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In this paper, we propose a mesh-free method to solve interface problems using the 
deep learning approach. Two types of PDEs are considered. The first one is an elliptic 
PDE with a discontinuous and high-contrast coefficient. While the second one is a linear 
elasticity equation with discontinuous stress tensor. In both cases, we represent the 
solutions of the PDEs using the deep neural networks (DNNs) and formulate the PDEs into 
variational problems, which can be solved via the deep learning approach. To deal with 
inhomogeneous boundary conditions, we use a shallow neural network to approximate the 
boundary conditions. Instead of using an adaptive mesh refinement method or specially 
designed basis functions or numerical schemes to compute the PDE solutions, the proposed 
method has the advantages that it is easy to implement and is mesh-free. Finally, we 
present numerical results to demonstrate the accuracy and efficiency of the proposed 
method for interface problems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, deep learning methods have achieved unprecedented successes in various application fields, including 
computer vision, speech recognition, natural language processing, audio recognition, social network filtering, and bioinfor-
matics, where they have produced results comparable to and in some cases superior to human experts [22,14]. Motivated 
by this exciting progress, there are increased new research interests in the literature for the application of deep learning 
methods for scientific computation, including approximating multivariate functions and solving differential equations using 
the DNNs; see e.g. [16,27,37,38,19,42,31,34,43,32,18] and references therein.

There are many classical works on the approximation power of neural networks (NNs); see e.g. [8,17,11,30]. We refer 
the reader to recent works on the expressive power (i.e., approximation power) of DNNs; see e.g. [7,33,40,27]. We also 
mention the recent work by [16], where the authors investigate the relationship between DNNs with rectified linear unit 
(ReLU) function as the activation function and continuous piecewise linear functions in the finite element method (FEM). 
They prove that a ReLU-DNN with enough hidden layers and enough neurons within each layer can include the continuous 
piecewise linear FEM space. Thus, one can represent a solution of PDE using the ReLU-DNN.

Solving ODEs or PDEs with a neural network as an approximation is a natural idea, which has been considered in various 
forms in the literature, e.g. [23,26,21]. The main idea is to train NNs to approximate the solution by minimizing the residual 
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of the ODEs or PDEs and also of the initial and boundary conditions. These papers estimate neural network solutions on an 
a priori fixed mesh.

Thanks to the widespread availability of cheap computing resources (e.g. TensorFlow and PyTorch) and theoretical ad-
vances in stochastic optimization (e.g. stochastic gradient descent), solving PDEs or stochastic PDEs using a DNN has become 
an emerging research topic. A deep Ritz method [38] was developed to solve Poisson problems and eigenvalue problems 
from variational principles using DNNs. Meanwhile, deep learning-based numerical methods [15] were proposed to solve 
high-dimensional parabolic PDEs and backward stochastic differential equations. Recently, a physics-informed neural net-
work (PINN) method [32] and a deep Galerkin method (DGM) [34] were developed to solve PDEs efficiently. The main idea 
of PINN and DGM is to train DNNs to approximate the solution by minimizing the residual of the PDEs and also of the 
initial and boundary conditions. In the context of surrogate modeling and uncertainty quantification (UQ), several efficient 
methods based on the DNNs were developed recently, including the Bayesian deep convolutional encoder-decoder networks 
[42], deep multiscale model learning [36], and physics-constrained deep learning method [43]. We also refer the interested 
reader to [19,33,18] and references therein.

In this paper, we will use the deep learning method to solve interface problems, which have many applications in 
physics and engineering sciences. For example, to model the heterogeneous porous medium in the reservoir simulation, 
the permeability field is often assumed to be a multiscale function with high-contrast and discontinuous features. Another 
example is to study the evolution of the shape and location of fibroblast cells under stress [41]. The model is based on ideas 
of a continuum mechanical description of stress-induced phase transitions, where the cell is modeled as a transformed 
inclusion in a linear elastic matrix and the cell surface evolves according to a special kinetic relation. In this model, the 
stress tensor has discontinuity across the cell surface due to the transformation in the strain tensor caused by a contraction 
in the cell.

There has been a lot of effort in developing accurate and efficient finite element methods (FEMs) for interface prob-
lems; see e.g. [2,5] and references therein for some early works. An immersed-interface finite element method [25,13] was 
developed to solve elliptic interface problems with non-homogeneous jump conditions. The method considered uniform 
triangular grids and approximated the interface by a straight line segment when it intersects a coarse grid element. By 
matching the jump condition, a special basis function for elements that were cut through by the interface was created and 
proved to have a second-order convergence rate in the L2 norm and a first-order convergence rate in the H1 semi-norm. 
However, the constants in the error estimate depend on the contrast of the coefficient. Later, a new multiscale finite element 
method [6] was developed that was able to accurately capture solutions of elliptic interface problems with high-contrast 
coefficients by using only coarse quasi-uniform meshes, and without resolving the interfaces. Moreover, an optimal error 
estimate was obtained in the sense that the hidden constants in the estimates were independent of the contrast of the PDE 
coefficients.

Alternatively, some efficient finite difference methods (FDMs) were proposed to solve interface problems. Such results 
include, among others, an immersed boundary method (IBM) [28] was developed to study the motion of one or more 
massless, elastic surfaces immersed in an incompressible, viscous fluid, particularly in bio-fluid dynamics problems where 
complex geometries and immersed elastic membranes are present. We refer to [29] for an extensive review of the IBM. 
Another related work is the immersed interface method (IIM) for elliptic interface problems developed in [24]. By incorpo-
rating the jump condition across the interface to modify the finite difference schemes near the interface, a second order 
accuracy was maintained. An important development of interface capturing methods is the ghost fluid method (GFM) [12], 
which incorporated the interface jump condition into the finite difference discretization by tracking the interface with a 
level set function. The GFM can capture discontinuities in multi-medium compressible multiphase flows.

