
Journal of Computational Physics 400 (2020) 108963
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A mesh-free method for interface problems using the deep

learning approach

Zhongjian Wang, Zhiwen Zhang ∗

Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 February 2019
Received in revised form 17 August 2019
Accepted 17 September 2019
Available online 23 September 2019

Keywords:
Deep learning
Variational problems
Mesh-free method
Linear elasticity
High-contrast
Interface problems

In this paper, we propose a mesh-free method to solve interface problems using the
deep learning approach. Two types of PDEs are considered. The first one is an elliptic
PDE with a discontinuous and high-contrast coefficient. While the second one is a linear
elasticity equation with discontinuous stress tensor. In both cases, we represent the
solutions of the PDEs using the deep neural networks (DNNs) and formulate the PDEs into
variational problems, which can be solved via the deep learning approach. To deal with
inhomogeneous boundary conditions, we use a shallow neural network to approximate the
boundary conditions. Instead of using an adaptive mesh refinement method or specially
designed basis functions or numerical schemes to compute the PDE solutions, the proposed
method has the advantages that it is easy to implement and is mesh-free. Finally, we
present numerical results to demonstrate the accuracy and efficiency of the proposed
method for interface problems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, deep learning methods have achieved unprecedented successes in various application fields, including
computer vision, speech recognition, natural language processing, audio recognition, social network filtering, and bioinfor-
matics, where they have produced results comparable to and in some cases superior to human experts [22,14]. Motivated
by this exciting progress, there are increased new research interests in the literature for the application of deep learning
methods for scientific computation, including approximating multivariate functions and solving differential equations using
the DNNs; see e.g. [16,27,37,38,19,42,31,34,43,32,18] and references therein.

There are many classical works on the approximation power of neural networks (NNs); see e.g. [8,17,11,30]. We refer
the reader to recent works on the expressive power (i.e., approximation power) of DNNs; see e.g. [7,33,40,27]. We also
mention the recent work by [16], where the authors investigate the relationship between DNNs with rectified linear unit
(ReLU) function as the activation function and continuous piecewise linear functions in the finite element method (FEM).
They prove that a ReLU-DNN with enough hidden layers and enough neurons within each layer can include the continuous
piecewise linear FEM space. Thus, one can represent a solution of PDE using the ReLU-DNN.

Solving ODEs or PDEs with a neural network as an approximation is a natural idea, which has been considered in various
forms in the literature, e.g. [23,26,21]. The main idea is to train NNs to approximate the solution by minimizing the residual

* Corresponding author.
E-mail addresses: ariswang@connect.hku.hk (Z. Wang), zhangzw@hku.hk (Z. Zhang).
https://doi.org/10.1016/j.jcp.2019.108963
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.108963
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:ariswang@connect.hku.hk
mailto:zhangzw@hku.hk
https://doi.org/10.1016/j.jcp.2019.108963
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.108963&domain=pdf

2 Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963
of the ODEs or PDEs and also of the initial and boundary conditions. These papers estimate neural network solutions on an
a priori fixed mesh.

Thanks to the widespread availability of cheap computing resources (e.g. TensorFlow and PyTorch) and theoretical ad-
vances in stochastic optimization (e.g. stochastic gradient descent), solving PDEs or stochastic PDEs using a DNN has become
an emerging research topic. A deep Ritz method [38] was developed to solve Poisson problems and eigenvalue problems
from variational principles using DNNs. Meanwhile, deep learning-based numerical methods [15] were proposed to solve
high-dimensional parabolic PDEs and backward stochastic differential equations. Recently, a physics-informed neural net-
work (PINN) method [32] and a deep Galerkin method (DGM) [34] were developed to solve PDEs efficiently. The main idea
of PINN and DGM is to train DNNs to approximate the solution by minimizing the residual of the PDEs and also of the
initial and boundary conditions. In the context of surrogate modeling and uncertainty quantification (UQ), several efficient
methods based on the DNNs were developed recently, including the Bayesian deep convolutional encoder-decoder networks
[42], deep multiscale model learning [36], and physics-constrained deep learning method [43]. We also refer the interested
reader to [19,33,18] and references therein.

In this paper, we will use the deep learning method to solve interface problems, which have many applications in
physics and engineering sciences. For example, to model the heterogeneous porous medium in the reservoir simulation,
the permeability field is often assumed to be a multiscale function with high-contrast and discontinuous features. Another
example is to study the evolution of the shape and location of fibroblast cells under stress [41]. The model is based on ideas
of a continuum mechanical description of stress-induced phase transitions, where the cell is modeled as a transformed
inclusion in a linear elastic matrix and the cell surface evolves according to a special kinetic relation. In this model, the
stress tensor has discontinuity across the cell surface due to the transformation in the strain tensor caused by a contraction
in the cell.

There has been a lot of effort in developing accurate and efficient finite element methods (FEMs) for interface prob-
lems; see e.g. [2,5] and references therein for some early works. An immersed-interface finite element method [25,13] was
developed to solve elliptic interface problems with non-homogeneous jump conditions. The method considered uniform
triangular grids and approximated the interface by a straight line segment when it intersects a coarse grid element. By
matching the jump condition, a special basis function for elements that were cut through by the interface was created and
proved to have a second-order convergence rate in the L2 norm and a first-order convergence rate in the H1 semi-norm.
However, the constants in the error estimate depend on the contrast of the coefficient. Later, a new multiscale finite element
method [6] was developed that was able to accurately capture solutions of elliptic interface problems with high-contrast
coefficients by using only coarse quasi-uniform meshes, and without resolving the interfaces. Moreover, an optimal error
estimate was obtained in the sense that the hidden constants in the estimates were independent of the contrast of the PDE
coefficients.

Alternatively, some efficient finite difference methods (FDMs) were proposed to solve interface problems. Such results
include, among others, an immersed boundary method (IBM) [28] was developed to study the motion of one or more
massless, elastic surfaces immersed in an incompressible, viscous fluid, particularly in bio-fluid dynamics problems where
complex geometries and immersed elastic membranes are present. We refer to [29] for an extensive review of the IBM.
Another related work is the immersed interface method (IIM) for elliptic interface problems developed in [24]. By incorpo-
rating the jump condition across the interface to modify the finite difference schemes near the interface, a second order
accuracy was maintained. An important development of interface capturing methods is the ghost fluid method (GFM) [12],
which incorporated the interface jump condition into the finite difference discretization by tracking the interface with a
level set function. The GFM can capture discontinuities in multi-medium compressible multiphase flows.

