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1. Introduction

In this paper, we are interested in non-overlapping domain decomposition methods (DDMs) for the Helmholtz equation.
Such methods were introduced by Lions [34] for the Laplace equation and extended to the Helmholtz equation by Després
[18–20]. Essentially, the method consists in combining the continuity conditions (of the field and its normal derivative) on
the artificial interfaces between subdomains, in order to obtain Robin boundary conditions and to solve the overall problem
by iterating over the subdomains [36,42,44]. Robin conditions (also called absorbing or impedance boundary conditions) are
chosen to couple the subdomains because using the natural conditions leads to divergent iterative algorithms [11].

Improving the convergence properties of the iterative process constitutes the key in designing effective algorithms, in
particular in mid and high frequency. The optimal convergence is obtained by defining the transmission conditions, on each
interface, using the Dirichlet-to-Neumann (DtN) operator corresponding to the problem sharing the same interface [37,38].
This however leads to a very expensive procedure in practice. The first contribution following the original method of Després,
using particular non-local transmission conditions, was made in [16] with a relative success regarding the effective conver-
gence. A great variety of techniques based on local transmission conditions have also been proposed to improve the conver-
gence: these include the class of FETI-H methods [13,23–25], the optimized Schwarz approach [26], and the evanescent
modes damping algorithm [11,14,15]. However, the related impedance operators do not accurately approximate the exact
DtN operator on all the modes of the solution, which makes the resulting iterative methods suboptimal.

In this paper, we propose a new square-root based transmission condition, localized using Padé approximants, which
accurately approximates the DtN operator and allows to design an algorithm with quasi-optimal convergence properties.
Indeed, we will show that the rate of convergence is optimal on the evanescent modes and is significantly improved
. All rights reserved.
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compared to current techniques for the remaining modes. In the effective convergence, this results in a DDM independent of
the wavenumber as well as the mesh discretization. Moreover, we will see how the resulting approximate DtN operator is
easy to implement in a basic finite element solver.

The paper is organized as follows. In Section 2, we introduce the scattering problem as well as the non-overlapping DDM.
We present in the third Section a non-local square-root operator which approximates the exact DtN transmission operator.
Section 4 develops a convergence analysis for this approximate transmission condition on a model problem. Section 5 details
the complex Padé approximation of the square-root operator to get a local representation. Section 6 presents the finite ele-
ment implementation of the resulting DDM. Numerical results on both two- and three-dimensional problems are presented
in Section 7.

2. Scattering problem and non-overlapping domain decomposition method

Let us consider the three-dimensional time-harmonic scattering problem of an incident acoustic wave by an obstacle K.
We want to compute the scattered field u solution to the exterior Helmholtz equation with a Dirichlet boundary condition1:
1 The
which w
Duþ k2u ¼ 0 in R3 n K;

u ¼ f on C ¼ @K;

lim
jxj!1

jxjð@jxju� ıkuÞ ¼ 0:

8>><
>>: ð1Þ
The boundary data f is fixed by a plane wave: f = �eıka�x, with x ¼ ðx1; x2; x3Þ 2 R3 and ı ¼
ffiffiffiffiffiffiffi
�1
p

. The incidence angle a is nor-
malized on the unit sphere (jaj = 1) and k denotes the wavenumber, related to the wavelength k of the incident wave through
k = 2p/k. The last equation of system (1) is the Sommerfeld radiation condition at infinity, which imposes that the scattered
wave is outgoing.

To solve (1), we combine Absorbing Boundary Conditions (ABCs) with Lions–Després’ non-overlapping domain decompo-
sition method. The ABC method consists in truncating the infinite domain by introducing a fictitious boundary C1 to get a
bounded computational region. Then, system (1) is approximated by
Duþ k2u ¼ 0 in X;

u ¼ f on C;

@nuþ Bu ¼ 0 on C1;

8><
>: ð2Þ
where X is the bounded domain enclosed by the fictitious boundary C1 and C (see Fig. 1) and where the operator B rep-
resents an approximation of the DtN operator (for example B ¼ �ık) on C1. The vector n is the outwardly directed unit nor-
mal to C1. Let us remark that all what follows can be adapted to the case of other truncation techniques, like e.g. perfectly
matched layers (PMLs) [12,17,41,45].

The first step of the Lions–Després domain decomposition method [18,34] consists in splitting X into several subdomains
Xi, i = 1, . . . , Ndom, such that (see Fig. 1):

� X ¼
SNdom

i¼1 Xi ði ¼ 1; . . . ;NdomÞ,
� Xi \Xj = ;, if i – j, (i, j = 1, . . . ,Ndom),
� @Xi \ @Xj ¼ Rij ¼ Rji ði; j ¼ 1; . . . ;NdomÞ is the artificial interface separating Xi and Xj as long as its interior Rij is not empty.

The second step consists in reducing the solution of the initial problem (2) by solving the local transmission problems
Duðnþ1Þ
i þ k2uðnþ1Þ

i ¼ 0 in Xi;

uðnþ1Þ
i ¼ fi on Ci;

@ni
uðnþ1Þ

i þ Buðnþ1Þ
i ¼ 0 on C1i ;

8>><
>>: ð3aÞ

@ni
uðnþ1Þ

i þ Suðnþ1Þ
i ¼ gðnÞij on Rij ð3bÞ
and then in forming the quantities to be transmitted through the interfaces
gðnþ1Þ
ji ¼ �@ni

uðnþ1Þ
i þ Suðnþ1Þ

i ¼ �gðnÞij þ 2Suðnþ1Þ
i on Rij; ð4Þ
where ui ¼ ujXi
;ni (resp. nj) is the outward unit normal to the boundary of Xi (resp. Xj), i ¼ 1; . . . ;Ndom; j ¼ 1; . . . ;Ndom; Ci ¼

@Xi \ C; C1i ¼ @Xi \ C1 and S an invertible operator. Let us note that the boundary condition on Ci (resp. C1i ) does not take
place if the interior of @Xi \ C (resp. @Xi \ C1) is the empty set. We will assume in all that follows that the DDM is
well-posed, in the sense that each subproblem (3a) and (3b) is itself well-posed, i.e., away from interior resonances.
Dirichlet boundary condition models a sound-soft obstacle; Neumann (sound-hard) or Fourier-Robin (impedance) boundary conditions may also be set,
ould not fundamentally change the rest of the paper.