In this paper, we are interested in developing deep learning methods to solve interface problems. Our work is inspired 
by the deep Ritz method proposed in [38], where the Poisson problems and eigenvalue problems were studied. We intend 
to investigate the expressive power of the DNNs in representing solutions of interface problems. In addition, we will study 
the performance of the stochastic gradient descent (SDG) method [4] in solving optimization problems associated with 
the interface problems. Two types of PDEs will be considered. The first one is an elliptic PDE with a discontinuous and 
high-contrast coefficient, which is a challenging problem and has been intensively studied; see [3,25,6,9]. The second one is 
a linear elasticity equation with discontinuous stress tensor [41].

In both problems, we first represent the solutions of the PDEs using the DNNs and formulate the PDEs into variational 
problems, which can be solved using the deep learning approach. Then, we use the SGD method to solve the variational 
problem. To impose inhomogeneous boundary conditions, we propose to use a shallow neural network to approximate 
the boundary conditions. Since the boundary conditions are defined in a lower-dimensional space (compared with the 
solution itself), a shallow neural network can approximate the boundary conditions well and reduce computational costs 
(e.g. computing the automatic differentiation) in the training process.

We find that the proposed DNN method is easy to implement and is mesh-free since we do not need to choose an 
adaptive mesh or a specially designed numerical scheme to discretize the PDEs. Our numerical results show that the DNN 
method can efficiently solve the two types of PDEs considered here. The accuracy of the DNN method is mainly determined 
by the expressive power of the DNNs and the stochastic optimization methods. Moreover, we observe that the convergence 
time of the SGD method is random, which is due to the fact that the iteration process of the SGD method can be get stuck 
into some local minimums. Especially, we find that it takes a longer time to get out of local minima in a ‘harder’ case of 
the high-contrast problem; see Section 5.1 for more details.
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The rest of the paper is organized as follows. In Section 2, we review the basic idea of the DNN and the deep Ritz 
method. In Section 3, we introduce the idea of using a shallow neural network to deal with inhomogeneous boundary 
conditions. The derivation of the methodology for both the elliptic PDEs and linear elasticity PDEs will be presented in 
Section 4. In Section 5, we present numerical results to demonstrate the performance of our method. Concluding remarks 
will be made in Section 6.

2. Some preliminaries

In this section, we briefly discuss the definition and approximation properties of the DNNs and the formulation of the 
deep Ritz method [38].

2.1. The DNN and its approximation property

There are two ingredients in defining a DNN. The first one is a (vector) linear function of the form T : Rn → Rm , defined 
as T (x) = Ax + b, where A = (aij) ∈ Rm×n , x ∈ Rn and b ∈ Rm . The second one is a nonlinear activation function σ : R → R . 
A frequently used activation function, known as the rectified linear unit (ReLU), is defined as σ(x) = max(0, x) [22]. In the 
artificial neural network literature, the sigmoid function is another frequently used activation function, which is defined 
as σ(x) = (1 + e−x)−1. By applying the activation function in an element-wise manner, one can define (vector) activation 
function σ : Rm → Rm .

Equipped with those definitions, we are able to define a continuous function F (x) by a composition of linear transforms 
and activation functions, i.e.,

F (x) = T k ◦ σ ◦ T k−1 ◦ σ · · · ◦T 1 ◦ σ ◦ T 0(x), (1)

where T i(x) = Ai x + bi with Ai be undetermined matrices and bi be undetermined vectors, and σ(·) is the element-wisely 
defined activation function. Dimensions of Ai and bi are chosen to make (1) meaningful. Such a DNN is called a (k +1)-layer 
DNN, which has k hidden layers. Denoting all the undetermined coefficients (e.g., Ai and bi ) in (1) as θ ∈ �, where θ is a 
high-dimensional vector and � is the space of θ . The DNN representation of a continuous function can be viewed as

F = F (x; θ). (2)

Let F = {F (·, θ)|θ ∈ �} denote the set of all expressible functions by the DNN parameterized by θ ∈ �. Then, F provides an 
efficient way to represent unknown continuous functions, comparing with a linear solution space used in classic numerical 
methods, e.g., a trial space spaced by linear nodal basis functions in the FEM.

One of the fundamental questions in the DNN is to study its approximation property, also known as its expressive 
power [7,33]. Early studies of approximation properties of a neural network can be found in [8,17], where approximation 
properties for the function classes given by a feed-forward neural network with a single hidden layer were studied. Later, 
error estimates for such neural networks in terms of a number of neurons, layers of the network, and activation functions 
were obtained; see e.g. [11,30] for a good review of relevant works.

In recent years, significant efforts have been devoted to study the benefits on the expressive power of NNs afforded by 
NN depth. For example, [7] proved that convolutional DNNs were able to express multivariate functions given in so-called 
Hierarchic Tensor (HT) formats. The expressive power of shallow and deep neural networks with piecewise linear activation 
functions was studied in [40] and rigorous upper and lower bounds for the network complexity in approximating Sobolev 
spaces was established. [27] obtained a new error bound for the approximation of multivariate functions using deep ReLU 
networks, which shows that the curse of dimensionality is lessened by establishing a connection between the deep networks 
and sparse grids. [16] studied the relationship between ReLU-DNN and continuous piecewise linear functions from the linear 
FEM and built a connection for the DNN method with the FEM method. Specifically, [16] proved the following statement.

