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We present a block preconditioner for the efficient solution of the linear systems that arise
when employing Newton’s method to solve monolithically-coupled large-displacement
fluid–structure interaction problems in which the update of the moving fluid mesh is per-
formed by the equations of large-displacement elasticity. Following a theoretical analysis
of the preconditioner, we propose an efficient implementation that yields a solver with
near-optimal computational cost, in the sense that the time for the solution of the linear
systems scales approximately linearly with the number of unknowns. We evaluate the per-
formance of the preconditioner in selected two- and three-dimensional test problems.
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1. Introduction

Large-displacement fluid–structure-interaction (FSI) problems are multi-physics problems in which elastic solids interact
with finite-Reynolds-number flows. Applications exist in many areas such as physiological fluid mechanics [1,2], the design
of parachutes [3], tent structures [4], and artificial heart valves [5]. The accurate, robust and efficient numerical simulation of
such problems poses considerable challenges, not just from a mathematical but also from a software engineering perspec-
tive. A key objective in the design of solvers for all multi-physics problems is the ability to re-use existing, often highly-opti-
mised solvers for the constituent single-physics (here fluid and solid mechanics) problems. In so-called partitioned (or
segregated) approaches, this re-use is achieved at the level of the nonlinear solvers, typically by coupling the existing sin-
gle-physics solvers in a fixed-point iteration: starting from an initial guess for the shape of the fluid-loaded solid, compute
the fluid flow (keeping the geometry of the domain fixed); determine the traction that the fluid exerts onto the elastic solid;
compute the resulting deformation of the solid (keeping the fluid traction constant); and iterate until convergence. Such
solvers are relatively easy to implement but they often suffer from a serious lack of robustness and tend to require heavy
under-relaxation (resulting in slow convergence rates) to avoid the divergence of the fixed-point iteration, even in cases
when good initial guesses for the solution are available. A variety of methods have been developed to accelerate the conver-
gence of the fixed-point iteration (e.g. vector-based [6,7] or component-wise [8] Aitken extrapolation, and steepest decent
methods; see e.g. [9] for a recent comparison of some of these methods). In many cases such partitioned approaches work
satisfactorily. However, there are also many applications (particularly problems in which the fluid interacts with a
. All rights reserved.
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thin-walled solid of comparable or smaller density – a situation that is encountered frequently in physiological FSI problems)
where the lack of robustness due to the so-called ‘‘added mass effect’’ [10] presents a significant problem. The convergence
problems in the fixed-point iteration may be bypassed by employing so-called loosely coupled schemes [11]. However, these
are only applicable to unsteady problems and obtain a solution by solving the constituent single-physics problems sequen-
tially; see [12–14] for a discussion of the accuracy and stability of such methods.

The main alternative to partitioned approaches are so-called monolithic solvers which operate directly on the large sys-
tem of nonlinear algebraic equations that arises from the fully-coupled implicit discretisation of the fluid and solid equa-
tions. Starting from an initial guess for the vector of the discrete unknowns, x½0�, and the corresponding vector of discrete
residuals r½0� ¼ rðx½0�Þ, Newton’s method can be used to solve the problem via the repeated solution of (large) linear systems
of the form
J½m�Dx½m� ¼ �r½m�; ð1Þ
followed by the update x½mþ1� ¼ x½m� þ Dx½m�. Here J½m� is the Jacobian matrix formed from the derivatives of the discrete resid-
uals, r, with respect to the discrete unknowns, x. Provided a good initial guess for the solution can be supplied (by contin-
uation methods or timestepping), Newton’s method is extremely robust and converges quadratically.

While attractive from a theoretical perspective, the practical implementation of such solvers poses its own challenges.
From a software engineering point-of-view, it is difficult to implement monolithic solvers starting from separate fluid and
solid mechanics codes, particularly if these are ‘‘black-box’’ closed-source codes for which the residuals and their derivatives
are difficult to obtain. Interface Newton–Krylov methods (e.g. [15]) bypass this problem by employing a Newton method that
operates only on the variables that define the position of the FSI interface, but even these methods require (or benefit from)
additional knowledge about the underlying fluid and solid equations and their specific discretisation. Monolithic solvers are
easiest to implement within a software framework that facilitates the formulation of multi-physics interactions via small,
hierarchical modifications to any already-existing single-physics capabilities. This requirement lends itself to an object-ori-
ented design in which multi-physics interactions are easily implemented using techniques such as function overloading,
templating and multiple inheritance. We refer to [16] for a discussion of how this approach is implemented in oomph-

lib, the object-oriented multi-physics finite element library (available as open-source software at http://www.oomph-
lib.org), which was used for the computations presented in this paper.

The key mathematical challenge in the solution of fluid–structure interaction problems by monolithic approaches is how
to efficiently solve the large system of nonlinear algebraic equations arising from the fully-coupled implicit discretisation of
the fluid and solid equations, a task has frequently been described as being prohibitively expensive (see, e.g., [17,18]). How-
ever, more recent studies [19,20] have shown that monolithic approaches are not only competitive with partitioned
schemes, but often outperform them, even in problems in which partitioned solvers do not suffer from any convergence
problems. Possible approaches to the solution of the nonlinear equations are the use of nonlinear block Gauss–Seidel or
block-Newton methods [21,22], methods that operate on the FSI interface problem [23,24], or partitioned Newton methods
[25]. In this paper we employ Newton’s method in its exact form and focus on the development of an efficient preconditioner
for the solution of the linear system (1) by Krylov subspace solvers such as GMRES. We will exploit the block structure of the
Jacobian matrix to derive a preconditioner, P, chosen such that GMRES, applied to the preconditioned linear system
P�1J Dx ¼ �P�1r ð2Þ
(where we have dropped the superscript m) converges in a number of iterations that is much smaller than the iteration count
for the original linear system (1). The development of the preconditioner is guided by two requirements:

1. P should be chosen such that the preconditioned matrix P�1J has a spectrum that contains only a few small clusters of
eigenvalues where each cluster is tightly bounded away from the origin of the complex plane. If these bounds on the
spectrum are independent of the discretisation, GMRES will converge in a near constant number of iterations regardless
of the number of unknowns in the problem [26, p. 54].

2. The setup and application of the preconditioner (i.e. the solution of linear systems of the form Pu ¼ v) should have opti-
mal computational cost, i.e. be linear in the number of unknowns.

A preconditioning strategy that satisfies these two requirements will result in a solver that itself has optimal computa-
tional cost.

We restrict ourselves to ALE-based discretisations of the FSI problem in which the fluid equations are solved on a body-
fitted, moving mesh [27]. In earlier work [28,19] we developed an efficient block triangular preconditioner for the linear sys-
tems arising from the monolithic discretisation of such problems for the special case in which the update of the fluid mesh in
response to the wall deformation is performed by a (user-specified) algebraic node update function. This approach allows
fast, sparse node updates but requires significant user input and is restricted to relatively simple geometries and to problems
in which the deformation of the fluid-loaded solid can be anticipated a priori. Furthermore, the block-triangular precondi-
tioners were obtained by omitting certain coupling blocks in the Jacobian matrix in an ad hoc manner. This made it difficult
to analyse the preconditioners theoretically, and forced us to evaluate their performance exclusively by means of numerical
experiments. In the current paper we present a new preconditioning methodology for the alternative approach in which the
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fluid mesh update is performed automatically by determining the deformation of the fluid mesh from the equations of large-
displacement elasticity [29]. Where necessary we will distinguish the two solid mechanics problems by referring to the solid
body that represents the fluid domain as the ‘‘pseudo solid’’ as opposed to the actual fluid-loaded solid body whose physical
deformation we wish to compute. A key feature of our approach that is distinct from the methodology presented in recent
work by Gee et al. [30] is the way in which we impose the boundary displacements of the pseudo-solid: We mimic the ap-
proach adopted in an algebraic node update method, and thus drive the deformation of the pseudo-solid via a one-way cou-
pling, using the deformation of the actual solid to provide the displacement boundary conditions for the pseudo-solid. With
this approach, the discretised fluid equations do not depend directly on the deformation of the actual solid, and the pseudo-
solid does not depend directly on the fluid flow. The absence of these direct interactions creates a particular block structure
in the Jacobian matrix J which makes it possible to develop a modular preconditioner whose application allows the re-use of
solvers/preconditioners for the three constituent single-physics problems (involving the fluid, the solid and the pseudo-so-
lid) without having to neglect any off-diagonal blocks in an ad hoc manner (as done in [28,19,30]). This allows us to analyse
the spectrum of the preconditioned matrix P�1J theoretically and enables us to prove that the spectrum remains bounded in
a tight cluster in the complex plane under mesh refinement.