In this paper, we are interested in developing deep learning methods to solve interface problems. Our work is inspired
by the deep Ritz method proposed in [38], where the Poisson problems and eigenvalue problems were studied. We intend
to investigate the expressive power of the DNNs in representing solutions of interface problems. In addition, we will study
the performance of the stochastic gradient descent (SDG) method [4] in solving optimization problems associated with
the interface problems. Two types of PDEs will be considered. The first one is an elliptic PDE with a discontinuous and
high-contrast coefficient, which is a challenging problem and has been intensively studied; see [3,25,6,9]. The second one is
a linear elasticity equation with discontinuous stress tensor [41].

In both problems, we first represent the solutions of the PDEs using the DNNs and formulate the PDEs into variational
problems, which can be solved using the deep learning approach. Then, we use the SGD method to solve the variational
problem. To impose inhomogeneous boundary conditions, we propose to use a shallow neural network to approximate
the boundary conditions. Since the boundary conditions are defined in a lower-dimensional space (compared with the
solution itself), a shallow neural network can approximate the boundary conditions well and reduce computational costs
(e.g. computing the automatic differentiation) in the training process.

We find that the proposed DNN method is easy to implement and is mesh-free since we do not need to choose an
adaptive mesh or a specially designed numerical scheme to discretize the PDEs. Our numerical results show that the DNN
method can efficiently solve the two types of PDEs considered here. The accuracy of the DNN method is mainly determined
by the expressive power of the DNNs and the stochastic optimization methods. Moreover, we observe that the convergence
time of the SGD method is random, which is due to the fact that the iteration process of the SGD method can be get stuck
into some local minimums. Especially, we find that it takes a longer time to get out of local minima in a ‘harder’ case of
the high-contrast problem; see Section 5.1 for more details.

Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963 3
The rest of the paper is organized as follows. In Section 2, we review the basic idea of the DNN and the deep Ritz
method. In Section 3, we introduce the idea of using a shallow neural network to deal with inhomogeneous boundary
conditions. The derivation of the methodology for both the elliptic PDEs and linear elasticity PDEs will be presented in
Section 4. In Section 5, we present numerical results to demonstrate the performance of our method. Concluding remarks
will be made in Section 6.

2. Some preliminaries

In this section, we briefly discuss the definition and approximation properties of the DNNs and the formulation of the
deep Ritz method [38].

2.1. The DNN and its approximation property

There are two ingredients in defining a DNN. The first one is a (vector) linear function of the form T : Rn → Rm , defined
as T (x) = Ax + b, where A = (aij) ∈ Rm×n , x ∈ Rn and b ∈ Rm . The second one is a nonlinear activation function σ : R → R .
A frequently used activation function, known as the rectified linear unit (ReLU), is defined as σ(x) = max(0, x) [22]. In the
artificial neural network literature, the sigmoid function is another frequently used activation function, which is defined
as σ(x) = (1 + e−x)−1. By applying the activation function in an element-wise manner, one can define (vector) activation
function σ : Rm → Rm .

Equipped with those definitions, we are able to define a continuous function F (x) by a composition of linear transforms
and activation functions, i.e.,

F (x) = T k ◦ σ ◦ T k−1 ◦ σ · · · ◦T 1 ◦ σ ◦ T 0(x), (1)

where T i(x) = Ai x + bi with Ai be undetermined matrices and bi be undetermined vectors, and σ(·) is the element-wisely
defined activation function. Dimensions of Ai and bi are chosen to make (1) meaningful. Such a DNN is called a (k +1)-layer
DNN, which has k hidden layers. Denoting all the undetermined coefficients (e.g., Ai and bi) in (1) as θ ∈ �, where θ is a
high-dimensional vector and � is the space of θ . The DNN representation of a continuous function can be viewed as

F = F (x; θ). (2)

Let F = {F (·, θ)|θ ∈ �} denote the set of all expressible functions by the DNN parameterized by θ ∈ �. Then, F provides an
efficient way to represent unknown continuous functions, comparing with a linear solution space used in classic numerical
methods, e.g., a trial space spaced by linear nodal basis functions in the FEM.

One of the fundamental questions in the DNN is to study its approximation property, also known as its expressive
power [7,33]. Early studies of approximation properties of a neural network can be found in [8,17], where approximation
properties for the function classes given by a feed-forward neural network with a single hidden layer were studied. Later,
error estimates for such neural networks in terms of a number of neurons, layers of the network, and activation functions
were obtained; see e.g. [11,30] for a good review of relevant works.

In recent years, significant efforts have been devoted to study the benefits on the expressive power of NNs afforded by
NN depth. For example, [7] proved that convolutional DNNs were able to express multivariate functions given in so-called
Hierarchic Tensor (HT) formats. The expressive power of shallow and deep neural networks with piecewise linear activation
functions was studied in [40] and rigorous upper and lower bounds for the network complexity in approximating Sobolev
spaces was established. [27] obtained a new error bound for the approximation of multivariate functions using deep ReLU
networks, which shows that the curse of dimensionality is lessened by establishing a connection between the deep networks
and sparse grids. [16] studied the relationship between ReLU-DNN and continuous piecewise linear functions from the linear
FEM and built a connection for the DNN method with the FEM method. Specifically, [16] proved the following statement.

Proposition 2.1. Given a locally convex finite element grid Th, any linear finite element function with N degrees of freedom, can be
written as a ReLU-DNN with at most k = �log2 kh� + 1 hidden layers and at most O(kh N) number of the neurons, where kh denotes
the maximum number of neighboring elements of one node.

The Proposition 2.1 provides upper bounds in setting the number of hidden layers and the number of neurons within
each layer, when one uses the DNN to approximate the solution space spanned by the FEM basis. In our numerical results,
we find that choosing a relatively small number of hidden layers and neurons within each layer are good enough to obtain
accurate results for the interface problems studied in this paper.

2.2. Formulation of the deep Ritz method

The deep Ritz method is a deep learning based numerical method for solving variational problems [38]. Therefore, it
naturally can be used to solve PDEs. For example, we consider a Poisson equation defined on a compact domain D � Rd ,

4 Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963
{
−�u(x) = f (x), x ∈ D,

u(x) = 0, x ∈ ∂ D.
(3)

Given the Poisson equation (3), we can derive the corresponding variational problem as

J (v) = 1

2

∫
D

∇v(x) · ∇v(x)dx −
∫
D

v(x) f (x)dx, v ∈H1
0(D). (4)

Then, the solution of (3) can be obtained by,

u = arg min
v∈H1

0(D)

J (v). (5)

From the perspective of scientific computing, the Poisson equation (3) can be solved using numerical methods, such as
FDMs and FEMs. From the perspective of machine learning however, the numerical solution of u(x) is interpreted as a
function with x ∈ Rd as its input and R1 as its output, where d denotes the dimension the physical domain D . Thus, it can
be approximated by F (x) in (1).