Proposition 2.1. Given a locally convex finite element grid Th, any linear finite element function with N degrees of freedom, can be 
written as a ReLU-DNN with at most k = �log2 kh� + 1 hidden layers and at most O(kh N) number of the neurons, where kh denotes 
the maximum number of neighboring elements of one node.

The Proposition 2.1 provides upper bounds in setting the number of hidden layers and the number of neurons within 
each layer, when one uses the DNN to approximate the solution space spanned by the FEM basis. In our numerical results, 
we find that choosing a relatively small number of hidden layers and neurons within each layer are good enough to obtain 
accurate results for the interface problems studied in this paper.

2.2. Formulation of the deep Ritz method

The deep Ritz method is a deep learning based numerical method for solving variational problems [38]. Therefore, it 
naturally can be used to solve PDEs. For example, we consider a Poisson equation defined on a compact domain D � Rd ,
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{
−�u(x) = f (x), x ∈ D,

u(x) = 0, x ∈ ∂ D.
(3)

Given the Poisson equation (3), we can derive the corresponding variational problem as

J (v) = 1

2

∫
D

∇v(x) · ∇v(x)dx −
∫
D

v(x) f (x)dx, v ∈H1
0(D). (4)

Then, the solution of (3) can be obtained by,

u = arg min
v∈H1

0(D)

J (v). (5)

From the perspective of scientific computing, the Poisson equation (3) can be solved using numerical methods, such as 
FDMs and FEMs. From the perspective of machine learning however, the numerical solution of u(x) is interpreted as a 
function with x ∈ Rd as its input and R1 as its output, where d denotes the dimension the physical domain D . Thus, it can 
be approximated by F (x) in (1).

Let ũ denote the DNN representation of the solution of the Poisson equation. Substituting ũ into the variational prob-
lem (4), we get the optimization problem

ũ = arg min
F∈F0

J (F ), (6)

where F0 is a subspace of F that satisfies the boundary condition on ∂ D . The justification of this assumption will be 
discussed later.

After parameterizing the expressible function space by θ ∈ �; see Eq. (2), we equivalently define the variational prob-
lem (4) as

min
θ∈�

J (θ) = 1

2

∫
D

|∇ F (x, θ)|2dx −
∫
D

F (x, θ) f (x)dx. (7)

In general the above variational problem (7) is non-convex, even the original variational problem (4) is so. In other words, 
the variational problem (4) is convex with respect to the solution u(x), however, the variational problem (7) is non-convex 
with respect to the parameters in the DNN. Obviously, it is nontrivial to solve a non-convex variational problem due to the 
existence of local minima and saddle points, which poses a challenge to the DNN based methods for solving PDEs.

Since the dimension of the parameter space � is very large and the corresponding variational problem is non-convex, 
one usually uses the SGD method [4] to solve (7). There are plenty of optimization methods to search among the large 
parameter space. To accelerate the training of the DNN, we use the Adam optimizer version of SGD [20].

In practice, it is not straightforward to impose boundary conditions in the DNN representation. In the homogeneous 
Dirichlet problem (3), a relaxation approach was proposed to address this issue. Specifically, one adds a soft constraint (a 
boundary integral term) to the functional J (·) defined in (7) and obtains

ũε = arg min
F∈F

(
J (F ) + 1

ε

∫
∂ D

F (x, θ)2dx
)
. (8)

Notice that the soft constraint term 1
ε

∫
∂ D F (x, θ)2dx will approach zero when we decrease the parameter ε in the calcula-

tion. Therefore, the homogeneous boundary condition is satisfied in a certain weak scene.

3. Inhomogeneous boundary conditions

To demonstrate the idea, we consider an inhomogeneous Dirichlet problem as follows,{
Lu(x) = f (x), x ∈ D,

u(x) = g(x), x ∈ ∂ D,
(9)

where L is a linear PDE operator, f (x) is a source function, and g(x) is a boundary condition. Let J (v; f ) denote the 
Lagrangian form associated with the homogeneous Dirichlet problem of (9), i.e., g(x) = 0; see (4) for instance.

To deal with the inhomogeneous boundary condition in (9), we first use a shallow neural network to approximate the 
boundary condition g(x). Let g̃(x) denote the approximation of g(x) by using a shallow neural network, which is defined 
on whole domain D . However, we only require that the boundary value of g̃ satisfies the boundary condition g(x), which 
can be obtained by solving the following optimization problem
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Fig. 1. Network Layout for g̃ .

Fig. 2. Network Layout for u′ .

g̃(x) = arg min
G∈G

(∫
∂ D

(
G − g(x)

)2
dx

)
, (10)

where G denotes the set of all expressible functions by a shallow neural network. The optimization problem (10) can be 
approximated by,

vol(∂ D)

N0

N0∑
i=1

(
G(yi) − g(yi)

)2
, (11)

where yi
i.i.d.∼ Uni f (∂ D) and N0 is the number of sample points on the boundary ∂ D . In practice, uniform sampler on 

∂ D is not necessary. One can change the integrand of (10) by multiplying the Radon-Nikodym derivative of the sampler’s 
distribution. Let ρ(dx) denote the distribution of the grid points on the boundary. Notice that 

∫
∂ D

(
G − g(x)

)2
ρ(dx) = 0

implies 
∫
∂ D

(
G − g(x)

)2
dx = 0. Once we obtain a sampler according to the distribution ρ(dx), which is absolutely continuous 

w.r.t. Lebesgue measure of ∂ D , we can still minimize (11) to obtain g̃(x). Thus, we do not need to specially treat the shape 
of boundaries.