We start the development of the FSI preconditioner by considering the solution of the isolated pseudo-solid problem and
develop an efficient augmented-Lagrangian type preconditioner for the solution of the saddle-point linear systems that arise
from the discretisation of this problem when a prescribed boundary displacement is imposed by Lagrange multipliers. This
preconditioner is then incorporated into a block preconditioner for the full FSI problem. We perform a theoretical analysis of
the FSI preconditioner and evaluate its performance in representative 2D and 3D test problems. Finally, we present an effi-
cient implementation that yields a solver with approximately mesh-independent GMRES convergence rates and near-opti-
mal computational cost.
2. Problem description

2.1. The governing equations

We assume that the fluid flow is governed by the incompressible Navier–Stokes equations
Re St
@ui
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þ uj

@ui

@xj

� �
¼ � @p

@xi
þ @
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@xj
þ @uj
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where we have non-dimensionalised time, t, the spatial coordinates, xi, and the velocities, ui, on problem-specific reference
quantities, T , L and U , respectively, and have scaled the pressure, p, on the associated viscous scale, lU=L. The summation
convention is used throughout this paper and Greek and italic Roman indices range from 1 to 2 and 1 to 3, respectively. The
two non-dimensional parameters in (3) are the Reynolds number, Re ¼ qfUL=l, and the Strouhal number, St ¼ L=ðUT Þ,
where qf and l are the fluid density and viscosity, respectively.

We employ the same non-dimensionalisation for all lengths and time when describing the deformation of the fluid-
loaded solid body. Denoting the non-dimensional position vector to a material point with Lagrangian coordinates ni by
Rsðni; tÞ, the deformation of the solid is governed by the principle of virtual displacements (see, e.g., [31]),
dPstrain ¼
Z

rij dcij dv ¼
Z

b�K2 @
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 !
� dRs dv þ

I
f � dRs dA; ð4Þ
where dPstrain is the variation of the strain energy, expressed in terms of the components of the (geometrically nonlinear)
Green’s strain tensor, cij, and the second Piola–Kirchhoff stress, rij, non-dimensionalised on some problem-specific reference
stress, S, such as Young’s modulus. The solid body is loaded by a body force b, and the surface traction f, which are non-
dimensionalised on S=L and S, respectively. K ¼ ðL=T Þ

ffiffiffiffiffiffiffiffiffiffiffi
qs=S

p
represents the ratio of the body’s intrinsic time-scale to

the time T used in the non-dimensionalisation of the equations; K2 may be interpreted as a non-dimensional version of
the solid density, qs.

We will also consider cases where the fluid-loaded solid can be described by Kirchhoff–Love thin-shell theory. In such
cases, Rs denotes the position vector to the shell’s midplane which we parametrise by two Lagrangian coordinates, na. Denot-
ing the thickness of the shell by h, where h� L, the principle of virtual displacements becomes [31],
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where cab and jab denote the non-dimensional mid-plane strain and bending tensors, and A and a are the determinants of
the mid-plane metric tensors in the deformed and undeformed configuration, respectively. In (5) we have assumed linearly
elastic behaviour, described by the tensor of elastic coefficients, Eabcd, which we non-dimensionalised on the shell’s effective
Young’s modulus, so that S ¼ E=ð1� m2Þ, where E and m are the solid’s 3D Young’s modulus and Poisson ratio, respectively.

The fluid and solid equations interact at the fluid-loaded solid boundary, @DFSI, along which the fluid exerts a traction onto
the solid so that the components of the applied traction (non-dimensionalised on the solid stress scale, S) are given by
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where the Nj are the components of the outer unit normal on the fluid. Here
Q ¼ lU
LS ð7Þ
is the final non-dimensional parameter in the problem. It represents the ratio of the fluid and solid stress scales, and char-
acterises the strength of fluid–structure interaction in the sense that as Q ! 0 the deformation of the solid ceases to be af-
fected by the fluid load, either because the stiffness of the solid becomes very large or because the fluid loading becomes very
weak.

The solid affects the fluid via the no-slip condition
u ¼ St
@Rs

@t
on @DFSI; ð8Þ
and by changing the shape of the domain occupied by the fluid.
In general, the problem is subject to further problem-specific single-physics boundary conditions, e.g., the in- and outflow

conditions for the fluid, or displacement constraints and additional external loads on the fluid-loaded solid.

2.2. Discretisation and fluid mesh update

The finite-element discretisation of the principle of virtual displacements (4) [or (5)] is straightforward because the equa-
tions are formulated in Lagrangian coordinates and the integrals are therefore performed over a fixed domain. Conversely,
the fluid equations are expressed in Eulerian form and have to be solved in the time-varying domain occupied by the fluid.
We therefore discretise the fluid equations on a body-fitted moving mesh, taking the mesh motion into account when eval-
uating the (Eulerian) time-derivative in (3); see [32]. This approach is sometimes referred to as the three-field formulation of
the fluid–structure interaction problem [33].

To update the fluid mesh in response to the deformation of the FSI boundary, we treat the fluid domain as a (pseudo-)solid
body and regard the fluid nodes as material points within this deforming domain [29]. This is illustrated in the sketch in
Fig. 1 which shows a 2D fluid domain, D, which is parametrised by Lagrangian coordinates ðn1; n2Þ, so that the position vector
to a material point in the (pseudo-)solid is given by RPSðn1; n2Þ. We parametrise the FSI boundary, @DFSI, by a boundary coor-
dinate f such that ðn1; n2Þj@DFSI

¼ ðn1
@DFSI
ðfÞ; n2

@DFSI
ðfÞÞ and impose a prescribed displacement RFSIðfÞwhich, in the fully-coupled FSI

problem, will be determined by the deformation of the fluid-loaded solid. The constraint
RPS n1
@DFSI
ðfÞ; n2

@DFSI
ðfÞ

� �
� RFSIðfÞ ¼ 0 on @DFSI ð9Þ
could, in principle, be imposed as a Dirichlet condition for the displacement field of the pseudo-solid. However, for reasons
that will become apparent later (see Section 4.1 and the discussion in Section 5), we impose (9) by augmenting the principle
of virtual displacements (4) by a Lagrange multiplier term,
dPstrain þ dPconstraint ¼ 0; ð10Þ
where
Fig. 1. Two-dimensional (pseudo-)solid problem in its (a) undeformed and (b) deformed configuration.



R.L. Muddle et al. / Journal of Computational Physics 231 (2012) 7315–7334 7319
Pconstraint ¼
Z
@DFSI

RPS n1
@DFSI
ðfÞ; n2

@DFSI
ðfÞ

� �
� RFSIðfÞ

� �
� K

dRPS n1
@DFSI
ðfÞ; n2

@DFSI
ðfÞ

� �
df

������
������df: ð11Þ
The above is easily generalised to the 3D case. Body forces, surface tractions and inertial effects are ignored in (10) since they
are not required to enforce the displacement constraint. The Lagrange multiplier K in (11) can be interpreted as the surface
traction to be applied to @DFSI in order to produce the required boundary deformation. We note that the use of the full, geo-
metrically non-linear expression for Green’s strain tensor, cij, in the computation of the strain energy in (4) prevents the
inversion of elements. This is essential if the fluid domain undergoes large deformations. However, since the pseudo-solid
problem is only used to update the fluid mesh and does not have any physical significance it is possible and, as we shall
see below, often beneficial to reset the pseudo-solid’s stress-free reference configuration occasionally, e.g. after every load
increment or timestep.