Let ũ denote the DNN representation of the solution of the Poisson equation. Substituting ũ into the variational prob-
lem (4), we get the optimization problem

ũ = arg min
F∈F0

J (F), (6)

where F0 is a subspace of F that satisfies the boundary condition on ∂ D . The justification of this assumption will be
discussed later.

After parameterizing the expressible function space by θ ∈ �; see Eq. (2), we equivalently define the variational prob-
lem (4) as

min
θ∈�

J (θ) = 1

2

∫
D

|∇ F (x, θ)|2dx −
∫
D

F (x, θ) f (x)dx. (7)

In general the above variational problem (7) is non-convex, even the original variational problem (4) is so. In other words,
the variational problem (4) is convex with respect to the solution u(x), however, the variational problem (7) is non-convex
with respect to the parameters in the DNN. Obviously, it is nontrivial to solve a non-convex variational problem due to the
existence of local minima and saddle points, which poses a challenge to the DNN based methods for solving PDEs.

Since the dimension of the parameter space � is very large and the corresponding variational problem is non-convex,
one usually uses the SGD method [4] to solve (7). There are plenty of optimization methods to search among the large
parameter space. To accelerate the training of the DNN, we use the Adam optimizer version of SGD [20].

In practice, it is not straightforward to impose boundary conditions in the DNN representation. In the homogeneous
Dirichlet problem (3), a relaxation approach was proposed to address this issue. Specifically, one adds a soft constraint (a
boundary integral term) to the functional J (·) defined in (7) and obtains

ũε = arg min
F∈F

(
J (F) + 1

ε

∫
∂ D

F (x, θ)2dx
)
. (8)

Notice that the soft constraint term 1
ε

∫
∂ D F (x, θ)2dx will approach zero when we decrease the parameter ε in the calcula-

tion. Therefore, the homogeneous boundary condition is satisfied in a certain weak scene.

3. Inhomogeneous boundary conditions

To demonstrate the idea, we consider an inhomogeneous Dirichlet problem as follows,{
Lu(x) = f (x), x ∈ D,

u(x) = g(x), x ∈ ∂ D,
(9)

where L is a linear PDE operator, f (x) is a source function, and g(x) is a boundary condition. Let J (v; f) denote the
Lagrangian form associated with the homogeneous Dirichlet problem of (9), i.e., g(x) = 0; see (4) for instance.

To deal with the inhomogeneous boundary condition in (9), we first use a shallow neural network to approximate the
boundary condition g(x). Let g̃(x) denote the approximation of g(x) by using a shallow neural network, which is defined
on whole domain D . However, we only require that the boundary value of g̃ satisfies the boundary condition g(x), which
can be obtained by solving the following optimization problem

Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963 5
Fig. 1. Network Layout for g̃ .

Fig. 2. Network Layout for u′ .

g̃(x) = arg min
G∈G

(∫
∂ D

(
G − g(x)

)2
dx

)
, (10)

where G denotes the set of all expressible functions by a shallow neural network. The optimization problem (10) can be
approximated by,

vol(∂ D)

N0

N0∑
i=1

(
G(yi) − g(yi)

)2
, (11)

where yi
i.i.d.∼ Uni f (∂ D) and N0 is the number of sample points on the boundary ∂ D . In practice, uniform sampler on

∂ D is not necessary. One can change the integrand of (10) by multiplying the Radon-Nikodym derivative of the sampler’s
distribution. Let ρ(dx) denote the distribution of the grid points on the boundary. Notice that

∫
∂ D

(
G − g(x)

)2
ρ(dx) = 0

implies
∫
∂ D

(
G − g(x)

)2
dx = 0. Once we obtain a sampler according to the distribution ρ(dx), which is absolutely continuous

w.r.t. Lebesgue measure of ∂ D , we can still minimize (11) to obtain g̃(x). Thus, we do not need to specially treat the shape
of boundaries.

In our proposed approach, reasons for choosing a shallow network to approximate g(x) are twofold. First, g̃(x) is used to
approximate the inhomogeneous boundary condition g(x). Since g(x) is defined in a lower-dimensional physical space (i.e.,
∂ D instead of D), we can use a shallow neural network to approximate it well. Compared with the neural network used to
represent a solution, the shallow neural network g̃(x) has fewer parameters, which helps shorten the training process. For
instance, the shallow neural network can reduce computational costs in computing the automatic differentiation. Second,
due to the simple structure of g̃ , the term Lg̃ · v in J (v; f −Lg̃) will not oscillate in D (especially in the weak form), which
leads to a faster convergence in solving optimization problems.

Fig. 1 and Fig. 2 show possible network layouts for approximating g̃ and u′ , respectively, where w denotes the width of
each hidden layer. For example, Layer 2 in Fig. 1 is in R10. To be more precise, denote Layer 1 to be l1 ∈R10, Layer 2 to be
l2 ∈R10, then,

l2 = σ(A[l1; x] + b), (12)

where x ∈ Rd , A is a 10 × (10 + d) matrix and b is a vector in R10 to be determined. To increase the performance, we
also add connections between non-adjacent layers (e.g. Layer 1 and Layer 3 in Fig. 2). A simple calculation can show the
parameters in the network for g̃ is far fewer than the one for u′ .

Since the neural network that is used to represent g̃ is shallow (i.e., g̃ is represented by a composition of a few levels
of smooth functions), we can assume Lg̃ is smooth at least in the weak sense. Thus, Lg̃ can be easily computed by the
automatic differentiation. Then, we solve an auxiliary PDE as follows,{

Lu′(x) = f (x) −Lg̃(x), x ∈ D,

u′(x) = 0, x ∈ ∂ D.
(13)

Now the problem (13) becomes a homogeneous Dirichlet problem, which can be solved using the deep Ritz approach; see
Section 2.2. Finally, the solution of the inhomogeneous Dirichlet problem (9) can be represented as u(x) = u′(x) + g̃(x).