In our proposed approach, reasons for choosing a shallow network to approximate g(x) are twofold. First, g̃(x) is used to 
approximate the inhomogeneous boundary condition g(x). Since g(x) is defined in a lower-dimensional physical space (i.e., 
∂ D instead of D), we can use a shallow neural network to approximate it well. Compared with the neural network used to 
represent a solution, the shallow neural network g̃(x) has fewer parameters, which helps shorten the training process. For 
instance, the shallow neural network can reduce computational costs in computing the automatic differentiation. Second, 
due to the simple structure of g̃ , the term Lg̃ · v in J (v; f −Lg̃) will not oscillate in D (especially in the weak form), which 
leads to a faster convergence in solving optimization problems.

Fig. 1 and Fig. 2 show possible network layouts for approximating g̃ and u′ , respectively, where w denotes the width of 
each hidden layer. For example, Layer 2 in Fig. 1 is in R10. To be more precise, denote Layer 1 to be l1 ∈R10, Layer 2 to be 
l2 ∈R10, then,

l2 = σ(A[l1; x] + b), (12)

where x ∈ Rd , A is a 10 × (10 + d) matrix and b is a vector in R10 to be determined. To increase the performance, we 
also add connections between non-adjacent layers (e.g. Layer 1 and Layer 3 in Fig. 2). A simple calculation can show the 
parameters in the network for g̃ is far fewer than the one for u′ .

Since the neural network that is used to represent g̃ is shallow (i.e., g̃ is represented by a composition of a few levels 
of smooth functions), we can assume Lg̃ is smooth at least in the weak sense. Thus, Lg̃ can be easily computed by the 
automatic differentiation. Then, we solve an auxiliary PDE as follows,{

Lu′(x) = f (x) −Lg̃(x), x ∈ D,

u′(x) = 0, x ∈ ∂ D.
(13)

Now the problem (13) becomes a homogeneous Dirichlet problem, which can be solved using the deep Ritz approach; see 
Section 2.2. Finally, the solution of the inhomogeneous Dirichlet problem (9) can be represented as u(x) = u′(x) + g̃(x).

In our method, we first train the shallow neural network approximation g̃(x). Then, we keep g̃(x) fixed and train the 
deep neural network approximation u′(x). Our method shares some similarity with the PINN method [32] and the DGM 
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[34] in the sense that these methods train DNNs to approximate the solutions of PDEs by solving optimization problems. 
Our method has several new features. We solve PDEs through their corresponding variational problems, which avoids the 
need to compute high-order derivatives of the solution. For example, if L in (9) is a second-order elliptic operator, we only 
need to compute the first-order derivative of the solution. In the PINN method and DGM method, one needs to compute 
second-order derivatives of the solution when one computes the residual of the PDEs. Moreover, using a shallow neural 
network to approximate boundary condition allows us to simply impose inhomogeneous boundary conditions and reduce 
computational costs in the training process.

4. Derivation of the methodology

4.1. Elliptic PDEs with discontinuous and high-contrast coefficients

We first consider elliptic PDEs with discontinuous coefficients defined as follows,

L(x)u(x) ≡ −∇ · (a(x)∇u(x)) = f (x), x ∈ D, (14)

u(x) = 0, x ∈ ∂ D, (15)

where D ⊆ Rd is a bounded domain and the boundary of D is a convex polygon. For notation simplicity, we study a homo-
geneous Dirichlet problem. The problems with inhomogeneous boundary conditions can be solved by using the approach 
studied in Section 3.

The coefficient a(x) is assumed to be a scalar and has jumps across a number of smooth interior interfaces. Denoting 
the inclusions by D1,...,Dm and setting D0 = D \ ⋃m

i=1 Di , we assume that the coefficient a(x) is piecewise constant with 
respect to the decomposition {Di, i = 0, ..., m}. Setting amin = min a(x)|Di : i = 0, ...,m and dividing (14) by amin , we rescale 
the problem. Specifically, let α(x) = a(x)

amin
denote the re-scaled coefficient, which is piecewise constant with respect to the 

partition {Di, i = 0, ..., m} and α(x) ≥ 1 for all x ∈ D . Let αi denote the restriction of α(x) to Di . We are interested in 
studying two types of high-contrast cases,

Case 1: min
i=1,...,m

αi � 1, α0 = 1, (16)

Case 2: α0 � 1, max
i=1,...,m

αi ≤ K , (17)

for some positive constant K . In Case 1, the inclusions are high permeability compared to the background, while the Case 2 
contains a converse configuration.

Now, we are in the position to derive the formulation of deep learning approach to solve the elliptic PDEs (14)-(15) with 
high-contrast coefficients (16)-(17). We define the corresponding variational problem as

J (v) = 1

2

∫
D

a(x)|∇v(x)|2dx −
∫
D

v(x) f (x)dx, v ∈ H1
0(D). (18)

Then, the solution of (14)-(15) can be obtained by solving u(x) = arg minv∈H1
0(D) J (v), where J (·) is defined in (18). 