Having ensured the continuity of the displacements at the FSI boundary, we are free to express the right-hand-side of the
no-slip condition (8) (which we interpret as a Dirichlet condition for the fluid velocity) in terms of the solid or the pseudo-
solid. Choosing the latter will turn out to be beneficial for the development of the preconditioner (presented in Section 4.1
below) because it will allow us to theoretically prove the optimality of our preconditioning approach (in Section 4.2). This is
a key advantage compared to the methodologies presented in references [28,19,30] where the performance of the precon-
ditioners (obtained by the ad hoc neglect of certain off-diagonal blocks in the Jacobian matrix) could only be evaluated by
numerical experiments, and, in some cases, showed a significant increase in GMRES iteration counts under mesh refinement,
indicating the non-optimality of the respective preconditioner.

The problem is now fully specified by Eqs. (3), (4) [or (5)] and (10) which are subject to the coupling conditions (6), (8)
and (9), and the additional problem-specific single-physics boundary conditions.

3. An efficient solver for the (pseudo-)solid equations subject to a prescribed boundary displacement

We start the development of a preconditioner for the linear systems arising in the solution of the fully-coupled FSI prob-
lem by considering the solution of the (pseudo-)solid Eqs. (10) for a given boundary displacement, RFSIðfÞ. We discretise the
vector field RPS in terms of the nodal coordinates, so that
RPS i ¼
XNnode

j¼1

Xij wj; ð12Þ
where Nnode represents the number of nodes in the mesh, Xij is the i-th coordinate of the j-th node, and wj is the finite element
basis function associated with node j. We use the same basis functions to expand the Lagrangian coordinates as
ni ¼
XNnode

j¼1

Nij wj; ð13Þ
where we set the nodal values of the Lagrangian coordinates to the node’s initial Eulerian position, i.e. Nij ¼ X½0�ij , ensuring that
the undeformed configuration is stress free. The Lagrange multiplier field is only defined on the constrained boundary, @DFSI,
where we expand it as
Ki ¼
XNnode

j¼1

Lij wj: ð14Þ
Here the sum is taken over the Nnode nodes on the constrained boundary and the basis functions wj are obtained by restricting
the interior basis functions wj to @DFSI.

We order the discrete unknowns so that the vector of unknowns, xPS ¼ ½X; L�, contains the nx unknown nodal coordinates,
followed by the nb unknown discrete Lagrange multipliers. The linear systems to be solved in the course of the Newton-
based solution of Eq. (10), subject to the displacement constraint (9), then have saddle-point structure,
ð15Þ
where E is the tangent stiffness matrix of the unconstrained pseudo-solid problem, and the two off-diagonal blocks Cxl and
Clx ¼ CT

xl arise through the imposition of the displacement constraint by the Lagrange multipliers. We refer to [34] for the
proof of the LBB stability of this discretisation; see also [35,36] for a discussion of the LBB stability of the Lagrange-multi-
plier-based imposition of Dirichlet boundary conditions in related problems. We note that during the first step of the Newton
iteration, E is symmetric positive definite since it represents the tangent stiffness matrix relative to the system’s equilibrium
configuration.

Subdividing the unknowns further according to their components in the Cartesian coordinate directions, and into un-
known nodal positions that lie on the constrained boundary and those that do not, allows Eq. (15) to be rewritten as
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ð16Þ
where we have restricted ourselves to the two-dimensional case. The vectors Xx, Xy, Lx and Ly contain the x1- and x2-com-
ponents of the unknown nodal positions and Lagrange multipliers, respectively. (Note that we use subscripts x and y rather
than x1 and x2 when labelling matrix and vector blocks to avoid double-subscripts.) The overbars denote the unknown nodal
positions that are constrained by the Lagrange multiplier. The matrices Mx and My are mass matrices whose entries are
formed from products of the basis functions, ½Mx�ij ¼ ½My�ij ¼

R
@DFSI

wi wj dS.
Saddle point systems of the form (15) can be preconditioned by so-called augmentation preconditioners [37–39] of the

form
Paug ¼
Eaug

W

� 	
¼ Eþ CxlW

�1Clx

W

" #
; ð17Þ
where W 2 Rnb�nb (note that nb ¼ n�x þ n�y) is an arbitrary matrix, chosen such that Paug is an effective preconditioner, while
ensuring that the augmented matrix Eaug ¼ Eþ CxlW

�1Clx remains sparse, and that linear systems involving Eaug and W are
easy to solve (either exactly or approximately).

Given the block structure of (16), we develop a new optimal preconditioner by choosing
W ¼
1
r M2

x

1
r M2

y

" #
; ð18Þ
with r ¼ kEk1. (The rationale behind this choice for r will become clear in Section 3.1.) This produces a diagonal augmen-
tation matrix and yields the preconditioner
ð19Þ
Our choice for W therefore not only retains the sparsity pattern of E, but also increases the diagonal dominance of the E�x�x and
E�y�y blocks which will facilitate the approximate solution of the linear systems involving Eaug by multigrid methods during the
application of the preconditioner. The lower-right block, W, is block diagonal by construction and the linear systems involv-
ing M2

x and M2
y can be solved by solving twice systems involving the mass matrices themselves. For example, the system

M2
xu ¼ v can be solved by first solving Mxw ¼ v and then Mxu ¼ w. This avoids having to perform matrix–matrix products

to form M2
x and M2

y, and allows the use existing optimal solvers for mass matrices.

3.1. Spectral properties of the preconditioned linear system

We assess the quality of the preconditioner by analysing the spectrum of the preconditioned matrix P�1
PS JPS. For this pur-

pose we perform a final re-ordering of the unknowns into three groups: the unknown nodal positions that are and are not
subject to the displacement constraint (identified by subscripts b and i, respectively), and the unknown Lagrange multipliers
(identified by the subscript l). The eigenvalues k of P�1

PS JPS are then determined by the generalised eigenvalue problem
Eii Eib

Ebi Ebb M

M

264
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wl

264
375 ¼ k
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Ebi Ebb þ rI
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264
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375 l ni

l nb

l nb

; ð20Þ
where ni ¼ nx þ ny,
Eii ¼
Exx Exy

Eyx Eyy

� 	
; Eib ¼

Ex�x Ex�y

Ey�x Ey�y

� 	
; Ebi ¼

E�xx E�xy

E�yx E�yy

� 	
; Ebb ¼
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and
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M ¼
Mx

My

� 	
: ð21Þ
Multiplying Eq. (20) from the left by P�1
PS , using the identity
P�1
PS ¼

I rS�1
ii EibE�1

bb ðI þ rS�1
bb Þ

�1

ðI þ rS�1
bb Þ

�1

I

264
375 S�1

ii �S�1
ii EibE�1

bb

�S�1
bb EbiE

�1
ii S�1

bb

rM�2

264
375; ð22Þ
where Sbb ¼ Ebb � EbiE
�1
ii Eib and Sii ¼ Eii � EibE�1

bb Ebi are Schur complements of E, yields an upper-block triangular eigenvalue
problem whose top left block is an ni � ni identity matrix,
ð23Þ
This implies that P�1
PS JPS has ni unit eigenvalues. The remaining 2nb eigenvalues are determined by the 2nb � 2nb eigenvalue

problem
ðI þ rS�1
bb Þ

�1 ðI þ rS�1
bb Þ

�1S�1
bb M

rM�1

" #
wb

wl

� 	
¼ k

wb

wl

� 	
: ð24Þ
Substituting the second block row (wl ¼ ðr=kÞM�1wb) of Eq. (24) into the first one yields
wb þ
r
k