In our method, we first train the shallow neural network approximation g̃(x). Then, we keep g̃(x) fixed and train the
deep neural network approximation u′(x). Our method shares some similarity with the PINN method [32] and the DGM

6 Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963
[34] in the sense that these methods train DNNs to approximate the solutions of PDEs by solving optimization problems.
Our method has several new features. We solve PDEs through their corresponding variational problems, which avoids the
need to compute high-order derivatives of the solution. For example, if L in (9) is a second-order elliptic operator, we only
need to compute the first-order derivative of the solution. In the PINN method and DGM method, one needs to compute
second-order derivatives of the solution when one computes the residual of the PDEs. Moreover, using a shallow neural
network to approximate boundary condition allows us to simply impose inhomogeneous boundary conditions and reduce
computational costs in the training process.

4. Derivation of the methodology

4.1. Elliptic PDEs with discontinuous and high-contrast coefficients

We first consider elliptic PDEs with discontinuous coefficients defined as follows,

L(x)u(x) ≡ −∇ · (a(x)∇u(x)) = f (x), x ∈ D, (14)

u(x) = 0, x ∈ ∂ D, (15)

where D ⊆ Rd is a bounded domain and the boundary of D is a convex polygon. For notation simplicity, we study a homo-
geneous Dirichlet problem. The problems with inhomogeneous boundary conditions can be solved by using the approach
studied in Section 3.

The coefficient a(x) is assumed to be a scalar and has jumps across a number of smooth interior interfaces. Denoting
the inclusions by D1,...,Dm and setting D0 = D \ ⋃m

i=1 Di , we assume that the coefficient a(x) is piecewise constant with
respect to the decomposition {Di, i = 0, ..., m}. Setting amin = min a(x)|Di : i = 0, ...,m and dividing (14) by amin , we rescale
the problem. Specifically, let α(x) = a(x)

amin
denote the re-scaled coefficient, which is piecewise constant with respect to the

partition {Di, i = 0, ..., m} and α(x) ≥ 1 for all x ∈ D . Let αi denote the restriction of α(x) to Di . We are interested in
studying two types of high-contrast cases,

Case 1: min
i=1,...,m

αi � 1, α0 = 1, (16)

Case 2: α0 � 1, max
i=1,...,m

αi ≤ K , (17)

for some positive constant K . In Case 1, the inclusions are high permeability compared to the background, while the Case 2
contains a converse configuration.

Now, we are in the position to derive the formulation of deep learning approach to solve the elliptic PDEs (14)-(15) with
high-contrast coefficients (16)-(17). We define the corresponding variational problem as

J (v) = 1

2

∫
D

a(x)|∇v(x)|2dx −
∫
D

v(x) f (x)dx, v ∈ H1
0(D). (18)

Then, the solution of (14)-(15) can be obtained by solving u(x) = arg minv∈H1
0(D) J (v), where J (·) is defined in (18).

Again, we denote the set of all expressible function by F = {F (·, θ)|θ ∈ �} and set F0 = {F ∈ F
∣∣F |∂ D = 0}. Moreover, let

�0 denote the parameter set satisfies the homogeneous boundary condition, i.e., F (·, θ)|∂ D = 0, θ ∈ �0. The approximation
property of the DNN implies that F0 � C∞

0 (D) � H1
0(D). Therefore, we represent the solution u(x) to Eq. (14) using the

DNN method.
Let ũ = F (x; θ) denote the DNN representation; see Eq. (1). Then, ũ satisfies the following variational problem

ũ = arg min
F=F (·,θ)|θ∈�0

1

2

∫
D

a(x)|∇ F (x, θ)|2dx −
∫
D

F (x, θ) f (x)dx. (19)

Since the degree of freedom in the variational problem (19) is quite large and the parameter space �0 may have complex
geometry in �, we apply the Adam [20] with a soft constraint on the boundary of D to solve it. As such, we approximate
gradient of each parameter θk by,

∂
(

J
(

F (·, θ)
) + 1

ε

∫
∂ D F 2(·, θ)

)
∂θk

=1

2

∫
∂
(
a(x)|∇ F (x, θ)|2)

∂θk
dx −

∫
∂
(

F (x, θ) f (x)
)

∂θk
dx + 1

ε

∫
∂
(

F 2(x, θ)
)

∂θk
dx
D D ∂ D

Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963 7
≈ vol(D)

N1

N1∑
i=1

(1

2

∂
(
a(xi)|∇ F (xi, θ)|2)

∂θk
− ∂

(
F (xi, θ) f (xi)

)
∂θk

)
+ vol(∂ D)

εN2

N2∑
j=1

∂
(

F 2(y j, θ)
)

∂θk
, (20)

where xi
i.i.d.∼ Uni f (D), vol(D) is the volume of the domain, y j

i.i.d.∼ Uni f (∂ D), vol(∂ D) is the volume of the boundary, and
N = N1 + N2 is called the batch number in the context of deep learning (meaning the number of collocation points used in
one iteration). Notice that θ is a high-dimensional vector and θk is any component of θ . After we get the approximation of
the gradient with respect to θk , we can update each component of θ as

θn+1
k = θn

k − η
∂
(

J
(

F (·, θ)
) + 1

ε

∫
∂ D F 2(·, θ)

)
∂θk

|θk=θn
k
, (21)

where η is the learning rate.

Remark 4.1. From the derivation of the DNN formulation, one can see that the proposed method automatically deals with
the interface condition (or discontinuous coefficients) without knowing locations of the interfaces a priori.

4.2. Linear elasticity with discontinuous stress tensors

In this subsection, we consider the DNN approach to solve linear elasticity interface problems. One application of the
linear elasticity problem is to model the shape and location of fibroblast cells under stress [41]. The model is based on the
idea of a continuum mechanical description of stress-induced phase transitions. To demonstrate the main idea, we consider
a two-dimensional linear elasticity problem.