Again, we denote the set of all expressible function by F = {F (·, θ)|θ ∈ �} and set F0 = {F ∈ F
∣∣F |∂ D = 0}. Moreover, let 

�0 denote the parameter set satisfies the homogeneous boundary condition, i.e., F (·, θ)|∂ D = 0, θ ∈ �0. The approximation 
property of the DNN implies that F0 � C∞

0 (D) � H1
0(D). Therefore, we represent the solution u(x) to Eq. (14) using the 

DNN method.
Let ũ = F (x; θ) denote the DNN representation; see Eq. (1). Then, ũ satisfies the following variational problem

ũ = arg min
F=F (·,θ)|θ∈�0

1

2

∫
D

a(x)|∇ F (x, θ)|2dx −
∫
D

F (x, θ) f (x)dx. (19)

Since the degree of freedom in the variational problem (19) is quite large and the parameter space �0 may have complex 
geometry in �, we apply the Adam [20] with a soft constraint on the boundary of D to solve it. As such, we approximate 
gradient of each parameter θk by,

∂
(

J
(

F (·, θ)
) + 1

ε

∫
∂ D F 2(·, θ)

)
∂θk

=1

2

∫
∂
(
a(x)|∇ F (x, θ)|2)

∂θk
dx −

∫
∂
(

F (x, θ) f (x)
)

∂θk
dx + 1

ε

∫
∂
(

F 2(x, θ)
)

∂θk
dx
D D ∂ D
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≈ vol(D)

N1

N1∑
i=1

(1

2

∂
(
a(xi)|∇ F (xi, θ)|2)

∂θk
− ∂

(
F (xi, θ) f (xi)

)
∂θk

)
+ vol(∂ D)

εN2

N2∑
j=1

∂
(

F 2(y j, θ)
)

∂θk
, (20)

where xi
i.i.d.∼ Uni f (D), vol(D) is the volume of the domain, y j

i.i.d.∼ Uni f (∂ D), vol(∂ D) is the volume of the boundary, and 
N = N1 + N2 is called the batch number in the context of deep learning (meaning the number of collocation points used in 
one iteration). Notice that θ is a high-dimensional vector and θk is any component of θ . After we get the approximation of 
the gradient with respect to θk , we can update each component of θ as

θn+1
k = θn

k − η
∂
(

J
(

F (·, θ)
) + 1

ε

∫
∂ D F 2(·, θ)

)
∂θk

|θk=θn
k
, (21)

where η is the learning rate.

Remark 4.1. From the derivation of the DNN formulation, one can see that the proposed method automatically deals with 
the interface condition (or discontinuous coefficients) without knowing locations of the interfaces a priori.

4.2. Linear elasticity with discontinuous stress tensors

In this subsection, we consider the DNN approach to solve linear elasticity interface problems. One application of the 
linear elasticity problem is to model the shape and location of fibroblast cells under stress [41]. The model is based on the 
idea of a continuum mechanical description of stress-induced phase transitions. To demonstrate the main idea, we consider 
a two-dimensional linear elasticity problem.

Suppose the matrix (meaning the material or tissue in cells) plus the cell together occupy a bounded domain D ⊆ Rd , 
d = 2 and D is composed of linear elastic homogeneous isotropic material. We assume the cell has small deformations, so 
the linearized theory of elasticity is used. Let u = (u1, u2)

T denote the displacement field. Then, the strain tensor is

E = 1

2
(∇u + ∇uT ), with Eij = 1

2

(∂ui

∂x j
+ ∂u j

∂xi

)
. (22)

In the matrix except the cell, the stress tensor is related to the strain tensor (gradient of the displacement) by S = CE, 
where the elasticity tensor C is a linear transformation on the tensors. In the isotropic case, we have

CA = λTr(A)1 + μ(A + AT ), (23)

for any two dimensional matrix A. In Eq. (23), λ and μ are lamé constants, Tr(·) is the trace operator, and 1 is the identity 
matrix. In components, the action of the elasticity tensor C reads

Cijkl Akl = λAkkδi j + μ(Aij + A ji), (24)

where the Einstein summation convention is used.
The cell is modeled by a compact region 
 with smooth boundary; see Fig. 13. Let E0 denote a transformation strain, 

which is a constant symmetric matrix. We assume the stress tensor has a jump across the cell, i.e.,

S =
{
CE, in D \ 
,

C(E − E0), in 
.
(25)

In the cell model, we set the transformation strain to be a contraction, which is represented by an isotropic compression 
E0 = −α1 with α > 0. We suppose the cell model is in a quasi-static state. Therefore, the displacement field u satisfies the 
following linear elasticity PDE with a discontinuous stress tensor in a weak sense,

−∇ · S = −∇ · (CE − χ
CE0
) = 0, x ∈ D, (26)

where χ
 is the characteristic function of the cell domain 
. We impose Dirichlet boundary conditions on ∂ D . On the cell 
boundary ∂
, the solution u satisfies the following jump conditions

[u] = 0, [S]n = 0, (27)

where n is the outward unit normal vector on ∂
 and [ ] denotes the jump across the interface.
Then, the linear elasticity interface problem (26)-(27) can be computed by numerical methods, such as the immersed 

interface method [39] or matched interface and boundary method [35]. However, the implementation of the numerical 
scheme is not simple due to the jump conditions on the interface, especially when the interface has a complicated geometry.
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In the sequel, we shall develop the formulation for solving the linear elasticity interface problem (26)-(27) using the 
DNN method. In the isotropic case, let e(v) ≡ (ei j(v)), where ei j(v) = 1