Fig. 1. Example of a two-dimensional non-overlapping domain decomposition method.
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Solving at each step all the local transmission problems through (3) and (4) may be recast as one application of the iter-
ation operator A : �Ndom

i;j¼1 L2ðRijÞ ! �Ndom
i;j¼1 L2ðRijÞ [10] defined by
gðnþ1Þ ¼ AgðnÞ þ b; ð5Þ
where g(n) is the set of boundary data gðnÞij

� �
16i;j6Ndom

, and b is given by the Dirichlet boundary condition. Therefore, (3) and (4)
can be seen as an iteration of the Jacobi method (or fixed point iteration) applied to the linear system:
ðI �AÞg ¼ b; ð6Þ
where I is the identity operator. Following this idea, any Krylov solver could also be applied to solve this equation. Indeed, we
will see that the GMRES algorithm significantly improves the iterative process over the successive approximations procedure
(5).

3. Square-root based transmission condition

It is well-known that the convergence of the domain decomposition method for scattering problems strongly depends on
the choice of the transmission operator S. Indeed, to each choice of operator S corresponds an iteration operator Awith par-
ticular spectral properties. Several techniques were developed to improve the convergence by modifying the original algo-
rithm introduced by Després in [18]. In this last reference, the low-order approximation of the DtN operator
S0u ¼ �ıku ð7Þ
is used. For this choice of operator S, it can be shown [14] that the resulting iteration operator only acts on the part of the
spectrum corresponding to the propagating modes while the eigenvalues related to the evanescent modes have unit mod-
ulus [14]. This directly impacts the convergence (divergence) properties of the resulting iterative scheme.

Two families of techniques have been proposed to overcome this problem. First, algorithms based on the optimization of
the rate of convergence were introduced by Gander et al. [26], where improved local approximations of the DtN map of order
zero or order two are built. For a generic transmitting boundary R the resulting optimized order zero (OO0) and optimized
order two (OO2) local transmission operators are given by [26]:
SOO0u ¼ au and SOO2u ¼ au� bDRu; ð8Þ
where the complex numbers a and b are obtained by solving a min–max optimization problem on the rate of convergence,
and DR is the Laplace–Beltrami operator on the interface R. Second, the Evanescent Modes Damping Algorithm (EMDA) was
introduced by Boubendir in [14,15], with the explicit aim to damp the evanescent modes:
SXu ¼ �ıkuþ Xu; ð9Þ
where X is a self-adjoint positive operator. We only consider here the usual case where X is a real-valued positive coefficient.
In this paper we propose a new ‘‘square-root’’ transmission operator [6] that takes the following form:
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Ssq;eu ¼ �ık

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ divR

1

k2
e

rR

 !vuut u; ð10Þ
where
ke ¼ kþ ıe ð11Þ
is a complexified wavenumber, the operator divR is the surface divergence of a tangent vector field on R and rR is the tan-
gential gradient of a surface field. The square-root

ffiffiffi
A
p

of an operator A is classically defined through the spectral decompo-
sition of A [43]. Furthermore, the notation

ffiffiffi
z
p

designates the principal determination of the square-root of a complex number
z with branch-cut along the negative real axis. Note that, as will be seen later, e can depend on geometrical parameters, like
the mean curvature of the surface R. We will show in what follows that

1. the nonlocal operator Ssq,e can be accurately localized using complex Padé approximants, and suitably combined with
finite element methods;

2. the convergence of the resulting DDM is quasi-optimal: the rate of convergence corresponding to the evanescent modes is
zero, and significantly improved for the remaining modes. This results in an effective solution where the iterative proce-
dure is quasi independent of both the wavenumber and the level of accuracy of the spatial discretization (mesh
refinement).

The Després, OO0 and EMDA transmission operators (7), (8) (left) and (9) are particular cases of Impedance Boundary
Conditions [40]. The second order (8) (right) and the new square-root operator (10), as well as its Padé localization, fall into
the realm of so-called Generalized Impedance Boundary Conditions [40]. In what follows we will refer to the transmission
conditions related to the Després and EMDA algorithms by IBC(0) and IBCðXÞ, respectively, the second order optimized trans-
mission condition by OO2 and to the square-root transmission condition by GIBC(sq,e).

3.1. Formal construction of the square-root transmission operator

To explain the origin of the regularized square-root operator Ssq,e given by (10), we first consider the particular case of the
half-space, where the following boundary value problem
Duþ k2u ¼ 0; in R3
þ ¼ fx 2 R3; x1 > 0g;

u ¼ g; on R;

u is outgoing

8><
>: ð12Þ
is posed. The straight transmitting boundary is R :¼ fx 2 R3; x1 ¼ 0g. Therefore, x1 gives the normal direction to R while
(x2,x3) designate the tangential variables. We can write the Dirichlet-to-Neumann (DtN) operator K defined by
K : H1=2ðRÞ ! H�1=2ðRÞ
ujC # @nujC ¼ KðujCÞ

ð13Þ
explicitly for the problem (12) by Fourier analysis. Indeed, let us introduce n ¼ ðn2; n3Þ 2 R2 as the Fourier covariable of the
tangential variable x\ = (x2,x3). We denote by F x? the partial Fourier transform with respect to (x2,x3) and by F�1

n the asso-
ciated inverse Fourier transform. Applying F x? to the Helmholtz equation leads to the solution of the ODE
@2
x1

ûðx1; nÞ þ ðk2 � jnj2Þûðx1; nÞ ¼ 0 ð14Þ
for x1 > 0 and jnj2 ¼ n2
2 þ n2

3. For conciseness, we set: ûðx1; nÞ :¼ F x?uðx1; nÞ. Let us consider r1 as the symbol defined by:

r1ðk; nÞ ¼ ık
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jnj2=k2

q
. Then, the solution to (14) writes down
ûðx1; nÞ ¼ Aþer1ðk;nÞx1 þ A�e�r1ðk;nÞx1 ð15Þ
for x1 P 0. Since we are looking for a transmitting operator K, this implies that the solution u must be an outgoing solution
and that its L2

R3
þ

� �
-norm is finite (to avoid any growing mode at infinity). This also means that ûðx1; nÞ has a finite L2

R3
þ

� �
-

norm by Parseval’s theorem. This can only arise if A� = 0, resulting in the right traveling solution: ûðx1; nÞ ¼ Aþer1ðk;nÞx1 . Deriv-
ing this last expression with respect to x1, applying the inverse Fourier transform in n and considering the trace of the result-
ing relation on the transmitting boundary R leads to
@nuð0; x?Þ ¼ F�1
n ðr1ðk; nÞûðx1; nÞÞjR: ð16Þ
In terms of pseudodifferential operators [43], another way of writing this equation is
@nuð0; x?Þ ¼ Opðr1Þuð0;x?Þ; on R; ð17Þ
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which means that Op(r1) is the pseudodifferential operator with symbol r1. This relation provides K such that: K :¼ Op(r1).
Since the Helmholtz Eq. (12) has constant coefficients, it can be proved that
K :¼ Opðr1Þ ¼ Op ık

