x, z) = g(x, z + εz2) = cos(x(z + εz2)), (x, z) ∈ [−1,1] × [0,10π ]. (4.1)

To approximate this function we employ polynomials and choose the linear space V to be �K , the linear space of polyno-
mial of degrees up to K . The orthogonal projection of g has the following analytical form,

gK (x, z) := P�K g =
K∑

k=0

ĝk(z)L̃k(x), (4.2)

where L̃k is the normalized Legendre polynomial,

ĝk = ck

√
π(2k + 1)

|z| Jk+1/2(|z|), z �= 0, ck = �[e(isgnz)ik],

and Jk is the k-th orde Bessel function of the first kind.
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Fig. 4.1. Function example: Decay of errors in the mean (top) and the second moment (bottom) with respect to the number of high-fidelity simulations by 
the bi-fidelity algorithm and the standard Monte Carlo method.

We choose the low-fidelity model to be g35 and high-fidelity model to be g100. The approximation space in physical 
space V are the piecewise linear polynomials with 500 uniform grids. That is, V L = V H . The dense sampling set �N = 1, 000
Monte Carlo points.

In Fig. 4.1 the numerical errors in the first moment (mean) and second moment by the bi-fidelity algorithm are shown, 
with respect to the number of high-fidelity samples. We clearly observe the very fast error decay with only about 10 
samples. For reference the error convergence of the high-fidelity Monte Carlo method (MCS) is also shown, which has the 
standard N−1/2 convergence rate. The bi-fidelity method exhibits drastic improvement in performance over the standard 
MCS. Note that the error of the bi-fidelity method will saturate at about O (10) high-fidelity samples. This is expected as 
the bi-fidelity method relies on the mapping between U L(γn) and μL , as shown in (3.8), whose accuracy is limited by the 
quality of the low-fidelity model.

4.2. One dimensional stochastic elliptic equation

We now consider an elliptic equation with random diffusivity, a standard benchmark problem in stochastic computing.{ −(a(x, z)ux(x, z))x = 1, (x, z) ∈ (0,1) × [−1,1]d,

u(0, z) = 0, u(1, z) = 0,
(4.3)

where the diffusivity field is modeled as
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Fig. 4.2. One-dimensional diffusion problem in d = 10: Numerical errors in the mean (top) and second moment (bottom) with respect to the number of 
high-fidelity simulations by the standard Monte Carlo method, the sparse grids method, bi-fidelity method based on Monte Carlo, and bi-fidelity method 
based on sparse grids.

a(x, z) = 1 + σ

d∑
k=1

1

(kπ)2
cos (2πkx)zk, d > 1. (4.4)

Here we let d = 10 and σ = 4. (The positivity of a is strictly enforced for the choice of the parameters.)
The Chebyshev collocation method is employed to solve the problem in physical space. The low-fidelity model are the 

solution using 8-point Chebyshev collocation method; whereas the high-fidelity model is based on 128-point Chebyshev 
collocation method. Consequently, the low-fidelity approximation space V L is different from the high-fidelity approximation 
space V H . Two dense sampling sets are employed to compute the accurate mean. One is the random Monte Carlo sample 
set with N = 10, 000 points, and the other one is the level 3 Clenshaw–Curtis sparse grids set ([25]). At d = 10, the sparse 
grids set has N = 1, 581 points, which have non-uniform and even some negative weights. This is to illustrate the fact that 
the bi-fidelity method can be applied to any low-fidelity model using the weighted sum form (2.9) for computing the mean. 
Having these two ways to compute the statistical averages over the dense sets, we thus have two versions of bi-fidelity 
algorithms.

The convergence of the errors in mean and second moment is shown in Fig. 4.2 with respect to increasing number 
of high-fidelity simulations, for both the bi-fidelity algorithm based on Monte Carlo simulation and the bi-fidelity method 
based on sparse grids. For comparison we also show the convergence of the Monte Carlo method and the sparse grids 
method. Again we observe very fast error decay by the bi-fidelity algorithms. The errors become exceedingly small after 
only less than 10 high-fidelity samples. This is a drastic improvement over the standard MCS and sparse grids.
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4.3. Two dimensional stochastic elliptic equation

We now consider the following 2D stochastic elliptic equation:{ −∇ · (a(x, y, z)∇u) = 0, (x, y) ∈ (−1,1)2,

u(−1, y, z) = −1, u(1, y, z) = 1, u y(x,−1, z) = 0, u y(x,1, z) = 0,
(4.5)

where the diffusivity field is modeled via the following Karhunen–Loeve expansion,

a(x, y, z) = 1 +
d∑

k=1

√
λkψk(x, y)zk. (4.6)

We let z ∈ (−1, 1)d be uniformly distributed random variables and let (λk, ψk)
d
k=1 be the eigen-pairs in the Karhunen–Loeve 

expansion of a random process with the following covariance function

C(x1, y1, x2, y2) = σ exp(−|x1 − x2| − |y1 − y2|),
with σ = 0.3. The KL expansion has explicitly computable eigenvalue-eigenfunction pairs based on its one-dimensional 
counterpart (cf., [13,24]). We truncate the expansion at d = 17, which keeps 91.4% of the total spectral energy.