2 (∂ j vi + ∂i v j) and v = (v1, v2)
T is a vector valued 

function. Then, Eq. (26) is rewritten as,

−∇ · (λTr(e(u))I2 + 2μe(u) − χ
CE0) = 0. (28)

Then, the variational problem associated with (28) is given by,

J (v) =
∫
D

(λ

2
Tr(e(v))2 + μe(v) : e(v) + 2χ
α(λ + μ)Tr(e(v))

)
dx, (29)

where : denotes the inner product between matrices, i.e., A : B = Tr(AT B) = ∑
i, j ai jbi j . Finally, the solution of (28) can be 

obtained by u(x) = arg minv∈(H1
0(D))2 J (v), where J (·) is defined in (29). The remaining steps of the implementation of the 

DNN method for (29) is exactly the same as we discussed in Section 4.1, so we skip the details here.

5. Numerical example

In this section, we shall carry out numerical experiments to demonstrate the performance of the DNN method in solving 
interface problems. In addition, we are interested in understanding the SGD method in solving the non-convex optimization 
problem. The TensorFlow [1] provides an efficient tool to calculate the partial derivatives in (20), which will be used in our 
implementation.

5.1. 2D high-contrast elliptic problems

We consider 2D elliptic PDEs with high-contrast coefficients defined as follows,

−∇ · (a(x)∇u(x)) = f (x), x ∈ D, (30)

u(x) = g(x), x ∈ ∂ D, (31)

where x = (x1, x2), the domain is D = [−1, 1] × [−1, 1], and the coefficient a(x) is a piecewise constant defined by

α =
{
α1, r < r0,

α0, r ≥ r0,
(32)

where r = (x2
1 + x2

2)
1/2 and r0 = π/6.28. Moreover, the source term f (x) = −9r and the boundary condition g(x) = r3

α0
+

( 1
α1

− 1
α0

)r3
0 . We choose the source term and boundary condition in such a way that the exact solution (in the polar 

coordinate) is

u(r, θ) =
{

r3

α1
, r < r0,

r3

α0
+ ( 1

α1
− 1

α0
)r3

0, r ≥ r0.
(33)

In our first experiment, we choose α0 = 103 and α1 = 1 in (32); see Fig. 3 for the profile of the coefficient. Notice that 
problem (30)-(31) is an inhomogeneous Dirichlet problem.

We convert the exact solution (33) in the Cartesian coordinate to get the reference solution and use the DNN method to 
compute the numerical solution. The implementation of the DNN method has been intensively discussed in Section 3 and 
Section 4.1. The network that we used is shown in Fig. 1 and Fig. 2. We have increased the number of hidden layers and the 
number of neurons within each layer and found that the error does not decrease, which means that the error comes from 
other sources. In addition, we fixed w = 15 in Fig. 2 and choose w = 8, w = 10 and w = 12 in Fig. 1, we obtain almost 
same results, which verifies that choosing a shallow network can maintain accuracy and reduce computational costs.

In the learning process, i.e., the running of the SGD method, we choose the batch number (number of samples per 
gradient update) to be 4096 (that contains 3840 points in the interior domain of D to evaluate the first term in Eq. (8)
and 256 points on the boundary ∂ D to evaluate the second term in Eq. (8); see Eq. (20) for more details) and generate 
a new batch every 10 steps of updating. The learning rate η is 5 × 10−4. Once we have a uniform sampler, the network 
automatically deals with the interface without knowing locations of the interface a priori.

In Fig. 4, we show the corresponding numerical results. In Fig. 4a and Fig. 4b, we plot the profiles of a shallow network 
approximation of the boundary condition g(x) and the deep network approximation of solution u′(x) to the auxiliary PDE 
(13), respectively. In Fig. 4d and Fig. 4e, we show the comparison between the DNN solution and the reference solution. 
One can see that the DNN method provides an accurate result for this interface problem.

In Fig. 4c and Fig. 4f, we plot the decay of the Lagrangian and the L2 relative error between the DNN solution and 
reference solution during the training process. Interestingly we observe that optimization process gets stuck at a local 
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Fig. 3. Profile of a high-contrast coefficient on D .

Fig. 4. High contrast problem, α0 = 1000, α1 = 1 case: (a) profile of g̃; (b) profile of u′; (c) decay of the Lagrangian during the training process; (d) profile 
of the DNN solution u at the final step; (e) profile of the reference solution; (f) decay of the L2 relative error during the training process.

minimum at the beginning, i.e., the first four thousand steps, where the Lagrangian functional does not have decay and the 
error between the DNN solution and reference solution keeps as a constant. Beyond that, the optimization process jumps 
out the local minimum, which makes the Lagrangian functional and the error continue to decay. Finally, the error oscillates 
around 5%. In this experiment, the data size is about 1 GB and iteration for 3 × 105 steps costs about 3700 seconds.

In Fig. 5a, Fig. 5b, and Fig. 5c, we respectively show the solution profile when the iteration is at the initial stage, near 
the local minima and get out of a local minimum. One can see that the solution profile in Fig. 5b captures the profile of the 
exact solution to a certain extent. For such a 2D elliptic PDE, the corresponding deep learning based optimization problem 
has complicated structures. More in-depth research will be carried out in our future work.