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jnj

2

k2

s0
@

1
A ¼ ık

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DR

k2

s
; ð18Þ
where the Laplace–Beltrami operator over R is defined by: DR :¼ @2
x2
þ @2

x3
. For a half-space, the transmitting operator S is

thus simply taken to be equal to
Ssq;0u ¼ �Ku ¼ �ık

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ DR

k2

s
u: ð19Þ
Let us now consider a curved surface R. Then, if the surface is locally approximated by its tangent plane, we can formally
propose a local, but approximate, representation of the surface DtN transmitting boundary condition based on (19), where
DR :¼ divRrR is the Laplace–Beltrami operator for the curved surface R. However, this operator is not an accurate approx-
imation of the DtN operator for the grazing rays [6]. This is a fundamental difference compared to the half-space case where
this situation does not arise. Another explanation of this problem is that the symbol r1 of the operator exhibits a singularity
for the tangential frequencies n such that: jnj � k (the glancing region in terms of microlocal analysis [2]). The solution pro-
posed in [6] is based on a regularized symmetrical form of the involved Laplace–Beltrami operator, which results in the reg-
ularized square-root transmitting operator (10). More details can be found in [2,6] for a rigorous construction based on
pseudodifferential operators and microlocal analysis.

3.2. Relation to Absorbing Boundary Conditions

The construction of the square-root transmission operator is closely related to previous developments in the context of
Absorbing Boundary Conditions (ABC) for scattering problems, where the goal is to minimize reflection at the fictitious sur-
face C1. In the eighties, the Engquist–Majda [22] and Bayliss–Turkel [2,8,9] ABCs were developed, and are written as
@nuþMu ¼ 0 on C1; ð20Þ
where M is a local approximation of the DtN operator that takes a form similar to the second order transmission operator (8)
(right). While these conditions are widely used for practical computations and most particularly for engineering purposes, it
was recently shown in [6] that they also do not model the evanescent and grazing modes, resulting in a loss of accuracy of
the method. In order to solve this problem, a high-order local ABC was introduced in [6,32], which uses M = Ssq,e in (20) to
model all the scattering modes: propagating, evanescent as well as (in an approximate way) grazing. This ABC can be local-
ized with complex Padé approximants, and the coefficient e in (11) can then be chosen to minimize spurious reflections at
the boundary.

4. Convergence analysis for a model problem

In order to study the convergence of the proposed DDM with square-root transmission operator, we analyze the model
problem depicted in Fig. 2. This model problem couples two subdomains: a disk-shaped bounded subdomain X1 of radius R0

and an unbounded domain X0 ¼ R2 nX1:
X0 :¼ fx 2 R2; jxj > R0g; X1 :¼ fx 2 R2; jxj < R0g; ð21Þ
Fig. 2. Model problem with two subdomains and a circular interface.
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with @X0 = @X1 = R. We study the spectral properties of the iteration operator obtained from the domain decomposition
algorithm coupling these two subdomains. Studying the coupling of bounded and unbounded subdomains will allow us
to understand the main properties that one could not analyze by considering two bounded (e.g. a square domain divided
in two) or two unbounded (e.g. two half-planes) subdomains. The considered model problem essentially contains the main
difficulties encountered when solving exterior scattering problems. Note that a closely related problem where the un-
bounded domain is replaced by an annulus-shaped bounded domain with an ABC on the exterior boundary could also have
been selected. However, this would only lead to more complex expressions without providing additional insight.

4.1. Convergence theorem

For the considered model problem, the domain decomposition method with square-root transmission condition consists
in solving separately at each iteration the following problems
Du0 þ k2u0 ¼ 0 in X0;

@n0 u0 þ Ssq;eu0 ¼ g0 on R;

lim
jxj!1

jxj1=2ð@jxju0 � ıku0Þ ¼ 0;

8>><
>>: ð22Þ
and
Du1 þ k2u1 ¼ 0 in X1;

@n1 u1 þ Ssq;eu1 ¼ g1 on R;

(
ð23Þ
where g0 and g1 are defined as in Eq. (4). The convergence analysis can be developed by studying the spectral properties of
the iteration operator A defined by (5), where
A :¼ PT ð24Þ
and where the two operators T and P are defined as [14]:
T gðnÞ :¼
T 1 0
0 T 0

� �
gðnÞ1

gðnÞ0

 !
and P :¼

0 I

I 0

� �
; ð25Þ
with
T 1gðnÞ1 :¼ �gðnÞ1 þ 2Ssq;euðnþ1Þ
1 ; T 0gðnÞ0 :¼ �gðnÞ0 þ 2Ssq;euðnþ1Þ

0 : ð26Þ
Since we have a circular geometry, we can analyze the error mode-by-mode by using a Fourier–Hankel series expansion
in the polar coordinates system (r,h). Let us set
u‘ðr; hÞ ¼
Xþ1

m¼�1
u‘;mðrÞeımh and g‘ðr; hÞ ¼

Xþ1
m¼�1

g‘;mðrÞeımh; ‘ ¼ 0;1: ð27Þ
Since feımhgm2Z defines an orthonormal basis of L2(R), problems (22) and (23) lead to solve the decoupled problems
1
r @rðr@ru0;mÞ � m2

r2 u0;m þ k2u0;m ¼ 0 for r > R0;

�@ru0;m þ Ssq;e
m u0;m ¼ g0;m for r ¼ R0;

lim
r!þ1

r1=2ð@ru0;m � ıku0;mÞ ¼ 0

8>><
>>: ð28Þ
and
1
r @rðr@ru1;mÞ � m2

r2 u1;m þ k2u1;m ¼ 0 for r < R0;

@ru1;m þ Ssq;e
m u1;m ¼ g1;m for r ¼ R0:

(
ð29Þ
In the polar coordinate system the surface divergence and the tangential gradient appearing in (10) reduce to the curvi-
linear derivative R�1

0 @h. Hence, for a mode m, we get the analytical expression of the square-root transmission operator:
Ssq;e
m ¼ �ık

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

k2
e R2

0

s
:¼ �ıkðRm þ ıXmÞ: ð30Þ
The solution of the first and last equation of the exterior problem (28) is given by u0;mðrÞ ¼ amHð1Þm ðkrÞ, where Hð1Þm denotes
the Hankel function of the first kind and order m. For the interior problem (29) the solution of the first equation reads
uð1Þm ðrÞ ¼ bmJmðkrÞ, where Jm is the Bessel function of order m.