S�1
bb wb ¼ kwb þ krS�1

bb wb; ð25Þ
which reveals the existence of a number of further unit eigenvalues. The remaining (non-unit) eigenvalues satisfy
Sbb wb ¼ �r 1þ k
k

wb ð26Þ
which shows that the nb non-unit eigenvalues of P�1
PS JPS are related to the eigenvalues kbb of the Schur complement Sbb via
k ¼ � r
rþ kbb

: ð27Þ
Assuming that E is symmetric positive definite (a condition that is satisfied exactly only for the linear system to be solved
during the first Newton step) we use the fact that the eigenvalues of any Schur complement of a Hermitian semi-definite
matrix interlace the eigenvalues of that matrix [40]. This implies that the eigenvalues kbb of Sbb satisfy 0 < kbb 6 kEk1. Substi-
tuting this into Eq. (27) and recalling that r ¼ kEk1 then shows that the non-unit eigenvalues of P�1

PS JPS are bounded by1
�1 < k 6 �1
2
: ð28Þ
Hence, the majority ðni þ nbÞ of the eigenvalues of P�1
PS JPS are equal to one while a small number (nb � ni) of additional eigen-

values are located in a small, bounded and mesh-independent interval between �1 and � 1
2, indicating that the use of the

preconditioner PPS in a Krylov subspace solver such as GMRES will lead to mesh-independent iteration counts.
If E is not symmetric positive definite (as will be the case in subsequent Newton steps), we will retain the unit eigenvalues

but the remaining non-unit eigenvalues will no longer satisfy the bounds in (28) exactly. However, given that during the
simulation of an FSI problem the undeformed reference configuration is typically re-initialised after every timestep (by set-
ting Nij to the current nodal positions), and that the fluid domain only tends to be subjected to modest deformations during
each timestep, we do not expect the spectrum of E to change significantly. This suggests that the behaviour of the precon-
ditioner will still be well characterised by the analysis presented above. This will be confirmed in the numerical experiments
presented in the next section.

Finally we note that the above analysis is easily generalised to the three-dimensional case and yields the same bounds
(28) on the non-unit eigenvalues of the preconditioned matrix.

3.2. Numerical evaluation of the preconditioner and development of an optimal implementation

We will now evaluate the performance of the preconditioner in a representative test problem and describe the develop-
ment of an optimal implementation which retains the mesh-independent iteration counts predicted by the theoretical anal-
s provides the motivation for the scaling r ¼ kEk1 in (18). If we had omitted the scaling (i.e. set r ¼ 1) then the bounds on the non-unit eigenvalues
change to �1 < k < ð1þmaxðkbbÞÞ�1 < 0 which is not as tight as the bounds given in (28) and is likely to introduce a mesh dependence into the
m of the preconditioned matrix.
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ysis, and allows the application of the preconditioner at a computational cost that is proportional to the number of un-
knowns in the problem.

We consider the deformation of a unit square subject to a boundary displacement
Fig. 2.
a ¼ 1:0
RFSIðfÞ ¼
ð1� aÞfþ að4ðf3 � f2Þ þ fÞ

1þ 2aðf2 � f3Þ

 !
ð29Þ
prescribed on the upper wall (x2 ¼ 1) which is parametrised by the boundary coordinate f 2 ½0;1�, while the other bound-
aries are held in a fixed position. The parameter a controls the magnitude of the imposed deflection, with a ¼ 0 correspond-
ing to the undeformed state. We discretised the domain with quadrilateral bi-quadratic (Q2) elements and evaluated the
performance of the preconditioner in a sequence of finite displacement problems. Starting from a ¼ 0, we increment a by
0:1, solved the resulting problem by Newton’s method, reset the undeformed configuration, and repeated this until a ¼ 1.
Fig. 2 illustrates three representative stages of the deformation and shows that in the final stages of the computation some
of the elements are very distorted, providing a challenging test case for our solver.

Fig. 3 shows a plot of the Lagrange multiplier field (representing the surface traction required to deform the pseudo-solid
into the required shape) for different levels of mesh refinement. The smoothness of the Lagrange multiplier field and the plot
of the L2 norm of the error between the prescribed and actual surface displacement as a function of the mesh size demon-
strate the accuracy and stability of the discretisation.

3.2.1. Performance of the exact preconditioner
We first consider the performance of GMRES (convergence tolerance s ¼ 10�8), preconditioned with the exact version of

the preconditioner PPS, obtained by solving the (subsidiary) linear systems involving Eaug, Mx and My with the sparse direct
solver SuperLU [41].

Table 1 shows the average number of GMRES iterations, NGMRES, (averaged over all linear systems solved in the course of
the Newton iteration) as a function of the problem size (characterised by the number of unknowns, Ndof , and the mesh size, h,
defined in Fig. 2(a)) and Poisson’s ratio, m, for the initial stage of the computation (a ¼ 0! 0:1). The iteration count is low
and mesh-independent with a very weak dependence on Poisson’s ratio.

Table 2 displays the dependence of NGMRES on the problem size for different levels of the deformation at a fixed Poisson
ratio of m ¼ 0:1. The iteration count remains mesh-independent for all cases and displays a modest increase with the degree
of deformation.

The iteration counts are similar for all linear solves performed in the course of the Newton iterations, confirming our
assumption that the behaviour of the preconditioner is well characterised by the analysis presented above, even in cases
when E is not exactly symmetric positive definite.

3.2.2. Development of an optimal preconditioner
GMRES, preconditioned by PPS in its exact form, does not constitute an optimal solver for the linear system (16) because

the computational cost of solving the subsidiary linear systems involving Eaug, Mx and My with a sparse direct solver does not
scale linearly with the number of unknowns. We therefore seek optimal-cost inexact solvers for these subsidiary linear
systems.

The augmentation of E only affects a small subset of diagonal coefficients which suggests that effective (approximate)
solvers for E should also constitute good solvers for linear system involving Eaug. We therefore employ the block-precondi-
tioning approach developed in [42] for the Navier–Lamé equation of linear elasticity, and replace Eaug by its upper block-tri-
angular counterpart (grouping together the unknowns according to their coordinate directions), to obtain
Three domain shapes computed in the solution of the two-dimensional test problem for a Poisson’s ratio of m ¼ 0:1. (a) a ¼ 0, (b) a ¼ 0:5 and (c)
.



Fig. 3. (a–c) Plot of the Lagrange multiplier field (representing the surface traction required to deform the pseudo-solid into the required shape) for
different levels of mesh refinement: (a) h ¼ 1=20; (b) h ¼ 1=80; (c) h ¼ 1=320. (d) Plot of the L2 norm of the error between the prescribed and actual surface
displacement as a function of the mesh size, h. All figures are for m ¼ 0:1 and a ¼ 0:3.

Table 1
Average GMRES iteration count, NGMRES, as a function of problem size (number of unknowns, Ndof , and mesh
size, h) and Poisson’s ratio (m), using the exact version of the preconditioner, PPS, for the first displacement
increment (a ¼ 0! 0:1).

Ndof = h 19,998 / 1
25 79,998 / 1

50 319,998 / 1
100

m ¼ 0:1 8.2 8.2 8.2
m ¼ 0:2 8.0 8.0 8.0
m ¼ 0:3 8.0 8.0 8.2
m ¼ 0:4 8.2 8.2 8.2

Table 2
Average GMRES iteration count, NGMRES, as a function of problem size (number of unknowns, Ndof ,
and mesh size, h) and degree of deformation (a), using the exact version of the preconditioner, PPS

(m ¼ 0:1).