Suppose the matrix (meaning the material or tissue in cells) plus the cell together occupy a bounded domain D ⊆ Rd ,
d = 2 and D is composed of linear elastic homogeneous isotropic material. We assume the cell has small deformations, so
the linearized theory of elasticity is used. Let u = (u1, u2)

T denote the displacement field. Then, the strain tensor is

E = 1

2
(∇u + ∇uT), with Eij = 1

2

(∂ui

∂x j
+ ∂u j

∂xi

)
. (22)

In the matrix except the cell, the stress tensor is related to the strain tensor (gradient of the displacement) by S = CE,
where the elasticity tensor C is a linear transformation on the tensors. In the isotropic case, we have

CA = λTr(A)1 + μ(A + AT), (23)

for any two dimensional matrix A. In Eq. (23), λ and μ are lamé constants, Tr(·) is the trace operator, and 1 is the identity
matrix. In components, the action of the elasticity tensor C reads

Cijkl Akl = λAkkδi j + μ(Aij + A ji), (24)

where the Einstein summation convention is used.
The cell is modeled by a compact region
 with smooth boundary; see Fig. 13. Let E0 denote a transformation strain,

which is a constant symmetric matrix. We assume the stress tensor has a jump across the cell, i.e.,

S =
{
CE, in D \
,

C(E − E0), in
.
(25)

In the cell model, we set the transformation strain to be a contraction, which is represented by an isotropic compression
E0 = −α1 with α > 0. We suppose the cell model is in a quasi-static state. Therefore, the displacement field u satisfies the
following linear elasticity PDE with a discontinuous stress tensor in a weak sense,

−∇ · S = −∇ · (CE − χ
CE0
) = 0, x ∈ D, (26)

where χ
 is the characteristic function of the cell domain
. We impose Dirichlet boundary conditions on ∂ D . On the cell
boundary ∂
, the solution u satisfies the following jump conditions

[u] = 0, [S]n = 0, (27)

where n is the outward unit normal vector on ∂
 and [] denotes the jump across the interface.
Then, the linear elasticity interface problem (26)-(27) can be computed by numerical methods, such as the immersed

interface method [39] or matched interface and boundary method [35]. However, the implementation of the numerical
scheme is not simple due to the jump conditions on the interface, especially when the interface has a complicated geometry.

8 Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963
In the sequel, we shall develop the formulation for solving the linear elasticity interface problem (26)-(27) using the
DNN method. In the isotropic case, let e(v) ≡ (ei j(v)), where ei j(v) = 1

2 (∂ j vi + ∂i v j) and v = (v1, v2)
T is a vector valued

function. Then, Eq. (26) is rewritten as,

−∇ · (λTr(e(u))I2 + 2μe(u) − χ
CE0) = 0. (28)

Then, the variational problem associated with (28) is given by,

J (v) =
∫
D

(λ

2
Tr(e(v))2 + μe(v) : e(v) + 2χ
α(λ + μ)Tr(e(v))

)
dx, (29)

where : denotes the inner product between matrices, i.e., A : B = Tr(AT B) = ∑
i, j ai jbi j . Finally, the solution of (28) can be

obtained by u(x) = arg minv∈(H1
0(D))2 J (v), where J (·) is defined in (29). The remaining steps of the implementation of the

DNN method for (29) is exactly the same as we discussed in Section 4.1, so we skip the details here.

5. Numerical example

In this section, we shall carry out numerical experiments to demonstrate the performance of the DNN method in solving
interface problems. In addition, we are interested in understanding the SGD method in solving the non-convex optimization
problem. The TensorFlow [1] provides an efficient tool to calculate the partial derivatives in (20), which will be used in our
implementation.

5.1. 2D high-contrast elliptic problems

We consider 2D elliptic PDEs with high-contrast coefficients defined as follows,

−∇ · (a(x)∇u(x)) = f (x), x ∈ D, (30)

u(x) = g(x), x ∈ ∂ D, (31)

where x = (x1, x2), the domain is D = [−1, 1] × [−1, 1], and the coefficient a(x) is a piecewise constant defined by

α =
{
α1, r < r0,

α0, r ≥ r0,
(32)

where r = (x2
1 + x2

2)
1/2 and r0 = π/6.28. Moreover, the source term f (x) = −9r and the boundary condition g(x) = r3

α0
+

(1
α1

− 1
α0

)r3
0 . We choose the source term and boundary condition in such a way that the exact solution (in the polar

coordinate) is

u(r, θ) =
{

r3

α1
, r < r0,

r3

α0
+ (1

α1
− 1

α0
)r3

0, r ≥ r0.
(33)

In our first experiment, we choose α0 = 103 and α1 = 1 in (32); see Fig. 3 for the profile of the coefficient. Notice that
problem (30)-(31) is an inhomogeneous Dirichlet problem.

We convert the exact solution (33) in the Cartesian coordinate to get the reference solution and use the DNN method to
compute the numerical solution. The implementation of the DNN method has been intensively discussed in Section 3 and
Section 4.1. The network that we used is shown in Fig. 1 and Fig. 2. We have increased the number of hidden layers and the
number of neurons within each layer and found that the error does not decrease, which means that the error comes from
other sources. In addition, we fixed w = 15 in Fig. 2 and choose w = 8, w = 10 and w = 12 in Fig. 1, we obtain almost
same results, which verifies that choosing a shallow network can maintain accuracy and reduce computational costs.

In the learning process, i.e., the running of the SGD method, we choose the batch number (number of samples per
gradient update) to be 4096 (that contains 3840 points in the interior domain of D to evaluate the first term in Eq. (8)
and 256 points on the boundary ∂ D to evaluate the second term in Eq. (8); see Eq. (20) for more details) and generate
a new batch every 10 steps of updating. The learning rate η is 5 × 10−4. Once we have a uniform sampler, the network
automatically deals with the interface without knowing locations of the interface a priori.

In Fig. 4, we show the corresponding numerical results. In Fig. 4a and Fig. 4b, we plot the profiles of a shallow network
approximation of the boundary condition g(x) and the deep network approximation of solution u′(x) to the auxiliary PDE
(13), respectively. In Fig. 4d and Fig. 4e, we show the comparison between the DNN solution and the reference solution.
One can see that the DNN method provides an accurate result for this interface problem.

In Fig. 4c and Fig. 4f, we plot the decay of the Lagrangian and the L2 relative error between the DNN solution and
reference solution during the training process. Interestingly we observe that optimization process gets stuck at a local

Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963 9
Fig. 3. Profile of a high-contrast coefficient on D .

Fig. 4. High contrast problem, α0 = 1000, α1 = 1 case: (a) profile of g̃; (b) profile of u′; (c) decay of the Lagrangian during the training process; (d) profile
of the DNN solution u at the final step; (e) profile of the reference solution; (f) decay of the L2 relative error during the training process.

minimum at the beginning, i.e., the first four thousand steps, where the Lagrangian functional does not have decay and the
error between the DNN solution and reference solution keeps as a constant. Beyond that, the optimization process jumps
out the local minimum, which makes the Lagrangian functional and the error continue to decay. Finally, the error oscillates
around 5%. In this experiment, the data size is about 1 GB and iteration for 3 × 105 steps costs about 3700 seconds.