Writing the modal decomposition of the operators T 0 and T 1 as T 0 ¼
Pþ1

m¼�1T 0;meımh and T 1 ¼
Pþ1

m¼�1T 1;meımh, one can
show using the second equations of (28) and (29) that:
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T ‘;m ¼
�kZ‘;m þ Ssq;e

m

kZ‘;m þ Ssq;e
m

¼ �Z‘;m þ ıðRm þ ıXmÞ
Z‘;m þ ıðRm þ ıXmÞ

; ‘ ¼ 0;1; ð31Þ
with
Z0;m ¼
Hð1Þ0m ðkR0Þ
Hð1Þm ðkR0Þ

and Z1;m ¼ �
J0mðkR0Þ
JmðkR0Þ

: ð32Þ
Since the convergence properties of the DDM are strongly related to the spectrum of the iteration operator A, we study
the spectrum of the modal matrices
Am ¼
0 T 0;m

T 1;m 0

� �
ð33Þ
for each mode, where A ¼
Pþ1

m¼�1Ameımh. Let us begin by considering that the iteration Eq. (6) is solved using the Jacobi algo-
rithm. Then, according to Theorem 1 below (see [14]), convergence occurs if and only if the spectral radius
qðAÞ ¼ maxm2ZqðAmÞ is smaller than one:

Theorem 1. Let s 2 R be such that (g0,g1) 2 V :¼ H�s(R) � H�s(R). The domain decomposition algorithm converges in V if and
only if for all m;qðAmÞ < 1, with qðAmÞ the largest modulus of the two eigenvalues of the 2 � 2 matrix Am.

In our case, the two eigenvalues of Am are: k�m ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 0;mT 1;m

p
. Hence, it is sufficient to prove that jT 0;mT 1;mj < 1 for each

mode m to guarantee the convergence of the iterative method. Before proving this inequality, let us first establish the fol-
lowing lemma.

Lemma 2. Consider the function F defined by
FðR;X ;ZÞ ¼ �Z þ ıðR þ ıXÞ
Z þ ıðR þ ıXÞ ; ð34Þ
where the real coefficients R and X are positive ðR > 0;X > 0Þ and where Z is a complex number, with RðZÞ :¼ �x and
IðZÞ :¼ y. Then, under the conditions x > 0 and y > 0, we have
jFðR;X ;ZÞj < 1: ð35Þ
Proof. By writing Z ¼ �xþ ıy, we obtain
jFðR;X ;ZÞj2 ¼ ðx� XÞ
2 þ ðR � yÞ2

ðxþ XÞ2 þ ðR þ yÞ2
< 1; ð36Þ
since ðR � yÞ2 < ðR þ yÞ2 and ðx�XÞ2 6 ðxþXÞ2. h

To prove the convergence of the algorithm, we first study separately the two coefficients T 0;m and T 1;m, related to the
exterior and interior problems respectively. The behavior of the coefficients depends on the choice of the damping parameter
e appearing in the definition of the square-root operator (30) through (11).

Proposition 3. For e > 0 and any m 2 Z, we have:
jT 0;mj < 1: ð37Þ
If e = 0 and m – ± kR0, then the inequality (37) also holds.
Proof. For any mode m, the coefficient Z0;m can be written as
Z0;m ¼
Hð1Þ0m ðkR0ÞHð1Þm ðkR0Þ
jHð1Þm ðkR0Þj2

; ð38Þ
with IðHð1Þ0m ðkR0ÞHð1Þm ðkR0ÞÞ > 0 and RðHð1Þ0m ðkR0ÞHð1Þm ðkR0ÞÞ < 0 (see [14] for the proof).

Let us first assume that e = 0. If one has a propagating mode, i.e., jmj < k R0, then Ssq;0
m ¼ �ıkRm. For the evanescent modes

such that kR0 < jmj;Ssq;0
m ¼ kXm. In these two cases, we deduce that jT 0;mj < 1 by using Lemma 2 if there is no mode m such

that m = ± kR0.
Let us now consider the damped version e > 0 of the transmission operator Ssq;e

m . We first recall that if a and b are two real
numbers such that b – 0, then

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ıb
p

¼ pþ ıq, where p and q are two real numbers given by
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p ¼ 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
þ a

r
; q ¼ signðbÞffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
� a

r
: ð39Þ
Expanding Ssq;e
m ¼ �ıkðRm þ ıXmÞ as
Ssq;e
m ¼ �ık

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0ððk
2 � e2Þ2 þ 4k2e2Þ �m2ðk2 � e2Þ þ 2ım2ke

R2
0ððk

2 � e2Þ2 þ 4k2e2Þ

vuut ð40Þ
and knowing that k > 0 and e > 0, we get that Rm > 0 and Xm > 0. Using (39) and Lemma 2, this allows us to conclude that
jT 0;mj < 1, for any m 2 Z and e > 0. h

Concerning the interior problem, we have the following result.

Proposition 4. If e P 0 and jmj > kR0, we have
jT 1;mj < 1: ð41Þ
If e = 0 and jmj 6 kR0, we have
jT 1;mj ¼ 1: ð42Þ
Proof. We observe that Z1;m is real. Let us first consider the case when e = 0. If jmj 6 kR0, then Xm ¼ 0 and we trivially have
jT 1;mj ¼ 1. When jmj > kR0, we study the sign of Z1;m. Since
Z1;m ¼ �
J0mðkR0Þ
JmðkR0Þ

¼ �
u01;mðR0Þ

ku1;mðR0Þ
by using the variational formulation of problem (29) we obtain
R R0u01;mðR0Þu1;mðR0Þ
� �

¼
Z R0

0
rju01;mj

2 þ m2

r2 � k2
� �

ju1;mj2r
	 


dr:
Hence, for all jmj > kR0, we deduce that R R0u01;mðR0Þu1;mðR0Þ
� �

> 0. Furthermore,Rm ¼ 0 but Xm – 0, meaning that jT 1;mj < 1.
Let us now consider the case e > 0. If jmj > kR0 the same procedure can be used, in which case Rm > 0 and jT 1;mj < 1. h

From the preceding propositions we can prove the following result.