Ndof = h 19,998 / 1
25 79,998 / 1

50 319,998 / 1
100

(a) a ¼ 0:0! 0:1 8.2 8.2 8.2
(b) a ¼ 0:5! 0:6 9.5 9.7 9.7
(c) a ¼ 0:9! 1:0 11.0 11.0 11.0
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ð30Þ
When applying this preconditioner we approximately solve the subsidiary linear systems involving the diagonal blocks
Exx Ex�x

E�xx E�x�x þ rI

� 	
and

Eyy Ey�y

E�yy E�y�y þ rI

� 	
ð31Þ



Table 3
Average GMRES iteration count, NGMRES, and (in brackets) the average GMRES solution times, Tsolve, (in
seconds), as a function of problem size (number of unknowns, Ndof , and mesh size, h) and Poisson’s ratio (m),
using the inexact version of the preconditioner, ePPS, for the first displacement increment (a ¼ 0! 0:1).

Ndof = h 19,998 / 1
25 79,998 / 1

50 319,998 / 1
100

m ¼ 0:1 19.5 [0.91] 19.5 [4.49] 20.0 [22.26]
m ¼ 0:2 21.2 [0.95] 21.2 [4.79] 21.2 [22.87]
m ¼ 0:3 23.4 [1.21] 23.8 [6.55] 24.2 [29.50]
m ¼ 0:4 30.4 [1.47] 31.6 [8.16] 33.2 [39.84]

Table 4
Average GMRES iteration count, NGMRES, and (in brackets) the average GMRES solution times, Tsolve,
(in seconds), as a function of problem size (number of unknowns, Ndof , and mesh size, h) and degree
of deformation (a), using the inexact version of the preconditioner, ePPS (m ¼ 0:1).

Ndof = h 19,998 / 1
25 79,998 / 1

50 319,998 / 1
100

(a) a ¼ 0:0! 0:1 19.5 [0.91] 19.5 [4.49] 20.0 [22.26]
(b) a ¼ 0:5! 0:6 23.2 [1.05] 24.0 [5.54] 24.5 [26.98]
(c) a ¼ 0:9! 1:0 27.7 [1.25] 30.0 [6.89] 33.7 [37.36]
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by performing a fixed number of algebraic multigrid (AMG) cycles. In the computations presented below the approximate
solves were performed with two Vð1;1Þ multigrid cycles, using BoomerAMG, Hypre’s implementation of AMG [43], with
Ruge–Stüben coarsening (strength parameter 0:25) using Gauss–Seidel as the smoother. As discussed above, the subsidiary
linear systems involving M2

x and M2
y can be solved by two consecutive linear solves involving the mass matrices themselves.

Following Wathen [44] we employ CG, preconditioned by diagonal scaling, as the solver for these systems. This solver con-
verges so rapidly that a fixed number of four CG iterations suffices to compute the solution to sufficient accuracy so that ePPS

can be treated as a constant preconditioner. With these approximations, the computational cost of the application of ePPS is
linear in the number of unknowns.

Tables 3 and 4 show that the use of the various approximations increases the number of GMRES iterations, but only intro-
duces a weak mesh dependence into the iteration counts, indicating the solver is now close to optimal. (More detailed stud-
ies show that the slight increase in iteration counts for large Poisson ratios and for very strongly deformed configurations is
caused by the use of AMG for the approximate solution of the linear systems involving the matrices in (31).) The near-opti-
mality of the solver is confirmed by the average solution times, Tsolve, shown in brackets in Tables 3 and 4, and in Fig. 4 which
indicate that for the optimal implementation of the preconditioner, Tsolve increases approximately linearly with the number
of unknowns. The best behaviour (both in terms of absolute solve times and mesh (in)dependence) is obtained for small val-
ues of Poisson’s ratio m – an important observation for the application of the preconditioner in an FSI context where the con-
stitutive parameters for the pseudo-solid can be chosen arbitrarily. In the FSI computations presented below we set Poisson’s
ratio for the pseudo-solid to m ¼ 0:1. Furthermore, the deterioration of the iteration counts for large deformations only occurs
when the mesh is already so strongly distorted (as in Fig. 2(c)) that the solution of the Navier–Stokes equations on that mesh
is unlikely to be of particularly high quality. This problem arises in all ALE-based discretisations of moving boundary prob-
lems – remeshing is required if the domain is deformed too strongly. Finally, we note that the behaviour reported for the 2D
test case analysed here is representative of the behaviour in equivalent 3D test cases [45].

4. Preconditioning for FSI problems with pseudo-solid mesh-updates

We will now utilise our new pseudo-solid preconditioner in the development of a preconditioner for the fully-coupled FSI
problem. The linear systems to be solved in the course of the Newton iteration for such problems have the following block
structure
ð32Þ
where the vector F contains the Navier–Stokes (fluid) unknowns (velocities and pressure), S represents unknowns describing
the deformation of the fluid-loaded solid, X represents the nodal positions in the fluid mesh, and L contains the discrete La-
grange multipliers which impose the deformation of the FSI boundary in the fluid mesh. The diagonal blocks in the Jacobian
matrix, JFSI, are the two ‘‘single-physics’’ Jacobian matrices (F, the Navier–Stokes Jacobian; S, the tangent stiffness matrix of
the fluid-loaded solid) and the pseudo-solid Jacobian, JPS, defined in (15). The non-zero off-diagonal blocks arise through the
interactions between the various problems: Cfx represents the effect of the pseudo-solid unknowns (the nodal positions in



Fig. 4. Average GMRES solution times, Tsolve, (in seconds) as a function of problem size (number of unknowns, Ndof ), for the exact and optimal
implementation of the pseudo-solid preconditioner, for two different Poisson ratios and degrees of deformation.
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the fluid mesh) on the discretised Navier–Stokes equations – this incorporates the so-called shape-derivatives and the time-
discretised version of the no-slip condition (8) which, as discussed in Section 2.2, expresses the fluid velocities in terms of the
nodal velocities of the fluid mesh. Csf captures the effect of the fluid traction (pressure and shear stresses) on the fluid-loaded
solid. Since the shear stresses depend on gradients of the fluid velocity (see (6)), the traction is also affected by the nodal
positions in the fluid mesh – this dependency gives rise to the matrix Csx. Finally, Cls arises because the prescribed boundary
displacement of the fluid mesh, RFSI, in (9), now depends on the displacement field in the fluid-loaded solid. The zero (1,2)
block reflects the fact that the discretised Navier–Stokes equations do not depend directly on the displacement field of the
actual solid. The zero (3,1) and (3,2) blocks indicate that the pseudo-solid equations are not affected by the fluid unknowns.
The (3,2) block is zero because the real solid affects the pseudo-solid only indirectly via the Lagrange multiplier constraint
(which gives rise to Cls). Finally, the non-zero blocks in the last block column reflect the fact that the Lagrange multiplier is
only used to enforce the displacement constraint (9) in a one-way coupling in which the real solid affects the pseudo-solid
but not vice versa.
4.1. Derivation of the FSI preconditioner

To construct a preconditioner for the linear system (32) we replace the bottom-right 2� 2 block in the Jacobian with the
pseudo-solid preconditioner, PPS, defined in (19). This yields the pseudo-solid FSI preconditioner
ð33Þ
Permuting PFSI with
Y ¼

Inx

Inf

Ins

Inb

26664
37775; ð34Þ
where Im is an m�m identity matrix, yields
PFSI YT ¼

Eaug

Cfx F

Csx Csf S

Cls W

26664
37775; ð35Þ
which shows that the preconditioner has a block triangular structure. The application of the preconditioner PFSI therefore
requires the solution of four subsidiary linear systems involving the matrices F, S, Eaug and W and four sparse matrix–vector
products with the interaction matrices Cfx, Csx, Csf and Cls. The ability to permute this system to lower block triangular form is
a direct consequence of (i) the use of the Lagrange multiplier for the imposition of the displacement constraint (9), and (ii)
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the use of the block diagonal pseudo-solid preconditioner PPS as an approximation for the saddle-point pseudo-solid Jaco-
bian JPS.