We construct the following models:

• Model 1. This is a one-dimensional approximation to the two-dimensional problem (4.5). Due to the boundary conditions 
in (4.5), the problem exhibits certain “near” symmetry. Consequently, we define{ −(â(x, z)ux(x, z))x = 0, x ∈ (−1,1),

u(−1, z) = −1, u(1, z) = 1,
(4.7)

where â(x, z) = a(x, 0, z) = 1 + ∑d
k=1

√
λkψk(x, 0)zk is the one-dimensional version (at y = 0) of (4.6). We then employ 

the P1-finite element method with 80 uniform elements to solve (4.7).
• Model 2. This is the original two-dimensional problem (4.5), where we employ the P1 finite elements with a very coarse 

mesh — 128 uniform triangular elements with size h = 1/4.
• High-fidelity model. Here we employ the P1 finite element method with a uniform triangular mesh of 12, 800 elements 

with size h = 1/40. This is our high-fidelity model and can well resolve the solution.

We then examine the following bi-fidelity cases.

• Bi-fidelity 1. Here we let Model 1 be the low-fidelity model and construct bi-fidelity approximation in conjunction with 
the high-fidelity model.

• Bi-fidelity 2. Here we let Model 2 be the low-fidelity model and conduct the bi-fidelity approximation with the high-
fidelity model.

In both cases, the dense point set �N has N = 1, 000 i.i.d samples.
The numerical errors of mean and second moment of “bi-fidelity 1” and “bi-fidelity 2” approximations are plotted in 

Fig. 4.3. We first notice the fast error decay of the “bi-fidelity 2” case, whose errors decay nearly exponentially fast and 
reach very low level with only a few high-fidelity simulation runs. This indicates that Model 2, despite its coarse mesh 
(h = 1/4), is able to capture the solution variation in the random space reasonably well. On the contrary, the errors in “bi-
fidelity 1” saturate at a higher level after a few high-fidelity runs. This is not surprising, as the one dimensional low-fidelity 
model used in the Bi-fidelity 1 algorithm is rather over-simplified and has lower accuracy. Again, we observe both bi-fidelity 
approximations show better convergence behavior than the standard Monte Carlo approach.

4.4. Acoustic horn problem

We now present results for the two-dimensional Helmholtz equation. It is an acoustic horn problem from [26]. The 
acoustic field is described by the following time-harmonic Helmholtz equation,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�u + 4u = 0,

(2i + 1/25)u + ∂u
∂n = 0, ∂ Dout,

2iu + ∂u
∂n = 4i, ∂ Din,

∂u
∂n = 0, ∂ D j, j = 3,8,

iκ ju + ∂u
∂n = 0, on other boundaries,

(4.8)

where i2 = −1 and μ = (μ1, μ2, μ4, μ5, μ6, μ7, μ9, μ10) ∈ [0, 1]8 is modeled as a uniformly distributed random parameter 
governing the material properties. The geometry is shown in Fig. 4.4, where R = 12.5, a = 0.5, c = 0.1, d = 5, l = 5. The 
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Fig. 4.3. Two dimensional diffusion problem (4.7): Numerical errors of the mean (top) and second moment (bottom) with respect to the number of 
high-fidelity simulations by the standard Monte Carlo method, the “bi-fidelity 1” and “bi-fidelity 2” method.

Fig. 4.4. The domain of the acoustic horn problem.
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Fig. 4.5. Acoustic horn problem: Numerical errors in mean (top) and second moment (bottom) with respect to the number of high-fidelity simulations by 
standard Monte Carlo method and bi-fidelity method.

boundary condition at ∂ Dout is the lowest order Enquist–Majda absorbing boundary condition [10], to reduce the reflection 
effect due to the artificial boundary. The boundaries ∂ D3,8 consist of sound-hard materials and the rest of ∂ Di mimic 
sound-soft materials determined by the parameters κi .

We solve this problem using P2 bubble finite elements using the finite element package Freefem++ [15]. The low-fidelity 
model uses a mesh of 2, 061 elements; and the high-fidelity model uses a fine mesh of 22, 810 elements. The dense point 
set �N has N = 5, 000 i.i.d. random points.

The convergence results are shown in Fig. 4.5. Again, we observe very fast error convergence in the bi-fidelity simulations. 
With less than n = 10 high-fidelity simulations, the errors reduce to the level of the spatial discretization errors. The 
improvement over the standard Monte Carlo method is obvious.

5. Summary

In this paper we present a bi-fidelity algorithm for approximating the statistical moments of stochastic problems. The 
method extends the earlier work by [18,26], which approximates solutions at given sample locations. The current bi-fidelity 
method takes advantage of the low cost of the low-fidelity model and the high accuracy of the high-fidelity model. It uses 
the low-fidelity average and a limited number of high-fidelity simulations to construct a highly accurate approximation 
of the high-fidelity average. Error bound is established to ensure the method is well behaved. Numerous examples are 
presented to demonstrate the effectiveness of the bi-fidelity method. In most cases, the current bi-fidelity method is able to 
produce highly accurate results with only O (10) high-fidelity samples.
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