Theorem 5. For e = 0 and if m is not a cut-off mode, i.e. jmj– kR0, we have the inequality
jT 0;mT 1;mj < 1: ð43Þ
If e > 0, then there exists emax such that for 0 < e < emax the inequality (43) is also satisfied.
Proof. Let e = 0 and let us assume that there is no cut-off mode. Then, the result is a consequence of Propositions 3 and 4. If
e > 0, the inequality (43) is true if m corresponds to an evanescent mode. However, we cannot conclude directly for the prop-
agating ones because of the operator T 1. These propagating modes are in finite number and for e = 0 we have (43). Therefore,
we can then deduce by continuity on e that there exists emax such that for 0 < e < emax, the inequality (43) is satisfied. h

The preceding theorem ensures convergence of the Jacobi domain decomposition algorithm with the square-root oper-
ator when 0 < e < emax. The analysis is not valid for the cut-off mode jmj = kR0 when e = 0: indeed, the operator Ssq;e is then
not invertible, which makes the domain decomposition algorithm ill-posed. In the actual implementation of the DDM it is
thus important to consider e > 0 in order to guarantee the well-posedness of the DDM. In addition, as we will show, e > 0
contributes in improving the convergence in the transition zone between the propagating and evanescent modes.

4.2. Quasi-optimality

Since
Hð1Þm ðtÞ � �
2mðm� 1Þ!

iptm and JmðtÞ � �
tm

2mm!
for jmj � jtj; ð44Þ
we get, for jmj � kR0,
Z0;m � �
m

kR0
and Z1;m �

m
kR0

ð45Þ
and thus
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lim
m!1

k�m ¼ �
ıe

�2k� ıe
for e > 0: ð46Þ
This shows that there is a clustering of the eigenvalues for jmj � kR0. Obviously, the limit is zero if e = 0. Therefore, the rate of
convergence is optimal for the evanescent modes. This property remains true for e > 0 since k� e.

To demonstrate the efficiency of the algorithm on the rest of the modes, let us choose k = 6p, R0 = 1 and a maximal num-
ber of modes mmax = [10kR0] (where [10kR0] denotes the integer part of 10kR0), and compare the new algorithm with the
Després, EMDA and OO2 algorithms. Recall that the OO2 method is based on optimizing the transmission coefficients a
and b in relation (8) according to the following min–max problem posed in the Fourier space:
min
a;b2iR�R

max
jnj2½jnmin j;k�	[½kþ ;jnmax j	

jqða; b; jnjÞj
� �

; ð47Þ
where q is the rate of convergence computed in the case of the half-plane (see [26] for the details and notations). The real
positive parameters k� and k+ are introduced to exclude the Fourier modes n close to the cut-off frequency jnj = k in the opti-
mization problem. Frequencies nmin and nmax are fixed to solve the min–max problem on a bounded domain. It is clear that
nmin should be fixed to zero and nmax should be chosen as the maximal number of modes for the Fourier series expansion:
nmax = mmax. (In a finite element setting, nmax is related to the smallest local mesh size h. For the numerical experiments in
Section 7 we chose nmax = p/h.) It can be proved [26] that the optimal coefficients a and b are given by
a ¼ �a
b
 � k2

a
 þ b

and b ¼ � 1

a
 þ b

; ð48Þ
with
a
 ¼ i k2 � k2
�

� �
ðk2 � jnminj

2Þ
� �1=4

and b
 ¼ k2
þ � k2

� �
ðjnmaxj

2 � k2Þ
� �1=4

: ð49Þ
For an open square cavity with sidelength L the parameters k� and k+ are chosen in [26] as k± = k ± Dk, with Dk = p/L.
However, this choice is unclear for general shapes, and a different setting of the min-max problem is required. In this
work, to fix the exclusion interval size we consider Dk = p/R0. This choice will also be done for the numerical experi-
ments in Section 7. Fig. 3(b) displays the dependence of the rate of convergence with respect to Dk, showing that this
choice is almost optimal for our model problem. Since OO2 essentially depends on Dk, in what follows we use the nota-
tion OO2(Dk).

We report in Fig. 3(a) the modal spectral radius qðAmÞ with respect to m for the transmitting boundary conditions IBC(0)
(Després), IBC(k/2) (EMDA), OO2(Dk) and GIBC(sq, 0). As is well-known, IBC(0) has a spectral radius equal to 1 for the eva-
nescent modes, which is improved by EMDA—for which the radius of convergence is always less than one. OO2 further im-
proves over EMDA, particularly for large spatial modes m. For the new transmission condition with e = 0 (GIBC(sq,0)), we
clearly observe an optimal convergence rate for the evanescent part, which is coherent with our previous comment. We also
observe a significant improvement over the Després, EMDA and OO2 algorithms on the propagating modes.
Fig. 3. Spectral radius of the iteration operators and optimal choice of the damping coefficient e.



Y. Boubendir et al. / Journal of Computational Physics 231 (2012) 262–280 271
The damping parameter e can be optimized to further improve the spectrum of the iteration operator corresponding to
the modes in the transition zone. We can formulate our optimization problem as a min-max problem: find eopt > 0 such that
it minimizes the spectral radius qðAmÞ of the iteration operator (associated with GIBC(sq,e)) for the mode m 2 Z where it is
maximal. Mathematically, this means that we want to solve the problem:
qsq;eopt ¼ min
e2Rþ

max
m2Z
jqðAmÞj

� �
: ð50Þ
By regularizing the iteration operator Am thanks to e, we also regularize the min-max problem, in contrast with the OO2
approach where an exclusion interval [k�,k+] has to be introduced. By construction, it can then be shown that the maximal
error between the exact DtN operator and its square-root approximation Ssq;e arises for the modes m satisfying m = ± [kR0]
[6]. Therefore,
qsq;e :¼ jqðA½kR0 	Þj ¼ max
jmj2½0;mmax 	

jqðAmÞj
and the min–max problem (50) becomes a simple minimization problem:
qsq;eopt ¼ min
e2Rþ

qsq;e: ð51Þ
For such problems it was shown in [6] that the optimal value of the damping parameter is eopt ¼ 0:4k1=3H2=3, where H is the
mean curvature on R. The resulting modal spectral radius for GIBC(sq,eopt) is shown in Fig. 3(a), where the improvement
around m = kR0 is clearly visible. We can see in Fig. 3(b) that the spectral radius of the iteration operator is indeed minimum
for e = eopt. From Fig. 3(b) one can also observe that Xopt ¼ k=2 (the value chosen for EMDA in [14,15]) is a fairly good choice
to minimize the spectral radius for IBC(X). In this example, Xopt ¼ 3k=4 could also be a good choice. Furthermore,
OO2(Dk = p/R0) is a suitable choice since it is close to the optimal value (= 4 here). We also observe that if Dk P 3, the spec-
tral radius is only slightly affected.