4.2. Spectral properties of the FSI preconditioner

We assess the quality of the preconditioner by analysing the spectrum of the preconditioned matrix P�1
FSI JFSI. For this pur-

pose we split the FSI Jacobian defined in (32) into 2� 2 sub-blocks,
ð36Þ
where we have sub-divided the pseudo-solid degrees of freedom (representing the nodal positions in the fluid mesh) into
constrained and unconstrained values (identified by the subscripts b and i, respectively), and M is defined in (21). Using this
sub-division, we rewrite the FSI preconditioner (33) as
PFSI ¼
J11 J12

J21 J22 þ V

� 	
; ð37Þ
where
V ¼
rI �M

�M 1
r M2

" #
: ð38Þ
This allows the preconditioned matrix P�1
FSIJFSI to be written as
P�1
FSIJFSI ¼

I S�1
11 J12J�1

22 VðS22 þ VÞ�1S22

ðS22 þ VÞ�1S22

" #
; ð39Þ
where S22 ¼ J22 � J21J�1
11 J12 is the Schur complement associated with the block J22. The identity matrix in the top left block in

Eq. (39) shows that the preconditioned matrix P�1
FSIJFSI has at least nf þ ns þ nx � nb unit eigenvalues, with the remaining 2nb

eigenvalues determined by the spectrum of ðS22 þ VÞ�1S22.
Using the identity
ðS22 þ VÞ�1 ¼ ðSbb þ rIÞ�1

rM�2ClsUðSbb þ rIÞ�1 rM�2

" #
; ð40Þ
where Sbb ¼ Ebb � EbiE
�1
ii Eib is the Schur complement associated with the block Ebb, and
U ¼ S�1ðCsxb
� Csf F

�1Cfxb
þ ðCsf F

�1Cfxi
� Csxi

ÞE�1
ii EibÞ ð41Þ
then shows that the remaining 2nb eigenvalues are determined by the eigenvalue problem
R11 R12

R21 R22

� 	
wb

wl

� 	
¼ k

wb

wl

� 	
; ð42Þ
where
R11 ¼ ðSbb þ rIÞ�1Sbb;

R12 ¼ ðSbb þ rIÞ�1M;

R21 ¼ rM�2ClsU ðSbb þ rIÞ�1Sbb � I
� �

þ rM�1;

R22 ¼ rM�2ClsUðSbb þ rIÞ�1M:
Straightforward block elimination of (42) yields
ðk� k2Þ 1
r Sbbwb ¼ ðð1� kÞM�1ClsU � ð1� k2ÞIÞwb; ð43Þ
which reveals the existence of further unit eigenvalues, with the remaining (at most nb) non-unit eigenvalues determined by
the generalised eigenvalue problem
Sbbwb ¼
r
k
ðM�1ClsU � ð1þ kÞIÞwb: ð44Þ



R.L. Muddle et al. / Journal of Computational Physics 231 (2012) 7315–7334 7327
We were not able to derive rigorous bounds on these few remaining eigenvalues and will therefore employ numerical exper-
iments to assess the quality of PFSI. However, it interesting to note that for Q ¼ 0 (which implies U ¼ 0 because Csxi

¼ 0,
Csxb
¼ 0 and Csf ¼ 0), Eq. (44) is equivalent to Eq. (26) in the pseudo-solid case. Therefore, subject to the constraint that E

is symmetric positive definite, the non-unit eigenvalues of P�1
FSIJFSI are also bounded by (27), suggesting that for sufficiently

weak fluid–structure interaction (small values of Q), these bounds provide a good approximate characterisation of the spec-
trum of the preconditioned matrix.
4.3. Numerical evaluation of the FSI preconditioner and development of an optimal implementation

To evaluate the performance of the FSI preconditioner, we first consider the two-dimensional problem shown in Fig. 5:
Viscous fluid is driven through a finite-length channel that is partially obstructed by an elastic leaflet which we model as a
massless, thin-walled Kirchhoff–Love beam. We non-dimensionalise the problem, using the channel width as the lengthscale
L, while non-dimensionalising the velocity on the maximum inflow velocity so that the imposed steady inflow profile is gi-
ven by uðx1 ¼ 0; x2Þ ¼ usteadyðx2Þ ¼ 4x2ð1� x2Þe1. When considering time-dependent problems we subject the inflow profile
to a time-periodic variation, such that uðx1 ¼ 0; x2; tÞ ¼ usteadyðx2Þð1þ 1

2 sinð2ptÞÞ where time has been non-dimensionalised
Fig. 5. Illustration of the flow field (pressure contours and instantaneous streamlines) for unsteady flow past a thin-walled elastic leaflet (h=L ¼ 0:05) at a
Reynolds number of Re ¼ 200 for Q ¼ 2� 10�7 and K ¼ 0. (a) t ¼ 1:00, (b) t ¼ 1:25, (c) t ¼ 1:50, and (d) t ¼ 2:00.



Table 5
Iteration counts for the GMRES solver preconditioned with the exact pseudo-solid FSI preconditioner applied to the steady and unsteady simulation of the two-
dimensional FSI channel with leaflet problem.

Ndof = h 38,724 / 1
24 155,784 / 1

48 351,180 / 1
72 624,912 / 1

96

Re ¼ 50 6.7 7.5 8.2 8.3
Re ¼ 100 6.5 6.7 7.5 8.7 (steady)
Re ¼ 200 7.3 7.0 8.5 8.5

Re ¼ 50 7.3 7.6 7.8 8.0
Re ¼ 100 7.2 7.5 7.7 8.2 (unsteady)
Re ¼ 200 7.4 7.9 8.2 8.5
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on the flow’s intrinsic timescale, T ¼ L=U, corresponding to St ¼ 1. We impose parallel, axially traction-free outflow and
clamp the leaflet at its base, x2 ¼ 0.

We discretised the Navier–Stokes equations with quadrilateral Taylor–Hood (Q2Q1) elements and used one-dimensional
Hermite elements to discretise the one-dimensional version of the variational principle (5). The simulations were then car-
ried out in two stages. First we performed a steady simulation in which we increased the Reynolds number from zero to its
target value in increments of 25. The steady solution at the target Reynolds number was then used as the initial condition for
an unsteady simulation in which the inflow profile was subjected to the time-periodic variation specified above. We com-
puted the flow field over three periods of the time-periodic inflow (from t ¼ 0 to t ¼ 3), evaluating the time-derivatives in
the fluid and solid equations with BDF2 and Newmark schemes, respectively, using a fixed timestep of Dt ¼ 1=40.
4.3.1. Performance of the exact preconditioner
Table 5 shows the average GMRES iteration counts (averaged over all linear solves performed in the course of all Newton

iterations, for a GMRES convergence tolerance of s ¼ 10�8) for the exact version of the preconditioner in which the subsidiary
linear systems involving F, S, Eaug and W are solved using SuperLU. The iteration counts in the steady and unsteady
Table 6
Spectral bounds of the nnu non-unit eigenvalues of the preconditioned matrix P�1

FSI JFSI for the steady solution of the FSI channel with leaflet problem at Re ¼ 50.

Ndof = h 1014 / 1
2 4204 / 1

4 9570 / 1
6 17,112 / 1

8

nnu 14 30 46 62
minðRðkÞÞ �0.9722 �0.9861 �0.9907 �0.9932
maxðRðkÞÞ �0.8345 �0.8356 �0.8356 �0.8354
minðIðkÞÞ �0.0015 �0.0035 �0.0032 �0.0025
maxðIðkÞÞ 0.0015 0.0035 0.0032 0.0025

Table 7
Iteration counts for the GMRES solver, preconditioned with the intermediate inexact pseudo-solid FSI preconditioner applied to the steady and unsteady
solution of the two-dimensional FSI channel with leaflet problem.