In Fig. 5a, Fig. 5b, and Fig. 5c, we respectively show the solution profile when the iteration is at the initial stage, near
the local minima and get out of a local minimum. One can see that the solution profile in Fig. 5b captures the profile of the
exact solution to a certain extent. For such a 2D elliptic PDE, the corresponding deep learning based optimization problem
has complicated structures. More in-depth research will be carried out in our future work.

In our second experiment, we choose α0 = 1 and α1 = 103 in (32). The profile of the new coefficient looks like an
upside-down of the profile shown in Fig. 3. We do not show it here. Again, we use the exact solution (33) to serve as the
reference solution and the DNN method to compute the numerical solution. The setting of the DNN method is the same as
the first experiment.

10 Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963
Fig. 5. High contrast problem, α0 = 1000, α1 = 1 case: (a) Solution profile when the iteration is at the initial stage; (b) Solution profile when the iteration
is near the local minima; (c) Solution profile when the iteration gets out of the local minima.

Fig. 6. High contrast problem, α0 = 1, α1 = 1000 case: (a) profile of g̃; (b) profile of u′; (c) decay of the Lagrangian during the training process; (d) profile
of the DNN solution u at the final step; (e) profile of the reference solution; (f) decay of the L2 relative error during the training process.

In Fig. 6, we show the corresponding numerical results. In Fig. 6a and Fig. 6b, we plot the profiles of a shallow network
approximation of the boundary condition g(x) and the deep network approximation of solution u′(x) to the auxiliary PDE
(13), respectively. In Fig. 6d and Fig. 6e, we show the comparison between the DNN solution and the reference solution. The
DNN method again provides an accurate result for this interface problem.

In Fig. 6c and Fig. 6f, we plot the decay of the Lagrangian and the L2 relative error between the DNN solution and
reference solution during the training process. We find that the decay pattern of the second experiment is different from
the first one. The Lagrangian functional has instant fluctuations during the optimization process. However, it does not get
stuck at a local minimum. The error function is a monotonic decreasing function. Finally, the error is reduced to about 2%.

The DNN method is a stochastic method since the initial value of parameters in the network, i.e. θ ∈ � and the Adam
SGD optimizer are random. We are interested in investigating the convergence speed when α1 = 1 and α0 � 1, which is a
‘harder’ case of the high-contrast problem since the optimization process of the DNN method gets stuck at a local minimum.
Let n record the steps that the iteration gets out of the local minimum; see the staircase shown in Fig. 4c and Fig. 4f. In
Fig. 7, we plot the histogram of the n when α0 = 1000 and α0 = 10000, respectively. The total number of iteration is set
to be 5 × 105 when α0 = 1000 and 106 when α0 = 10000. We find that a higher contrast in the coefficient will lead to a
slower convergence in the DNN method. We observe that when the contrast of the coefficient is higher, the optimization
process of the DNN method has a bigger chance to get stuck at a local minimum. We also observe that about 7% of trials
failed to converge within the designed steps.

Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963 11
Fig. 7. Histogram of the number of steps to get out of local minima.

Fig. 8. Problem defined on a disk domain.

To further show the benefit of the mesh-free nature of the DNN method, we consider a 2D elliptic PDE (30) defined on a
closed disk D . Specifically, the domain D is a disk with radius one and centered at the origin. The coefficient a(x) is defined
in (32), where α0 = 1000 and α1 = 1. The source term is f (x) = −9(x2

1 + x2
2)

1/2.
In this experiment, we impose zero boundary condition so the reference solution differs from the exact solution in

Eq. (33) only by a constant, i.e. 1
α0

+ (1
α1

− 1
α0

)r3
0 . The implementation of the DNN method is exactly the same as the

previous two experiments. In Fig. 8, we show the numerical solution obtained by our method and the numerical error. The
final L2 relative error is about 4.5%. This numerical result demonstrates that once we have a sampling method to generate
collocation points in the interior domain and on the boundary, we can use the DNN method to solve PDEs, where we do
not need to specially treat the locations of the interface and/or the shape of the boundary. Thus, the DNN method can be
used to solve PDEs defined in irregular domains.

5.2. More discussions on our method based on a 2D high-contrast problem

In our proposed method, there are some parameters that determine the accuracy of the DNN method, such as the batch
number (the number of collocation points used in computing the integration in the variational problem), the learning rate in
the SGD, etc. In this subsection, we shall carry out several numerical experiments to study the performance of our method
on those parameters.

We consider a 2D multiscale elliptic PDE (30) on the domain D = [0, 1]2, where the coefficient a(x) contains high-
contrast inclusions and channels; see Fig. 9. This type of coefficient is used to mimic complicated permeability fields in
the reservoir simulation [10]. The performance of the proposed method for inhomogeneous boundary conditions has been

12 Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963
Fig. 9. Profile of a high-contrast coefficient on D .

Fig. 10. (a) reference solution; (b) numerical solution; (c) contour plot of the error.

verified in the previous subsection. Here, we choose homogeneous boundary condition g(x) = 0 on ∂ D . The networks that
we used for approximating the boundary condition and the solution are shown in Fig. 1 and Fig. 2, respectively.

We use the FEM with fine mesh h = 1
128 to compute the reference solution and the DNN method to compute the

numerical solution. In the learning process, i.e., the running of the SGD method, we choose the batch number to be 4096
(that contains 3840 points in the interior domain of D and 256 points on the boundary ∂ D) and generate a new batch
every 10 steps of updating. The learning rate is η = 2 × 10−3. Once we have a uniform sampler, the network automatically
deals with the interface without knowing locations of the interface a priori. Finally, the final L2 relative error is about 3%.

In Fig. 10, we respectively show the reference solution, the numerical solution and the contour plot of the error. In this
example, the solution contains sharp edges due to the heterogeneity in the coefficient. Numerical results show that the DNN
method can capture those sharp edges well.

In what follows, we test the influence of hyper-parameters on the accuracy of the DNN method. We first choose different
batch numbers, i.e. N = 1024, N = 4096 and N = 16384, and keep other parameters in the DNN method unchanged. Again,
we put 6.25%N points on the boundary and the remaining points in the interior domain. We show the numerical solutions
obtained by different batch numbers in Fig. 11a - Fig. 11c. Moreover, we plot the decay of the L2 relative error during the
training process together in Fig. 11d. One can see that when the batch number is not big enough, say N = 1024, the DNN
solution cannot capture the edges well thus leads to a big numerical error. The DNN method with N = 4096 and N = 16384
batch numbers gives almost identical solutions. These numerical results indicate that the setting of the batch number is
essential in the accuracy of the DNN method.