In our second experiment, we choose α0 = 1 and α1 = 103 in (32). The profile of the new coefficient looks like an 
upside-down of the profile shown in Fig. 3. We do not show it here. Again, we use the exact solution (33) to serve as the 
reference solution and the DNN method to compute the numerical solution. The setting of the DNN method is the same as 
the first experiment.
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Fig. 5. High contrast problem, α0 = 1000, α1 = 1 case: (a) Solution profile when the iteration is at the initial stage; (b) Solution profile when the iteration 
is near the local minima; (c) Solution profile when the iteration gets out of the local minima.

Fig. 6. High contrast problem, α0 = 1, α1 = 1000 case: (a) profile of g̃; (b) profile of u′; (c) decay of the Lagrangian during the training process; (d) profile 
of the DNN solution u at the final step; (e) profile of the reference solution; (f) decay of the L2 relative error during the training process.

In Fig. 6, we show the corresponding numerical results. In Fig. 6a and Fig. 6b, we plot the profiles of a shallow network 
approximation of the boundary condition g(x) and the deep network approximation of solution u′(x) to the auxiliary PDE 
(13), respectively. In Fig. 6d and Fig. 6e, we show the comparison between the DNN solution and the reference solution. The 
DNN method again provides an accurate result for this interface problem.

In Fig. 6c and Fig. 6f, we plot the decay of the Lagrangian and the L2 relative error between the DNN solution and 
reference solution during the training process. We find that the decay pattern of the second experiment is different from 
the first one. The Lagrangian functional has instant fluctuations during the optimization process. However, it does not get 
stuck at a local minimum. The error function is a monotonic decreasing function. Finally, the error is reduced to about 2%.

The DNN method is a stochastic method since the initial value of parameters in the network, i.e. θ ∈ � and the Adam 
SGD optimizer are random. We are interested in investigating the convergence speed when α1 = 1 and α0 � 1, which is a 
‘harder’ case of the high-contrast problem since the optimization process of the DNN method gets stuck at a local minimum. 
Let n record the steps that the iteration gets out of the local minimum; see the staircase shown in Fig. 4c and Fig. 4f. In 
Fig. 7, we plot the histogram of the n when α0 = 1000 and α0 = 10000, respectively. The total number of iteration is set 
to be 5 × 105 when α0 = 1000 and 106 when α0 = 10000. We find that a higher contrast in the coefficient will lead to a 
slower convergence in the DNN method. We observe that when the contrast of the coefficient is higher, the optimization 
process of the DNN method has a bigger chance to get stuck at a local minimum. We also observe that about 7% of trials 
failed to converge within the designed steps.
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Fig. 7. Histogram of the number of steps to get out of local minima.

Fig. 8. Problem defined on a disk domain.

To further show the benefit of the mesh-free nature of the DNN method, we consider a 2D elliptic PDE (30) defined on a 
closed disk D . Specifically, the domain D is a disk with radius one and centered at the origin. The coefficient a(x) is defined 
in (32), where α0 = 1000 and α1 = 1. The source term is f (x) = −9(x2

1 + x2
2)

1/2.
In this experiment, we impose zero boundary condition so the reference solution differs from the exact solution in 

Eq. (33) only by a constant, i.e. 1
α0

+ ( 1
α1

− 1
α0

)r3
0 . The implementation of the DNN method is exactly the same as the 

previous two experiments. In Fig. 8, we show the numerical solution obtained by our method and the numerical error. The 
final L2 relative error is about 4.5%. This numerical result demonstrates that once we have a sampling method to generate 
collocation points in the interior domain and on the boundary, we can use the DNN method to solve PDEs, where we do 
not need to specially treat the locations of the interface and/or the shape of the boundary. Thus, the DNN method can be 
used to solve PDEs defined in irregular domains.

5.2. More discussions on our method based on a 2D high-contrast problem

In our proposed method, there are some parameters that determine the accuracy of the DNN method, such as the batch 
number (the number of collocation points used in computing the integration in the variational problem), the learning rate in 
the SGD, etc. In this subsection, we shall carry out several numerical experiments to study the performance of our method 
on those parameters.

We consider a 2D multiscale elliptic PDE (30) on the domain D = [0, 1]2, where the coefficient a(x) contains high-
contrast inclusions and channels; see Fig. 9. This type of coefficient is used to mimic complicated permeability fields in 
the reservoir simulation [10]. The performance of the proposed method for inhomogeneous boundary conditions has been 
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Fig. 9. Profile of a high-contrast coefficient on D .

Fig. 10. (a) reference solution; (b) numerical solution; (c) contour plot of the error.

verified in the previous subsection. Here, we choose homogeneous boundary condition g(x) = 0 on ∂ D . The networks that 
we used for approximating the boundary condition and the solution are shown in Fig. 1 and Fig. 2, respectively.

We use the FEM with fine mesh h = 1
128 to compute the reference solution and the DNN method to compute the 

numerical solution. In the learning process, i.e., the running of the SGD method, we choose the batch number to be 4096
(that contains 3840 points in the interior domain of D and 256 points on the boundary ∂ D) and generate a new batch 
every 10 steps of updating. The learning rate is η = 2 × 10−3. Once we have a uniform sampler, the network automatically 
deals with the interface without knowing locations of the interface a priori. Finally, the final L2 relative error is about 3%.

In Fig. 10, we respectively show the reference solution, the numerical solution and the contour plot of the error. In this 
example, the solution contains sharp edges due to the heterogeneity in the coefficient. Numerical results show that the DNN 
method can capture those sharp edges well.