Ndof = h 38,724 / 1
24 155,784 / 1

48 351,180 / 1
72 624,912 / 1

96

Re ¼ 50 15.0 17.5 18.0 18.0
Re ¼ 100 14.2 16.2 16.5 19.2 (steady)
Re ¼ 200 16.6 17.3 21.5 20.7

Re ¼ 50 15.9 16.9 17.4 17.9
Re ¼ 100 15.3 16.9 17.4 18.2 (unsteady)
Re ¼ 200 15.6 17.0 17.7 18.5

Table 8
Iteration counts for the GMRES solver preconditioned with the inexact pseudo-solid FSI preconditioner applied to the steady and unsteady solution of the two-
dimensional FSI channel with leaflet problem.

Ndof = h 38,724 / 1
24 155,784 / 1

48 351,180 / 1
72 624,912 / 1

96

Re ¼ 50 51.5 68.0 78.5 86.0
Re ¼ 100 60.0 72.2 87.7 101.5 (steady)
Re ¼ 200 149.0 98.2 108.5 118.6

Re ¼ 50 27.5 30.6 31.7 32.8
Re ¼ 100 27.2 30.4 31.8 33.3 (unsteady)
Re ¼ 200 30.6 32.2 33.0 33.6



Fig. 6. GMRES iteration counts (left) and solve times (in seconds, right) for the three different implementations of the FSI preconditioner when used in the
steady (top) and unsteady (bottom) simulations of the two-dimensional test problem at Re ¼ 200.
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simulations are remarkably low and display only a very weak dependence on the Reynolds number and mesh size. This sug-
gests that, even though the analysis presented in Section 4.1 is incomplete, the largest and smallest eigenvalues, k, of the
preconditioned matrix P�1

FSI JFSI remain bounded under mesh refinement. We confirmed this by computing the spectrum of
P�1

FSI JFSI for a number of modest-sized problems. Table 6 shows that the maximum and minimum real and imaginary parts
of the nnu non-unit eigenvalues of P�1

FSI JFSI remain in a small bounded region of the complex plane. The bounds have a very
weak dependence on the problem size and are far from the origin, consistent with the observation that the GMRES iteration
counts are virtually mesh independent.
4.3.2. Development of an optimal preconditioner
We start the development of an optimal implementation of the preconditioner by replacing the exact solution of the lin-

ear systems involving Eaug and W by the application of the approximate pseudo-solid preconditioner ePPS discussed in Sec-
tion 3.2. Table 7 shows that the use of this intermediate version of the preconditioner causes a small increase in the absolute
iteration counts while retaining the weak dependence on both mesh spacing h and Reynolds number Re. With this imple-
mentation the most computationally expensive phase of the application of the preconditioner is the solution of the linear
Table 9
Average GMRES iteration count, NGMRES, as a function of the timestep, Dt, and a range of values of the wall inertia parameter K2 for the GMRES solver
preconditioned with the inexact pseudo-solid FSI preconditioner, applied to the unsteady solution of the two-dimensional FSI channel with leaflet problem
with Re ¼ 100 and a spatial discretisation involving 38,724 degrees of freedom.

Dt 0.0125 0.025 0.05 0.1

K2 ¼ 0:0 25.3 27.6 30.6 34.1

K2 ¼ 0:1 22.1 24.5 27.1 29.6

K2 ¼ 1:0 21.7 23.2 25.5 29.9

K2 ¼ 10:0 20.7 22.3 24.3 28.4



Fig. 7. Snapshots of the flow field (velocity vectors and pressure contours) and wall shapes during the forced oscillation of a collapsible tube, subject to
time-periodic inflow, and an external pressure of pext ¼ 2� 10�4. Length of the elastic and rigid upstream and downstream tube sections, Lelastic=a ¼ 12,
Lup=a ¼ 1:5, Ldown=a ¼ 3, respectively; wall thickness h=a ¼ 0:15; Poisson’s ratio m ¼ 0:3; wall density K ¼ 0; Reynolds number Re ¼ 100. (a) t ¼ 3:375, (b)
t ¼ 3:875, (c) t ¼ 4:375, and (d) t ¼ 4:875.
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system involving the Navier–Stokes Jacobian, F.2 Following the approach we adopted in the development of our preconditioner
for FSI problems with algebraic node updates [28,19], we replace the action of F�1 by the application of Elman, Silvester and
2 The use of a sparse direct solver for the linear system involving the tangent stiffness matrix S of the Kirchhoff Love beam does not affect the optimality of
the preconditioner. This is because S arises from the discretisation of a spatially one-dimensional sub-problem. Therefore under uniform mesh refinement the
size of S scales as OðN1=2

dof Þ. When combined with a sparse direct solver (with a computational cost that scales as Oðm2Þ for a linear system of size m) this still
yields a solution at a cost proportional to Ndof .
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Wathen’s Least-Squares Commutator (LSC) Navier–Stokes preconditioner (see [46]; details of the specific implementation are
given in Appendix A).

Table 8 shows the GMRES iteration counts obtained with this final version of the FSI preconditioner. For the steady sim-
ulations, the introduction of the LSC preconditioner leads to a significant increase in NGMRES, with a slightly erratic depen-
dence on the mesh size and a noticeable dependence on the Reynolds number. Conversely, in the unsteady simulations
the introduction of the LSC preconditioner merely causes a modest increase in the iteration counts while retaining its weak
dependence on Re and h. This is entirely consistent with the behaviour of the LSC preconditioner in equivalent single-physics
Navier–Stokes problems; see e.g. [46].

The plots of the GMRES iteration counts and solution times (for the simulations at Re ¼ 200) shown in Fig. 6 illustrate that
the low and virtually mesh independent iteration counts obtained for the exact and intermediate implementations of the
preconditioner do not result in optimal solution times because the application of these preconditioners still requires the
solution of subsidiary linear systems by sparse direct solvers. Conversely, in the fully-optimal implementation of the precon-
ditioner the solution time exhibits nearly optimal asymptotic scaling in the sense that for sufficiently large problem sizes, the
solve times increase approximately linearly with the number of unknowns. The steady computations are significantly more
costly than their unsteady counterparts due the much higher iteration counts.

Finally, Table 9 demonstrates that the behaviour reported above is robust with respect to variations in the timestep, Dt,
and the presence or absence of solid inertia (characterised by the parameter K2).
4.4. A three-dimensional test problem

To assess how well the preconditioner performs in 3D problems we performed a simulation of the collapsible tube prob-
lem shown in Fig. 7. An elastic circular tube of inner radius a and thickness h is mounted between two rigid sections and
conveys viscous fluid that is driven by an imposed, pulsatile inflow at the far upstream end. We non-dimensionalised all
lengths on the inner radius of the tube, so that L ¼ a, and scaled the velocity on the (time-)average inflow velocity on the
tube’s centreline so that the imposed inflow profile is given by uðz ¼ 0; r; tÞ ¼ 2rð1� rÞð1þ 1

2 sinð2ptÞÞez. At the far down-
stream end, we imposed parallel, axially traction-free outflow. We modelled the tube as a massless 3D solid, loaded by
the fluid traction and an external pressure pext (non-dimensionalised on the wall’s Young’s modulus, so that S ¼ E) which
we modulated by a small azimuthal imperfection to induce the tube’s non-axisymmetric buckling. Fig. 7 shows snapshots
of the large-amplitude oscillation that develops from an initial condition of Poiseuille flow through the undeformed tube
for a Reynolds number of Re ¼ 100. We discretised a quarter of the tube, exploiting its twofold symmetry.

To systematically assess the mesh-dependence of the GMRES iteration counts we initially performed the entire simula-
tion with a relatively coarse, uniform discretisation. We then restarted the computation at selected timesteps (corresponding
to the configurations shown in Fig. 7) and performed a number of uniform mesh refinements before continuing the simula-
tion for a small number of timesteps. All computations were performed using the optimal implementation of the precondi-
tioner, in which we performed the solution of the subsidiary linear systems (apart from those involving the solid Jacobian S)
as described in the previous section. In the present problem the fluid-loaded solid is three-dimensional, therefore the use of a
direct solver for the linear systems involving S is no longer optimal. We therefore employed the same block triangular pre-
conditioner with AMG block solves that we used for the pseudo-solid mesh update system (30). The average GMRES iteration
counts (again for a GMRES convergence tolerance of s ¼ 10�8) observed in these simulations are reported in Table 10 which
shows a very modest increase in iteration counts despite the dramatic increase in the overall number of degrees of freedom
under uniform mesh refinement.