We also test the influence of the learning rate on the accuracy of the DNN method. Notice that the learning rate and
training step are highly related. In this experiment, we choose four different learning rates, i.e., η = 1 × 10−3, η = 2 × 10−3,
η = 4 × 10−3 and η = 8 × 10−3, and keep other parameters in the DNN method unchanged, where the batch number is
N = 4096. We plot the decay of the L2 relative error vs learning rate × training steps during the training process together
in Fig. 12. One can see that the final L2 errors of each experiment are close thus it seems to suggest that the DNN method
is robust in terms of the learning rate. However, one can also see that a larger learning rate leads to greater fluctuations in
the decay of error during the training process.

Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963 13
Fig. 11. Influence of batch number: (a) N = 1024; (b) N = 4096; (c) N = 16384; (d) L2 relative error during the training process.

Fig. 12. L2 relative error with different learning rate η.

5.3. 2D Linear elasticity interface problem

We consider the linear elasticity PDE with a discontinuous stress tensor defined in (26), where x = (x1, x2), the domain
D = [−8, 8] × [−8, 8], u = (u1, u2)

T , the elasticity tensor C is defined by (23) or (24) with λ = 1 and μ = 1. We choose
α = 1 in the jump of the stress tensor across the cell.

In the cell model [41], keratocytes typically have a roughly circular shape with an annular lamellipodium surrounding
the nucleus, when they are in a stationary state. Contact and force transmission with the substrate occurs only at the
lamellipodium and not the nucleus and organelles. Accordingly, we choose the initial lamellipodium region
 to be an
annulus in the center of the square domain D , with the nucleus excluded; see Fig. 13.

14 Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963
Fig. 13. Value of χ on D , where the yellow region is
.

Fig. 14. 2D Linear elasticity interface problem: (a) profile of DNN solution u1; (b) profile of DNN solution u2; (c) decay of the Lagrangian during the training
process; (d) profile of reference solution u1; (e) profile of reference solution u2; (f) decay of the L2 relative error during the training process.

We set u1 = u2 = 0 on the boundary of D , which gives a null displacement or traction-free boundary condition. On the
boundary of the cell
, we impose the jump conditions (27).

We use the immersed-interface FEM with a fine mesh h = 1/32 to compute the reference solution and the DNN method
to compute the numerical solution. The network that we used has four intermediate layers and the width of each layer is
twenty, where the network is densely connected. In the running of the SGD method, we choose the batch number to be
2048 (that contains 1920 points in the interior domain of D and 128 points on the boundary ∂ D) and generate a new batch
every 10 steps of updating. The learning rate η is 5 × 10−4.

In Fig. 14, we show the corresponding numerical results. In Fig. 14a and Fig. 14b, we plot the profiles of DNN solutions u1
and u2, which are the displacements in x1 and x2 coordinates, respectively. The corresponding reference solutions are shown
in Fig. 14d and Fig. 14e. We find that the DNN solutions agree well with the reference solutions. In Fig. 14c and Fig. 14f,
we plot the decay of the Lagrangian and the L2 relative error between the DNN solution and reference solution during the
training process. We find that both the Lagrangian functional and error function are monotonic decreasing functions. Finally
the error is reduced to about 4%. Our numerical results imply that the DNN method is efficient in solving the 2D Linear
elasticity interface problem (26). Most importantly, its implementation is very simple.

Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963 15
6. Conclusions

In this paper, we proposed a DNN method to solve interface problems. By formulating the PDEs into variational problems,
we convert the interface problems into optimization problems. Since the ReLU-DNN can be used to approximate the linear
space spanned by FEM nodal basis functions. Thus, we parameterize the PDE solutions by using the ReLU-DNNs and solve
the interface problems by searching the minimizer of the associated optimization problems. In this framework, once we
have samplers of collocation points in the domain and on the boundary, we do not need any special treatment to deal with
the interface inside the domain and/or the shape of the boundary. Therefore, the proposed method is easy to implement
and mesh-free.

Finally, we use the DNN method to solve elliptic PDEs with discontinuous and high-contrast coefficients and linear
elasticity with discontinuous stress tensors. We find the ReLU-DNN with enough hidden layers and enough neurons with
each layer can approximate the solutions of the target PDEs well. Although the parameter space of the ReLU-DNN is huge,
the SGD method can efficiently solve the optimization problems. Numerical results show that the accuracy of the DNN
method depends on the expressive power of the DNNs and the batch number in the SGD method. It seems that the DNN
method is not very sensitive to the learning rate. Therefore, the DNN method provides an effective alternative to solve
interface problems.

There are several issues remain open. For instance, we do not get the convergence rate for the DNN method and we have
little understanding about the parameter space of the DNN. In addition, the issue of local minima and saddle points in the
optimization problem is highly nontrivial. We are interested in studying these issues in our future research.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The research of Z. Wang is partially supported by the Hong Kong PhD Fellowship Scheme. The research of Z. Zhang is
supported by Hong Kong RGC grants (Projects 27300616, 17300817, and 17300318), National Natural Science Foundation of
China (Project 11601457), Basic Research Programme (JCYJ20180307151603959) of the Science, Technology and Innovation
Commission of Shenzhen Municipality, Seed Funding Programme for Basic Research (HKU), and an RAE Improvement Fund
from the Faculty of Science (HKU). The computations were performed using the HKU ITS research computing facilities that
are supported in part by the Hong Kong UGC Special Equipment Grant (SEG HKU09). We would like to thank Professor
Thomas Hou for stimulating discussions.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, Tensorflow: a system for large-scale machine
learning, in: OSDI, vol. 16, 2016, pp. 265–283.

[2] I. Babuška, The finite element method for elliptic equations with discontinuous coefficients, Computing 5 (3) (1970) 207–213.
[3] C. Bernardi, R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (4) (2000) 579–608.
[4] L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.
[5] Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (2) (1998) 175–202.
[6] C. Chu, I. Graham, T.Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput. 79 (2010) 1915–1955.
[7] N. Cohen, O. Sharir, A. Shashua, On the expressive power of deep learning: a tensor analysis, in: Conference on Learning Theory, 2016, pp. 698–728.
[8] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (4) (1989) 303–314.
[9] Y. Efendiev, J. Galvis, X. Wu, Multiscale finite element methods for high-contrast problems using local spectral basis functions, J. Comput. Phys. 230 (4)

(2011) 937–955.
[10] Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods. Theory and Applications, Springer-Verlag, New York, 2009.
[11] S. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numer. 3 (1994) 145–202.
[12] R. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput.