In what follows, we test the influence of hyper-parameters on the accuracy of the DNN method. We first choose different 
batch numbers, i.e. N = 1024, N = 4096 and N = 16384, and keep other parameters in the DNN method unchanged. Again, 
we put 6.25%N points on the boundary and the remaining points in the interior domain. We show the numerical solutions 
obtained by different batch numbers in Fig. 11a - Fig. 11c. Moreover, we plot the decay of the L2 relative error during the 
training process together in Fig. 11d. One can see that when the batch number is not big enough, say N = 1024, the DNN 
solution cannot capture the edges well thus leads to a big numerical error. The DNN method with N = 4096 and N = 16384
batch numbers gives almost identical solutions. These numerical results indicate that the setting of the batch number is 
essential in the accuracy of the DNN method.

We also test the influence of the learning rate on the accuracy of the DNN method. Notice that the learning rate and 
training step are highly related. In this experiment, we choose four different learning rates, i.e., η = 1 × 10−3, η = 2 × 10−3, 
η = 4 × 10−3 and η = 8 × 10−3, and keep other parameters in the DNN method unchanged, where the batch number is 
N = 4096. We plot the decay of the L2 relative error vs learning rate × training steps during the training process together 
in Fig. 12. One can see that the final L2 errors of each experiment are close thus it seems to suggest that the DNN method 
is robust in terms of the learning rate. However, one can also see that a larger learning rate leads to greater fluctuations in 
the decay of error during the training process.
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Fig. 11. Influence of batch number: (a) N = 1024; (b) N = 4096; (c) N = 16384; (d) L2 relative error during the training process.

Fig. 12. L2 relative error with different learning rate η.

5.3. 2D Linear elasticity interface problem

We consider the linear elasticity PDE with a discontinuous stress tensor defined in (26), where x = (x1, x2), the domain 
D = [−8, 8] × [−8, 8], u = (u1, u2)

T , the elasticity tensor C is defined by (23) or (24) with λ = 1 and μ = 1. We choose 
α = 1 in the jump of the stress tensor across the cell.

In the cell model [41], keratocytes typically have a roughly circular shape with an annular lamellipodium surrounding 
the nucleus, when they are in a stationary state. Contact and force transmission with the substrate occurs only at the 
lamellipodium and not the nucleus and organelles. Accordingly, we choose the initial lamellipodium region 
 to be an 
annulus in the center of the square domain D , with the nucleus excluded; see Fig. 13.
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Fig. 13. Value of χ on D , where the yellow region is 
.

Fig. 14. 2D Linear elasticity interface problem: (a) profile of DNN solution u1; (b) profile of DNN solution u2; (c) decay of the Lagrangian during the training 
process; (d) profile of reference solution u1; (e) profile of reference solution u2; (f) decay of the L2 relative error during the training process.

We set u1 = u2 = 0 on the boundary of D , which gives a null displacement or traction-free boundary condition. On the 
boundary of the cell 
, we impose the jump conditions (27).

We use the immersed-interface FEM with a fine mesh h = 1/32 to compute the reference solution and the DNN method 
to compute the numerical solution. The network that we used has four intermediate layers and the width of each layer is 
twenty, where the network is densely connected. In the running of the SGD method, we choose the batch number to be 
2048 (that contains 1920 points in the interior domain of D and 128 points on the boundary ∂ D) and generate a new batch 
every 10 steps of updating. The learning rate η is 5 × 10−4.

In Fig. 14, we show the corresponding numerical results. In Fig. 14a and Fig. 14b, we plot the profiles of DNN solutions u1
and u2, which are the displacements in x1 and x2 coordinates, respectively. The corresponding reference solutions are shown 
in Fig. 14d and Fig. 14e. We find that the DNN solutions agree well with the reference solutions. In Fig. 14c and Fig. 14f, 
we plot the decay of the Lagrangian and the L2 relative error between the DNN solution and reference solution during the 
training process. We find that both the Lagrangian functional and error function are monotonic decreasing functions. Finally 
the error is reduced to about 4%. Our numerical results imply that the DNN method is efficient in solving the 2D Linear 
elasticity interface problem (26). Most importantly, its implementation is very simple.
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6. Conclusions

In this paper, we proposed a DNN method to solve interface problems. By formulating the PDEs into variational problems, 
we convert the interface problems into optimization problems. Since the ReLU-DNN can be used to approximate the linear 
space spanned by FEM nodal basis functions. Thus, we parameterize the PDE solutions by using the ReLU-DNNs and solve 
the interface problems by searching the minimizer of the associated optimization problems. In this framework, once we 
have samplers of collocation points in the domain and on the boundary, we do not need any special treatment to deal with 
the interface inside the domain and/or the shape of the boundary. Therefore, the proposed method is easy to implement 
and mesh-free.

Finally, we use the DNN method to solve elliptic PDEs with discontinuous and high-contrast coefficients and linear 
elasticity with discontinuous stress tensors. We find the ReLU-DNN with enough hidden layers and enough neurons with 
each layer can approximate the solutions of the target PDEs well. Although the parameter space of the ReLU-DNN is huge, 
the SGD method can efficiently solve the optimization problems. Numerical results show that the accuracy of the DNN 
method depends on the expressive power of the DNNs and the batch number in the SGD method. It seems that the DNN 
method is not very sensitive to the learning rate. Therefore, the DNN method provides an effective alternative to solve 
interface problems.

There are several issues remain open. For instance, we do not get the convergence rate for the DNN method and we have 
little understanding about the parameter space of the DNN. In addition, the issue of local minima and saddle points in the 
optimization problem is highly nontrivial. We are interested in studying these issues in our future research.
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