In practical applications it is rarely necessary to refine the mesh uniformly to fully resolve the flow field, especially in
cases where sharp spatial gradients arise only in shear or boundary layers, say. In such cases, the use of spatial adaptivity
becomes essential. We assessed the performance of the preconditioner in spatially adaptive computations by performing
the entire simulation yet again, controlling the adaptive mesh refinement in the fluid and solid meshes with error estimates
obtained from Zhu and Zienkiewiz’s flux recovery procedure [47], using the components of the solid strain and the fluid rate
of strain tensors as the generalised fluxes. The dynamic mesh adaptation resulted in an average of 138,631 unknowns (vary-
ing between 117,666 and 164,169 unknowns) over the course of the simulation. (For comparison, an equivalent, spatially
uniform mesh refinement would have resulted in 358,114 unknowns). GMRES, preconditioned by the optimal implementa-
Table 10
Average GMRES iteration count, NGMRES, for the GMRES solver preconditioned with the inexact pseudo-solid FSI preconditioner, applied to the unsteady solution
of the three-dimensional collapsible tube for different levels Nunif :ref : of uniform mesh refinement, resulting in the specified number of unknowns. All
simulations were restarted from the equivalent of the configurations shown in Fig. 7 and NGMRES represents the average of all linear solves when computing the
subsequent three timesteps.

Ndof = Nunif : ref: 6178 / 0 46,228 / 1 358,114 / 2 2,820,262 / 3

trestart ¼ 3:375 65.00 66.75 74.50 82.50
trestart ¼ 3:875 61.00 65.75 77.12 84.88
trestart ¼ 4:375 61.75 68.75 80.00 90.50
trestart ¼ 4:875 62.25 71.50 81.50 88.25
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tion of the FSI preconditioner, converged within an average of NGMRES ¼ 78:3 iterations, consistent with the behaviour ob-
served in computations on uniformly refined meshes.

5. Summary and discussion

We have developed and analysed a preconditioner for the efficient solution of the linear systems that arise when New-
ton’s method is employed to solve monolithically-coupled large-displacement fluid–structure problems in which the mov-
ing, body-fitted fluid mesh is updated by the equations of (pseudo-)elasticity. The preconditioner is applicable to problems in
which the fluid-loaded solid is described by the equations of elasticity or thin-shell/beam theory. We demonstrated that in
its exact or intermediate implementation (in which the subsidiary linear systems involving the fluid and solid Jacobians are
solved exactly), use of the preconditioner results in mesh-independent GMRES iteration counts. An optimal implementation
of the preconditioner requires the replacement of these costly exact linear solves by approximate solvers/preconditioners.
An important feature of our FSI preconditioner is that it lends itself to a modular implementation which allows these tasks
to be performed by existing single-physics preconditioners. The approach of reusing solvers for single-physics problems at
the linear algebra (specifically, preconditioning) level is in direct contrast to the approach adopted in partitioned methods
where the re-use of the solvers takes place at the level of the (black-box) non-linear sub-problems.

We presented a particular implementation of our approach, using the Least Squares Commutator preconditioner to
approximately solve the linear systems involving the Navier–Stokes Jacobian, and a block triangular preconditioner for
the linear systems involving the solid Jacobian. In all single-physics preconditioners the approximate solution of the linear
systems involving the principal diagonal blocks and the associated approximate Schur complements was performed by a
small, fixed number of AMG V-cycles with standard point smoothers. This implementation allowed the application of the
preconditioner at a cost that is linear in the number of unknowns, while retaining an approximately constant GMRES iter-
ation count under uniform mesh refinement, resulting in a near-optimal overall solver. The preconditioning strategy was
found to work equally well in simulations in which spatial adaptivity was employed to refine the meshes non-uniformly
in 3D.

The results obtained in the test cases reported in this paper are fairly typical for the behaviour of the preconditioner in
many other FSI problems [45]. A common feature observed in all these tests is that the behaviour of the FSI preconditioner
(e.g. the dependence of the GMRES iteration counts on the mesh size, and on physical problem parameters such as the Rey-
nolds number) tends to mirror the behaviour of the constituent subsidiary (fluid and solid) preconditioners when used in
comparable single-physics problems, implying that improvements to the single-physics preconditioners will directly benefit
the performance of the FSI preconditioner.

The use of Lagrange multipliers for the imposition of the displacement constraint (9) for the pseudo-solid, and the use of
an augmented Lagrangian preconditioning strategy for the solution of the linear system (15) are crucial for the development
and the theoretical analysis of the preconditioner for the linear systems that arise from the monolithic discretisation of FSI
problems. However, we note that the preconditioning strategy for the solution of the isolated pseudo-solid problem dis-
cussed in Section 3 can also be used to update the fluid mesh when solving FSI problems by partitioned approaches. In fact,
numerical experiments show that the imposition of the boundary displacements by Lagrange multipliers is far more robust
than the direct imposition of the displacement boundary conditions as Dirichlet conditions. This is because in the latter ap-
proach the imposition of relatively large boundary deflections (compared to the size the of the fluid elements next the FSI
boundary) can create inverted elements before a solution is even attempted; the Lagrange-multiplier-based imposition of
the displacement boundary conditions applies the displacement constraint more gently.

Finally we mention that all the test cases presented in this paper are scheduled for inclusion into the next release of
oomph-lib, scheduled for 2012.
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Appendix A. The Least Squares Commutator preconditioner

Here we provide brief details of the Least Squares Commutator (LSC) Navier–Stokes preconditioner [46] and its approx-
imate implementation used in the computations presented in Section 4.1. The preconditioner is applicable to the solution of
the linear systems
A BT

B

" #
Du
Dp

� �
¼
�ru

�rp

� �
ðA:1Þ
that arise in the Newton-based solution of Navier–Stokes problems, discretised with LBB-stable finite elements (such as the
Taylor–Hood Q2Q1 elements used throughout this paper). In equation (A.1) we have grouped the unknowns into the vectors
of discrete velocities, u, and pressures, p. In its exact form, the LSC preconditioner is given by
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PLSC ¼
A BT

�Ws

" #
; ðA:2Þ
where
Ws ¼ ðBQ�1
diagBTÞðBQ�1

diagAQ�1
diagBTÞ�1ðBQ�1

diagBTÞ ðA:3Þ
is an approximation to the Schur complement, BA�1BT . The approximate Schur complement Ws is formed from the block
matrices B, A and BT that occur naturally in the Jacobian matrix, and the cheap-to-compute diagonal of the velocity mass
matrix, Q diag. The application of the preconditioner requires the solution of two linear systems involving the pressure-Pois-
son-like matrix BQ�1

diagBT , one matrix vector product with BQ�1
diagAQ�1

diagBT (performed via three separate matrix–vector prod-
ucts and two scaling operations), and the solution of a linear system involving the momentum block, A.

An optimal approximate implementation of the preconditioner (in which the cost of each application is proportional to
the number of unknowns) is obtained by approximating the two pressure-Poisson solves involving BQ�1

diagBT by two Vð1;1Þ
AMG cycles. In the computations presented in this paper we employed BoomerAMG, Hypre’s implementation of AMG [43],
using Ruge–Stüben coarsening (with a strength parameter of 0.25) and Jacobi smoothing (with a damping factor of 2

3). The
linear systems involving the momentum block A were solved by replacing A by an upper block triangular approximation
(sub-dividing the discrete velocities according to their coordinate directions), and approximately solving the linear systems
involving the diagonal blocks with AMG (as above, but without damping).
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