4.3. Krylov subspace solvers

Now, let us analyze the solution of (6) by using a Krylov subspace method like GMRES. It is well-known that fast conver-
gence of the GMRES solver is related to the existence of clustering of its eigenvalues. Let us recall that the equation that we
solve is given by the operator: ðI �AÞ. Therefore, its eigenvalues are: l�m ¼ 1� k�m for each mode m 2 Z. We report in Fig. 4
the spectrum of the iteration operator for IBC(0), IBC(k/2), OO2(p) and GIBC(sq,eopt). We consider again kR0 = 6p for a max-
imal number of modes mmax = [10kR0]. For all transmission operators the spectrum lies in the right half-plane, which makes
the GMRES converging. However, for IBC(0) many eigenvalues spread out in the complex plane. A slightly better clustering
occurs for IBC(k/2) and OO2(p), while there is an excellent clustering of the eigenvalues for GIBC(sq,eopt). In particular, only a
few eigenvalues related to the propagating modes do not cluster but are very close to (1,0). Furthermore, the eigenvalues
related to the evanescent modes seem to cluster at (1,0). According to (46), we show that the clustering is at point
Fig. 4. Eigenvalues distribution in the complex plane for ðI �AÞ and different transmission operators.
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C
 ¼ kþ ıeopt

kþ ıeopt=2
ð52Þ
(in our case C⁄ = 1.0008 + 0.0282ı). Since the eigenvalues cluster for the evanescent modes, we can expect that in the numer-
ical implementation the GMRES convergence rate will be independent of the density of discretization points per wavelength
nk [3–5]. This will be indeed the case as seen in Section 7.

5. Localization of the square-root operator by complex Padé approximants

The square-root operator (10) is a nonlocal operator (a pseudo-differential operator of order +1). Therefore, it is imprac-
tical in a finite element setting since it would lead to consider full matrices for the transmission boundaries. Fortunately, a
localization process of this operator can be efficiently done by using partial differential (local) operators to have a sparse
matrix representation. In [6,32,33], this is realized by a rotating branch-cut approximation of the square-root and then
applying complex Padé approximants of order Np [35]:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ divC1
1

k2
e

rC1

 !vuut u � Ra
Np

divC1
1

k2
e

rC1

 ! !
u ¼ C0uþ

XNp

‘¼1

A‘divC1 k�2
e rC1

� �
1þ B‘divC1 k�2

e rC1

� �� ��1
u; ð53Þ
which corresponds to the complex Padé approximation
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
� Ra

Np
ðzÞ ¼ C0 þ

XNp

‘¼1

A‘z
1þ B‘z

: ð54Þ
Let us mention some similar ideas in the approximation of the square-root with the approach described in [28]. The complex
coefficients C0, A‘ and B‘ are given by
C0 ¼ eıa2RNp ðe�ıa � 1Þ; A‘ ¼
e�

ıa
2 a‘

ð1þ b‘ðe�ıa � 1ÞÞ2
; B‘ ¼

e�ıab‘
1þ b‘ðe�ıa � 1Þ : ð55Þ
In (55) a is the angle of rotation, (a‘,b‘), ‘ = 1, . . . , Np, are the standard real Padé coefficients
a‘ ¼
2

2Np þ 1
sin2 ‘p

2Np þ 1

� �
; b‘ ¼ cos2 ‘p

2Np þ 1

� �
ð56Þ
and RNp is the real Padé approximant of order N:
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
� RNp ðzÞ ¼ 1þ

XNp

‘¼1

a‘z
1þ b‘z

: ð57Þ
For a variational representation, the approximation of the Padé-localized square-root transmission operator (10)–(57) is
realized by using auxiliary coupled functions [6,32,33]
SNp ;a;eu ¼ �ık C0uþ
XNp

‘¼1

A‘divC1
1

k2
e

rC1u‘

 ! !
on C1; ð58Þ
where the functions u‘, ‘ = 1, . . . , Np, are defined on C1 as the solutions of the following surface PDEs:
1þ B‘divC1
1

k2
e

rC1

 ! !
u‘ ¼ u: ð59Þ
The resulting transmitting boundary condition is again a Generalized Impedance Boundary Condition, and is denoted by
GIBC (Np,a,e) for the Padé approximation with Np auxiliary functions, for an angle of rotation a and a damping parameter
e. The lowest-order approximation would be SNp ;a;e ¼ �ıkI which also corresponds to the original approximation S0 of S,
i.e., IBC(0).

Let us analyze on the model problem of Section 4 the effect of the Padé approximation on the rate of convergence. For a
mode m, the transmission operator acts as
SNp ;a;e
m ¼ �ıkRa

Np
� m2

k2
e R2

0

 !
: ð60Þ
In the following the angle of rotation a is always taken equal to p/4, which was found to be the optimal choice through
numerical experiments. We report in Fig. 5 the spectrum of GIBC (sq,eopt), GIBC (4,p/4,eopt) and GIBC (8,p/4,eopt). As previ-
ously noticed, there is an excellent clustering of the eigenvalues for GIBC (sq,eopt). As expected, the larger Np, the better the
approximation of the spectrum of the square-root. Moreover, Np allows to adjust the spectrum accuracy for large modes m



Fig. 5. Eigenvalue distribution in the complex plane for the exact and Padé-localized square-root transmission operator of order 4 (left) and 8 (right).
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(evanescent modes). Hence, it can be conjectured that Np must be taken with respect to the density of discretization points
per wavelength nk. We will see in the numerical simulations (see Section 7) that relatively small values of Np (Np = 2,4,8) give
optimal convergence results.