Phys. 152 (2) (1999) 457–492.
[13] Y. Gong, B. Li, Z. Li, Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions, SIAM J. Numer.

Anal. 46 (1) (2008) 472–495.
[14] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, vol. 1, MIT Press, Cambridge, 2016.
[15] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018) 8505–8510.
[16] J. He, L. Li, J. Xu, C. Zheng, Relu deep neural networks and linear finite elements, arXiv:1807.03973, 2018.
[17] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5) (1989) 359–366.
[18] S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep

neural networks, arXiv:1902 .05200, 2019.
[19] Y. Khoo, J. Lu, L. Ying, Solving parametric pde problems with artificial neural networks, arXiv:1707.03351, 2017.
[20] D. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:1412 .6980, 2014.
[21] I. Lagaris, A. Likas, D. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (5) (1998)

987–1000.
[22] Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep learning, Nature 521 (7553) (2015) 436.
[23] H. Lee, Neural algorithm for solving differential equations, J. Comput. Phys. 91 (1990) 110–131.

http://refhub.elsevier.com/S0021-9991(19)30668-0/bib61626164693230313674656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib61626164693230313674656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6261627576736B613139373066696E697465s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6265726E61726469323030306164617074697665s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib626F74746F75323031306C61726765s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6368656E3139393866696E697465s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib47726168616D486F753A3130s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib636F68656E3230313665787072657373697665s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib637962656E6B6F31393839617070726F78696D6174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6566656E64696576323031316D756C74697363616C65s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6566656E64696576323031316D756C74697363616C65s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4566656E64696576486F753A3039s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib656C6C61636F74743139393461737065637473s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6665646B6977313939396E6F6Es1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6665646B6977313939396E6F6Es1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib676F6E6732303038696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib676F6E6732303038696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib676F6F6466656C6C6F773230313664656570s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib68616E32303138736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4A696E6368616F58753A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib686F726E696B313938396D756C74696C61796572s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6B6172756D7572693230313973696D756C61746F72s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6B6172756D7572693230313973696D756C61746F72s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6B686F6F32303137736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6B696E676D61323031346164616Ds1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4C61676172697331393938s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4C61676172697331393938s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6C6563756E3230313564656570s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4C65654831393930s1

16 Z. Wang, Z. Zhang / Journal of Computational Physics 400 (2020) 108963
[24] R. Leveque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal.
31 (4) (1994) 1019–1044.

[25] Z. Li, T. Lin, X. Wu, New cartesian grid methods for interface problems using the finite element formulation, Numer. Math. 96 (1) (2003) 61–98.
[26] A. Meade, A. Fernandez, The numerical solution of linear ordinary differential equations by feedforward neural networks, Math. Comput. Model. 19 (12)

(1994) 1–25.
[27] H. Montanelli, Q. Du, New error bounds for deep ReLU networks using sparse grids, SIAM J. Math. Data Sci. 1 (1) (2019) 78–92.
[28] C. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (3) (1977) 220–252.
[29] C. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[30] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999) 143–195.
[31] M. Raissi, P. Perdikaris, G. Karniadakis, Multistep neural networks for data-driven discovery of nonlinear dynamical systems, arXiv:1801.01236, 2018.
[32] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involv-

ing nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[33] C. Schwab, J. Zech, Deep Learning in High Dimension, Research Report, 2017, 2017.
[34] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[35] B. Wang, K. Xia, G. Wei, Matched interface and boundary method for elasticity interface problems, J. Comput. Appl. Math. 285 (2015) 203–225.
[36] Y. Wang, S. Cheung, E. Chung, Y. Efendiev, M. Wang, Deep multiscale model learning, arXiv:1806 .04830, 2018.
[37] Weinan E, Jiequn Han, Arnulf Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and back-

ward stochastic differential equations, Commun. Math. Stat. 5 (4) (2017) 349–380.
[38] Weinan E, Bing Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1)

(2018) 1–12.
[39] X. Yang, B. Li, Z. Li, The immersed interface method for elasticity problems with interface, Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 10

(2003) 783–808.
[40] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Netw. 94 (2017) 103–114.
[41] Z. Zhang, P. Rosakis, T. Hou, G. Ravichandran, A minimal mechanosensing model predicts keratocyte evolution on flexible substrates, arXiv:1803 .09220,

2018.
[42] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys. 366

(2018) 415–447.
[43] Y. Zhu, N. Zabaras, P. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quan-

tification without labeled data, J. Comput. Phys. 394 (2019) 56–81.

http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6C65766571756531393934696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6C65766571756531393934696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib6C69323030336E6577s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4665726E616E64657A31393934s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4665726E616E64657A31393934s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib5169616E6744553A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7065736B696E313937376E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7065736B696E32303032696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib70696E6B757331393939617070726F78696D6174696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4B61726E696164616B6973323031386C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7261697373693230313970687973696373s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7261697373693230313970687973696373s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7363687761623230313764656570s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib73697269676E616E6F3230313864676Ds1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib77616E67323031356D617463686564s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib59616C6368696E3230313864656570s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7765696E616E3230313764656570s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7765696E616E3230313764656570s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7765696E616E3230313864656570s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7765696E616E3230313864656570s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4C694C6932303033656C6173746963697479s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib4C694C6932303033656C6173746963697479s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7961726F74736B79323031376572726F72s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7A68616E67323031386D696E696D616Cs1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7A68616E67323031386D696E696D616Cs1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib5A6162617261735A68753A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib5A6162617261735A68753A32303138s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7A68753230313970687973696373s1
http://refhub.elsevier.com/S0021-9991(19)30668-0/bib7A68753230313970687973696373s1

	A mesh-free method for interface problems using the deep learning approach
	1 Introduction
	2 Some preliminaries
	2.1 The DNN and its approximation property
	2.2 Formulation of the deep Ritz method

	3 Inhomogeneous boundary conditions
	4 Derivation of the methodology
	4.1 Elliptic PDEs with discontinuous and high-contrast coefﬁcients
	4.2 Linear elasticity with discontinuous stress tensors

	5 Numerical example
	5.1 2D high-contrast elliptic problems
	5.2 More discussions on our method based on a 2D high-contrast problem
	5.3 2D Linear elasticity interface problem

	6 Conclusions
	Acknowledgements
	References