6. Finite element implementation

Let us now describe the implementation of the domain decomposition algorithm with Padé-type transmission condition
in a finite element context. Recall first that the iterative method consists in solving problems (3) and computing the trans-
mitted quantities (4). We restrict this description only to a problem posed in a domain, noted here X, with no exterior inter-
face nor interface connected to the scatterer. This simply implies that Ci ¼ ;;C1i ¼ ; and @ X is an artificial interface. The
extension to the other cases is direct. For the sake of clarity, we abbreviate the notations uðnþ1Þ

i ; gðnÞij and gðnþ1Þ
ji , used in problem

(3) and Eq. (4), by u, gin and gout, respectively. An iteration then leads to solving first the interior boundary value problem in
terms of u with coupling auxiliary functions fu‘g‘¼1;...;Np

according to the use of Padé approximation of order Np:
Duþ k2u ¼ 0 in X;

@nu� ıkC0u� ık
PNp

‘¼1
A‘div@X 1

k2
e
r@Xu‘

� �
¼ gin on @X;

�uþ B‘div@X 1
k2
e
r@Xu‘

� �
þu‘ ¼ 0; ‘ ¼ 1; . . . ;Np; on @X;

8>>>>><
>>>>>:

ð61Þ
where C0, A‘ and B‘ are given by (55). The auxiliary functions fu‘g‘¼1;...;Np
are introduced to deal with the use of the Padé

approximation of order Np. Considering now test-functions v 2 H1(X) and v‘ 2 H1(@X), ‘ = 1, . . . , Np, we get the coupled var-
iational formulation
R

Xi
ðru � rv � k2uvÞdX� ıkC0

R
@X uvd@X

þık
PNp

‘¼1
A‘

R
@X

1
k2
e
r@Xu‘ � r@Xv d@X ¼ �

R
@X ginv d@X;

�
R
@X uv‘ d@X� B‘

R
@X

1
k2
e
r@Xu‘ � r@Xv ‘ d@X

þ
R
@X u‘v ‘d@X ¼ 0; ‘ ¼ 1; . . . ;Np:

8>>>>>>><
>>>>>>>:

ð62Þ
Following the solution of (62), we update the boundary data through the relation
gout ¼ �gin � 2ıkC0u� 2ık
XNp

‘¼1

A‘div@X
1

k2
e

r@Xu‘

 !
; on @X: ð63Þ
Let us now consider a covering Xh of X using nt tetrahedral (or triangular in two-dimensions) finite elements with nv ver-
tices. Parameter h is the usual finite element notation for the maximal side length of the tetrahedrals. All the notations are
extended with h as subscript for the discrete version of the domains as well as unknowns. We choose here linear finite
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element approximations but the extension to higher-order elements is straightforward. For scattering problems, it is common
to introduce the density of discretization points per wavelength: nk = k/h. The local density of discretization points is therefore:
nk = k/h. Let us denote by SXh and MXh respectively the stiffness and mass matrices for linear elements associated with the do-
mains Xh. The matrices have size nv � nv. Furthermore, we introduce S

@Xh and M@Xh as the respective stiffness and mass matri-
ces related to the transmitting surface@Xh. If these correspond to a generalized stiffness matrix for a surface function b, then it is
quoted S

@Xh
b . All these matrices have a size n@t � n@t . Let us denote by u 2 Cnv the local unknown vector and u‘ 2 Cn@t the surface

unknown auxiliary vectors obtained with linear finite elements. The discrete test-vectors and right hand side are also bold
typed. Then, the discretization of the variational problem (61) leads to the solution of the coupled linear system
Fig.
ðSXh � k2
MXh � ıkC0M

@Xh Þuþ ık
PNp

‘¼1
A‘S

@Xh

k�2
e

u‘ ¼ �M@Xh gin

�M@Xh u� B‘S
@Xh

k�2
e
�M@Xh

� �
u‘ ¼ 0; ‘ ¼ 1; . . . ;Np:

8>><
>>: ð64Þ
The size of this linear system is nv þ ð1þ NpÞn@t
� �

� nv þ ð1þ NpÞn@t
� �

. Each augmented system is solved directly by a LU fac-
torization method since each matrix has a moderate size. The boundary data update can be done by vector addition using
relation (4).

7. Numerical results

This section is devoted to numerical simulations validating the new domain decomposition algorithm using the Padé-
localized square-root transmission condition. We use the finite element method with linear (P1) basis functions imple-
mented in GetDP/Gmsh [21,27] to approximate the local problems (3), as explained in Section 6. The convergence criterion
for all the presented examples is identical: the iterations are stopped when the initial residual has decreased by a factor of
10�6. In all the examples this stopping criterion leads to an L1 numerical error between the full and the DDM finite element
solutions of also about 10�6, independently of the chosen approximate transmission condition (IBC, OO2 or GIBC).

7.1. Two-dimensional examples

The two-dimensional examples concern the scattering of a plane wave by a unit sound-soft circular cylinder. The second-
order Bayliss–Turkel [2,8,9] artificial boundary condition is set on a fictitious circular boundary with radius 4 (see Fig. 6).

7.1.1. Jacobi vs. GMRES
We begin by analyzing the behavior of the iterative methods (successive approximations, i.e. Jacobi, or GMRES [39]) when

the domain is partitioned into Ndom concentric subdomains. We call this partitioning the ‘‘circle-concentric’’ decomposition
6. Two-dimensional test cases: reconstruction of the scattered field on the global domain after a DDM computation with k = 4p and Ndom = 5.
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(see Fig. 6(a)). The ‘‘size’’ Li of the subdomain Xi, defined as the difference between its exterior and interior radius, is equal to
3/Ndom.

Le us start by considering a wavenumber k = p and a density of discretization points per wavelength nk = 12. We report in
Table 1 (left) the number of iterations required using Jacobi and GMRES. Concerning the complex Padé approximation, we fix
Np = 8 auxiliary equations and h = p/4. The damping parameter e is optimized according to eopt ¼ 0:6k1=3R�2=3

j (where Rj is the
radius of the j-th interface). Let us precise that the ‘‘size’’ of the overall domain is L = 3 = 1.5k. This means that in the case of
Ndom = 10 (resp. Ndom = 15) subdomains, the size of one subdomain is about 0.15k (resp. about 0.1k) which is very small. For
these cases, the EMDA and OO2 algorithms solved by the Jacobi method diverge while our approach converges. As it can be
seen, the algorithm scales according to Ndom, and as expected, the GMRES outperforms the Jacobi method.

Consider now a partition of the initial domain into Ndom = 8. The discretization is again fixed by nk = 12. The same param-
eters (Np = 8, h = p/4 and eopt ¼ 0:6k1=3R�2=3

j ) are kept to approximate the transmission operator given by (53). We report in
Table 1 (right) the number of iterations for converging according to the wavenumber k. As we can see, the convergence is
quasi independent of the wavenumber k. This is known to be a very difficult goal to attain when designing iterative schemes
for scattering problems. In particular, this means that our Padé-type transmission condition with GMRES DDM is well-suited
for high frequency scattering problems—we will analyze this behaviour further in Section 7.1.2.

From these first numerical results we clearly see that the GMRES algorithm outperforms the successive approximations
(Jacobi), especially when the number of subdomains is large. In what follows we will thus only report results for the GMRES
algorithm.

7.1.2. Influence of the wavenumber, the discretization density and the number of subdomains
Let us consider Ndom = 5 subdomains. Fig. 7(a) shows the number of iterations to reach convergence with respect to the

wavenumber k, for two densities of discretization points per wavelength nk. For IBC(k/2) and OO2(p), the number of itera-
tions increases with respect to k, whereas for GIBC (Np,p/4,eopt) the convergence rate is independent of the wavenumber.
Furthermore, in this case, Np = 2 provides already an optimal convergence compared with Np = 8. Let us recall that one of
the important points here is that we use complex approximants. Using real Padé approximants would lead to much higher
values of Np, hence penalizing the computational cost of the overall method. Let us also mention that increased values of nk

are not only necessary for accuracy purposes but are also imposed to avoid pollution effects in the calculation of the solution
at high wavenumbers [7,29–31]. Fig. 7(b) gives the number of iterations with respect to the density of discretization points
per wavelength nk, for two wavenumbers k. A convergence independent of the mesh size can be achieved provided that Np is
sufficiently large, although a very small value (Np = 2) already provides a quasi-optimal result. The number of iterations for
OO2(p) is also independent of the mesh refinement, whereas the number of iterations for IBC (k/2) grows linearly.

In Fig. 7(c) we report the number of iterations of the GMRES DDM with respect to the number of subdomains Ndom. We
directly see that all the methods scale. Again, for GIBC (Np,p/4,eopt), the scaling does not depend on k (and Np), while this is
not the case for IBC(k/2) and OO2(p).

As a partial conclusion, we can state that using the GMRES algorithm with GIBC (Np,p/4,eopt) in the DDM leads to a quasi-
optimal convergence: the convergence rate is independent of both the wavenumber k and the density nk. Furthermore, the
method scales with the number Ndom of subdomains. These conclusions are confirmed by analyzing the behavior of our algo-
rithms for the ‘‘circle-pie’’ decomposition (see Fig. 6(b)). Since we have straight interfaces we cannot consider our optimized
value of eopt anymore. However, numerical simulations show that eopt = k/4 is a suitable choice. In Figs. 8(a)–(c), we represent
the same three sets of curves as for the ‘‘circle-concentric’’ decomposition. We get a convergence independent of the wave
number k and density of discretization nk (by taking Np large enough but relatively small). Again, the algorithm scales with
respect to Ndom. More generally, the convergence results are even better for the ‘‘circle-pie’’ than for the ‘‘circle-concentric’’
decomposition. Note that OO2(p) behaves significantly better in the ‘‘circle-pie’’ decomposition compared to the ‘‘circle-con-
centric’’ case. This can be understood because each subdomain in the ‘‘circle-pie’’ decomposition is closer to the open cavity
problem for which the OO2 parameters have been optimized.
Table 1
Number of iterations vs. number of subdomains for k = p (left) and
Number of iterations vs. wavenumber for Ndom = 8 (right) when using the
Jacobi or GMRES algorithm, for the ‘‘circle-concentric’’ decomposition.

Ndom Jacobi GMRES

2 12 9
5 43 25

10 140 52
15 281 80

k Jacobi GMRES

p 96 41
2 p 64 36
3 p 52 39
4 p 60 38



Fig. 7. Convergence for the ‘‘circle-concentric’’ decomposition.
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Fig. 8. Convergence for the ‘‘circle-pie’’ decomposition.
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Remark that in the context of the Krylov iterative solution of integral equations for acoustic scattering, quasi optimal con-
vergence independent of the wavenumber and density of discretization points per wavelength was obtained in [3–5] by con-
sidering Generalized Combined Field Integral Equations including the square-root operator.

7.1.3. Computational cost
The overall computation time of the DDM depends on the number of iterations and the cost of solving (64) for each sub-

domain. As explained in Section 6, we use a direct sparse linear solver, and the main cost in solving (64) is thus the initial
computation of the LU factorization of the augmented matrices of size N ¼ nv þ ð1þ NpÞn@t

� �
� nv þ ð1þ NpÞn@t
� �

. We report
in Table 2 the number of unknowns N and the factorization time for one subdomain in the case of the ‘‘circle-pie’’ decom-
position, with Ndom = 5, k = 8p and nk = 10. The factorization is performed using MUMPS [1] on a 2.66 GHz MacBook Pro lap-
top computer. For the typical values of Np required to obtain quasi-optimal convergence (Np = 2 or Np = 8), we see that the
computational overhead is small (less than 10%).

7.2. Three-dimensional example

We now test our algorithm on a more realistic three-dimensional example: the scattering by a submarine. The geometry
is represented in Fig. 9. For comparison purposes, we choose a unit length submarine. The incident wave is a plane wave with
a = (cosp/8,0,sinp/8)T. We consider two high wave numbers, k = 14p and k = 28p, a density of discretization points per
Table 2
Number of degrees of freedom and computational time for the initial factorization for one subdomain
of the ‘‘circle-pie’’ decomposition, with Ndom = 5,k = 8p and nk = 10.

Number of Unknowns Factorization Time (s)

IBC (k/2) 20812 0.37
GIBC (1,p/4,k/4) 21053 0.37
GIBC (2,p/4,k/4) 21294 0.38
GIBC (4,p/4,k/4) 21776 0.39
GIBC (8,p/4,k/4) 22740 0.40
GIBC (16,p/4,k/4) 24668 0.45
GIBC (32,p/4,k/4) 28524 0.53

Fig. 9. Submarine problem with 5 subdomains: iso-surfaces of the real part of the scattered field for k = 14p.



Fig. 10. Convergence of the GMRES DDM solvers for the submarine problem.
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wavelength nk = 10 and we fix Ndom = 5 subdomains. The scattered field computed with the GMRES DDM and Padé-type
transmission boundary condition is represented on Fig. 9. Fig. 10 reports the residual decay for different transmission con-
ditions and parameter values. Since we have a plane interface here, we cannot consider our optimized value of eopt. As for the
‘‘circle-pie’’ decomposition analyzed in Section 7.1, numerical simulations show that eopt = k/4 is a suitable choice. We see
that GIBC (Np,p/4,eopt) leads to a very good convergence rate of the GMRES, and is clearly better than EMDA (with IBC
(k/2)). For this three-dimensional case, an optimal value of Np to get the quasi-optimality is Np = 8.

8. Conclusion

We have proposed a quasi-optimal non overlapping domain decomposition algorithm for the Helmholtz equation. It is
based on a suitable approximation of the DtN operator. A convergence analysis for a model problem has been developed,
showing the main features of our algorithm. Several numerical tests in both two- and three dimensions validates the numer-
ical quasi-optimality of the proposed algorithm. Extension to Maxwell’s equations is currently being developed.
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